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Abstract

Background: Incremental value (IncV) evaluates the performance change between an existing risk model and a new

model. Different IncV metrics do not always agree with each other. For example, compared with a prescribed-dose

model, an ovarian-dose model for predicting acute ovarian failure has a slightly lower area under the receiver

operating characteristic curve (AUC) but increases the area under the precision-recall curve (AP) by 48%. This

phenomenon of disagreement is not uncommon, and can create confusion when assessing whether the added

information improves the model prediction accuracy.

Methods: In this article, we examine the analytical connections and differences between the AUC IncV (�AUC) and

AP IncV (�AP). We also compare the true values of these two IncV metrics in a numerical study. Additionally, as both

are semi-proper scoring rules, we compare them with a strictly proper scoring rule: the IncV of the scaled Brier score

(�sBrS) in the numerical study.

Results: We demonstrate that �AUC and �AP are both weighted averages of the changes (from the existing model

to the new one) in separating the risk score distributions between events and non-events. However, �AP assigns

heavier weights to the changes in higher-risk regions, whereas �AUC weights the changes equally. Due to this

difference, the two IncV metrics can disagree, and the numerical study shows that their disagreement becomes more

pronounced as the event rate decreases. In the numerical study, we also find that �AP has a wide range, from

negative to positive, but the range of �AUC is much smaller. In addition, �AP and �sBrS are highly consistent, but

�AUC is negatively correlated with �sBrS and �AP when the event rate is low.

Conclusions: �AUC treats the wins and losses of a new risk model equally across different risk regions. When neither

the existing or new model is the true model, this equality could attenuate a superior performance of the new model

for a sub-region. In contrast, �AP accentuates the change in the prediction accuracy for higher-risk regions.
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Introduction
Risk prediction is crucial in many medical decision-

making settings, such as managing disease prognosis.

Numerous research has been dedicated to continually

updating risk models for better prediction accuracy. For

example, several papers have investigated the improve-

ment in predicting the risk of cardiovascular disease by

adding new biomarkers to the existing Framingham risk

model, such as the C-reactive protein [1, 2], and more

recently, a polygenic risk score [3, 4].

In some applications, an existing marker is replaced

with a new marker that provides more precise informa-

tion. For example, cancer treatment such as radiation can

have significant long-term health consequences for can-

cer survivors. Prescribed radiation doses to body regions,

such as the abdomen and chest, are routinely available in

medical charts. But to predict the risk of an organ-specific

outcome, e.g., secondary lung cancer or ovarian failure,

a more precise measurement of the radiation exposure

to specific organs provides better information. Radiation

oncologists developed and applied algorithms to estimate

these organ-specific exposures [5].

The measurement of a new marker or the more precise

measurement of a known risk factor is often costly and

time-consuming. Thus, it is important to verify that the

new model indeed has a measurable and better prediction

performance than the existing one, and thus, worth the

extra resources. A number of metrics have been proposed

to evaluate the incremental value (IncV) of the risk model

that incorporates the new information. The IncV has pri-

marily been discussed in settings where new markers are

added to the existing risk profile [6, 7]. In this paper, the

term IncV refers to the change of the prediction perfor-

mance whenever an existing risk model is compared with

a new one.

In medical research, the receiver operating characteris-

tic (ROC) curve has been and remains the most popular

tool for evaluating the prediction accuracy of a risk model,

dating back to the 1960s when it was applied in diag-

nostic radiology and imaging systems [8, 9]. The area

under the ROC curve (AUC) captures the discrimina-

tory ability of a model, i.e., how well a model separates

events (subjects who experience the event of interest)

from non-events (subjects who are event-free). Recently,

the precision-recall (PR) curve is gaining popularity [10–

13]. Originated from the information retrieval community

in the 1980s [14, 15], it is a relatively new tool in medical

research. The area under the PR curve is called the aver-

age positive predictive value or the average precision (AP)

[16–18]. Several papers suggest that the PR curve and AP

are more informative than the ROC curve and AUC for

evaluating the risk model’s prediction performance for an

unbalanced outcome, i.e., when the event rate is low ([16,

19, 20]).

Davis and Goadrich established a one-to-one corre-

spondence between an ROC curve and a PR curve [21].

When comparing the prediction performance of two risk

models, e.g., new versus existing, the ROC curve of the

new model dominates the ROC curve of the existing

model if and only if the PR curve of the new model dom-

inates the PR curve of the existing model. However, when

the ROC and PR curves of the two models cross, it is

not uncommon that the IncVs of AUC and AP contradict

each other. Clark et al. [22] investigated two models for

predicting acute ovarian failure among female childhood

cancer survivors. The ovarian-dose model has a slightly

lower AUC but an increased AP by about 48%, compared

to the prescribed-dose model. The disagreement creates

confusion in determining whether the updated risk score

improves the prediction accuracy.

In this article, we investigate the analytical connection

and difference between the IncVs of AUC and of AP with

respect to their true values derived from the underly-

ing data generating mechanism. Unlike previous works

investigating the inconsistency between the AUC and AP

mainly via simulation studies, our numerical study focuses

on the true values, not estimates, of these two IncV met-

rics. In addition, we examine the effect of the event rate on

their (dis)agreement, both analytically and numerically.

Method
Notation and definitions

First, we lay out the notations and define concepts that

are used throughout this article. Let D = 0 or 1 denote a

binary outcome. For studies with an event time T, define

D = I(T ≤ τ) for a given prediction time period τ , which

indicates that the outcome is time-dependent. In this arti-

cle, we refer to subjects withD = 1 as the events and those

with D = 0 as the non-events. Let π = Pr(D = 1) denote

the event rate.

Riskmodel and risk score

A risk model is a function of a set of predictors X =(
X1, · · · ,Xk−1

)
, which might include interaction terms

and polynomial terms, to obtain the probability of D = 1.

Usually, we write this model as a regression model:

p(X) = g
(
β0 + β1X1 + · · · + βk−1Xk−1

)
, (1)

where g(·) is a smooth and monotonic link function, such

as a logit link. For the censored event time outcomes,

a risk model could be Cox’s proportional hazards model

[23] or the time-specific generalized linear model [24];

both models can be expressed in the general form of

Eq. (1) with modifications.

In practice, the underlying data generating mechanism

is often complicated, and our working riskmodel in Eq. (1)

is usually misspecified. Let π(X) = Pr(D = 1 | X) denote

the true probability of D = 1, which is determined by the
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underlying distribution of D given X. Here, we refer to

π(X) as the true risk and p(X) as the working risk from

a working risk model. When the working risk model in

Eq. (1) is misspecified, p(X) �= π(X).

The working risk p(X) can be regarded as a risk score

and used to classify subjects into different risk categories.

For example, given a cut-off value c, subjects with p(X) ≤

c are classified into the low-risk group, whereas the high-

risk group consists of subjects with p(X) > c. In general, a

risk score, denoted as r(X), can be any function of X that

reflects how likely a subject is an event. Thus, r(X) can

be a non-decreasing transformation of p(X), e.g., r(X) =

g−1 (p(X)) = β0 + β1X1 + · · · + βk−1Xk−1.

Remark 1 In practice, the working risk p(X) is esti-

mated from a data sample. The estimated regression

coefficients β̂j, j = 0, 1, · · · , k − 1, are the solu-

tion to an estimating equation: �
(
β0, · · · ,βk−1

)
=∑n

i=1 �
(
β0, · · · ,βk−1;Di,Xi

)
. The estimated risk given X

is p̂(X) = g(β̂0 + β̂1X1 + · · · + β̂k−1Xk−1), which is not

of interest here. In this article, we investigate the predic-

tive performance of the population working risk p(X) =

g
(
β∗
0 + β∗

1X1 + · · · + β∗
k−1Xk−1

)
where β∗

j ’s are the solu-

tion of E (D,X)

[
�

(
β0, · · · ,βk−1

)]
= 0 with the expectation

taken under the true joint distribution of (D,X), and β∗
j =

limn→∞ β̂j.

Accuracymeasures and IncVmetrics

The AUC and AP can be defined on any risk score

r(X) since they are rank-based. The ROC curve is

a curve of the true positive rate (TPR) versus the

false positive rate (FPR). Given a cut-off value c, the

TPR and FPR are the proportions of higher-risk score

r(X) > c among the events and non-events respec-

tively, i.e., TPR(c) = Pr [r(X) > c | D = 1] and FPR(c) =

Pr [r(X) > c | D = 0]. The AUC can be interpreted as the

conditional probability that given a pair of an event and a

non-event, the event is assigned with a higher-risk score,

i.e., AUC = Pr
[
r(Xi) > r(Xj) | Di = 1,Dj = 0

]
.

The PR curve is a curve of the positive predictive

value (PPV) versus the TPR. The PPV is defined as

PPV(c) = Pr [D = 1 | r(X) > c], the proportion of sub-

jects with higher-risk scores that are events. The AP can

be expressed as AP = E [PPV (r1(X))] [18], where r1(X)

denotes the risk score of an event, and the expectation is

taken under the distribution of r1(X). The AP is event-rate

dependent [18]; in contrast, the AUC does not depend on

π since it is conditional on the event status.

Let �old and �new denote an accuracy measure � (e.g.,

AUC or AP) of the existing and new risk models, respec-

tively. The IncV is defined as �� = �new − �old, which

quantifies the change in � when comparing the new

model with the existing one.

Data example

Accurate ovarian failure (AOF) is a treatment associated

complication caused by ovarian exposure to radiation and

chemotherapy. It is defined as permanent loss of ovarian

function within 5 years of a cancer diagnosis or no menar-

che after cancer treatment by age 18. About 6% of female

childhood cancer survivors have AOF. We evaluate and

compare two recently published risk models [22] that pre-

dict AOF on an external validation dataset, the St. Jude

Lifetime Cohort [25], which consists of 875 survivors with

50 AOF events.

Both models include the following risk factors: age

at cancer diagnosis, cumulative dose of alkylating drugs

measured using the cyclophosphamide-equivalent dose,

hematopoietic stem-cell transplant, and radiation expo-

sure. The difference between the two models is in the

measurement of radiation exposure. The prescribed-dose

model uses the prescribed radiation doses to the abdom-

inal and pelvic regions, which are routinely available in

medical charts. The ovarian-dose model uses the mini-

mum of the organ-specific radiation exposure for both

ovaries estimated by radiation oncologists. The equation

for calculating the AOF risk using eachmodel is developed

using the Childhood Cancer Survivors Study and given in

the supplementary material of Clark et al. (2020) [22].

Figure 1a and b show the ROC curves and PR curves

of these two models. The estimated AUC is 0.96 for

the prescribed-dose model and 0.94 for the ovarian-dose

model; �AUC is estimated to be − 0.02. The estimated

AP is 0.46 for the prescribed-dose model and 0.68 for

the ovarian-dose model. The estimated �AP is 0.22. The

estimation procedure is explained in Appendix.

Based on the �AUC, we conclude that the more

expensive ovary dosimetry does not improve the predic-

tion accuracy at all. However, based on the �AP, the

ovarian-dose model clearly outperforms the prescribed-

dose model. Why do these two metrics give conflicting

conclusions?

Analytical comparisons between �AUC and�AP

To answer this question, we first investigate the connec-

tions and differences between the AUC and AP using the

following three hypothetical risk scores: r1, r2, and r3. We

assume that all the risk scores among non-events follow a

standard normal distribution, i.e., rj | D = 0 ∼ N(0, 1),

for j = 1, 2, 3. However, their distributions among events

are different: (i) r1 | D = 1 ∼ N(1.8, 2), (ii) r2 | D = 1 ∼

N(1.5, 1.5), and (iii) r3 | D = 1 ∼ N(3, 1.5).

Figure 2 presents the comparisons of these three risk

scores under an event rate π = 0.05. Figure 2a shows

their density curves stratified by events and non-events.

Among them, the two density curves of r3 are the most

separated. Thus, the ROC and PR curves of r3 dominate

those of r1 and r2 (Fig. 2b and c), and consequently, r3
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Fig. 1 Data example: ovarian-dose vs prescribed-dose

has the largest AUC and AP. In contrast, the ROC and PR

curves of r1 and r2 cross: r2 has a slightly larger AUC with

AUCr2 − AUCr1 = 0.007, but r1 has a considerably larger

AP with APr1 − APr2 = 0.096. Figure 3 exhibits the com-

parisons between r1 and r2 for three different event rates

π = 0.2, 0.05, and 0.01.

Analytically, both the AUC and AP measure the sepa-

ration of the risk score distributions between events and

non-events. Let F1(·) and F0(·) denote the cumulative dis-

tribution functions (CDFs) of a risk score r(X) conditional

on D = 1 (events) and D = 0 (non-events), respectively.

Let qα = F−1
1 (α) denote the αth quantile for the distri-

bution F1, 0 ≤ α ≤ 1. As shown in Eqs. (7) and (8) of

Appendix, the AUC and AP can be expressed as func-

tions of F0(qα), the proportion of non-events whose risk

scores are below the αth quantile of the risk scores among

events. The F0(qα) measures the separation of the two

distributions F1 and F0: the larger the F0(qα) is at a given

α, the more non-events having lower-risk scores, indicat-

ing a further separation between these two distributions.

For example, the F0(qα) curve of r3 dominates those of

r1 and r2 (Fig. 2d), which is consistent with the fact that
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Fig. 2 Comparison of three hypothetical risk scores r1 , r2 , and r3 at event rate π = 0.05

r3 has the best separation between events and non-events

(Fig. 2a).

Furthermore, we can express both �AUC and �AP as

�� =

∫ 1

0
w�(α)�(α)dα, � = AUCorAP, (2)

where w�(α) is a weight function, and �(α) =

Fnew,0
(
qnew,α

)
− Fold,0

(
qold,α

)
, capturing how much the

new working risk model changes the separation of these

two distributions at a given α. Note that �(α) is indepen-

dent of π because it is conditional on the event outcome.

Thus, �AUC and �AP are weighted averages of �(α),

but their weights are different. For �AUC, wAUC(α) ≡ 1

for 0 ≤ α ≤ 1, i.e., �(α) is equally weighted. For �AP,

wAP(α) is a function of α and π (Eq. (9) of Appendix).

To visualize how wAP(α) changes with α and π , we plot

thewAP(α) in a log scale against α for different π in Fig. 3a,

in the context of comparing the hypothetical risk scores r1
and r2. For any π , wAP(α) increases with α. This tells us

that �AP assigns heavier weights to the upper-tail quan-

tiles of the risk score, representing higher-risk regions,

and lighter weights to lower-tail quantiles, representing

lower-risk regions, i.e., �AP emphasizes the change of the

separation in higher-risk regions. However, the change is

equally weighted in �AUC since wAUC(α) ≡ 1.

Additionally, wAP is affected by π . When π is smaller,

wAP(α) is larger for α values close to 1 but smaller for α

values close to 0. This indicates that, at a lower event rate,

if a risk model can better separate the two risk score distri-

butions at the upper quantiles, it will be rewarded more;

if it has a worse separation at lower quantiles, it will be

penalized less.

Hypothetic risk scores r1 and r2 revisited

Assuming that r2 is from an existing risk model and r1
is from a new one, �(α) = Fr1,0

(
qr1,α

)
− Fr2,0

(
qr2,α

)
,

�AUC = AUCr1 − AUCr2 , and �AP = APr1 − APr2 . As

shown in Fig. 3b, �(α) > 0 for large α, and �(α) < 0

for small α. It indicates that compared to r2, r1 has a bet-

ter separation for the upper quantiles of the risk score but

worse for lower quantiles. With equal weighting, �AUC

is equivalent to the area under �(α) curve over its entire

range. Since the area above 0 is approximately the same

as the area below 0, �AUC ≈ 0. As mentioned earlier,

�AUC is invariant for different π . Thus,�AUC = −0.007

(Fig. 2b) for all three π values.

For �AP, the r1’s upper-tail better performance is

weighted more than its lower-tail worse performance,

which explains �AP is all positive for the three π val-

ues (Fig. 3c). Additionally, when π gets smaller, the better
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Fig. 3 Comparison of hypothetical risk scores r1 and r2 under event rates π = 0.2, 0.05, 0.01

separation of r1 at the upper quantiles is rewarded more,

and meanwhile, its worse separation at lower quantiles is

penalized less. Thus, even though �(α) stays the same

across different π , �AP increases as π decreases (Fig. 3c).

Data example revisited

Let �(α) = Fovarian,0
(
qovarian,α

)
−

Fprescribed,0
(
qprescribed,α

)
. Figure 1c plots the estimated

�(α), wAP(α), and wAP(α)�(α). It shows that the

estimated �(α) > 0 for α > 10%, whereas the prescribed-

dose model performs better with the estimated �(α) < 0

when α < 10%. It suggests that compared to the

prescribed-dose model, the ovarian-dose model separates

the events and non-events better among individuals pre-

dicted to be at a higher risk. Overall, under the estimated

�(α) curve, the area below zero is slightly larger than the

area above zero. Thus, the estimated �AUC is negative

but close to zero. This indicates that these two models

have comparable performance in terms of �AUC.

However, the estimated �AP rewards the superior per-

formance of the ovarian-dose model at the upper quan-

tiles with large weights, and thus, it is positive and sizable.
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Clark et al. [22] created four risk groups: low (< 5%),

medium-low (5% to < 20%), medium (20% to < 50%), and

high risk (≥ 50%). The ovarian-dose model classifies 37

individuals (out of 875) as high risk, among which 30

(81%) experienced AOF, while the prescribed-dose model

predicted 13 individuals at high risk, with 6 (46%) AOF

events. This again confirms that the ovarian-dose model

is better at identifying the AOF events.

Comparison with Brier score. Since both the AUC and

AP are rank-based, they are semi-proper scoring rules: the

true model has the maximum AUC and AP among all the

models, but a misspecified risk model and the true model

can have the same AUC and AP when they rank the sub-

jects’ risks in the same order. We decide to compare these

two metrics with the Brier score (BrS), the only strictly

proper scoring rule.

The BrS is the expected squared difference between

the binary outcome D and the working risk p(X), i.e.,

BrS = E (D,X)

{[
D − p(X)

]2}
. The BrS is minimized at the

true model, i.e., p(X) = π(X). A non-informative model,

assigning the event rate to every subject, i.e., p(X) ≡ π ,

leads to the maximum BrS value π(1 − π). A scaled Brier

score (sBrS) is defined as sBrS = 1 − BrS/ [π(1 − π)],

ranging from 0 and 1, with larger values indicating better

performance [26].

Remark 2 Although the BrS cannot be directly expressed

as a function of F0(qα), it is closely related to the two

distributions F1 and F0. Specifically, it can be written as

BrS = E
{[
1 − p(X)

]2
| D = 1

}
π

+ E
{[
p(X)

]2
| D = 0

}
(1 − π).

The first expectation is the mean squared prediction error

(MSPE) of the working risk p(X) for events, determined by

the distribution F1, whereas the second expectation is the

MSPE for non-events, determined by the distribution F0.

Both MSPEs can be expressed as the sum of the variance of

p(X) and its squared bias from 1 for events and from 0 for

non-events. A smaller BrS can result from one, or a com-

bination, of the following: (i) the mean of p(X) for events

closer to 1, (ii) the mean of p(X) for non-events closer to

0, (iii) less variation in p(X) for events or non-events or

both. All of these lead to a further separation of the two

distributions: F1 and F0.

Let �sBrS denoted the IncV of sBrS. The sBrS is esti-

mated to be 0.23 for the prescribed-dose model and 0.50

for the ovarian-dose model, and �sBrS is estimated to be

0.27. Thus, similar to�AP,�sBrS favors the ovarian-dose

model.

Why are �sBrS and �AP consistent in this example?

Figure S1 of the supplementary material shows the his-

togram of the predicted risk p̂i from each model among

the AOF and non-AOF individuals. For the non-AOF indi-

viduals, the risk score distributions of these two models

are similar. Consequently, the mean and variance of p̂i
for both models are also similar: the mean is 0.033 for

the ovarian-dose model and 0.042 for the prescribed-dose

model; their variances are both about 0.0053. The MSPE

for the ovarian-dose model is 0.0064, slightly lower than

0.0071 for the prescribed-dose model.

For the AOF events, the risk score distribution of the

ovarian model has a heavier right tail. This indicates

that the ovarian-dose model pushes more AOF events

to the high-risk group. As a result, the mean of p̂i for

the ovarian-dose model is 0.48, much closer to 1 than

0.23 for the prescribed-dose model. The variance is 0.10

for the ovarian-dose model and 0.023 for the prescribed-

dose model. The MSPE of the ovarian-dose model is

0.367, much smaller than 0.613 of the prescribed-dose

model. Combining the MSPEs for events and non-events

weighted by their respective proportions, the estimated

BrS for the ovarian-dose model is 0.027, which is smaller

than 0.042, the estimated BrS for the prescribed-dose

model.

This data example illustrates a comparison of the three

IncV metrics: �AUC, �AP, and �sBrS. Next, we expand

the comparison via a numerical study.

Numerical study

As we are interested in the true values of the IncV for

the population working risk (described in Remark 1), not

in the IncV estimates from a sample, we do not use sim-

ulation studies; there are no data or samples involved.

The numerical study in this section evaluates the IncV of

adding a marker, denoted by Y, to a model with an existing

marker, denoted by X. The true value of each IncV met-

ric is directly derived from the distributional assumptions

described below.

Let the markers X and Y be independent standard

normal random variables. Given the values of these two

markers, a binary outcome D follows a Bernoulli distribu-

tion with the probability ofD = 1 via the following model:

π(X,Y ) = Pr(D = 1 | X,Y )

= �(β0 + β1X + β2Y + β3XY ),
(3)

where �(·) is the CDF of a standard normal distribution.

Given X and Y, π(X,Y ) is the true risk. The true model in

Eq. (3) includes an interaction betweenX and Y, indicating

the effect of X on the risk changes with the value of Y, and

vice versa.

Typically, in practice, none of the working models are

the true model. Having this in mind, we compare the fol-

lowing two misspecified working models: (i) one-marker
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model: p(X) = � (γ0 + γ1X), and (ii) two-marker model:

p(X,Y ) = � (γ0 + γ1X + γ2Y ).

Here, we consider different values of β1, β2, β3 and
π : β1 = 0.3, 0.4, · · · , 0.9, 1, β2 = 0.3, 0.4, · · · , 0.9, 1,

β3 = − 0.5,− 0.4, · · · ,− 0.1, 0.1, · · · , 0.4, 0.5 (excluding
0), and π = 0.01, 0.05, 0.1, 0.2, 0.5. Each combination of
(β1,β2,β3,π) values is referred to as a scenario. Given a
scenario, the value of β0 can be derived. In the supplemen-

tary material, we explain how to obtain the value of β0 and
calculate the true values of AUC, AP, and sBrS of the one-

marker and two-marker models as well as the true values
of the IncV metrics.

Results
We compare the three IncV metrics based on the follow-

ing two aspects: (1) size and range, and (2) agreement. A
desirable IncV metric should be sensitive to the change in
the predictive performance. If a new model improves the
prediction accuracy, an IncV should have a sizable posi-

tive value. It should also be able to reflect a performance
deterioration with a sizable negative value. If an IncV is
often close to 0, we might question its utility in support-

ing decision-making. As mentioned earlier, inconsistency
among different accuracy metrics is often encountered.

Thus, we are also interested in the agreement among the

three IncV metrics.

Size and range

Figure 4 plots the summary statistics (minimum, 25%

quantile, median, 75% quantile, and maximum) of the

three IncV metrics under different event rates. �AP has

the widest range, followed by �sBrS, and �AUC has

the narrowest range. This difference between �AUC and

�AP is more evident for a lower event rate. For exam-

ple, under π = 0.01, the inter-quartile range (IQR) and

median of �AUC are both 0.07. In contrast, the IQR of

�AP is much wider, with a range of about 0.41 and a

median of 0.21.

In addition,�AUC is negative in less than 1% of the sce-

narios (29 out of 3200). Furthermore, when it is negative,

the value is very close to 0, which indicates that �AUC

cannot distinguish between a useless marker and a harm-

ful marker [27]. On the other hand, �AP is negative in

about 12% of the scenarios (389 out of 3200), with a much

larger size.

As π changes, the range of �AP varies the most among

the three IncV metrics, whereas the quartiles of �AUC

remain almost constant. As π increases, the ranges of all

the IncV metrics get narrower and closer to each other.

When π = 0.5, both �AUC and �AP range from 0.015 to

0.25 with a median of 0.089, and �sBrS ranges from 0.019

to 0.32 with a median of 0.12.

Agreement

Correlation

We calculate the Pearson correlation between each pair of

the IncV metrics under each π (Table 1). �AP and �sBrS

are highly correlated for all values of π . As π increases,

their correlation decreases from about 1 (π = 0.01) to

Fig. 4 Summary statistics of �AUC, �AP, and �sBrS versus different event rates π
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Table 1 Pearson correlation and concordance measure of each pair of the IncV metrics for different event rates π

Comparison π = 0.01 π = 0.05 π = 0.1 π = 0.2 π = 0.5

Pearson correlation

�sBrS vs �AP 0.995 0.992 0.986 0.971 0.837

�sBrS vs �AUC − 0.111 0.262 0.479 0.718 0.932

�AUC vs �AP − 0.086 0.296 0.505 0.708 0.888

Concordance

�sBrS vs �AP 0.931 0.922 0.897 0.856 0.922

�sBrS vs �AUC 0.659 0.750 0.828 0.928 1.000

�AUC vs �AP 0.591 0.672 0.725 0.784 0.922

0.84 (π = 0.5), but the correlations of �AUC with the

other two IncV metrics increases with π . When π = 0.01,

�AUC and �sBrS are negatively correlated and their cor-

relation− 0.11 is the smallest among the three pairs; when
π = 0.5, they are the highest positively correlated. We
also show the scatter plots of each pair under different π

in Figure S7 (supplementary material).

Concordance

The sign of an IncVmetric is often used to decide whether
the newmodel is more accurate than the existing one. Pos-

itive IncVs favor the new model, while negative or zero
values favor the existing one. Here, we define a concor-

dance measure, which quantifies the consistency of the
conclusions reached by a pair of IncV metrics.

Take �AP and �sBrS as an example. Under a scenario,
we call the pair concordant if both are > 0 or ≤ 0. If one

is > 0 and the other is ≤ 0, the pair is discordant. The

measure of concordance is defined as the proportion of

scenarios where the pair is concordant minus the propor-

tion of scenarios where it is discordant. For instance, when

π = 0.01,�AP and�sBrS are concordant in about 97% of

the total 640 scenarios (i.e., all the combinations of β1, β2,

and β3 values at each π ) and discordant in about 3%. Thus,

the concordance measure is 0.93 with a roundoff error.
Table 1 reports the concordance for all three pairs of

the IncV metrics under each π . The results are similar to
those above for the Pearson correlation. When π is small,

such as 0.01, 0.05, and 0.1, �AP and �sBrS are the most

concordant; when π = 0.2 or 0.5, �AUC and �sBrS

are the most concordant. �AUC and �AP are the least

concordant for all values of π .

When π is close to 0.5, the three IncV metrics tend to

agree. Using any of them, we would very likely reach the
same conclusion about whether the new model is more
accurate. However, when the event rate is low, i.e., for a
rare outcome,�AUC can be inconsistent with both�sBrS

and �AP.

�AUC versus�AP in selected scenarios

Next, we single out four scenarios for an in-depth compar-

ison between �AUC and �AP at π = 0.01. The first two

scenarios have similar �AUC but different �AP (Fig. 5),

whereas the next two have similar �AP but different

�AUC (Fig. 6).

Similar�AUC but different�AP

The two scenarios are (i) β1 = 1, β2 = 0.8, and β3 = 0.2,

and (ii) β1 = 1, β2 = 0.8, and β3 = −0.5. In both cases,

�AUC is around 0.06, but �AP is 0.33 for scenario (i) and

− 0.072 for scenario (ii).

In scenario (i), both the ROC and PR curves of the two-

marker model dominate those of the one-marker model,

respectively. This indicates that the two-marker model is

better at each point, and consequently, �(α) is positive

throughout (Fig. 5c). In this case, both �AUC and �AP

are positive. However, the size of �AP 0.33 is much larger

than �AUC 0.06, due to the large weight wAP(α) at the

upper quantiles (Fig. 5c).

In scenario (ii), both the two ROC curves and PR curves

cross, and �(α) is below zero for upper quantiles and

above zero for lower quantiles (Fig. 5c). This implies that

the two-marker model can better separate between events

and non-events for lower-risk regions, but not for higher-

risk regions. As a result, �AUC and �AP are conflicting.

�AUC is positive because the area under �(α) curve

above zero is larger than that below zero. However, �AP

is negative, as it weights the below-zero �(α) heavily.

Similar�AP but different�AUC

The next two scenarios are (iii) β1 = 0.7, β2 = 0.3, and

β3 = − 0.3, and (iv) β1 = 0.6, β2 = 0.7, and β3 = −0.4.

In both cases, �AP values are almost 0, but �AUC is

approximately 0 for scenario (iii) and 0.202 for scenario

(iv).

In scenario (iii), the two ROC curves and the two PR

curves are almost identical. This indicates that adding the

new marker does not change the separation of the distri-

butions of the risk score between events and non-events.

It is also reflected in Fig. 6c where the entire �(α) curve

almost overlaps with the zero line. Thus, both �AUC and

�AP are close to zero. This is an example of both metrics

agreeing that the new marker is “useless.”
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Fig. 5 Comparison of two scenarios at event rate π = 0.01: similar �AUC but different �AP

In scenario (iv), although the two-marker model makes

poorer predictions for higher-risk regions, its prediction

is significantly better for the rest. Thus, �AUC is posi-

tive and sizable. However, since �AP weights heavily on

higher-risk regions, the improvement on the majority is

offset by the worse performance at the upper quantiles,

which leads to a close-to-zero �AP.

What if the two-markermodel is the truemodel, i.e., β3=0?

Figures S8 and S9 in the supplementary material examine

this question and show the scatter plots and plots of the

summary statistics of �AUC, �AP, and �sBrS for differ-

ent π . As expected, all the IncVs are positive. For a smaller

π , �AP ranges wider than �AUC does. As π increases,

these two metrics get closer to each other. When π = 0.5,

�sBrS has the widest range.

Since all the IncVs are positive, their concordance is all 1.

Table S1 (supplementary material) lists the Pearson corre-

lation between each pair of the IncV metrics, which are all

positive. When π is small, �sBrS is more strongly corre-

lated with�AP than with�AUC. As π increases, all three

IncV metrics are strongly correlated with each other.
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Fig. 6 Comparison of two scenarios at event rate π = 0.01: similar �AP but different �AUC

Discussion
Pepe et al. (2013) proved that, when one of the two

working models is the true model, the hypothesis H0 :

p(X,Y ) = p(X) is equivalent to the hypotheses of no

improvement in the accuracy measures such as the AUC,

net reclassification index (NRI), or integrated discrimina-

tion improvement (IDI) [6]. In their setting, the ROC and

PR curves never cross. However, our paper focuses on sit-

uations where neither working model is the true model,

and the two curves might cross. When they cross each

other, the above equivalence among the hypotheses does

not hold, and it implies that one of the two models out-

performs the other at non-overlapping risk regions. This

could lead to the disagreement between �AUC and �AP.

�AUC has been criticized for being insensitive to the

contribution from an addedmarker [28]. According to our

analysis, the insensitivity is likely a result of its equal treat-

ment across different risk regions, and thus, it often fails

to reflect the “local” improvement or deterioration of the

new risk model. In the AOF example, the ovarian-dose

model demonstrates its superiority in higher-risk regions.

However, this advantage disappears in �AUC, which
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takes a simple average over the ovarian-dose model’s wins

in higher-risk regions and its losses in lower-risk regions.

Similarly, if we consider a curve of negative predictive

values (NPV, the proportion of non-events among sub-

jects having a lower-risk score than a cut-off value) versus

specificity (1− FPR), following our derivation of AP, the

area under this curve can be expressed as E [NPV (r0(X))]
where r0(X) denotes the risk score of a non-event subject.

We can regard this quantity to be the average NPV. Sim-

ilar to �AP, the IncV of the average NPV, �aNPV, can

be expressed as a weighted average of the change in the

separation of the risk score distributions between events

and non-events. However, its weight is larger for lower-

tail quantiles of the risk score, indicating the average NPV

emphasizes on the accuracy of lower-risk regions.

Assessing the change in prediction accuracy is impor-

tant in investigating the potential of a new marker (or a

new measurement for an existing marker) [29]. However,

neither �AUC or �AP considers the cost and bene-

fit associated with the clinical utility of risk prediction

[29, 30]. Going back to the AOF example, should more

expensive ovary dosimetry be used for predicting AOF

because it identifies more AOF cases? Unfortunately, both

�AP and �AUC are insufficient to answer this ques-

tion. Vickers and Elkin [29] proposed a net benefit and

decision curve analysis for evaluating the clinical value

of a risk model. The net benefit is defined as NB(pt) =

π1TPR(pt)−(1−π1)FPR(pt)
pt

1−pt
, quantifying the net ben-

efit for subjects who are treated based on the rule that the

risk probability is above the threshold value pt .

We can express the above net benefit as a func-

tion of PPV: NB(pt) = Pr
[
p(X) > pt

] PPV (pt)−pt
1−pt

. Here,

Pr
[
p(X) > pt

]
is the proportion of subjects who receive

the treatment among the population, and
PPV (pt)−pt

1−pt
quan-

tifies the expected net benefit given that a subject is

treated. The net benefit is regarded as the scaled “aver-

age benefit per prediction” [31, 32], and thus,
PPV (pt)−pt

1−pt
is the average benefit per treated subject. Thus, �NB(pt)

is determined by the change of the proportion of treated

subjects between the twomodels and�PPV (pt). The ana-

lytical relationship between �NB and other IncV metrics

such as�PPV (pt) and�AP is worth further investigation.

Because the ranges of AUC, AP, and sBrS are differ-

ent, the domains of their IncV metrics are also different:

�AUC ∈[− 0.5, 0.5], �AP ∈[π − 1, 1 − π ], and �sBrS ∈

[− 1, 1]. It may be worthwhile to consider rescaling these

IncV metrics to range from − 1 and 1. Alternatively, an

IncV metric can be defined as a ratio such as �new/�old.

The AUC is conditional on the binary outcome, and

consequently, only depends on the respective risk score

distributions among the events and non-events. Thus, it

can be estimated from either a prospective cohort study or

a case-control study. In contrast, the AP is conditional on

the risk score obtained at baseline. Besides the risk score

distributions, the AP also depends on the event rate, and

thus, it has previously only been possible to estimate from

cohort studies, but not from case-control studies. How-

ever, if one can acquire the information on the event rate

from a previous cohort study or from surveillance data,

the AP can be estimated via combining an estimated or

assumed event rate with the risk score distributions of

events and non-events estimated from the case-control

study using the derived expression of the AP (see Eq. (8)

in Appendix).

Conclusion
In this article, we investigated the disagreement between

two IncV metrics �AUC and �AP when neither the

existing nor the new risk model is the true model. We

showed that they are intrinsically connected; both can be

expressed as an average of �(α), a quantity characterizing

the change in the separation of the risk score distributions

between events and non-events when comparing an exist-

ing risk model to a new one. However, �AP is a weighted

average, with weights monotonically increasing as the risk

score increases, whereas �AUC is a simple average of the

change. Due to this difference, they do not always agree

with each other; the lower the event rate is, the more these

two metrics disagree. In addition, compared to �AUC,

�AP has a wider range and is subsequently more sensitive

to the contribution from new information added to the

existing risk model. Via the numerical study, we also show

that �AP and �sBrS are highly consistent, but the cor-

relation of �AUC and �sBrS transitions from a positive

correlation to a negative one as the event rate decreases.

Appendix
Estimation of AUC, AP, and sBrS for binary outcomes

Suppose that the data D = {(Di,Xi), i = 1, · · · , n} is

collected from n subjects. Let p̂i denoted the estimated

risk, described in Remark 1. Let r̂i be a risk score, which

is a non-decreasing transformation of p̂i. The AUC and

AP are estimated using r̂i by the following nonparametric

estimators

ÂUC =

∑n
i=1

∑n
j=1 I(Di = 1)I(Dj = 0)I (̂ri > r̂j)∑n

i=1

∑n
j=1 I(Di = 1)I(Dj = 0)

,

and

ÂP =

∑n
i=1

[
I (Di = 1)

∑n
j=1 I

(
Dj = 1

)
I
(
r̂j > r̂i

)
/
∑n

j=1 I
(
r̂j > r̂i

)]

∑n
i=1 I (Di = 1)

.

The BrS can be estimated using p̂i by B̂rS =

n−1
∑n

i=1 (Di − p̂i)
2. The event rate is estimated as π̂ =

n−1
∑n

i=1 Di. Then the sBrS is estimated as ŝBrS = 1 −

B̂rS/ [π̂ (1 − π̂)].
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Derivation of AUC and AP

Let π = Pr(D = 1) be the event rate, and r(X) =

rX be a risk score. Let F(c) = Pr(r X ≤ c) denote its

cumulative distribution function (CDF) for the entire pop-

ulation, and F1(c) = Pr (r X ≤ c | D = 1) and F0(c) =

Pr (r X ≤ c | D = 0) denote its CDFs for events and non-

events, respectively.

The TPR, FPR, and PPV are

TPR(c) = Pr(r X > c | D = 1) = 1 − F1(r) (4)

FPR(c) = Pr(r X > c | D = 0) = 1 − F0(r) (5)

PPV(c) = Pr(D = 1 | r X > c)

=
Pr(D = 1, r X > c)

Pr(r X > c)
=

π [1 − F1(c)]

1 − F(c)

=
π [1 − F1(c)]

π [1 − F1(c)] + (1 − π) [1 − F0(c)]
(6)

where 1 − F(c) = π [1 − F1(c)] + (1 − π) [1 − F0(c)].

AUC is the area under the ROC curve, which can be

expressed as

AUC =

∫ −∞

∞

TPR(c)dFPR(c)

= 1 −

∫ −∞

∞

FPR(c)dTPR(c)

=

∫ −∞

∞

[1 − FPR(c)] dTPR(c),

because
∫ −∞

∞
dTPR(c) = 1. Using the expressions in

Eqs. (4) and (5), we have

AUC =

∫ −∞

∞

F0(c)d[ 1 − F1(c)]=

∫ ∞

−∞

F0(c)dF1(c).

Let qα = F−1
1 (α) be the αth quantile of the F1 distribution,

i.e., F1(qα) = α. Thus, let c = qα , and we have

AUC =

∫ 1

0
F0(qα)dα. (7)

AP is the area under the PR curve, which can be

expressed as

AP =

∫ −∞

∞

PPV(c)dTPR(c).

Using the expressions in Eqs. (4) and (6), we have

AP =

∫ −∞

∞

πF1(c)

πF1(c) + (1 − π)F0(c)
d[ 1 − F1(c)]

=

∫ ∞

−∞

π [1 − F1(c)]

π [1 − F1(c)] + (1 − π) [1 − F0(c)]
dF1(c)

=

∫ ∞

−∞

{
π [1 − F1(c)] + (1 − π) [1 − F0(c)]

π [1 − F1(c)]

}−1

dF1(c)

=

∫ ∞

−∞

{
1 +

1 − π

π

1 − F0(c)

1 − F1(c)

}−1

dF1(c).

Again, let c = qα , we have

AP =

∫ 1

0

{
1 +

π−1 − 1

1 − α

[
1 − F0(qα)

]}−1

dα. (8)

WeightwAP in�AP

Let APold and αnew denote the AP of the existing and new

models:

APold =

∫ 1

0

{
1 +

π−1 − 1

1 − α

[
1 − Fold,0

(
qold,α

)]}−1

dα,

APnew =

∫ 1

0

{
1 +

π−1 − 1

1 − α

[
1 − Fnew,0

(
qnew,α

)]}−1

dα.

Thus, with arithmetic operations, the IncV of AP can be

expressed as

�AP = APold − APnew

=

∫ 1

0
wAP(α)

[
Fnew,0(qnew,α) − Fold,0(qold,α)

]
dα,

where

wAP(α)=

π−1−1
1−α[

1+(π−1−1)
1−Fnew,0(qnew,α)

1−α

][
1+(π−1−1)

1−Fold,0(qold,α)

1−α

] .

(9)

It is a function of α and π . It also depends on Fnew,0(qnew,α)

and Fold,0(qnew,α). In general, F0(qα) ≥ α because the density

curve for non-events is to the left of that for events. Thus,

how the weight changes with α and π is mainly determined

by the numerator (π−1 − 1)/(1 − α). However, when π and

α are fixed, larger values of Fold,0(rold,α) or Fnew,0(rnew,α) or

both, i.e., better performance of at least one model, lead to

larger weights.
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