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Abstract

Chang and Kadin have shown that if the difference hierarchy over NP col-
lapses to level k, then the polynomial hierarchy (PH) is equal the kth level of
the difference hierarchy over £5. We simplify their proof and obtain a slightly
stronger conclusion: If the difference hierarchy over NP collapses to level k,
then PH = (Pl(ﬁ_l)_u)Np. We also extend the result to classes other than
NP: For any class C that has <P, -complete sets and is closed under <P .. and

—conj~
<NP_reductions, if the difference hierarchy over C collapses to level k, then

c NP ¢ - :
PH" = (P(k_l)_tt) . Then we show that the exact counting class C_P is
closed under <f; .- and <f"NP.reductions. Consequently, if the difference hi-

PP
erarchy over C_P collapses to level k then PHFF is equal to (PIJCP_ 1)_“) . In
contrast, the difference hierarchy over the closely related class PP is known to

collapse.
Finally we consider two ways of relativizing the bounded query class P{E,:

. .. . NP€ oo» . NP c .
the restricted relativization P;’,, , and the full relativization (P k_tt) I Cis

NP-hard, then we show that the two relativizations are different unless PHC
collapses.
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1. Introduction

Numerous researchers [3,5,8,9,10,11,14,15,22,21,23] have studied the Boolean hier-
archy over NP. This hierarchy intertwines the query hierarchies over NP, and is
identical to the Haussdorf and the difference hierarchies over NP. (Similar relations
hold among hierarchies over many classes other than NP [7].) A central question
is whether these hierarchies collapse. Because they stand or fall together, it is
sufficient to study a single one. We find that the difference hierarchy is the most
amenable to analysis.

Kadin [14] was the first to discover non-trivial structural consequences of the
collapse of the difference hierarchy over NP. He showed that if the difference hierar-
chy over NP collapses, then the polynomial hierarchy is equal to Af. Kadin’s result
can be understood as translating a collapse of one hierarchy upward to a collapse of
a larger hierarchy. Kadin’s result was improved by Wagner [21], who showed that if
the difference hierarchy over NP collapses to level k£ then the polynomial hierarchy
is equal to Pg%k)-tt’ and independently by Chang and Kadin [11], who showed that
if the difference hierarchy over NP collapses to level k, then the polynomial hierar-
chy is equal to DIFF«(X%), where DIFF(C) denotes the kth level of the difference
hierarchy over C, defined in Section 2.

In contrast, Beigel, Reingold, and Spielman [6] have shown that the difference
hierarchy over PP is equal to PP, yet it is not known whether this collapse translates
upward to PHFP, P#P or Wagner’s [20] counting hierarchy.! None of the questions
below has been answered; neither has anyone shown that the answer to any of them
is negative even relative to an oracle.

e Does PHF? collapse?

o P#P = P#PQ1]?

e Does the counting hierarchy collapse?
o PSPACE = P#PllI?

Separation of the levels of the counting hierarchy relative to an oracle is of special
interest, because it is equivalent to separating the levels of the circuit class TCy.

The questions above motivate us to determine precisely which properties of NP
cause a collapse of the difference hierarchy over NP to translate upward. For any
‘class C that has <P -complete sets and is closed under <?_ .- and <[F-reductions,
we show that

DIFF4(C) = co-DIFFi(C) = PH® = (PP, ,)°.

By a symmetry argument, the result holds as well for any class C' that has <? -
complete sets and is closed under < ;- and <T™NP-reductions. Our main results
extend Chang and Kadin’s result; our proof is also simpler.

1CH (resp., PH) is the smallest non-empty class C such that PP¢ C C (resp., NP C C).
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While the class PP is closed under <},-reductions [12], it does not seem likely
that PP is closed under <NP reductions, for then we would have PARITYP C PP,
which does not relativize [19]. Thus our main result does not seem to apply to the
class PP. This explains, in part, why the collapse of the difference hierarchy over
PP has not been shown to translate upward.

However, the class C_P,% which is closely related to PP, is closed under <Hisi
and < NP reductions, as we show (similar closure properties were obtained inde-
pendently by Gundermann, Nasser, and Wechsung [13]). Applying our main result
and a theorem of Toran, we find that the difference hierarchy over C_P does not
collapse unless the polynomial hierarchy relative to PP collapses. This structural
consequence complements a result of Gundermann, Nasser, and Wechsung [13], who
constructed oracles that make the difference hierarchy over C_P proper.

2. Preliminaries

We assume that Ehe reader is familiar with oracle Turing machines. PH® denotes
C UNPY UNPNF” U.... We define the difference hierarchy over a class C.

Definition 1.
e DIFF,(C) = C,
® DIFFk+1(C) = {L1 - L2 : Ll € C, L2 € DIFFk(C)}

Definition 2. PL%, is the class of languages that are polynomial-time truth-table
reducible to a language in NP, via a truth-table of norm k.

The sequence PN, PYE ... is called the nonadaptive query hierarchy over NP. We

define full relativizations of PYE, as follows:

c
Definition 3. (Pffzt) is the class of languages that are computable in polynomial

time with k nonadaptive queries to a set in NP and an unlimited number of queries
to C.

C
By relativizing a result of Beigel [5], it follows that every language in (PE};)

is the symmetric difference of a language in P and a language in DIFF(NP®).
Thus (P,rj_l:t)c is contained in DIFF;;(NP®) N co-DIFFy;(NPC). In general, it is
not known whether (PN_I;t)C = PNP®. However, in Section 5 we will show that if
C is NP-hard under <7 -reductions, then (P,If;t)c = PNP’ implies that the PHC
collapses.

Nondeterministic many-one reductions were defined by Ladner, Lynch, and Sel-
man [16].

2CP (resp., PP) is the class of languages accepted by polynomial-time bounded nondeterministic
Turing machines that accept when exactly (resp., at least) half of the computations accept.
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Definition 4. We say that A is NP many-one reducible to B (denoted A <\F B)
if there exists a constant ; and a polynomial-time computable function f of two
variables such that

g€ A < (Jy. |yl =lzl)[f(=,y) € Bl

We write XC to denote the closure of C under <NP reductions.

The “mind-change” technique was developed by Wagner and Wechsung [23] and
Beigel [5] in order to prove absolute results about the nonadaptive query hierarchy
over NP. Chang and Kadin applied a similar technique to the difference hierarchy
over X} in order to obtain a precise level of collapse in their results. Similarly, we
require a relativized version of the mind-change technique. Because we are a bit
more careful, we obtain a stronger collapse than Chang and Kadin.

Let A join B denote the join of A and B, that is {0z : z € A} U {1z :z € B}.

Lemma 5 (Mind-change). Fiz a natural number k. Let < be a polynomial-time
computable partial order, with minimum element A. Let A and B be two-place predi-
cates. Suppose that

(a) there exists a polynomial p such that B(z,h) = |h| < p(]z|), and
(b) for all z, B(z,A) = true, and
(¢) =(Fx)(Fh1 < -+ < hgg1)[B(z, i) A -+« A B(z, hiy1)).
We say that h is maximal ¢f
B(z,h) A ~(3R)[(h < B') A B(z, }')).
Suppose that the value of A(z,h) is the same for every mazimal b, and define Q(z)
to be this value. Then Q € (Pl(\;cp_l)_tt)B Join 4

Proof:  Define
Qm(z) =(Fhy < -+ < hn)[ ( B(z,h1) A--- A B(z, hyn) A
Let M be the largest m such that Q.(z) = true. If hyy < h then B(z,h) = false

or A(z,h) = A(z, har). Therefore, Q(z) = A(x,A) iff M is even. A < hy, so by (c),
M < k—1. Thus,

Q(z) = A(z,4) © (Qu(2) @ - - - ® Qk-1(2)).
I

By (a), Q.. € NPBion 4. therefore, Q € (PNP - B Join 4
(k—1)-tt



3. Advice for collapsing hierarchies

Our main theorem could be obtained by a close inspection of Chang and Kadin’s [11]
proof for the case C = co-NP. Instead, we present our own proof, which is different
and shorter. Our stronger collapse is due to the mind-change lemma in the preceding
section. Like Kadin [14], we adaptively construct a maximal sequence of “hard”
strings of each length, which we call a hard sequence. A single hard sequence
allows us to reduce C predicates to co-C predicates for all arguments with length
< n. While authors working directly with Boolean hierarchies have had to consider
separate cases for odd k and for even k, we consider only one case because we work
with difference hierarchies. Like Wagner [21], we incorporate one or more hard
sequences directly into a polynomial-length advice string, thus avoiding the need to
construct sparse oracles as in [14] or almost-tally oracles as in [11].

A major subtlety arises when one uses the hard sequences as polynomial-length
advice in order to collapse PH®. Recall that a single hard sequence allows us to
reduce C predicates to co-C predicates for all arguments with length < n. Then C’s
closure properties allow us (1) to reduce any NP predicate to a co-C predicate for
all arguments with length < n. Consequently, a single hard sequence allows us (2)
to reduce any N pNP© predicate to an NP¢ predicate for all arguments with length
< n. We perform (2) and then (1) in order to reduce any NPNP¢ predicate to a
co-C predicate. However, (2) produces significantly longer arguments, so we need
a different hard sequence when performing (1). Because of the need for two hard

sequences, this shows only () that PH® C (P(zk 2)- tt) Chang and Kadin devote
considerable effort to overcoming this difficulty; they show how to construct both
hard sequences, given a single hard sequence of sufficiently greater length. On the
other hand, we note that only one hard sequence is needed in order to reduce a PNP¢

predicate to a PC predicate; thus we show that PNP® C (P(,c - tt) . Combined with
(+) this implies that PH® C (PRP 1 )°.
Theorem 6. Assume

e co-C = ¥co-C,

e C has <P -complete sets,

o co-C is closed under <V, .-reductions, and

¢ DIFF;(C) = co-DIFF«(C).
Then PH® = (PP, )"
Proof: Let L be <P -complete for C. Define

Ll - L,
Livi = {(z,y) :x € LAy ¢ Li},
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where ‘(’, ‘)’, and ;" are new characters. Then it is clear that Ly is <P -complete for
DIFF:(C). Since DIFF(C) = co-DIFF:(C) by assumption, L <P, L. Therefore
there exists a polynomial-time computable function h; such that

z € L <= hi(z) ¢ L.
Fix a positive integer n; we will rely on the equation above only for |z| < kn+3(k—1).
Define
(fk—l(xay)vgk—l(xay» = hk((x’y))

Then for |z| = n and |y| < (k - 1)n + 3(k — 2) we have |(z,y)| < kn + 3(k — 1), so

t€LAy¢ Loy <= fia(z,y) ¢ LV gr1(z,y) € Li-a.
We say that a string z is k-easy if

(Fy - [yl < (k = Dz + 3(k — 2))[fe-1(z,y) ¢ L.

We say that r is k-hard if

g€ LA(Vy . |y| < (k= Dlz| + 3(k — 2))[fe-1(z,y) € L].

Note that if = is k-easy then « € L, and furthermore that the set of all k-easy strings
is in Yco-C = co-C. If there exists a k-hard string i of length n then we have

(Vy . |yl < (k—1)n+3(k - 2))ly ¢ Lici <= gk-1(Xk,¥) € Lr-1],
so for |y| < (k—1)n + 3(k —2)
Y€ Lior <= graa(xk,y) € Le-a-

Define
hr-1(z) = ge-1(xx, Z).
Then for |z| < (k —1)n + 3(k — 2) we have

T € Lk—-l A hk_l(x) ¢ Lk—l-

Iterating that process, we define xk-1,...,Xj+1 — stopping when j = 1 or when
there exists no j-hard string of length n — and we define the corresponding functions
hik—2,...,h;. (Since there may be several ways to choose the hard strings, we should

write hiy, ..y;,, instead of simply h;, but we don’t.) The i-easy and the i-hard strings
are defined by this iterative process as well (again depending implicitly on the choice
of Xk, - -+ Xi+1)-

For : < j we say that there are no ¢-easy strings. If 7 = 1 we encounter a special

case. For |z| < n we have
z€Ll < hz)¢ L.

We say that z is 1-easy if hy(z) ¢ L. There are no 1-hard strings.

Let = be a particular string of length < n, and let x4,...,Xx;+1 be a maximal
sequence of hard strings of length n. Then z € L iff z is j-easy. Thus, using the
strings Xk,...,Xj+1 as advice, we can effectively reduce L to a co-C predicate for
arguments of length < n.

We complete the proof by proving two things:

6



C

Claim 1: PVP¢ C (Pl(fll)_“) .
C
Claim 2: NPN** C (PP, ).

Proof of claim 1: Let Q be any PNP predicate. Then Q € PP for some R € NPL.
Assume that R is reducible to L via a nondeterministic Turing machine M running
in time r(n). Using a maximal sequence xg, ..., X;j+1 of hard strings of length r(n),
we can reduce L to a co-C predicate. Since co-C is closed under <% .-reductions,
each computation of M can then be reduced to a single co-C predicate. Since
Yco-C = co-C, we reduce R to a co-C predicate, and finally reduce Q to a P€

predicate. Hence there is a PC predicate A such that for all z € ",

Q(III) = A(mv (Xka s 7Xj+1>)'

Then Q(x) is true iff there exists a maximal sequence x, . .., x;j+1 of hard strings of

length r(n) such that A(z,(xx,...,x,+1)) is true. Let B(z, (xx,...,X;j+1)) be true

iff xx is a k-hard string of length r(n), ..., and x;41 is (j + 1)-hard of length r(n).

Testing whether an individual string is ¢-hard is in C; therefore B is a P predicate.
Q(z) is true if and only if there exists j, 1 < j < k, such that

o there exists a sequence X, ..., xj+1 such that both B(z,(xk,.-.,Xx;+1)) and
A(z, Xk, -, Xj+1)) are true, and

o there does not exist a sequence xy, ..., x} such that B(z, (xk,...,X;)) is true.

We define (s) < (s’) iff the sequence s’ is a proper extension of s. Then any chain

c
of elements each satisfying B(z, h) has length < k. By Lemma 5 Q is a (Pl(\}cp_l)_tt)
predicate. [ (claim 1)

Proof of claim 2: Let @ be any NPNP¢ predicate. Proceeding as above, we find
an NP¢ predicate A and a polynomial r(n) such that for every n, every maximal
sequence Xk, ..., X;j+1 of hard strings of length r(n), and every z € £,

Q((I?) = A(.’L‘, (Xk7 s an+1>)'

Applying the same argument to A, we find a co-C predicate A’ and a polynomial
r/(n) such that for every n, every maximal sequence xi,...,X;4+1 of hard strings
of length r(n), and every maximal sequence x},..., X}, of hard strings of length
r'(n), and every z € £,

Q(-’L‘) = Al(x’ ((Xh ce ’Xj+l>’ (X;c’ v 7X;'+1>))'

We define ((s1),(s2)) < ({s}),{(sh)) iff s; < s%, s, < s, and at least one of the
1 2 1 2

extensions is a proper extension. Then any chain of elements each satisfying B(z, h)
c
has length < 2k — 1. By Lemma 5, Q is in (Pl(\;i_z)-tt) . B (claim 2)



c
By claim 2, PH® C PNP¢ which is equal to (Pl(fil)_u) ,by claim 1. 1|

If we drop the restriction that co-C be closed under <% ,.-reductions, then we
obtain a weaker collapse. It is frustrating that we do not know how to obtain as
strong a collapse as above; the need for hard strings for different lengths is the
culprit.

Theorem 7. Assume
e co-C = Yco-C,
o C has <P -complete sets,
e DIFF.(C) = co-DIFF«(C).
Then PHC = (P} _yy.0.) .
Proof sketch:  This differs from the preceding proof only in the two claims.

Claim 1: P¥*° C (P}f_,,)°.

. c C
Claim 2: NPNP" C (Pl(\ff,:_“)_tt) .

Proof of claim 1: Using one maximal sequence of hard strings we can reduce a
co-C predicate to a C predicate. Since co-C is closed under <NP-reductions, C is
closed under Sfﬁ'NP-reductions, and a fortiori closed under Sf:’onj reductions. Thus
verifying a path of an NP computation can be reduced to a single C predicate.
Using a second maximal sequence of hard strings, we can reduce that C predicate
to a co-C predicate. Since Lco-C = co-C, we thus reduce an NP® predicate to a
co-C predicate. Applying Lemma 5, we have PNP® C (P%‘,’c_n_tt)c

Proof of claim 2: Using a total of four maximal sequences of hard strings, we

reduce an NPNP€ predicate to a co-C predicate. Applying Lemma 5, we have
PNPC (PNP )C 1
= (4k—4)-tt J *

Corollary 8. Assume
e C=3C,
o C has <P -complete sets,

o C is closed under intersection, and

DIFF(C) = co-DIFF(C).

Then c
PHC = (P30 )"



Proof: = We note that for any C

co-DIFF(C) if k is odd,
DIFF:(C) if k is even.

DIFFi(co-C) = {
Thus
DIFF(C) = co-DIFF(C) <= DIFFy(co-C) = co-DIFF(co-C).
Thus the corollary is equivalent to Theorem 6. |

Thus we extend the results of Kadin [14], Wagner [21], and Chang and
Kadin [11]:

Corollary 9. If DIFFy(NP) = co-DIFF(NP) then PH = (P, )" .

Proof:  Assume that DIFF,(NP) = co-DIFFi(NP). Since NP = YNP and
NP
NP has <P -complete sets, Corollary 8 implies PHNF = (P{‘LP_I)_“) , so PH =

(P ) - B

Our results can be placed in the context of lowness [4,1], though they lose quite
a bit of strength in the translation.

Corollary 10. Assume
e C=XC,
o C has <P -complete sets,
o C is closed under intersection, and
e DIFF;(C) = co-DIFF(C).

Then all C-complete sets are in EL,.

Proof: By Corollary 8, all C-complete sets L, satisfy
(ADF = (A"

Therefore
(AD)F = (agpe,

which is the definition of EL, [1]. 1



4. Closure Properties of C_P

The class C_P was defined by Wagner [20]. A language L belongs to C_P if and
only if there exists a polynomial-time bounded nondeterministic Turing machine N
such that z € L iff the number of accepting paths of machine N on input z is equal
to the number of rejecting paths.

A < reduction is a polynomial-time truth-table reduction in which the truth-
table predicate is logical-or. A <P .reduction is a polynomial-time truth-table

—CO:

reduction in which the truth-table predicate is logical-and. A co-NP machine M
many-one reduces A to B if, for all z,

z€A = (Vp)lfu(z) € B],

where f,(z) denotes the output of M’s computation p on input z. We show that C_P
is closed under <j; .-reductions and <¢o™™ reductions. These results have appeared
in [17]. Similar closure properties were obtained independently by Gundermann,
Nasser, and Wechsung [13].

Theorem 11.
(a) C-P is closed under <} ;-reductions.

(b) C=P is closed under <¢>"NP.reductions.

Proof:  This follows from the low-degree polynomial techniques of Beigel, Rein-
gold, and Spielman [6]. Note that

(a) =0V ---Vzr =0 <= - -2, = 0.
(b) 21 =0A---Azp =0 < z}+... 4zl =0

Corollary 12. If DIFFi(C_P) = co-DIFFi(C_P) then PH’? = (PYP | )"

Proof:  Assume that DIFF,(C-P) = co-DIFF(C-P). Since co-C_P = Zco-C_P
and co-C_P is closed under <? .reductions, Theorem 6 implies that PH®=F =

—conj

C-P
(Pl(\}cp_l)_tt) . By a result of Toran [19], NPF® = NP®=F (because one can guess
the exact threshold); therefore

C=P

PH?? = PHO-P = (P,,.) " < (P}2,.)" .

10



5. Relativizing Bounded Query Classes

It is natural to ask whether our Corollary 9 is really stronger than Chang and
Kadin’s theorem [11], i.e., does

NP
PH C DIFFi(NP™*) # PH C (P¥,).,) ?

It is clear that NP
(PW"4)-)  C DIFF((NPYP)

unless PH collapses, because equality would imply that DIFF(NPNP) is closed
under complementation. However, Chang and Kadin’s theorem implies that

PH C DIFF(NPNP) N co-DIFF(NPNP),

so we would really like to know the answer to:
NP
(X)) C DIFFy(NP"?) N co-DIFF,(NPYP)?

Currently we are unable to establish proper containment under plausible complexity
assumptions. In considering that we question, we came to the related question:

NPNP ne \ NP
Piw C (Pk-tt) ?

The question above is interesting because it involves restricted relativizations. Rel-
ativizing the polynomial hierarchy is straightforward. For example, 2123,0 can be
defined as NP(NPC), and it does not matter that the base NP machine does not have
direct access to the oracle C, because it can ask the NP® oracle, instead.
However, there are two ways to relativize a bounded query hierarchy. In the
first approach, the oracle C is attached to the NP oracle only. This is a restricted
relativization. We denote this class as ngc), which is the class of languages rec-
ognized by polynomial time Turing machines which are allowed k parallel queries
to the NPC oracle. In the second approach, the polynomial time base machine can
ask k parallel queries to the NP® oracle and polynomially many serial queries to

the C oracle. This is a full relativization. We denote this second class as (Pf_‘:t)c.
In what follows, we show that if C is sufficiently hard, then the two relativizations
are different unless PHC collapses. This is an example of natural interest, where
we have good circumstantial evidence that restricted relativizations are strictly less
powerful than full relativizations.

We have two proofs of this. Both proofs use ideas that are substantially different
from those in [14,21,11]. The first proof modifies a technique from [2], and is rela-

tively simple, but it only collapses PHC to (£4)¢. The second proof is more difficult,
NPC
combining two hard/easy-formulas arguments; it collapses PHC to (Pf_ﬂt)

11



Definition 13. Let X and Y be any two languages, we define the set
XAY={(z,y):(r€XandygY)or(z¢gXandyeY)}

Alternatively, (z,y) e X AY iffz € X < y¢Y.

C
Proposition 14. Let C be any class such that NP C PC. If PNe = (PY%,)" then
PHC = (£5)°.

Proof: Let Lp, Lpc and Li be <F,-complete for P, P, and DIFF;(NP®), re-
spectively. By careful analysis of the mind-change proof in [5], one can show that

. c . c
Lpc A L is <P -complete for (Pg_‘:t) and Lp A Ly is <P,-complete for PYE,". Thus
PP’ = (Pf_f;t)c if and only if
Lpc A Ly <P Lp A L.

Fix a polynomial-time computable function A that performs that reduction. For
each m, we will construct polynomial-size advice allowing us to reduce Ly to L
on strings of length < m. Thus DIFF(NP®) C co-DIFF;(NP%)/poly, so NP C
co-NP¢/poly, so PH® C (Z5)C.

Let |S| denote the cardinality of the set S. Let (32°y € S) denote “for at least
« elements y of S.” Fix a length m. Throughout the construction of the advice let
(z',y’) denote h(z,y).
Begin construction:
Let S = {0,1}=™.
Begin loop:

Case 1 (3z € {0,1}<™)(32%1%y € S)[z € Lpc <= &' ¢ Lp]: Choose such an ,
and incorporate z into the advice for length m. Let S=S—{y:z € Lpc <
z' ¢ Lp}. If S = 0 then exit the loop.

Case 2 (Vz € {0,1}<)(32%18ly € S)[z € Lpc <= z' € Lp]: Discard all advice
constructed so far for length m. For length < m, there is a nonuniform random
polynomial-time algorithm to m-reduce Lpc to Lp: Input z; choose a random
y € S; compute z’; then « € Lpc iff 2’ € Lp. The nonuniform randomness can
be simulated by incorporating a polynomial number of elements of S into the
advice, as in Schoéning’s proof that BPP € P/poly [18]. Exit the loop.

End loop.
End construction.

If case 2 is ever reached then the construction produces advice sufficient to
reduce Lpc to Lp for length < m. Since NP C P, this advice certainly allows us
to reduce Li to Ly for length < m.

12



If case 2 is not reached then, after a linear number of iterations, S becomes
empty, so we have polynomial-size advice sufficient for a P¢-algorithm to m-reduce
L to Iy for length < m, via the following algorithm: Input y; exhaustively search
the advice for a string z such that ¢ € Lpc <= z' ¢ Lp; then y € Ly iff y’ ¢ L.

Thus DIFF(NP®) C co-DIFF:(NP®)/poly, as promised. |

Now we prove the stronger result.

Theorem 15. Let C be any class such that NP C co-NPC, If PNEC = (P,I:'_F:t)c then
C
PH® = (P}%,)"

Proof: Let Lp, Lpc and Lypc be <P -complete for P, P, and N PO, respectively.
Let Li be defined by

Ll:LNPC7 Lk+1 :{ (:I:,y) ::EELNPC Ory¢Lk }.

(Technically, L; is not complete for DIFF(NP®), but rather Iy is complete for
DIFF(co-NPC).) By careful analysis of the mind-change proof in [5], one can show

that Lpc A Ly is <P -complete for (Pf_f:t)c and Lp A L is <2,-complete for PYE; .
Thus PYES = (Pf_f:t)c if and only if
ch A Lk an LP A Llc-

Fix a polynomial-time computable function A& that performs that reduction. Fix
m. We will construct advice that either lets us reduce Lpc to Lp for all strings of
length < m or else lets us reduce Lypc to Lypc for all strings of length < m.

Let {0,1}S™*k denote the set of k-tuples of strings of length < m.

A sequence X = (x1,...,X;) is a hard sequence for length m if 0 < j < k and all
of the following conditions hold, for 1 <: < j:

1. |xil <m.
2. V= {p1,...,pk—i) € {0,1}smx(k=i) vy € {0,1}5™,
(u € Lpc <= v ¢ Lp) = y; & Lype,
where (v,y1,...,¥i,q) = h(u, X, p).
The structure of the proof is as follows.
Claim 1: There exists a hard sequence.

Claim 2: If ¥ is a hard sequence and |}| = k, then ¥ induces a deterministic
reduction from Lpc to Lp.

Claim 4: If ¥ is a maximal-length hard sequence and |x| < k, then X induces a
nondeterministic reduction from Lypc to Lypc.

13



Since the length of a hard sequence is bounded, claim 1 implies that a maximal-
length hard sequence X exists. By claims 2 and 4, x induces a reduction from Lypc
to Iypec (recall that NP C co-NP®). We order hard sequences by length, so a chain
of hard sequencescconta.ins at most k£ + 1 elements. Applying Lemma 5, we collapse
PHC to (PYE,)"

Proof of claim 1: The empty sequence is a hard sequence. [ (claim 1)

Proof of claim 2: Suppose that ¥ = xi1,...,xx is a hard sequence. Let u €
{0,1}s™ let (v,y) = h(u,X) and let y1,...,yx = §. We will prove, by contradiction,
that u € Lpc <= v € Lp. Suppose not. Then u € Lpc <= v ¢ Lp. Then
by condition 2, y; ¢ Lypc for i = 1,... k. By condition 1, x; ¢ Lypc as well for
i =1,...,k. Therefore, by the definition of Li, ¥ € Ly <= ¥ € Ly (iff k is even).
However, this contradicts the fact that & is a reduction from Lpc A Lx to Lp A L.
Therefore for all u € {0,1}=™, we have

% € Lpc <= v € Lp.

Thus the following algorithm reduces Lpc to Lp for strings of length < m: Input u;
let (v,9) = h(u, X); then u € Lpc <= v € Lp. [ (claim 2)

Claim 3: Suppose that ) is a hard sequence and |¥| = j < k. Then, V§ =
o espi) € 105 Vo e (0,115,

(u€ Lpc < v¢ Lp)= (PE Lk < §& L),

where (v, 7, §) = h(u, ¥, p).
Proof of claim 3: Let 5 € {0,1}S™*k=3 4 € {0,1}<™, and (v, X, §) = h(x, 7, P).
By the definition of A,

(u,)'(',ﬁ) € Lpc A Ly <— (v,gj’,(j’) € Lp A L.
Suppose that u € Lpc <= v & Lp. Then

(faﬁ) € Lk > (37,5) ¢Lk

By conditions 1 and 2, x; ¢ Lypc and y; ¢ Lype, for 1 < i < j. Therefore, by the
definition of Lg, (X,p) € Ly iff § € Li_j;, and (7,q) € Ly iff § € Lg_;. Therefore
ﬁE Lk—j — (f¢ Lk_j. | (Claim 3)

Proof of claim 4: Suppose s € Lypc. Since X is maximal, (x1,..., X, s) does
not satisfy condition 2 in the definition of hard sequences — which is exactly what
we need.

Conversely, suppose s € Lypc. By Claim 3, V§ € {0,1}smx(k=i-1) vy ¢
{0,1}5™ (u € Lpc <= v ¢ Lp) implies

(3,]3‘) € Ly, & (t,q‘) g Ly_;.
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where (v, y1,...,¥i,t,§) = h(u, X, s, p).- By expanding the definition of Li_;, we have
(s € Lypc or P& Li_;_1) < (t & Lypc and § € Lx_;_1)
Since s € Lypc, t € Lypc. So, when s € Lypc,
Vi e {0,1}$mx(k=i-1) vy € {0,1}5™ (u € Lpc <= v ¢ Lp) = t & Lypc.

Thus, using x as advice, an NP¢ algorithm can m-reduce Iypc to Lypc, for strings
of length < m, as follows: Input s; guess § € {0,1}S™**~i-1) and 4 € {0,1}<™; let
(vyy1,-+ 5 ¥ist, @) = h(u, X,p); if u € Lpc < v & Lp and t € Lypc then accept,
else reject. [ (claim 4)

It follows from Claim 2 that a hard sequence of length k induces a deterministic
reduction from C to P for strings of length < m. Therefore a hard sequence of length
k induces a reduction from NP? to NP for strings of length < m. By assumption,
NP C co-NP?, so a hard sequence of length k induces a reduction from NP¢ to
co-NPC for strings of length < m.

It follows from Claim 4, that a maximal hard sequence of length < k induces
a deterministic reduction from co-NP¢ to NPC for strings of length < m. Thus, a
maximal hard sequence of any length induces a deterministic reduction from co-NP¢
to NPY for strings of length < m.

Therefore, every p5° languages is recognized by a PNP¢ machine using a sin-
gle maximal hard sequence as advice for each length. Note that the set of hard
sequences belongs to co-NPC. If we order hard sequences by length, then any chain
has length < k 4+ 1. So, by Lemma 5

S

A similar argument, using two maximal hard sequences per length, shows that

EPC

)3”’ C P>

Thus, PEC C (P}2)" . 1

NP
Corollary 16. If (Pk tt)NP = PE-PZI:P; then PH (Pk tt) "

PP
Corollary 17. If (Pk_tt) = PYE", then PHFF = (PN-l:t)NP
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