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A RELATIVISTIC VERSION OF THE GAUSS-BONNET
FORMULA

GARRY HELZER

Introduction

The Gauss-Bonnet formula relates the sum of the exterior angles of a
geodesic polygon on a surface to the total Gaussian curvature which the polygon
encloses. Thus one obtains such statements as: the sum of the interior angles
of a geodesic triangle is π if and only if the total curvature enclosed by the
triangle is zero.

To develop a version of the formula which applies to surfaces with an in-
definite metric requires only a careful definition of a quantity to replace "angle"
and a check that the arguments of the definite case remain valid. This is done
in §§ 1 and 2.

In § 3 an example is given to indicate the kind of physical quantity which
the total Gaussian curvature might measure.

1. The flat case

In this section the "pseudo-angle" or "proper velocity" between two vectors
in a plane with indefinite metric is defined and some elementary properties
listed.

Let M2 denote the space of pairs of real numbers with inner product

( 1 ) <Sflu a2), (b19 b2)> = -aλa2 + bλb2 .

Take the positive orientation of M 2 to be that given by the vector space basis
{^ = (1,0),*, = (0,1)}.

Let a: 1 —> M 2 be a continuously differentiate curve parametrized with
respect to proper time, i.e.,

( 2 ) <α / (ί),α / ( j)>= - 1 , 1 , 0 .

The curve a is called timelike, spacelike or null respectively.
Next define a moving frame {T(s), N(s)} on a as follows. Let {u19 u2} be an

orthonormal frame at a(s), and set
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TO) = a'(s) = xλuλ + x2u2 ,

[x2ux + xλu2 if {u19 u2} has positive orientation ,
( 3 ) N(s) = I

{ — (x2uγ + xλu2) if {u19 u2) has negative orientation .

The definition of N is independent of the choice of {u19 u2) since N is simply

T reflected in one piece of the light cone.

Lastly define a real valued function φ with domain / by

where T(s) = ae1 + be2. Since \a + b\ \a — b\ = 1 or 0, the two functions on

the right hand side of (4) are equal where they are both defined.

Theorem 1. There is a unique junction g defined on I for which

T(s) = g(s)N(s) , N'(s) = g(s)T(s) .

In fact g = φ'(s).

Proof. Since a is parameterized with respect to proper time, using the
logarithmic forms of the inverse hyperbolic functions one sees that T may be
written in one of the forms:

± (eλ cosh φ + e2 sinh φ) , ± {ex sinh φ + e2 cosh φ) , ± a(eλ ± e2) .

Direct calculation now gives the theorem, q.e.d.
The Euclidean version of Theorem 1 is the starting point of the theory of

plane curves. There s is the arc length and φ is the angle which T makes with
the x-axis. Here φ is the "pseudo-angle" which T makes with e19 i.e., with the
time axis. The functions T, N, g are invariants in the sense that their definition
does not depend on the choice of basis {eλ,e2}. On the other hand if one
changes, the basis φ will change by an additive constant and its sign depends
on the orientation of the basis. As in the Euclidean theory, it may be shown
that g determines a up to a Lorentz transformation (translations included).

Suppose a particle is constrained to move in one spatial dimension, say the
e2 axis where {eί, e2,e3, e4} is an orthonormal basis of the Minkowski space of
special relativity (c = 1). Then by suppressing the irrelevant directions e3, e4

we may consider the space time trace of the particle to be the curve a above.
In this case g(s) is the acceleration at time s as measured by an observer at
rest with respect to the particle and since φf — g, one might call φ a "proper
velocity."

For an observer at rest with respect to the frame {e19 e2] the expression

a(f) = te1 + x(t)e2
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describes the motion of the particle. Taking {e19e2} oriented so that T =
eλ cosh φ + e2 sinh φ we see that t'(s) = cosh φ and hence the speed of the
particle measured by this observer is

dx ds dx . u ,
v = —- = — — = tanh φ ,

dt dt ds
and so φ = tanh"1 v = v + ±v3 + . Thus for v < 1, φ is indistinguishable
from v. The sum formula for the hyperbolic tangent shows that composing
velocities corresponds to adding φ's.

For a particle moving with the speed of light, φ is the logarithm of twice the
energy ( = eλ component of T). This reduces to

( 5 ) φ — log v + const ,

where v is the frequency and hence g = φ' = v'/v. If a is spacelike, φ gives
the relative velocity of the orthonormal frame {N, T} with respect to {e19 e2}.

To define an "angle" between any two unit or null vectors proceed as fol-
lows. If 0 = {u19 u2) is an orthonormal basis, and u = aux + bu2 is a unit or
null vector, then define φΘ(u) by (4). If Gf — {u[, u'2}, it is not difficult to verify
the formulas

φe,(u) = φΘ(u) + φAui) if ^ and tf^ similarly oriented ,
( 6 )

— φe,(u) = ^(w) — ^.(Wi) if (P and ^ r oppositely oriented .

If u, v are unit or null vectors, and Θ is an orthonormal set, define φo(u, v)
= Φo(u) — φΘ(v). It follows from (6) that φΘ(u, v) depends only on the orien-
tation of G. Thus define φ(u, v) = φΘ(u, v) where Θ is any positively oriented
orthonormal basis of M 2 . If u19 , un are unit or null vectors we have the
following formulas

( 7 ) φ(ju19u2) = —φ{u2,u^ ,

( 8 ) φ(μl9 u2) + φ(u2, u3) = φ(μl9 u3) ,

( 9 ) φ(u19 u2) + + φ(un_ί9 un) + φ(μn9 uλ) = 0 .

Formula (9) is the simplest case of the Gauss-Bonnet theorem. The corre-

sponding statement in the Euclidean plane is that the exterior angles of a

polygon sum to 2π.

2. General case

Throughout this section M will denote a Minkowski surface, i.e., an ab-
stract surface with each tangent plane a Minkowski plane. Attention will be
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restricted to a region of M oriented by a frame field {E19E2}. The following
notation will be used. A general reference for the Euclidean case is [2, Chap-
ter 7].

The dual 1-forms θu θ2 are defined by θi(Ej) = (E^E^. The connection
forms ωiS are defined by the equations

dθx = ωn A θ2 , d#2 = o)2\ A ^i , ω12 = ω2i ,

where d denotes the exterior derivative, and Λ the wedge or exterior product.
The "area form" is " d M " = θλ A θ2 this form depends only on the orienta-
tion of {E19E2}. The Gaussian curvature K is defined by the formula

dωn = -Kθλ A θ2 .

The covariant derivative in the direction of the tangent vector v is denoted
by Vυ. Recall that its action on a vector field Y = yλEλ + y2E2 is given by

(10) VVY = (v[yλ] + y2ω2l(v))E1 + (v[y2] + yxωl2{v))E2 ,

where v[f] denotes the directional derivative of the function / in the direction
v.

Let a: I —» M be a continuously differentiate curve parameterized with
respect to proper time. Let T(s) — a!(s). Then T is a unit or null vector field
along a. If T{s) = a(s)Eι(a(s)) + b(s)E2(a(s)), set N(s) = bE2 + aEγ along a,
and define g(s) by

Va,T = gN .

At each point of a(s) define φ(s) by

Using (10) we immediately generalize Theorem 1 to
Theorem 2. Let a: I —> M be a diβerentίable curve parameterized with

respect to proper time and having image contained in a region oriented by the
frame field {E19E2}. Then

g(s) = dφ/ds + ωl2(a\s)) .

Thus the acceleration measured by an observer riding with a breaks into two
parts. The term φ\s) is due to motion relative to the frame field {E19 E2}, and
the term ωl2{a') is due to the acceleration in the frame field itself. Notice that
a is a geodesic of M if and only if g = 0. If M is a submanifold of a higher
dimensional space, then g gives that component of acceleration in the larger
space which is tangent to M. The corresponding Euclidean concept is that of
geodesic curvature.
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Theorem 3 {Gauss-Bonnet formula). Let R be a region in the plane, and
X: R-^M a restriction of a coordinate patch mapping. Let X[R] lie in a
region oriented by the frame field {E19 E2}, and the boundary of X[R] be given
by dX = Σi aί where at\ [at, bt] —> M is a continuously differentiate curve
parameterized with respect to proper time. Assume auι(aί+ί) = a^b^ for
i < n - l , and aM) = an(bn). Set φίΛ+ι = φ(a'i+ι{aί+λ), «{(&*)) for i < n - l ,
and φnΛ = φ{a[{aλ),a'n{bn)). Then

ί ί KdM + f g + φ 1 2 + ... + φ + φ = 0 .
JJx J dx

Proof. By Stokes theorem

dω12 = ωl2 .
X J dX

Since dω12 = — Kθx A θ2 — —KdM it is sufficient to evaluate

ω12 = Σι ω i2
J dX J at

To evaluate a typical term of this integral, apply Theorem 2 to get

Γ Cbi Cbί Cbί dώ
ΰ>i2 = ωl2(ai(s)ds = g(s)ds — -j-^

= ί 8 + φ(at) - φΦi) .
J ai

Since by definition we have φi>i+ί = φ(cιί+ι) — φibi) for i < n — 1 and φnΛ =
φ(aλ) — φ(bn), summing the last formula gives the desired result.

Remark. In the notation of § 1, φe(u) = φX—u) for any unit or null vector
u. This means that the direction in which each boundary curve is traced affects
only the integral of g in Theorem 3. If the boundary curves are geodesies of
M, then ^ Ξ O and this integral drops out.

3. Example-a Doppler formula

Suppose that a photon is emitted at a point A in the space-time of general
relativity and observed at a point B. Let ax be the space-time trace of the
photon from A to B, which is assumed to be a geodesic. Let a2 be the space-
time geodesic which the source would follow if unaccelerated. Let β be the
space-time trace of the observer. Let α3 be a spacelike geodesic which

i) cuts β orthogonally at B and ii) intersects a2 at some point C.
The curve a3 will exist if the region under consideration lies in a sufficiently

small geodesic neighborhood of A. It is the intersection of two geodesic sub-
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manifolds, the first of which is the Euclidean 3-manifold of all geodesies
through B orthogonal to β, i.e., that portion of space-time which the observer
calls space at the instant when he observes the photon. The second submani-
fold is Minkowski surface of all geodesies emanating from A and tangent to
the plane of tangent vectors spanned by a[ and a2 at A. Let Δ denote the sec-
tion of this latter manifold bounded by the curves at. Then Theorem 3 gives
the formula

(11) J £ KdM + φί2 + φ2Z + φn = 0 .

By (7), φ12 = —02i and so φl2 = — (lnve + a) by the remarks following
Theorem 1 where ve is the frequency of the emitted photon. By (8), we have

φ3l = φ(a'B, a[) = φ(ώ, β') + φ(β\ a[) = φ(β\ a') = In va + a ,

where va is the frequency of the photon observed at B. (Since a3 is orthogonal
to β one finds φ(βf, oQ = In 1 = 0.)

The pair β\ a'z is a frame at B. Parallelly translate this frame along az to C.
Since a3 is a geodesic, the resulting frame is of the form {u, a'z} and it is the
frame at C which is "at rest" with respect to the observer at the event B. Thus
by (7) and (8)

2̂3 = Φ(a'2,a0 = —φ(u,a2) + φ(u,a'3) = —tanh" 1 v = — In 1 ~ ^ i ,
2 11 + VJ

where v is the velocity of the unaccelerated source with respect to the ob-
server at the moment when the photon is observed.

Substituting these values for the φt into (11) gives

Vo =

In the case where Δ is flat (K = 0), this reduces to the usual formula from
special relativity.
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