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A RELATION BETWEEN POINTWISE CONVERGENCE

OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS

HAIM BREZIS AND ELLIOTT LIEB1

Abstract. We show that if {/„} is a sequence of uniformly L'-bounded functions

on a measure space, and if/„ —/pointwise a.e., then lim„_00{||/n||pp - 11/, -/ll£}

= II/lip for all 0 <p < oo. This result is also generalized in Theorem 2 to some

functionals other than the Lp norm, namely / \j(f„) — j(f„ — f) —./'(/) I ~~ 0 f°r

suitable/: C -» C and a suitable sequence {/,}. A brief discussion is given of the

usefulness of this result in variational problems.

1. Introduction. Let (ß, 2, /i) be a measure space and let {/,}"= i be a sequence of

complex valued measurable functions which are uniformly bounded in Lp =

LP(Q, 2, ju) for some 0 <p < oo. Suppose that/, -»/pointwise almost everywhere

(a.e.). What can be said about 11 /11 pl

The simplest tool for estimating II / II   is Fatou's lemma, which yields

11/11, < lim inf ll/J,.
n-* oo

The purpose of this note is to point out that much more can be said, namely

(D lim{||/X-||/,-/Q=||/|i;.
n — oo  v

More generally, if/: C -* C is a continuous function such that/(0) = 0, then, when

/, -» /a.e. and / \j(f„(x)) | dp(x) < C < oo, it follows that

(2) lim /[/(/„)-/(/„-/)] = //(/)

under suitable conditions on y and/or {/„}.

Heuristically, (2) says the following. If we write/, — f + g„ with g„ -* 0 a.e., then,

for large n, fj(f+ gn) decouples into two parts, namely //(/) and fj(g„).

Equation (1) is not merely an idle exercise, but it is actually useful in the calculus

of variations to prove the existence of maximizing (resp. minimizing) functions in

some cases in which compactness is not available. In fact (1) was first used by one of

us (E. Lieb), but with a different notion of convergence than pointwise convergence

of /, -» /, to solve a variational problem [1]. Later, it was also used in another

variational problem [2]. At the end of this note we shall give a brief account of how

(1) can be used.
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Two theorems will be stated: (i) the Lp case (0 < p < oo), (ii) the general case (2).

Although (i) is a corollary of (ii) we state it separately because it is an important

special case and because the assumptions are especially transparent.

E. Lieb is most grateful to the Institute for Advanced Study for its support and

hospitality. Both authors thank the Summer Research Institute for bringing them

together in Melbourne, Australia, where this note had its origin.

2. The Lp case (0 < p < oo).

Theorem  1. Suppose f„^f a.e. and \\ f„\\ p < C < oo for all n and for some

0 < p < oo. Then the limit in (1) exists and the equality in (1) holds.

Remarks, (i) By Fatou's lemma,/ G Lp.

(ii) In case 0 < p «S 1, and if we assume that f E Lp, then we do not need the

hypothesis that \\f„\\p is uniformly bounded. [This follows from the inequality

1 \fn \P ~~ \fn ~ f\p\^\f\p and int dominated convergence theorem.] However, when

1 < p < oo, the hypothesis that II f„ II is uniformly bounded is really necessary (even

if we assume that/ E Lp) as a simple counterexample shows.

(iii) When 1 <p < oo, the hypotheses of Theorem 1 imply that /„ --/ weakly in

Lp. [By the Banach-Alaoglu theorem, for some subsequence,/, converges weakly to

some g; but g =/since/, ->/a.e.] However, weak convergence in Lp is insufficient

to conclude that (1) holds, except in the case p = 2. When p ¥= 2 it is easy to

construct counterexamples to (1) under the assumption only of weak convergence.

When p = 2 the proof of (1) is trivial under the assumption of weak convergence.

3. The general case. In order to prove (2), some conditions are needed on the

function/ and the sequence {/,}. To make this point clear we shall later give an

example for which (2) fails. On the other hand, we shall not attempt to find the most

general conditions for which (2) holds but shall, instead, content ourselves here with

conditions which are reasonably simple, yet general enough to cover many examples.

Let/: C -» C be a continuous function withy'(O) = 0. In addition let/ satisfy the

following hypothesis:

For every sufficiently small e > 0 there exist two continuous, nonnegative func-

tions <pe and ^e such that

(3) \j(a + b)-j(a)\<e<pe(a) + t(b)

for all a, b G C.

Theorem 2. Let j satisfy the above hypothesis and let fn— f' + gn be a sequence of

measurable functions from Í2 to C such that:

(i)   g„ - 0 a.e.

(ii)j(f)EL\
(iii) f<pe(gn(x)) dp(x) < C < oo, for some constant C, independent of e and n.

(iv) M(/(*)) dp(x) < oo for all e > 0.

Then, as n -» oo,

(4) f\Äf+gn)-j(g„)-j(f)\dp^O.
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Remarks, (i) It is not assumed that/(/„) or/(g„) are separately in Ü.

(ii) Note that the convergence in (4) is in the strong Ü topology. This is a stronger

statement than (2).

Proof of Theorem 2. Fix e > 0 and let

WjLx) =[l/U<*)) -./(«,(*)) -j(f(x))\-e<pe(gn(x))]+ ,

where [a]+ = max(a,0). As n -> oo, We„(x) -» 0 a.e. On the other hand,

t/U) -/(gj -X/)l<l/(/J -j(gn)\ + \j(f)\

<*%(gn) +>.(/) +U(/)I-

Therefore, W£„« ^//) + |/(/) | G L1. By dominated convergence, fWendp ^ 0 as

n -> oo. However,

U(/»)-X«J ->(/) \<Kn + mpt(gn)

and, thus,

/„ =/l/'(/J -ÁgJ -Áf)\dp </[^e,„ + e<PE(gJ] dp.

Consequently, lim sup„^ „ /„ < eC. Now let e -» 0.    D

Examples, (a) 7'(í) = | í f, 0 < ^ < oo. Here (3) is satisfied with <pE(i) = | / f and

4>e(t) — Ce I ' r" f°r some Ce sufficiently large. Therefore hypotheses (ii)—(iv) are

simply that/ G Lp and the {g„} are uniformly bounded in Lp. This proves Theorem

1.

(b) Suppose that j is a continuous, convex function from C to R with j(0) — 0.

Choose some number k > 1. Then (3) holds for ek < 1 with

%(t)=j(kt)-kj(t)   and   W)=\j(Cet)\ + \j(-Cet)\,

with 1/Ce = e(/c — 1). This is proved in Lemma 3 below. Therefore, the hypotheses

of Theorem 2 are satisfied if there is some fixed k > 1 such that [j(kg„) — kj(gn)] is

uniformly bounded in I), and Uj(Mf) is in Ü for every real M.

(c) The condition in example (b) that j(kgn) — kj(gn) is uniformly bounded in Ü

for some constant k > 1 can be essential, not only for the hypotheses of Theorem 2

but for the conclusion as well. Let ß = [0,1], j(t) = e1'1 — I, dp = dx, f(x) = I,

g„(x) = ln(l + n) if 0 < x < l/n, and g„(x) = 0 otherwise. Then //(/„) = 2e — 1,

fj(gn) = 1 an^ fj(f)~e~ 1- ln tnis example we see that (2) does noi hold even

though/(g„) is uniformly bounded in Ü and j(Mf) G L1 for all real M. Note that

for this sequence {g„),j(kgn) is not uniformly bounded when k > 1. However since

/(i) is convex, (b) above tells us that the conclusion of Theorem 2 would be valid for

any other sequence g„ such that/(/ig,,) is uniformly bounded in L1 for some k > 1.

Lemma 3. Lei/: C -» R ¿>e co«uex and let k > 1. T/ien

[/(a + 6) -X«)l<*L/(*a) - kj(a)] +\j(Ceb)\ + \j(-Ceb)\

for alla,bEC,0<e< l/k and 1/CE = e(k - 1).
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Proof. Let a — I — ke, ß = e, y = (k — l)e. Then a + ß + y = 1 and (a + b)

= aa + ß(ka) + y(Ceb). By convexity,

j(a + b) < aj(a) + ßj(ka) + yj(CFb).

This implies that

j(a + b) -j(a) < e[j(ka) - kj(a)] +\j(Ceb)\.

For the reverse inequality let

a =1/(1+te),    j8 = e/(l + te),    y = s(k - 1)/(1 + te),

whence û = a(a + b) + ß(ka) + y( — CFb). Then

j(a) -j(a + b) ^ e[j(ka) - kj(a)} + e(k - l)j(~CFb).    D

4. Applications. In the calculus of variations an oft-met problem is to show that an

infimum or supremum is achieved. We shall outline by two examples how Theorem

1 can.be used for this purpose.

(A) If K is the sharp constant in the inequality \\Af II ^ K\\f\\ , where A is a

bounded linear operator from Lp to Lq, can one find /such that equality holds? We

shall assume that oo > g 3=/? > 1. In fact, the problem in [1] that motivated

Theorem 1 was the Hardy-Littlewood-Sobolev inequality on LP(R", dx). Namely, A

is the integral kernel A(x, y) =| x — y \~x, 0 < X < n and/r' + X/n — 1 + q~l. Let

K=sup{R(f)\fELp, f¥=0), where R(f)= \\Af\\q/\\f\\p. The problem we

address here is to prove the existence of a maximizing/, i.e. R(f) — K. Suppose that

an L''-bounded sequence {/,} can be found such that (i) R(f„) -* K, (ii)/, -»/a.e.,

(iii)/t^O. (For the H.L.S. inequality, this can be done by using a rearrangement

inequality.) The difficulty that one faces is to show R(f) = K. This difficulty can be

overcome by Theorem 1 if we make the additional assumption that Afn -» Af a.e.

(This can also be verified for the H.L.S. problem.) With these assumptions we have

that

fJPp        «-oo        {\\f\\pp+\\gn\\p}n-oc ,  „p

with /, = / + g„ as before. Since p/q ^ 1 and (a + b)' < a' + b' for a, b > 0 and

f<T'; and since \\Agn\\q < K\\gn\\p (by definition), it follows that Kp <

II Af II p/\\ f IIp. Thus/is maximizing, as desired. For further details see [1].

(B) This is taken from [2]. Let Q E R", n > 3, be a bounded domain. Let X > 0

and let

^x(/)=n Ji..„r'y| with/,

The problem is to show that Kx = inf{Äx(/) |/ G H¿(Q),f¥= 0} is achieved.

Suppose that we know that Kx < K0 (this is indeed the case for every X > 0 when

n > 4, and for X sufficiently large when n = 3; see [2]); then Kx is achieved.

To prove this, let {/„} be a minimizing sequence with \\f„\\p = 1. Since /„ is

bounded in //'(fi) we may assume that/, ^/weakly in H\fn -» /strongly in L2 and
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/, — fa.e. We have

/|V/J2-X/|// = tfx + o(l),

and since / | v/, |2 » K0 || /„ ¡I2, = K0 (by definition of K0), it follows that Xj |/|2 ^

K0- Kx> 0. Therefore/ ^ 0. On the other hand, let gn =f„-f. We have

/|V/J2-X/|/J2 = JCJ/„||; + 0(1),

and since g„ — 0 weakly in H\ we obtain

/I V/I2 +/| VgJ2 - X/I/I2 = Kx\\ffP + o(l).

Consequently,

/I V/I2 + K0\\gfp - X/I/I2 < Kx\\f£ + o(\).

On the other hand, it follows from Theorem 1 that

\\fIP=\\f\\p+\\gnt + 0(1).

Since p>2we deduce that

ll/X2<ll/L2+lld¿ + o(i).
If Kx s* 0, we conclude that

KAÜ2p^Kx\\f\\p+K0\\gfp + o(l)

and, therefore,

/iv/i2-x/i/i2<aj/ii; + 0(i),

i.e./is minimizing, as desired.

If Kx < 0, we have

/I V/I2 - X/I/I2 < À-A + 0(1) < A-J/ll,2 + o(l)

since || f\\p *s 1. Here again,/is minimizing, as desired. For further details see [2].
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