
RELATIONAL MODEL FOR NON-DETERMINISTIC PROGRAMS

AND PREDICATE TRANSFOP~IERS*

Pedro Guerreiro (I)

Abstract :

A relational model for non-deterministic programs is presented. Several

predicate transformers are introduced and it is shown that one of them satisfies

all the healthiness criteria indicated by Dijkstra for a useful total correctness

predicate transformer.

An axiomatic relational definition of the language of guarded commands is

proposed. From it the predicate transformers associated to each command in the

language are derived. The fact that Dijkstra's axioms are rediscovered proves

their consistency in the model.

(|~IMAG, ~ Grenoble (France) and the New University of Lisbon, (Portugal).
Address : IMAG, B.P. 53 X, 38041 GRENOBLE C~dex,

FRANCE

* Research reported herein was supported in part by the Calouste Gulbenkian
Foundation, Lisbon, under grant number 14/78/B.

137

I. INTRODUCTION

The goal of this paper is to present a model for non-deterministic programs,

well adapted to the formalization and the analysis of several usual concepts in

the fields of the semantic definition and of the verification of properties, (e.g.

predicate transformer, non-determinacy, invariant, termination). The proposed mo-

del is based on a special class of binary relations. It allows us to introduce, in

a natural fashion some predicate transformers that capture different aspects of

our intuition about the behaviour of non-deterministic programs. We show that one

of these predicate transformers has all the properties indicated by Dijkstra

[Dij76] for a useful total correctness predicate transformer. Then we axiomatical-

ly define the semantics of the language of guarded commands [Dij76] in terms of

relations of the mentioned class. From these relations we derive the predicate

transformers associated with each command in the language, and, as a side-effect,

prove the consistency of Dijkstra's axioms in the model.

A different model where the consistency of Dijkstra's axioms was established

is due to Hoare [Hoa78a] and uses traces. Other characterizations of Dijkstra's wp

function have been given by de Roever [Roe76], and by Wand [Wan77]. Our approach

to predicate transformers was suggested by recent work by Sifakis [Sif79]. It is

therefore natural that certain points treated in this paper have counterparts in

the works of those authors.

2. THE BASE MODEL

The behaviour of a "deterministic" program is usually defined by a function

from a set of inputs to a set of outputs, or, more abstractly, from a suitable set

of states into itself. By analogy, we expect that the behaviour of a "non-determi-

nistic" program can be described by a binary relation over such a set of states.

Let Q be a set (of "states") and R a binary relation over Q, R~QxQ. Let

denote the set of all these relations. R can also be seen as a function of

Q+2 Q : R(x) = {y I (x,y) eR}. Thus, it is indifferent to write (x,y)~R or y~R(x) o

Let ~ be a program whose state space is Q. If R is to represent ~'s behaviour, it

must be such that (x,y)cR, if and only if it is possible that an execution of

starting at state x terminates at state y.

Let X be the set of initial states for ~. On the hypothesis just made the

corresponding set of possible final states is

(1) R(X)= u R(x) = {y I 3x x~A(x,y)¢R}
x~X

R(X) is called the "image of X by R".

Properties].(])

(1)
R and S are binary relations, F is any family of indices.

138

1.2. R(u X i) = u R(X i)
ieF ieF

1.3. (RoS)(X) = S(R(X))

Let ~ be the set of total predicates over Q, 7= ~+{tt,ff}. ~ is a com-

plete lattice for the order g defined by A!B if Vx A(x)=~B(x), isomorphic to the

lattice of the subsets of Q with normal set inclusion. As usual we define, for

A, B~:

]) AuB = %x.A(x)vB(x) ; 2) AnB = %x.A(x)AB(x) ;(1)

3) ~A = %x.~A(x). Two constants are used ; r = %x.tt, i = ~x.ff. (We also abbre-

viate A0~B by A-B and ~AuB by A=>B).

A function of ~÷~ is called a "predicate transformer", (pt). One such func-

tion is obtained by rewriting (i) in terms of predicates. We call it image JR] :

(2) image[R] = %PXy.~x P(x)A(x,y)~R

Remark that the symbol image denotes a function of~÷(~.

Properties 2.

2.1. image[R](±) = ±

2.2. image[R](u P.) = u image[R](P i)
i

F i~F

2.3. image[RoS](P) = image[S](image[R](P))

Thus, image[R](P) is the predicate characterizing the set of possible final

states for ~ when activation is known to be in a state verifying P. We see that

image[R] works "forward". Usually, "backwards" pt's are preferred. This leads us

to consider the pt image[R-l], which we call pre[R].

(3) pre[R] = image[R -I] = %P%x.]y (x,y) eRAP(y)

Properties 3.

3.1. pre[R](±) = ±

3.2. pre[R](u Pi) = u pre[R](P i)
icF i~F

3.3. pre[Ro S] (P) = pre[R](pre[S](P))

The interpretation of pre[R] is symmetrical to that of image[R] : if P

represents a set of final states, pre[R](P) describes the set of those initial

states from which it is possible that the computation reaches a final state in P.

In other words, if the activation takes place outside pre[R](P), the execution

(~)The operations u and n are easily generalized to an infinite number of

operands.

139

cannot terminate in P. This "double negation" suggests a third pt, dual (I) of

pre[R] :

(4) pTe[R] = lP.~pre[R](~P) = lP%x.Vy (x,y){R=>P(y)

Properties 4.

4.1. pTe[R}(T = T

4.2. p~e[R](n Pi) = n p~e[R](P i)
i ~F -1 J

4.3. p~e[RoS](P) = p~e[R](p~e[S](P))

When the activation takes place in p~e[R](P)~ the termination cannot occur out-

side P, i.e., if the program does terminate the final state must be one of P.

This means that p~e[R] acts like a partial correctness pt.

For a total correctness pt,consider the following :

(5) p~e[R] = ~P.pre[R](P)np~e[R](P) = ~Plx.3y (x,y)eRAVy (x,y)~R:~P(y)

Supposing that whenever activation in state x may lead to a non-terminating

computation R(x) is empty (2), we can in fact conclude from (5) that if the pro-

gram starts in p#e[R](P) it must terminate in P. (Note, however, that in general
A A

p#e[RoS](P) is different from pre[R](pre[S](P)), a somewhat surprising fact, on

account of properties 3.3. and 4.3. ; example : Q = {0,1}, R = {(O,O),(0,1)},

s = {(t ,1)}).

3. THE EXPLICIT REPRESENTATION OF NON-TERMINATION

The hypothesis just made contradicts the one presented in the beginning of

section 2. and implies a certain loss of information about the behaviour of the

program. In fact, there are situations where, because of an arbitrary choice du-

ring execution, a program may terminate or not. Under the second hypothesis the

possibility of termination is not recorded. Under the first one it is the possibi-

lity of non-termination that cannot be deduced from the relation. A wayout of this

dilemma, taken also by de Roever [Roe76], is the introduction in Q of a special

element, which we denote m, to represent the "final" state of the non-terminating

computations. Thus, (x,y) ER with y#~, has the same meaning as before, while

(x,~)eR indicates a non-terminating computation starting at x.

With this new interpretation it must be imposed that no state (other than ~),

may be reached "after" a non-terminating computation. Besides, it may be conside-

red that every computation has a final state (maybe e). In this way we are res-

(I) The dual of apt f is another pt, denoted ~, s.t. ~(P) = ~f(~P)

(2) With this hypothesis p~e[R] corresponds to the pt studied in [Wan77].

140

tricting the class of relations used to describe the behaviour of programs to

those verifying the following conditions :

c | . R(m) = {m}

C2. Vx R(x) ~ # (This is equivalent to pre[R](T)=~ and to p~e[R](±)=±).

Such relations are called m-relations.

4. A TOTAL CORRECTNESS PREDICATE TRANSFORMER

Let Q be a set of states (s.t. m~Q), and~m the set of e-relations over Q.

Let ~ = %x.x=m. Suppose the behaviour of a program ~ is described by a m-relation

R. Then, p~e[R](~) clearly represents the set of initial states from which the

execution of ~ cannot reach ~, i.e., must terminate. Hence,

p~e[R](P)np~e[R](~) = pTe[R](P-~) is the predicate characterizing the set of

initial states from which the execution of ~ must terminate in P. We can therefore

define a total correctness pt for m-relations, which we denote wpr[R], by

(6) wpr[R] = ~P.p~e[R](P-~) = ~P~x.Vy (x,y)~R~--~P(y)^y#m (I)

The following properties of wpr[R] are derived from those of p~e[R], kno-

wing that R is a m-relation.

Properties 5.

5.1. wpr[R](~) = ±"

5.2. wpr[R](n Pi) = n wpr[R](P i) (for F # ~)
i~F ieF

5.3. wpr[RoS](P) = wpr[R](wpr[S](P)) (2)

In order to be sure that wpr[R] is a useful total correctness pt we must ve-

rify that it satisfies the five healthiness criteria [Dij76][Hoa78a].For apt f

these criteria are written :

HI. f(~) = ~ (the law of the excluded miracle)

H2. f(o Pi) = N f(Pi) (pour F # ~)
ieF icF

H3. A~B~f (A)~f (B)

H4. f(A)uf(B)~f(AuB)

HS. f is continuous (from below), i.e., for every increasing sequence of predi-

cates {Pi}ie~ , f(u Pi) = u f(Pi).

It is easy to see that H3 and H4 are implied by H2. Therefore, by properties 5,

wpr[R] satisfies H|, H2, H3 and H4. We shall now study the continuity of wpr[R].

Equation (6) suggests that we start by looking at p~e[R]. First of all, three defi-

(1) This corresponds to the pt used in [Roe76].

(2) Note that if R and S are m-relations, so is RoS.

141

nitions :

Definition I. Determinacy. A relation R is deterministic if Vx !R(x) I~l.

Definition 2. Non-determinacy. A relation R is non-deterministic if 3x IR(x) i>l.

Definition 3. Finite non-determinacy. A relation R is finitely non-deterministic

if Vx 3ke~ IR(x)[~k.

Theorem I. p~e[R] is continuous iff R is finitely non-deterministic.

Proof. ~_P~!~ : Suppose R finitely non-deterministic and let {Pi}i be an in-

creasing sequence of predicates. We have to show that, for all x (omitting the [~):

(7) p~e(uPi)(x) = 3i p~e(Pi)(x).

RHS=~LHS is a consequence of 4.2., (just like H4 is a consequence of H2).

Let xeQ. If R(x) = ~ then, for any predicate A, p~e(A)(x) = tt and (7) is

trivially established. If R(x) # ~ consider that LHS is Vy (x,y) eR~3i Pi(y).

For each y~R(x) define s(y) = min{ilPi(y)}. The set {s(}Oly~R(x)} is finite

and non-empty, and thus it has a maximum m. Since {Pi}i is increasing we have

Vy (x,y) eR=~Pm(y) , i.e., pre(Pm)(X). Thus, (7) holds in all cases.

@~!l_!~_~E~ : Suppose R is not finitely non-deterministic and choose x ° s.t.

R(x o) is infinite. Let D be a countable subset of R(Xo) , D = {yo,y I ,yj,..o}.

Let {Pi}i be the increasing sequence defined by

l i>j if y~D where y is yj

Pi(Y) = {tt if y~D

Easy calculations show that p~e(uPi)(x o) = p~e(T)(x o) = tt, while

(3i p~e(Pi)(Xo)) = ff. Hence, in this case p~e[R] is not continuous. This ends

the proof.

It is clear by (6) that whenever R is finitely non-deterministic wpr[R] is

continuous. However, there are programs that may produce an infinite number of

results from a given initial state and, therefore, cannot be modelled by finitely

non-deterministic relations. It is a general property of implementable programs

that if such a situation occurs, non-termination is also possible, (see [Dij76,

ch.9]). This property is called "bounded non-determinacy". We formalize it by :

Definition 4. Bounded non-determinacy. A ~-relation R is boundedly non-determinis-

tic if Vx (~k~ IR(x) I~k v (x,w) cR).

The following fundamental theorem shows that in all interesting cases wpr[R]

is continuous.

Th_e_~r_e_m_2. For Re~, wpr[R] is continuous iff R is boundedly non-deterministic.

Proof. ~f_~a~ : Suppose RE~ is boundedly non-deterministic and let {Pi}i be

any increasing sequence of predicates. We want to show that, for all x,

(8) wpr[R](0Pi)(x) = 3i wpr[R](Pi)(x)

Let Xo~Q s.t. ~k IR(Xo) I~k , and set R ° = {(Xo,Y) l(Xo,Y)ER }. Clearly, R °

142

is finitely non-deterministic. Besides, p~e[R](A)(x o) = p~e[Ro](A)(x o) for any

predicate A. Hence, for x o

LHS = p~e[R o]((uP i)-9)(x o)

= p~e[R o](u(Pi-~)) (x o)

= Bi p~e[R o](Pi-S)(x o) = RHS (by th.])

Let now x O s.t. (x,~)eR. Then, for all A, wpr[R](A)(x o) = ff and (8) is

trivially established.

~![-!~_~[~ : Suppose Re~ is not boundedly non-deterministic, i.e.,

~x (Vk IR(x) l>kA(x,e)~R). For such x, wpr[R](A)(x) = p~e[R](A)(x), for any A.

We can therefore use the same example as in the proof of th.l to show that (8)

does not always hold. This ends the proof.

5. A MODEL FOR THE LANGUAGE OF GUARDED COMMANDS

We have shown that wpr[R] is a healthy total correctness pt whenever R is a

boundedly non-deterministic w-relation, (a~b-relation, for short). The question

now is : does wpr correspond indeed to Dijkstra's wp function ? Remark that

wpr[R] is formally defined in terms of a u-relation R, while wp(S) is known

through the axioms for the commands S of the language of guarded commands [Dij76].

To answer the question we must supply a means of mapping commands into mb-rela-

tions and then use our definitions to derive the axioms. If we manage to do so, we

shall have proven the consistency of Dijkstra's axioms in our model for non-deter-

ministic programs.

Let ~ represent an arbitrary program whose state space is a set Q (with meQ),

and let x denote 7r's generalized program variable. Let p represent a command,

a guard, y a guarded command, o a set of guarded commands, E a total compu-

table function of Q+Q s.t. ~(~) = w. The abstract syntax of the language of guar-

ded commands is :

::= p

p ::= skip I abort I x:=~(x)

::= yl ~ y2 D .., ~ yn

T : := Y+P

I if ~ fi I do ~ od I pl ; p2

(n>_0)

We shall now define a function rho taking a command as argument and delive-

ring the 0Jb-relation that axiomatically characterizes that cormnand.

i. rho~ skip]] = {(x,y) I y=x} = SKIP

pre[SKIP](P) = %x.3y (x,y)~SKIP A p(y) = Xx.3y y=xaP(y) = %x.P(x) = P

p~e[SKIP](P) = -~pre[SKIP]('~P) ="'~P = P

wpr[SKIP](P) = p~e[SKIP](P-f~) = P-~

iio rho[[abort ~ = {(x,y) I Y=m} = ABORT

143

pre~ABORT](P) = ~x.3y (x,y)~_ABORT A P(y) = ~T if P(~=tt

%x.By y=~o A p(y) =)~x.P(~o) --

± if P(~)=ff

p~e[ABORT](P) = -'Ix.'~P(~) = ~x.P(w)

wpr[ABORT](P) = Ix.(P-f~)(~) = %x°ff = i

iii. rho[x:=e(x)]] = s

pre[~:](P) = ix.gy y=s(x) A P(y) = Xx.P(s(x)) = Poe

p~e[s](P) =-,(--Poe) = Poe

wpr[g](P) = (P-2) og = Pos-qo~

We now introduce three auxiliary functions mu, gamma and sigma, giving formal

meaning to guards, guarded co~mnands and sets of guarded commands, respectively.

iv. A guard ~ is a total computable predicate over Q such that ~(~)=tt.

mu[~]] = {(x,y) I ~(x) A y=x}.

v. gamma~ ÷ p]] = mu~]] o rho[[p]]

n
vi. sigma~y] ~ y2 ~ ... yn]] = 0 gamma~i]]

i=l
When n=0 we define sigma~]] = {(m,m)}

The following extension operators on relations are convenient in the sequel :

R+ = R U {(x,x) I R(x)=~}, R+ = R U {(x,w) I R(x)=~}.

vii. rho~if o fi~= sigma[[~]]+ = IF. If all the rha~pi]]

are ~b-relations, so is IF. Let else = Ix.sigma~o~ (x)=~.

Then else(~)=ff and for n>-] else=. ~n ~i.
i=l

Also : rho[if fi~ = {(~,m)}+ = {(x,y) ly=0~} = ABORT, as expected !

pre[IF](P) = ix.3y ((x,y)csigma[o~vy=mAelse(x))^P(y)

= Xx.3i zi(x)A(3y(x,y){rho[[pi~^P(y)) U lx.else(x)^P(w)

n zi n pre[rho[pi]]](P) u Xx.P(~0) n else
i=!

p~e[IF](P) = ~ (~i ~p~e[rho~pi~](P)) n (~x.P(~) o-~else)
i=!

wpr[IF](P) =-~else n n (~i ~wpr[rho~pi]]](P))
i=]

Two unary operators * and × on pt's are used in the next subsection :

f*(P) = u fi(p) , fX(p) = n fi(p)

i~iN i~IN

viii. We want to define rho~ do o od]] = DO.

Let exit = Ix.sigma[[rill (x)=~. (exit is like else in vii.)

Let GG = sigma[o]]+. GG is a mb-relation describing one iteration. Thus, the

terminating computations of do ~ od are captured by the relation
• i

DOT = { (x,y) I (x,y) ~ GG*^exit (y) }, where GG = u GG is the reflexive tran-
i~.

sitive closure of GG. The non-terminating ones are g~ven by a relation

144

DONT = {(x,~) I W(x)}, where W is the predicate characterizing the set of states

that are starting points of non-terminating computations. Thus DO = DOT u DONT.

We now proceed to define W in terms of GG. Note that, obviously

(9) Wc_~exit

Besides, it must be possible for an iteration starting at a state in W to termi-

nate in W or not to terminate :

(I0) Vx W(x) ~y (x,y)¢GG A (W(y) v y=~)

By (6), (I0) can be rewritten W c_-~wpr[GG](~W).

Defining wpr[R] = XP.~wpr[R](~P), (the dual of wpr[R]),

(10) becomes

(11) W c_ ~r[GG](W) or

(12) W = W n ~r[GG](W) or still (I)

(13) W = (l^wpr[GG])(W)

Thus, W is a fixed point of the pt IAwpr[GG].

It is a fact equivalent to th.2 that wpr[R] is continuous from above iff R is a

mb-relation= (Apt f is continuous from above if for every decreasing sequence

{Pi}i, f(nPi) = nf(Pi))" As a consequence, l^wpr[GG] is continuous from above.

Furthermore, for every Po' (IAwpr[GG])(po) c_ Po'This implies that the greatest fi-

xed point of IAwpr[GG] that is less than Po exists and is given by

(I^~r[GG])×(Po). With (9), it is clear that we must define

W = (IAwpr[GG])X(-,exit).

It would now be possible to prove that DO is a ~b-relation.

Example : show that rho[do od]] = SKIP.

The calculations for the pt's associated with DO are longer than the ones presen-

ted. They yield (2) :

pre[D0](P) = (pre[Gg])*(exitnP) u %x.P(~) n (l^wpr[GG])X(~exit)

p~e[DO](P) = (p~e[GG])X(exit=~P) n (%x.P(~) u (IVwpr[GG])*(exit))

wpr[DO](P) = (wpr[GG])X(exit=~P) n (IVwpr[GG])*(exit)

(The pt~s for GG are obtained like in vii.

In particular, wpr[GG](P) = (else=~P) n n (~i ~wpr[rho~oi~ (P)))
i=l

The expression we have for wpr[DO](P) does not look like the one for wp(DO,P)

in [Dij76]. However, further calculations would give

wpr[DO](P) = (Ivwpr[GG])*(exit=>P). Since Ivwpr[GG] = IVwpr[IF] we finally get :

wpr[DO](P) = (IVwpr[IF])*(exit=~P),

which in fact corresponds to Dijkstra's axiom.

ix. rho~pl;p2]] = rho[[pl]] orho~p2~

(I) IAw~r[R] is the pt %P.Pnw~r[R](P)

(2) Ivwpr[R] is the pt %P.Puwpr[R](P)

145

The associated pt's are i~nedia~ely derived from properties 3.3, 4.3., 5.3.

(Remark that the composition of [wo ~b-relations yields a mb-reiation).

x. Theorem 3. For every command o in the language of guarded commlands,

rho~ is a ~b-relation.

xi. Consistency. By inspecting the expressions obtained we conclude that wpr

corresponds in our model to Dijkstra's wp function.

6. CONCLUSION

The proposed relational model has served here to study several predicate trans-

formers, to give a semantics for the language of guarded commands, and to prove

the consistency of Dijkstra's axioms for that language. Elsewhere [Gue79] we used

it to formalize the concept of invariant and study its properties. We show that

the current intuition is captured by defining an invariant of a ~b-relation as a

solution of the inequation J~wpr[R](J). We derive that the invariants are fixed

points of the predicate transformer I^wpr[R].

We believe that the relational model provides helpful tools for reasoning about

(non-deterministic) programs. The experiments we have made [Gue80] with a forma-

lism similar to CSP [Hoa78b] let us hope that the model can be enlarged in order

to cope also with certain classes of parallel programs.

REFERENCES

[Dij76] E.W. Dijkstra, "A Discipline of Programming"

Prentice Hall, 1976.

(Gue79] P. Guerreiro,"Un modgle re!ationnel pour les programmes non-d~terministes'&

Rapport de D.E.A., Univ. Grenoble I, 1979.

[Gue80] P. Guerreiro, "Relational semantics of strongly communicating communica-

ting sequential processes".

IMAG Report, Grenoble (to appear).

[Hoa78a] C.A.R. Hoare, "Some properties of predicate transformers".

JACM, 25, 3,July 1978, pp. 461/480.

[Hoa78b] C.A.R. Hoare, "Communicating sequential processes".

CACM 21, 8, August 1978, pp. 666/677.

146

[Roe76] W.P. de Roever, "Dijkstra)s predicate transformer, non-determinism,

recursion and termination".

Math. Found. Comp. Sci, LNCS 45, Springer, 1976, pp. 472/481.

[Sif79] J. Sifakis, "Le ContrSle des Syst~mes Asynchrones : Concepts, Propri~t~s,

Analyse Statique". Th~se d)Eta~Univ. Grenoble I, 1979.

[Wan77] M. Wand, "A characterization of weakest preconditions".

JCSS 15, 1977, pp. 209/212.

