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A Relative Density Ratio-Based Framework

for Detection of Land Cover Changes

in MODIS NDVI Time Series
Asim Anees, Jagannath Aryal, Małgorzata M. O’Reilly, and Timothy J. Gale

Abstract—To improve statistical approaches for near real-time
land cover change detection in nonGaussian time-series data, we
propose a supervised land cover change detection framework in
which a MODIS NDVI time series is modeled as a triply mod-
ulated cosine function using the extended Kalman filter and the
trend parameter of the triply modulated cosine function is used to
derive repeated sequential probability ratio test (RSPRT) statis-
tics. The statistics are based on relative density ratios estimated
directly from the training set by a relative unconstrained least
squares importance Fitting (RULSIF) algorithm, unlike tradi-
tional likelihood ratio-based test statistics. We test the framework
on simulated, synthetic, and real-world beetle infestation datasets,
and show that using estimated relative density ratios, instead
of assuming the individual density functions to be Gaussian or
approximating them with Gaussian Kernels, in the RSPRT statis-
tics achieves better performance in terms of accuracy and detec-
tion delay. We verify the efficiency of the proposed approach by
comparing its performance with three existing methods on all the
three datasets under consideration in this study. We also propose
a simple heuristic technique that tunes the threshold efficiently in
difficult cases of near real-time change detection, when we need
to take three performance indices, namely, false positives, false
negatives, and mean detection delay, into account simultaneously.

Index Terms—Change detection, extended Kalman filter (EKF),
model fitting, MODIS, relative density ratio, time series.

I. INTRODUCTION

L AND COVER change detection research has seen sig-

nificant recent contributions [1]–[19]. However, every

proposed framework has its limitations on global scale due to

particularity of the task at hand and the circumstances under

which it is developed. Hence, no single framework is optimal

in a wide range of scenarios simultaneously. Therefore, an effi-

cient change detection framework is always in demand for a

particular task and circumstances under consideration. In this
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study, our main focus is on the changes induced by beetle infes-

tations in pine forests, which is one of the major causes of land

cover changes in North America [2], [3]. We utilize coarse spa-

tial resolution MODIS data due to its free-of-cost availability

and high temporal resolution.

Many studies have been published which utilize coarse spa-

tial resolution data in addressing land cover change detection

[10]–[18], [20]. Some of these studies propose methods which

are not designed for detecting changes sequentially in near real

time [11], [12], [15], [17], [18], [20]. In order to be able to

mitigate the factors that are causing unwanted changes, early

detection is crucial [10], [14], [16]. Therefore, considerable

importance has been given to statistical approaches for near

real-time land cover change detection over the recent past [10],

[13], [14], [16], [21], [22].

The term “near real time” theoretically means that the algo-

rithm can detect a change event with a small delay (in terms

of number of observations) after the time point at which it

has actually occurred, using only current and past observations.

However, in remote sensing, its meaning is relative, depending

on the type of application, i.e., types of changes being targeted

and the data being used. Some changes are gradual and any

change detection method may take a considerable number of

observations before detecting them, still the methods are termed

as near real time. For example, the studies published in [10],

[14], and [16] introduced near real-time methods for detecting

changes in MODIS time-series data. The number of obser-

vations required by these methods before detecting changes

may sound nonreal time, but because of the type of changes

addressed in these studies, i.e., beetle infestations (slow and

gradual), they are declared as near real time.

Some existing methods [13], [20] derive test statistics from

the raw vegetation index time series or the error between the

model and observed time series [10], but it was suggested

in [14] and [16] that calculating change metrics from the

parameter time series (time-varying parameters of the fitted

model) achieve better performance. There are two main issues

when we consider these statistical approaches for near real-

time land cover change detection. First, most of them either

assume that the underlying density functions under null or alter-

native hypothesis are Gaussian [10], [14], [16], or they use

Gaussian kernels to estimate the individual density functions

[13]. The real-world data may often be far from being Gaussian.

This results in errors in estimated or assumed underlying dis-

tributions, which achieve suboptimal performance [23], [24].
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Second, commonly two performance indices, namely: false

positives (FP) and false negatives (FN), are considered while

evaluating the change detection methods [13]. Evaluation of

a near real-time method can be based on three performance

indices, namely FP, FN, and mean detection delay (MD),

instead of only FP and FN as in the case of offline change detec-

tion methods [13], [14]. Increasing threshold normally reduces

FP rate, but increases MD and FN, and vice versa. Therefore,

finding an optimal tradeoff manually between acceptable val-

ues of the three performance indices becomes challenging. Note

that the readers should not confuse MD with the computational

time or computational complexity of the algorithm here. MD is

the average detection delay calculated in terms of the number of

time points (observations) between the actual point of change in

the ground truth data (or selected reference point) and the point

where change alarm is raised. Therefore, its units depends upon

the temporal resolution of the data under consideration, which

may vary from application to application. We use generic units

(observations or time points) for MD in this manuscript, which

can be interpreted easily in different applications, according to

the temporal resolution of the time-series data being used.

It was argued in [23]–[27] that approximating individual

densities or assuming the individual densities to be Gaussian

leads to more errors. However, when the test statistics are

based on density ratios, we can avoid estimating individ-

ual densities or assuming them to be Gaussian as shown in

[23], [24]. It was shown in [23], [25], and [26] that direct

density ratio estimation performs better than estimating indi-

vidual densities using Gaussian Kernels or assuming them to

follow Gaussanity. A number of studies have proposed dif-

ferent methods for direct density ratio estimation, e.g., kernel

mean matching [28], the logistic regression method [29], and

Kullback–Leibler importance estimation procedure (KLIEP)

[25]. KLIEP was shown to be promising in change detection

framework [23]. A more recent algorithm in this regard, namely

unconstrained least squares importance fitting (ULSIF), was

proposed in [26] and shown to have optimal nonparametric con-

vergence rate [30], optimal numerical stability [31], and higher

robustness than KLIEP [32]. However, [27] reported a potential

weakness of density ratio-based approaches that density ratios

can be unbounded, and proposed relative ULSIF (RULSIF)

algorithm, which uses relative density ratios that are always

bounded. RULSIF was shown to achieve better estimation and

nonparametric convergence than ULSIF. Although the existing

remote-sensing literature on land cover change detection con-

tains several methods based on traditional likelihood ratios with

individual densities either assumed to be Gaussian, or estimated

using Gaussian kernels, there is no study to our knowledge that

has exploited the usefulness of relative density ratio estimation

as proposed in [24], [27].

In this study, one of our main aims is to highlight and

re-emphasize the usefulness of relative density ratios in remote-

sensing applications. We investigate the advantages of using

relative density ratio estimation in supervised near real-time

classification of change and no-change events within the

MODIS NDVI time series. Our proposed change detection

framework models MODIS 8-days 500-m NDVI time series

by a triply modulated cosine function [17], [18] and uses the

extended Kalman filter (EKF) [33] to derive its time-varying

parameters. As suggested in [1], [14], and [15], changes which

affect the trend of the signal can be captured in the trend

parameter of the triply modulated cosine function. Therefore,

our proposed framework learns relative density ratios from

the trend parameters of the change and no-change training

sets using the RULSIF algorithm [24]. Once the training is

done, these estimated relative density ratios are used to derive

repeated sequential probability (RSPRT) [33] statistics online,

which can be compared to a tuned threshold to detect changes

in near real time.

We also address the issue of finding an acceptable trade-

off between FP, FN, and MD while tuning the threshold.

Traditionally, performance of the any change detection method

is analyzed based only on accuracy. In such cases, the threshold

tuning can be done with the help of receiver operating charac-

teristics (ROC) curve or calibration curve [34]. The ROC curve

helps in finding a tradeoff between TP and FP, and the calibra-

tion curve plots accuracy against different values of threshold.

However, in our case, we have to consider MD as well, along

with accuracy, which means that the optimal tradeoff has to be

found between three performance indices, namely FN (instead

of TP), FP, and MD. We formulate a cost function depend-

ing on FP, FN, MD (or alternatively kappa-coefficient [35] and

MD) and the threshold, which is minimized iteratively to find

a threshold value that gives acceptable tradeoff between these

performance indices. Finally, we compare our proposed frame-

work with three recently published land cover change detection

methods for land cover change detection in MODIS NDVI

time-series data which use either KDE to estimate the individ-

ual densities or assume them to be Gaussian, while deriving

the test statistics [13]. We show that our proposed framework

achieves better accuracy with lower detection delays.

The main contributions of this study are as follows: 1) a

supervised near real-time change detection framework that

can detect land cover changes in MODIS NDVI time-series

data quicker and with more accuracy than recently published

methods; 2) highlighting and re-emphasizing the usefulness

of density/relative density ratio estimation [23], [24], [27] in

the remote-sensing community while showing its suitability

for supervised change detection in MODIS time-series data;

and 3) an effective strategy for tuning the threshold auto-

matically in near real-time scenarios when more than two

performance indices have to be considered, and also in those

scenarios where manual threshold selection is cumbersome,

e.g., cross-validation experiments.

The research questions addressed in this study are: 1) Is

the relative density ratio estimation a viable option for super-

vised change detection in MODIS time series data? 2) Do

RSPRT/CUSUM (CUmulative SUM) statistics [33], [36], [37],

when derived from the parameter time series, improve perfor-

mance compared to when derived from the raw time series

[13]? 3) Does using the relative density ratios, estimated by

RULSIF [23], [24], [27] in RSPRT statistics improve the per-

formance compared to estimating the individual densities [13]

or assuming them to be Gaussian [10], [14]?

This paper is organized as follows. Section II explains the

RULSIF algorithm for relative density ratio estimation, the
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proposed supervised land cover change detection framework,

and the proposed threshold tuning technique. Section III gives

brief descriptions of the three existing methods used in this

study for comparison and performance evaluation of our pro-

posed framework. Section IV explains the datasets used in

this study. Section V presents the numerical results, their

comparison, and discussion. Section VI concludes this paper.

II. MATERIALS AND METHODS

A. RSPRT With Relative Density Ratio Estimation (M1)

MODIS time-series data contain seasonal variations which

need to be taken into account while designing any change

detection method [17], [38]. Different types of functions have

been used to model MODIS vegetation index time series, in

land cover change detection framework, over the recent past

[10]–[12], [14], [16]–[18]. Some recent studies have argued

the usefulness of triply modulated cosine function and its time

varying parameters, in land cover change detection framework

[14], [16]–[18]. In order to get trend and seasonal variations

separately, we model the vegetation index time series of a given

MODIS pixel by a triply modulated cosine function as in [14],

[16]–[18]

yt = µt + αt sin (2πft+ φt) + vt (1)

where yt and vt are the observation and noise value from an

unknown distribution, at time t = 1, 2, . . .. The above model is

based on many unknown parameters, namely the frequency f ,

and the time-varying parameters mean µt, amplitude αt, and

phase φt. The parameter f is determined by the data being used

for analysis. In our case, the MODIS 8-day 500-m time series

has a cycles length of 1 year with 46 observations per year,

hence f = 1/46. The values of µt, αt, and φt can be estimated

from the observations yt according to (1) using a nonlinear esti-

mator. As proposed in [18], EKF can be used to derive the

time-varying parameters of (1). In EKF formulation, the model

given in (1) can be written as a pair of state and measurement

equations as

xt = v(xt−1) +wt (2)

and

yt = h(xt) + vt (3)

where xt = [µt, αt, φt]
T is the state vector, v is the relationship

between the previous state and the current state, wt is 3× 1
vector of process noise at time t, vt is the measurement noise at

time t, h is the relationship between the current state xt, and the

predicted measurement yt. The EKF predicts the state vector at

time t recursively [18], using the observations till time t.
Estimation of the state vector at every time point t using

EKF results in time series of the parameters. The next step is

to compute the change metrics/test statistics to classify change

or no-change events. As shown in [1], [14], and [15], the trend

changes, e.g., changes due to beetle infestations create sig-

nificant impact on µt; hence, we calculate our test statistics

from µt. Many types of control charts exist in literature, e.g.,

Shewhart control charts [33], [36], [39], moving average con-

trol charts [33], [36], RSPRT/CUSUM control charts [33], [36],

[37], generalized likelihood ratio (GLR) control charts [33],

[36] etc., which can be applied in deriving the test statistics.

However, RSPRT/CUSUM detect small changes quicker (takes

lesser number of observations or data points after the change

has occurred) than rest of the control charts [33], [36]. Since

the type of change we are targeting here is of gradual nature,

we use RSPRT to derive test statistic St from µt time series as

St =

⎧
⎨
⎩
St−1 + ln

pH1
(µt)

pH0
(µt)

, if St−1 + ln
pH1

(µt)

pH0
(µt)

> 0

0, if St−1 + ln
pH1

(µt)

pH0
(µt)

≤ 0
(4)

where pH∗
(µt) is the likelihood of vector random variable µt

at time t, under hypothesis H∗, and S0 = 0. The vector random

variable µt = [µt, µt−1, . . ., µt−k+1] in (4) is derived with a

sliding window of length k in order to capture the relationship

of µt with its immediate past. The value of k can be chosen

by the user (normally k ≥ 10, we used k = 10). The no-change

and the alternate hypotheses H0 and H1, respectively, can be

defined as

H0 : St ≤ λ
H1 : St > λ

(5)

where λ is a carefully selected threshold. Equation (4) can be

compacted as

St = (St−1 + st)
+ (6)

where (̺)+ = sup(0, ̺) for some value of ̺, st = ln
pH1

(µt)

pH0
(µt)

.

The change alarm at at time t can be raised according to

at =

{
1 if St > λ,

t ≥ k
0 if St ≤ λ,

(7)

for a carefully selected threshold λ.

The likelihood ratio in RSPRT is often found either by

assuming the individual density functions to be Gaussian [33]

or by estimating the individual density functions using kernel

density estimation (KDE) [13]. Both the methods can lead to

suboptimal results because the real-world data rarely satisfy

Gaussanity condition, and density estimation too is a difficult

problem to solve [23], [24], [27], [40]. Estimating the density

ratios directly, without estimating the individual distributions,

is comparatively easier and achieves better performance [23],

[24], [27], [40]. Although many algorithms have been used for

direct density ratio estimation, e.g., KLIEP [23], [25], ULSIF

[24], [26], [24], [27] suggested that RULSIF algorithm, which

considers relative density ratios, achieves better estimation and

nonparametric convergence. Therefore, we use relative density

ratios, estimated directly from change and no-change train-

ing sets using RULSIF algorithm [27], in (4). Let Ytr be

the training set containing change and no-change ground truth

examples. After deriving the parameters of (1) using EKF,

the change and no-change training sets of the µt parameter

denoted, respectively, by Yc = {µi}
n
i=1 and Ync = {µ′

i}
m
i=1,

can be formed by sliding a window of length k over change and
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no-change µt time series as µt = [µt, µt−1, . . ., µt−k+1] start-

ing at t = k, and putting the window values, at each time point,

in the respective sets. According to the RULSIF formulation the

relative density ratio can be given by [24] and [27]

rβ(µ) =
p(µ)

βp(µ) + (1− β)p′(µ)
=

p(µ)

p′β(µ)
(8)

where p(µ) represents the density of change samples, p′(µ)
represents the density of no-change samples, µ is an arbitrary

data sample, and 0 ≤ β < 1. The β-relative density ratio rβ(µ)
can be estimated by a kernel model as [24], [27]

rβ(µ) ≈ g(µ;θ) =

n∑

i=1

θiK(µ,µi) (9)

K(µ,µi) = exp

(
−
‖µ− µi‖

2

2σ2

)
(10)

where θ = [θ1, θ2, . . ., θn] is the parameter vector, σ (0) is

the kernel width, and n is the number of change examples in

the training set. The appropriate value of σ was selected as

explained in [24].

Note that the complexity of problem increases with the

increase in size of the training dataset because the number of

kernels being used and hence the number of θ parameters which

need to be estimated is equal to the number of samples in train-

ing set. This works well for small training sets, but it introduces

memory and computation time issues in case of the large train-

ing sets. Therefore, we use a small but sufficient number of

centers selected randomly from the training set, instead of using

all the samples of the training set as centers. We adapt (9) as

rβ(µ) ≈ g(µ;θ) =

d∑

i=1

θiK(µ,ηi) (11)

where {ηi}
d
i=1 is a set of d number of centers chosen randomly

from the training set. As formulated in RULSIF, the squared

loss between the true and estimated relative density ratios J(µ)
is given by [24] and [27]

J(µ) =
1

2

∫
p′β(µ) (rβ(µ)− g(µ;θ))

2
dµ

=
1

2

∫
p′β(µ) (rβ(µ))

2
dµ

−

∫
p(µ)g(µ;θ)dµ

+
β

2

∫
p(µ) (g(µ;θ))

2
dµ

+
1− β

2

∫
p′(µ) (g(µ;θ))

2
dµ.

(12)

The parameter vector θ can be estimated by minimizing J(µ).
Ignoring the terms independent of g(µ;θ) in (12), the following

optimization problem is formulated according to RULSIF [27]

min
θ∈Rn

[
1

2
θT Ĥθ − ĥTθ +

γ

2
θTθ

]
(13)

=⇒ θ =
(
Ĥ + γIn

)−1

ĥ (14)

where Ĥ is a d× d matrix, Id is an d dimensional identity

matrix, ĥ is a vector of length d, and γ ≥ 0 is a regularization

parameter. The (l, l′)th element of Ĥ , for all 1 ≤ l, l′ ≤ d, is

given by [27]

Ĥl,l′ = β_
n

n∑

i=1

K(µi,ηl)K(µi,ηl′)

+
1− β

m

m∑

j=1

K(µ′

j ,ηl)K(µ′

j ,ηl′) (15)

and lth element of ĥ can be given by [27]

ĥl =
1

n

n∑

i=1

K(µi,ηl). (16)

Once the parameter vector θ has been estimated, it is used in

(11) to estimate the relative density ratio of any µt which is

then used in (4) to calculate the test statistics. First, we find

the relative density ratio sequences for all the examples in the

training set. The threshold λ is then tuned using this training

set. Then, in the similar way relative density ratio is found

at any time t in test time series as well, and change alarm

can be raised according to (7). Both the training and testing

phases of the proposed framework have been summarized in

Algorithms 1 and 2, respectively. It is worth noting here that the

authors of [13] and [41] mentioned that both independent and

identically distributed (i.i.d.) assumptions were not met in their

formulation of CUSUM. After removing the seasonality, the

unchanged µt parameter time series has slightly reduced corre-

lation but not enough to be considered as negligible. However,

our formulation considers all the no-change samples as com-

ing from a single distribution, unlike CUSUM formulation in

[13], [41]. Therefore, the no-change samples can be considered

as identically distributed, and the change is detected when this

assumption is violated, i.e., when a sample from a significantly

different distribution is encountered.

Algorithm 1. Training(Ytr,k, β, σ, γ)

Given the training set Ytr, k, β, σ, and γ

1) Derive the parameters xt = [µt, αt, φt] for all training

time series using EKF.

2) Make separate sets for change and no-change samples,

Yc = {µi}
n
i=1 and Ync = {µ′

i}
m
i=1, respectively.

3) Chose d samples from Yc randomly as kernel centers

(η = {ηi}
d
i=1).

4) Use η,Yc, and Ync in (13) to (16) to estimate the

parameter vector θ of the (11).

5) At every time point t of the training time series estimate

rβ(µt) using (11).

6) Use the estimated rβ(µt) in place of
pH1

(µt)

pH0
(µt)

in (4) to

calculate RSPRT statistic St.

7) Using RSPRT statistics of the whole training set, tune an

optimal threshold (λ) that minimizes false negatives (FN),

false positives (FP), and mean detection delay (MD).

OUTPUT (θ, λ, η)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ANEES et al.: RELATIVE DENSITY RATIO-BASED FRAMEWORK FOR DETECTION OF LAND COVER CHANGES 5

Algorithm 2. Test(yt, k, η,Yc and σ)

Given all the observations till current time t (yt), k, η, Yc,

and σ
1) Derive the parameters xt = [µt, αt, φt] of (1) using EKF.

2) Derive a test sample µt = [µt, µt−1, . . ., µt−k+1]
T .

3) Estimate rβ(µt) using (11).

4) Use the estimated rβ(µt) in place of
pH1

(µt)

pH0
(µt)

in (4) to

calculate RSPRT statistic St.

5) Use (7) to evaluate the change alarm at.
OUTPUT (at)

B. Automatic Threshold Tuning

Tuning a threshold manually on training dataset, while tak-

ing care of three performance indices, i.e., FN , FP , and MD,

is a challenging task. Here, we formulate a simple, yet effec-

tive constrained optimization problem, which will yield a tuned

threshold. Since all the three performance indicators are desired

to be as low as possible, an over all cost function-based includ-

ing the effect of all of them can be designed, which can then be

minimized. A simple choice can be Euclidean norm written as

Lq =
√

(FPq)2 + (FNq)2 + (ψ ×MDq)2 (17)

where Lq is the cost at the qth iteration of the optimization

algorithm and ψ is the weight that increases or decreases the

dependence of the cost function/optimization on MD. A prop-

erly selected ψ also caters for the scale difference between MD
and rest of the two indicators. Its value can be selected against

a desired accuracy in the first run of the cross-validation and

kept the same throughout the rest of the experiment. Note that

FP , FN , and MD are derived from (7) which means that

they are dependent on λ and hence the cost function as well.

So, ideally, minimization of the cost function in (17) subject to

λ > 0 should yield optimal value of λ for a specific value of

ψ. However, at some instances, the cost function may remain

(flat) unchanged with the change in the value of λ, as shown in

Fig. 1 (top). This is undesirable because the optimization algo-

rithm may get stuck in such “flat” regions and stop prematurely.

Mathematically, the flat regions in Fig. 1 (top) violate

P

{∣∣∣∣
dLq

dq

∣∣∣∣ > 0 | E

[
dLq

dq

]
< 0

}
= 1 (18)

for all q < N , where N is the iteration number at which the

optimization algorithm converges and LN < Lq �=N . The oper-

ators P {•} and E{⋆} represent probability and expectation,

respectively. In order to tackle this issue we slightly modify (17)

and introduce stochasticity in it as

L′
q =

√
(FPq)2 + (FNq)2 + (ψ ×MDq)2 + εq (19)

where L′
q is the value of stochastic cost and εq is a small ran-

dom number drawn from uniform or Gaussian distribution, in

Fig. 1. Threshold (λ) versus cost (top). Threshold (λ) versus stochastic cost

(bottom).

Fig. 2. Weight (ψ) versus MD plot. Increasing weights (ψ) decreases the

acceptable MD values. The unit of MD is time points = number of time points

or number of observations.

qth iteration. The effect of randomness/stochasticity has been

shown in Fig. 1 (bottom). It can be seen in Fig. 1 (bottom)

that (19) satisfies (18). Note that the condition in (18) is not

strict. So, there is still a possibility that the optimization algo-

rithm may get trapped in local minimum and stop prematurely,

without converging to an optimal value of λ. Therefore, the

minimization must be carried out several times (e.g., 10–20

times), each time with different initial value of λ, and the one

with the lowest value of the cost function after convergence

should be selected. Our experiments with different optimiza-

tion algorithms suggest that genetic algorithm (GA) is able to

optimize (17) successfully.

The weight ψ varies the importance of MD in the cost func-

tion, i.e., increasing ψ will cause minimization to occur at lower

values of MD and vice versa. This relationship can be seen in

Fig. 2 which shows ψ versus MD plot. Mathematically, it can

be written as

E

[
dMD

dψ

]
< 0. (20)

An alternative for the above threshold selection strategy

can be based on kappa-statistic (κ) [35], [42] and MD. Use

of κ-statistic in remote sensing to measure homogeneity is

somewhat controversial and there has been some criticism by

κ =
N × (TP ′ + TN ′)− {(TP ′ + FP ′)× (TP ′ + FN ′) + (TN ′ + FP ′)× (TN ′ + FN ′)}

N2 − {(TP ′ + FP ′)× (TP ′ + FN ′) + (TN ′ + FP ′)× (TN ′ + FN ′)}
(21)
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some authors on the accuracy assessment based on κ-statistic,

because its value depends strongly on the marginal distributions

[43]–[45]. However, it is still the most widely used statistic,

hence the usage here. It can be calculated as [(21), shown

at the bottom of the previous page] where TP ′, TN ′, FP ′,

and FN ′ are the true values (not percentages) of true posi-

tives, true negatives, FP, and FN, respectively, and N = TN ′ +
FN ′ + TP ′ + FP ′. The optimal threshold, corresponding to

acceptable values of MD or κ-coefficient, can be selected from

“κ-coefficient versus MD” plots. This can also be achieved by

minimizing a cost function based on κ and MD using GA, sub-

ject to desired constraints on MD and/or κ, which can be easily

programmed and integrated in cross-validation experiments.

We used this strategy in our cross-validation experiments (see

Section V-D). The advantage of κ-statistic-based threshold

selection strategy is that it incorporates all the performance

indices into a single coefficient and the threshold selection

becomes more convenient as it can be selected from a plot of

two variables. However, if there are some special constraints on

TP and TN (or FP and FN ) which need to be followed in a

certain application, then the former threshold selection strategy

is more convenient.

III. EXISTING METHODS

A. Original CUSUM With KDE (M2)

A supervised method, implementing CUSUM, was proposed

in [13] for land cover change detection in MODIS NDVI time-

series data. In this method, CUSUM statistics are derived from

raw MODIS NDVI time series. The individual density functions

required for calculating likelihood ratios are derived for every

time point in the year/cycle using KDE. The MODIS product

used in this study has the time resolution of 46 images/ year.

Therefore, using this method, estimation of total of 92 density

functions (46 density functions separately for both change and

no-change hypotheses) is required. Once the density functions

are estimated, the likelihood ratio (density ratio) of an obser-

vation at any time point in the cycle is calculated using the

trained density functions of change and no-change for that par-

ticular time of the cycle/year. The likelihood ratio is then used

to calculate the CUSUM statistic sequentially, which is then

compared with a tuned threshold to detect any change event.

Since this study uses MODIS NDVI data and the method is

based on CUSUM statistics with estimated individual densities,

comparison with this method will give us a good insight into

advantages of model fitting and using estimated/trained relative

density ratios rather than estimated/trained individual densities.

B. Near Real-Time Disturbance Detection (M3)

Another method that was published recently in [10] is the

“near real-time disturbance detection in MODIS data.” In this

method, MODIS NDVI time series is modeled using a function

with constant, ramp, sine, and cosine terms. First, the function

is fitted to the reference (no-change) period using nonlinear

least squares fitting and its unknown parameters are derived.

Then, using these parameters, the future observations are pre-

dicted using the model. The difference between the predicted

and observed values gives noise time series. The MOSUM

(MOving SUM) statistics [46], [47] are then derived from the

noise time series and compared with a threshold, tuned accord-

ing to functional central limit theorem [48], in order to detect

any change events. Since this method uses noise time series to

derive test statistics and also Gaussanity assumption which is

implicit in central limit theorem, comparison with it will give us

a good insight into benefits of using parameter time series and

also relative density ratio estimation over assuming individual

densities to be Gaussian.

C. Near Real-Time Detection of Beetle Infestation (M4)

One of the most recent studies that addresses near real-time

detection of land cover changes, specifically beetle infestations

in pine forests, using MODIS NDVI data was published in [14].

In this method, nonlinear least squares approach is used to fit

a model to the NDVI time series and derive its time-varying

parameters. Based on the fact that beetle infestation affects the

trend of the signal significantly, the trend component of the

model is used to derive the test statistics. It is assumed that the

underlying densities of the change and no-change parts of the

trend component are nearly Gaussian with difference in their

means. Based on this assumption, the log-likelihood ratio of

the value of the trend component, at any particular time point, is

calculated. This log-likelihood ratio is then compared to a tuned

threshold to declare a change or no-change event. The thresh-

old is tuned by finding a good tradeoff between the likelihood

ratios of change and no-change training sets.

IV. DATASETS

A. Simulated Data

One main problem that is often encountered in case of near

real-time change detection is that the ground-truth data with

accurate labels/time point of change events is hard to find [11].

Most often, partial information is known, e.g., changed and

unchanged pixels are known, but the exact time points at which

the changes occurred in the respective time series are unknown,

hence making the performance evaluation difficult and compro-

mised. Many studies have used and highlighted the importance

of simulated data, in which, changes are introduced at desired

time points [10]–[12], [14], [16], [49]. Such data can be help-

ful in evaluating performance, sensitivity, and robustness of the

method to different magnitudes of noise. We also generated a

simulated dataset following a similar procedure as used in [10],

[11], [12], [14], and [16].

First, the deterministic part or seasonal cycles were gener-

ated using asymmetric Gaussian function as proposed in [12]

and [14]

g(l) ≡ g(l; a, b, ρ1, ρ2) = a×

⎧
⎪⎨
⎪⎩

exp
[
− (l−b)2

ρ1

]
, if l > b

exp
[
− (b−l)2

ρ2

]
, if l < b

(22)

where ρ1 and ρ2 control the width of the left and right hand

sides, whereas a and b are the amplitude and the position of the
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maximum or minimum with respect to the time l, respectively.

We used a = 0.7, b = 23 + ⌊l/46⌋ × 46, and ρ1 = ρ2 = 100
in (22). The simulated time series were generated by

S(l) = g(l) + Φ(l) + ϑl (23)

where ϑl is a noise value at l, drawn from Gaussian distribu-

tion with zero mean. The Φ(l) in (23) is the simulated gradual

change introduced in the time series, and can be given by

Φ(l) =

{[
(1)

⌊l/̺⌋

− (0)
⌊l/̺⌋

]
× ς × (l − ̺), if l ≤ ξ

Φ(ξ), if l < ξ
(24)

where ς , ̺, and ξ are the slope, start point, and end point of the

introduced change, respectively. Note that simulating remotely

sensed data with vegetation phenology, inter-annual variabil-

ity, disturbance events, and signal contamination is challenging

[11]. Therefore, testing the method on a variety of datasets is

necessary.

B. Synthetic Data

Simulated dataset is far from real-world data and the factors

involved in it. To get as much close as possible to the real-world

data, yet knowing the exact time points of the change events,

another type of data, namely, synthetic dataset, has also been

used [13], [17], [18], [50], [51]. This data can be created from

sure change and no-change parts of the real-world time series.

First, all the time series are standardized according to the range

of the no-change part and then different no-change parts are

concatenated with different change parts randomly, creating a

large number of time series. So, all the time series have natu-

ral factors involved in them as well as the exact time points of

change events are also known.

C. Real-World Beetle Infestation Data

We used yearly survey maps and shape files maintained by

the U.S. and British Columbia forest services [52]–[54] to

identify the areas with beetle infestations in the pine forests

of Colorado, Utah (United States), and British Columbia

(Canada). The regions with no beetle infestation history till the

end of 2005 were selected. These regions were then marked

on the Google Earth and their geographical coordinates were

recorded. An online tool (MODLAND Tile Calculator) [55]

was then used to identify the corresponding MODIS tile using

the geographical coordinates. Once the MODIS tile was known,

one MODIS image of 500-m spatial resolution was fed into

a software, namely ENVI (version 5). Using the geographical

coordinates of the marked regions, their pixel coordinates, in

any MODIS image of 500-m spatial resolution, were found

with the help of ENVI. After recording all this information,

the MODIS product MCD43A4.005 was downloaded for the

desired tiles starting from January 2001 to December 2011,

and the time series of the selected pixels were extracted. All

the change and no-change examples from both the regions

were combined and two (change and no-change) datasets were

prepared.

The MODIS product MCD43A4.005 is available since 2000.

It provides 500-m 8-day composite reflectance data which are

bidirectional reflectance distribution function (BRDF)-adjusted

for Nadir reflectance, atmospherically corrected and cloud free.

The data acquired for the year 2000 had a lot of missing values;

hence, it was discarded and the time-series data were acquired

from January 2001 onward. Although we did not encounter any

missing values in our analysis, however, rare missing values can

be replaced with interpolated values.

V. RESULTS, COMPARISON, AND DISCUSSION

A. Results for Simulated Data

We generated 500 change and 500 no-change examples

according to the methodology used in [10]–[12], [14], and [16]

summarized in Section IV-A. The seasonal cycles were gen-

erated using asymmetric Gaussian function, the change was

introduced by adding a ramp of slope 0.0025 [ς = 0.0025 in

(24)] to the signals at known positions in order to replicate a

gradual change, and the noise introduced into the signal was

drawn randomly from the noise distribution with standard devi-

ation of 0.08. Randomly selected 50% samples of the dataset

was taken as the training set and the rest 50% was taken as

the test set. The purpose of this dataset was to analyze the per-

formance of the proposed framework (M1) on a dataset with

known change points and to compare it with the performances

of the existing methods. Moreover, it can also be used to ana-

lyze the robustness of the proposed method M1 against different

magnitudes (standard deviations) of noise.

All the four methods, M1–M4, were implemented keeping

the training and test sets exactly the same to ensure fair com-

parison. A wide range of threshold values were used for each

method to exploit its performance range and capabilities. The

results of all the methods, M1–M4, have been summarized in

Figs. 3 and 4 and Table I. Note that all the four methods have

different ranges of threshold values, but here we have scaled

all of them to a single range of 0–80, for the sake of simplic-

ity in comparison. The absolute values of the thresholds are not

important here because we only want to graphically present the

best possible performances by each of the methods considered

here. Fig. 3 (top) presents the “threshold versus κ-coefficient”

plots of all the methods. We note that all the methods can

achieve accuracies close to κ = 1. The value of κ-coefficient

increases with the increase in the threshold value, but as a con-

sequence, the mean detection delay also increases as shown

in Fig. 3 (bottom). Fig. 4 summarizes the plots of Fig. 3 and

gives a more obvious comparison by plotting MD against the

corresponding κ-coefficients, for each method considered here.

Fig. 4 basically shows different tradeoffs between kappa (accu-

racy) and MD for each method, which is analogous to the ROC

curve that plots tradeoffs between TP and FP when only accu-

racies (without MD) are considered. Focusing on the significant

region of this plot, i.e., after κ = 0.6, we observe that although

the difference between the plots is not very large, M1 and M4

perform slightly better than the rest of the two methods. This

fact is also obvious from the comparison shown in Table I for

the same accuracy of 99%.
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Fig. 3. Comparison between performances of proposed (M1), original CUSUM

(M2), near real-time disturbance detection (M3), and near real-time beetle

infestation detection (M4) methods, on simulated data. Threshold (λ) versus

κ-coefficient (top). Threshold (λ) versus MD (bottom). The unit of MD is time

points = number of time points or number of observations.

Fig. 4. Comparison of “kappa-coefficient versus MD” performances of pro-

posed (M1), original CUSUM (M2), near real-time disturbance detection (M3),

and near real-time beetle infestation detection (M4) methods on simulated

data. The unit of MD is time points = number of time points or number of

observations.

TABLE I

COMPARISON BETWEEN NEAR REAL-TIME PERFORMANCES OF OUR

PROPOSED METHOD (M1) AND THE EXISTING THREE METHODS, ON

SIMULATED DATA, AT ACCEPTABLE TRUE POSITIVES, TRUE NEGATIVES,

AND ACCURACY

TP, true positive; TN, true negative, Acc., overall accuracy; MD, mean detection

delay; and λ, threshold value. M1, proposed framework; M2, original CUSUM

method; M3, near real-time disturbance detection method (M3), and M4, near

real-time beetle infestation detection method. The units of TP, TN, Acc. are

“%” and that of MD is tp, number of time points or observations.

We note that the results achieved here were according to

our expectations because the simulated data lack the effects

of the complex natural phenomenon which are present in the

real-world NDVI data. Moreover, the noise in simulated data

is Gaussian that satisfies the Gaussanity assumptions in M2–

M4, and the points of actual changes in the training data are

known exactly, hence no mislabeling that can affect the training

adversely. Nevertheless, these results illustrate the correctness

Fig. 5. Robustness of the proposed method against different magnitudes of

noise in the simulated dataset. Noise standard deviation (Noise Std.) versus

overall accuracy (top). Noise standard deviation (Noise Std.) versus detection

delay (bottom). The unit of MD is time points = number of time points or

number of observations.

of the approaches in that their tendency is to detect the real

changes and avoid no-change events.

The performance of M1 was also checked on simulated

datasets with different magnitudes (standard deviations) of

noise. The results are summarized in Fig. 5. Fig. 5 (top) shows

that the accuracy drops very slightly with the increase in the

standard deviation of the signal noise, and remains above 90%

even at standard deviation as high as 0.15. Fig. 5 (bottom)

shows a very slight increase in the detection delay, from 42

at noise std. = 0 to 53 at noise std. = 0.15. These results

show the robustness of the proposed framework M1 to different

magnitudes of signal noise.

B. Results for Synthetic Data

We prepared 1000 change and 1000 no-change examples fol-

lowing the process explained in Section IV-B, and also used in

[13], [17], [18], [50], and [51]. A randomly selected set of 50%

of the samples was taken as training set and the rest 50% as

test set. The results have been summarized in Figs. 6 and 7

and Table II. Fig. 6 (top) shows that the value of κ increases

with the increase in the threshold, except for M4 that decreased

after reaching its peak. The increase in threshold also causes

increase in the detection delays, as shown in Fig. 6 (bottom),

because the test statistic has to attain bigger values in order to

raise the change alarm. Fig. 7 summarizes the plots of Fig. 6 by

plotting MD against the corresponding κ-coefficients, for each

method considered here. The plots in Fig. 7 are analogous to
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Fig. 6. Comparison between performances of proposed (M1), original CUSUM

(M2), near real-time disturbance detection (M3) and near real-time beetle

infestation detection (M4) methods, on synthetic data. Threshold (λ) versus

κ-coefficient (top). Threshold (λ) versus MD (bottom). The unit of MD is time

points = number of time points or number of observations.

Fig. 7. Comparison of “kappa-coefficient versus MD” performances of pro-

posed (M1), original CUSUM (M2), near real-time disturbance detection (M3)

and near real-time beetle infestation detection (M4) methods on synthetic

data. The unit of MD is time points = number of time points or number of

observations.

TABLE II

COMPARISON BETWEEN NEAR REAL-TIME PERFORMANCES OF OUR

PROPOSED METHOD (M1) AND THE EXISTING THREE METHODS, ON

SYNTHETIC DATA, AT ACCEPTABLE TRUE POSITIVES, TRUE NEGATIVES,

AND ACCURACY

ROC curves and give a more obvious comparison. Here, the dif-

ference between the performances is slightly more obvious than

in case of simulated data because the data values and noise are

real, only the changes introduced are synthetic, i.e., due to con-

catenation of known no-change and change parts. Considering

the significant part of the curves, i.e., the region after κ ≈ 0.6
on the horizontal axis, our proposed method M1 performs bet-

ter than the rest until the point around κ ≈ 0.90, where M1 and

M2 become similar in performance. Table II also highlights this

where detection delays are compared for all the four methods

against the same accuracy of 97%. The M1 and M2 have similar

results, better than M3 and M4. Furthermore, M4 performs bet-

ter than M3. The reader should not be confused by the M4 curve

hooking back in Fig. 7. This behavior is quite possible because

Fig. 8. Comparison between performances of proposed (M1), original CUSUM

(M2), near real-time disturbance detection (M3), and near real-time beetle

infestation detection (M4) methods, on real-world data. Threshold (λ) versus

κ-coefficient (top). Threshold (λ) versus MD (bottom). The unit of MD is time

points = number of time points or number of observations.

Fig. 9. Comparison of “kappa-coefficient versus MD” performances of pro-

posed (M1), original CUSUM (M2), near real-time disturbance detection (M3),

and near real-time beetle infestation detection (M4) methods on real-world

data. The unit of MD is time points = number of time points or number of

observations.

TABLE III

COMPARISON BETWEEN NEAR REAL-TIME PERFORMANCES OF OUR

PROPOSED METHOD (M1) AND THE EXISTING THREE METHODS, ON

NEAR REAL-TIME NDVI DATA, AT ACCEPTABLE TRUE POSITIVES,

TRUE NEGATIVES, AND ACCURACY

MD is not a function of the κ-coefficient. The κ-coefficient

is calculated from TP, TN, FP, and FN, which depend on the

threshold value. Two different thresholds can yield exactly the

same κ-coefficient with different values of MD. The hooked

curve shows exactly the same behavior, i.e., same κ-coefficients

with different values of MD.

The noise is far from Gaussian in this case, but still the

change points in the training data are known exactly, hence no

mislabeling. Therefore, M2 still trains very well, hence small

difference between the results of M1 and M2. The fact that

M2 performs better than M3 and M4 can be attributed to the

difference between the types of test statistics being used in

these methods. The M2 uses CUSUM statistics which is more
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TABLE IV

RESULTS OF 50% CROSS-VALIDATIONS (10 RUNS) OF M1 ON ALL THE THREE DATASETS. IN EVERY RUN RANDOMLY SELECTED 50%

OF THE DATA SAMPLES OF A PARTICULAR DATASET IS TAKEN AS TRAINING SET, AND THE REST AS TEST SET

TP, true positive; TN, true negative; Acc., overall accuracy; κ, kappa-coefficient, MD, mean detection delay; λ, threshold value; Sim. =

simulated dataset; Syn., synthetic dataset; R.W., real-world NDVI beetle infestation data. The units of TP, TN, and Acc. are “%”, and

that of MD is tp = number of time points or observations.

robust to nonGaussanity and detects small/gradual changes ear-

lier than the statistics based on simple likelihood ratios [36]

as used in M3 and M4. The M4 performing better than M3

confirms the findings of [14].

C. Results for Real-World MODIS NDVI (Beetle Infestation)

Data

The simulated and synthetic datasets provided important

insights, but these datasets do not include all the complexities

that are encountered in the real-world data, e.g., atmospheric

variations, light variations, and lack of information about the

exact time points of the changes. Therefore, analysis on the

real-world data is necessary. We tested all the methods on

355 change and 355 no-change examples of beetle infestation

data, collected as explained in Section IV-C. The results have

been summarized in Figs. 8 and 9 and Table III. As explained

before, all the four methods have different ranges of thresh-

old values, but we have scaled all of them to a single range

of 0–80, for the sake of simplicity in comparison. The abso-

lute values of the thresholds are not important here because

we only want to graphically present the best possible perfor-

mances by each of the methods considered here. Fig. 8 shows

similar trends for each method as in the case of synthetic data

since the two datasets are close in nature to each other. Fig. 8

(top) presents the “threshold versus κ-coefficient” plots of all

the methods. The κ values of M2, M3, and M4 drop after reach-

ing their peaks, whereas the κ value of M1 remains constant.

Fig. 8 (bottom) presents the “threshold versus MD” plots of all

the methods. The MD generally increases with the increase in

threshold value, for all the methods. Fig. 9 summarizes the plots

of Fig. 8 by plotting κ-coefficient against the corresponding

accuracies, for each method considered here. The plots in Fig. 9

are analogous to ROC curves and give a clearer comparison. It

can be seen in Fig. 9 that our proposed method M1 performs

better than the other three methods by a significant margin.

For the similar values of κ-coefficient, M1 incurs much lower

detection delay than the rest of the three methods. Furthermore,

M1 can still get close to κ = 1, unlike rest of the methods

which peaked at significantly lower κ values than M1. Table III

compares the performances of all the methods at acceptable

accuracies (95.3% for M1, 90%, 90%, and 91% for M2, M3,

and M4, respectively). It can be noticed that M1 incurs much

lower detection delay at a higher accuracy/kappa than rest of

the three methods.

The reason behind such a significant difference between

the performance of M1 and the rest of the methods can be

attributed to three facts: 1) the test statistics in M1 derived from

the parameter time series which has been shown to be better

than the statistics derived from the raw NDVI time series [14];

2) RSPRT statistics are used in M1, which are more robust

to nonGaussanity and detects small changes faster than the

simple statistics based on likelihood ratios [36]; and 3) the like-

lihood ratios used in deriving RSPRT statistics were estimated

directly using RULSIF algorithm [27], which performs better

than the likelihood ratios derived from individual density func-

tions which are based on Gaussanity assumption or estimated

individually using Gaussian kernels. Furthermore, it is very dif-

ficult to obtain the exact ground reference data for long time

series [56]. The forestry departments, which are monitoring

those forests, also confirmed that the survey maps were man-

ual and subjected to errors; hence, the real-world data did not

have exact information about the change points in each time

series. Therefore, we took t = 230 as common reference point

for all the methods, i.e., the last point for known no-change

part in every time series, from which MDs were calculated.

However, this does not mean that the changes were known to

have occurred at that point. Majority of the time series changed

at later unknown points, which implies that the training data had

mislabeling at some points after t = 230. This suggests that M1

is more robust to mislabeling in the training data as compared

to the other three methods.

D. Cross-Validation and Automatic Threshold Tuning Results

We performed cross-validation experiments of the proposed

method M1 on all the three datasets. The cross-validation con-

sisted of 10 runs, where in each run 50% of the data samples

selected randomly were used as training and the rest 50% as test

sets. The results have been summarized in Table IV. The table

consists of two vertical halves and three horizontal parts. The

left vertical half summarizes the mean of performance indices

for the training and test sets of all the datasets, whereas the

right vertical half summarizes the standard deviations of the 10

runs. Each of the three horizontal parts of the table summarizes

the performance indicators for one of the three datasets. The



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ANEES et al.: RELATIVE DENSITY RATIO-BASED FRAMEWORK FOR DETECTION OF LAND COVER CHANGES 11

value of ψ was selected, in the first run of the cross-validation

experiment on simulated data, against 98% accuracy and kept

fixed for rest of the experiments. The mean performance indices

of the training set and test set are very close to each other,

in case of all the three datasets. This suggests that the thresh-

olds selected from the training datasets are robust and perform

equally well on the unseen test data.

The threshold selected in each run of this cross-validation

experiment was selected automatically by our proposed thresh-

old tuning technique (based on κ-coefficient and MD) as

explained in Section II-B. Apart from tuning, another advantage

of this technique, especially in cross-validation experiment, is

that it can be incorporated in the code and a complete set

of cross-validation results can be generated in a single go,

without stopping and selecting the right threshold in each cross-

validation run. The table shows that the thresholds selected by

this technique on the training datasets perform nearly similar to

the test datasets. This shows the effectiveness of the proposed

threshold tuning technique. It is worth noting that the range

of the suitable threshold values may change from one dataset

to another, hence needs tuning on all the datasets separately.

However, the proposed threshold tuning technique avoids this

problem since the value of ψ selected for one dataset holds good

for rest of the datasets as well.

VI. CONCLUSION

In this paper, we proposed a supervised framework for near

real-time land cover change detection that uses EKF to fit a

triply modulated cosine function to a MODIS NDVI time series,

extracts its time varying parameters, and derives the RSPRT

test statistics from the trend parameter. Instead of using tradi-

tional likelihood ratios, we exploited the usefulness of relative

density ratios estimated directly using RULSIF algorithm as

proposed in [27], in deriving the RSPRT statistics. Our frame-

work slightly reduces the correlation in the parameter time

series, and unlike CUSUM formulation in [13] and [41], deals

with the no-change samples as identically distributed, which is

an important assumption of CUSUM. We tested the framework

on three different datasets, against different noise level, and also

performed cross-validation. Furthermore, we compared its per-

formance with three recently published near real-time change

detection methods in remote-sensing literature.

Our analysis of the proposed method on different datasets

considered here, and also its comparison with three published

methods helped us in finding the answers to the questions we

raised earlier in this manuscript. Our findings can be sum-

marized as follows: 1) the promising results of the proposed

method (M1) suggest that direct estimation of relative density

ratios, from the data, is a viable option for supervised classifi-

cation of remote-sensing time-series data; 2) the results of com-

parison between M1 and M2 [13] suggest that RSPRT/CUSUM

statistics, when derived from the parameter time series instead

of the raw data, achieve significant improvement in the perfor-

mance; and 3) utilizing the benefits of parameter time series

[14], [16], RSPRT statistics and relative density ratio esti-

mation simultaneously, enabled the framework to incur lower

detection delays, with higher accuracy than the rest of the

methods (M2–M4) which use traditional likelihood ratios with

individual densities either estimated using Gaussian kernels

[13] or assumed to be Gaussian in nature [10], [14]. The differ-

ence in the results was small in case of simulated and synthetic

datasets because some assumptions involved in the derivation of

M2–M4 were satisfied to some extent, e.g., Gaussanity assump-

tion, and there was no mislabeling. However, the difference

became more significant in case of the real-world beetle infes-

tation data when the Gaussanity assumption was violated and

there was considerable mislabeling as well in the training data.

This also suggests that the proposed framework is more robust

to mislabeling as compared to the other three methods.

We also proposed a simple heuristic technique for automatic

threshold tuning in near real-time change detection framework.

Unlike commonly considered two indices (FP and FN), this

technique considers three performance indices (FP, FN, and

MD), which are challenging to deal with simultaneously while

tuning the threshold. This technique proved useful in cross-

validation experiments and allowed us to generate the whole

set of results in a single execution, without having to select the

thresholds manually in each run. The threshold values presented

in Table IV were selected automatically by the framework using

this technique, which verifies that it can tune the thresholds

successfully.
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