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1. Introduction. Let M he a compact orientable Riemannian mani-

fold. Let Mp be the tangent space of the manifold M at the point P.

We denote by (X, Y) and ||A|| the scalar product of two vectors

X, YEMp and the norm of the vector X, respectively, where the

scalar product on the tangent space Mp is induced by the Rieman-

nian metric of the manifold M.

If X, Yare two vectors of the tangent space Mp, then the curvature

tensor field R of the manifold M and the two vectors X, Y induce an

endomorphism A(A, F)of Mp into Mp. If A, F, Z, Tare four vectors of

Mp, then the Riemannian curvature tensor Ai at P can be considered

as a quadrilinear mapping Ax: Mp X Mp X Mp X Mp—>R which is

defined by Rn (X, Y, Z, T)-+(R(X, Y)Z, T). Let X be a plane of the
tangent space Mp which is spanned by two linearly independent

vectors X, YEMp. The sectional curvature of the plane X is given by

o-(x) = o-ix, y) = - „ ., „ ,;        —
||a||2||f||2 - (x, Y)2

We assume that the Riemannian manifold is compact orientable

and negative 5-pinched, that means its sectional curvature er(X) satis-

fies the inequalities

-A g <r(X) g - Afi,

for every XG Mp and VPEM.
We can normalize the metric on the manifold M such that the

above inequalities become

-1 Ú o-(X) è -5.

A Riemannian manifold M, whose sectional curvature satisfies the

above inequalities, is called negative 5-pinched.

Now, our results can be stated as follows: Let M be a compact

orientable negative 5-pinched manifold. If the dimension of M is even,

n = 2m(resp. odd,» = 2w+l) and 5 > 1/4 (resp. 5>2(m-l)/(8w -5)),

then there exists neither Killing tensor field of order 2 nor conformai

Killing tensor field of order 2.

2. Let M be a compact orientable negative 5-pinched manifold.
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We obtain a point P of the manifold M and consider a normal coordi-

nate system on M with origin the point P.

We also consider an orthonormal basis {Xi, ■ ■ ■ , Xn} of the

tangent space M p. If {Xi, X¡, Xk, Xi} is a set of four vectors of the

orthonormal basis {Xi, • • ■ , Xn}, then the following formulas hold:

(2.1) (R(Xi, X,)Xk, Xi) = Rijki,       o-(Xi, X¡) = er,-,- = — Rim,

where 2?</*j are the components of the Riemannian curvature.

If we apply the same technique as in [l, pp. 67-69], we obtain the

following inequalities:

(2.2) | Rijik | á (1 - S)/2,     | Ruh | Ú 2 (1 - 5)/3,      i^j^k^l,

because all the computations made in [l] for the sectional curvature

ranging (|, l] if n = 2m, or (2(m — I)/(9m — 5), l] if n = 2m + i are

valid without any change of the curvature ranging in any interval

[a, b}.

3. Let £= {¡;(Xi, .Xy) =£,;■} be an exterior 2-form. This exterior

2-form is called a Killing 2-form if it satisfies the relation:

Vx£(F, Z) - - Vr*(X, Z),        VX, Y,ZE T(M).

We consider the quadratic form F(£) given by [2, p. 62]:

F(0 = E Rid% + 4 E Rimfi1.
ÍJÍ2 ^      tj'AZ

If the manifold is even dimension n = 2m (resp. odd dimension

n = 2m + \) and 5> 1/4 (resp. h>2(m — l)/(8?w — 5)), then by means

of the second of (2.1) and (2.2) with the same method as in [l, p. 70],

we have F(£)<0. It is well known [2, p. 67], if F(£)<0, it implies

£ = o.
Therefore, we can state the following theorem.

Theorem I. Let M be a compact orientable negative h-pinched mani-

fold. If the dimension of the manifold is even n = 2m (resp. odd n

= 2m + l) and ô> 1/4 (resp. 5>2(m — I)/(8m — 5)), then there exists no

Killing tensor field of order 2 on the manifold M.

4. Let n = {n(Xi, X¡) = ni,n2} be an exterior 2-form on the manifold

M. This exterior 2-form is called a conformai Killing 2-form, if it

satisfies the following conditions [2, p. 73]:

v>«, + Vina, = 2ßi2ga,       /3¿2 = g^V^aJn.

We can prove with the same technique as in §3. If the manifold M
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is compact orientable and negative 5-pinched, the dimension of the

manifold is even n = 2m, (resp. odd n = 2m-\-l), and 5>l/4 (resp. 5

>2(m — l)/(Sm — 5)), then the quadratic form F(n) is negative

definite.

From the above and the known theorem [2, p. 73], we obtain the

following theorem:

Theorem II. Let M be a compact orientable negative b-pinched

Riemannian manifold. If the dimension of the manifold is even n = 2m

iresp. odd w = 2w + l) and 5>l/4 iresp. 5>2(w —l)/(8w —5)), then

there exists no conformai Killing tensor field of order 2 on the manifold.

I wish to express here my thanks to Professor S. Kobayashi for

many good ideas I obtained from conversation with him.
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