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Abstract In this paper, we propose a simple but efficient heuristic that combines con-

struction and improvement heuristic ideas to solve multi-level lot-sizing problems.

A relax-and-fix heuristic is firstly used to build an initial solution, and this is further

improved by applying a fix-and-optimize heuristic. We also introduce a novel way to

define the mixed-integer subproblems solved by both heuristics. The efficiency of the

approach is evaluated solving two different classes of multi-level lot-sizing problems:

the multi-level capacitated lot-sizing problem with backlogging and the two-stage glass

container production scheduling problem (TGCPSP). We present extensive computa-

tional results including four test sets of the Multi-item Lot-Sizing with Backlogging

library, and real-world test problems defined for the TGCPSP, where we benchmark

against state-of-the-art methods from the recent literature. The computational results
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show that our combined heuristic approach is very efficient and competitive, outper-

forming benchmark methods for most of the test problems.

Keywords Lot-sizing · Heuristics · Relax-and-fix · Fix-and-optimize · Backlogging

Mathematics Subject Classification 90C11

1 Introduction

Manufacturing systems have been analytically studied for more than a century to

achieve better efficiencies and outputs, since manufacturing was a key element, if not

“the” key element, of the economic advancement of developed countries. 2013 marks

the centenary of the renowned “economic order quantity” formula, which was the

first attempt to optimize production quantities under very special conditions. Since

then, numerous operations researchers in academia and practice have built many more

realistic models and proposed various sophisticated solution methods to tackle lot-

sizing/production planning problems evident in practice, where decisions such as

how much to produce or stock are constrained by various natural limitations such

as capacities and setup times.

We investigate two classes of multi-level lot-sizing problems: the multi-level

capacitated lot-sizing problem (MLCLSP) with backlogging, and the two-stage glass

container production scheduling problem (TGCPSP). The first set of problems,

MLCLSP with backlogging, is particularly challenging from a computational point

of view, which is also apparent from a number of new lot-sizing problems included in

MIPLIB (2010). Moreover, the theoretical question of the full description of the con-

vex hull of the single-item problem with backlogging has remained open for decades

until the recent study of Küçükyavuz and Pochet (2009), which indicates the sophisti-

cation involved in these problems. Finally, in a practical problem setting, backlogging

is never prohibited as all manufacturers will sooner or later fall short of satisfying their

customer demands and backlog, and therefore the problem with backlogging presents

a more realistic case than the one without. The second set of problems, TGCPSP,

represents a real-world short-term production planning and scheduling problem with

a first mixed-integer programming (MIP) formulation proposed in Almada-Lobo et al.

(2010). The authors in Toledo et al. (2013) improved the previous MIP formulation for

the TGCPSP, proposed a hybrid genetic algorithm to solve it and defined sets of com-

plex test problems. TGCPSP does not allow backlogging like MLCLSP, and takes some

problem specific characteristics such as production loss costs and sequence-dependent

setup times and costs.

The lot-sizing literature can most appropriately be divided into two main areas due

to the nature of solution methods used: (i) Exact methods, and (ii) Heuristic methods.

Although even the capacitated single-item problem is NP-hard (see, e.g., Florian

et al. 1980) and expectations for optimal solutions diminish as problems become more

realistic, exact methods can be very helpful to understand the underlying difficulties

in solving these problems. Such methods include valid inequalities (see, e.g., Barany

et al. 1984; Miller et al. 2003), extended reformulations (see, e.g., Krarup and Bilde
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1997; Eppen and Martin 1987; Rardin and Wolsey 1993), Lagrangian relaxation (see,

e.g., Billington et al. 1986) and Dantzig-Wolfe decomposition (see, e.g., Degraeve and

Jans 2007). Most of these studies are mainly focused on simplistic (often single-item)

problems, however, many of the developed methods could be extended to realistic

problem settings as well. The recent study of Akartunalı and Miller (2012) provides

more insight on the complexities apparent in realistic lot-sizing problems, and an

extensive discussion of mathematical programming techniques used in the area can

be found in Pochet and Wolsey (2006).

Although exact methods are powerful since they provide an exposure of complicat-

ing structures and a guarantee on solution quality, they exhibit an important drawback

on the computational end: even with the modern fast computers and the state-of-

the-art optimization packages, solving industrial-size lot-sizing problems is a very

complicated (and often an impossible) task. To compensate for the computational

shortcomings of exact methods and to provide real time solutions to industrial-size

problems, heuristic methods have been extensively used in this area, from very simple

frameworks to very sophisticated ones, see, e.g., Van Vyve and Pochet (2004), Wu

et al. (2011), Kébé et al. (2012), Absi et al. (2013), Toledo et al. (2013), Baki et al.

(2014). We also refer the interested reader to Ball (2011) for a recent literature review

on general mathematical programming heuristics. Finally, we note that a number of

researchers have proposed frameworks using heuristics or meta-heuristics combined

with mathematical programming techniques, since the major drawback of heuristic

methods is no guarantee of solution quality. Recent results include the ant colony algo-

rithm coupled with reduced MIP solutions for the MLCLSP with overtime proposed

by Almeder (2010), the MIP-based and hybrid simulated annealing heuristics for the

stochastic lot-sizing problem proposed by Ramezanian and Saidi-Mehrabad (2013),

and finally the multi-population genetic algorithm with LP model resolution for the

MLCLSP with backlogging proposed by Toledo et al. (2013).

The method described in this paper combines two heuristics based on mathemati-

cal programming. Relax-and-fix (RF), a construction heuristic that solves relaxed MIP

subproblems sequentially and fixes binary variables throughout the process for speed-

ing it, has been used by a number of researchers for lot-sizing problems: Belvaux and

Wolsey (2000) included a basic RF heuristic in their sophisticated lot-sizing solver,

whereas Stadtler (2003) proposed a time-oriented RF for MLCLSP with impressive

results. More recent applications of RF in the lot-sizing literature include Federgruen

et al. (2007) and Akartunalı and Miller (2009), where the former iteratively increase

the size of the problem for efficient solutions whereas the latter make use of (ℓ, S)

inequalities for stronger formulations, outperforming solutions found by Stadtler’s

heuristic Stadtler (2003). Fix-and-optimize (FO), an improvement heuristic based on

MIP, is firstly described in Helber and Sahling (2010) to solve the MLCLSP with lead

times and overtime costs. The authors propose product, resource and process-oriented

decompositions for the problem, which define subsets of binary variables to be opti-

mized. Seeanner et al. (2013) extend these decomposition ideas to the multi-level

lot sizing and scheduling problem, where the neighborhood decomposition search is

combined with FO.

We propose a simple and easy-to-implement solution method that also proves

to be computationally effective. Contrary to the recent works of Almeder (2010),
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Ramezanian and Saidi-Mehrabad (2013), Toledo et al. (2013) combining complex

meta-heuristics with MIP heuristics, our method combines two very simple MIP-based

heuristics: RF with fix-and-optimize (“RFFO”, as we will refer to in the remainder of

the paper). The simplicity is one of the key strengths of the proposed method, allowing

any interested researcher or practitioner easily implement it if needed. Moreover, we

propose novel ways of building subproblems from the classical rolling time horizon

approach, which are important components of RF and FO heuristics, and investigate

their effectiveness in practice by extensive computational tests, including over some

MIPLIB 2010 instances (MIPLIB 2010).

The method shows impressive computational performance for the majority of

difficult test problems of the MCLSP with backlogging, outperforming benchmark

methods. Moreover, while many studies such as Helber and Sahling (2010) and Seean-

ner et al. (2013) explore very specific problem structures for their methodology design,

our proposed RFFO framework is designed as generic as possible to avoid taking

advantage of a specific problem structure and hence can be extended to other prob-

lems if necessary, and in order to support this argument, we have also applied it to

TGCPSP, where RFFO was able to find competitive results when compared with the

default IBM Ilog Cplex solver and the hybrid genetic algorithm of Toledo et al. (2013).

To summarize, the proposed RFFO method has two main contributions: (i) It

is a simple framework combining construction and improvement heuristics, which

also returns competitive results in extensive computational tests when compared with

state-of-the-art benchmark methods from the recent literature. (ii) The rolling hori-

zon window size is oriented not only by column (i.e., period in lot-sizing, which is

the common practice) but also by rows (i.e., families of products) as well as by a

combination of columns and rows. Therefore, the method allows rolling windows

along with different combinations of columns and rows in the two dimensional matrix

representation.

The paper is organized as follows. In the next section, we give a brief mathematical

description of the problems under investigation. In Sect. 3, we define in detail our

proposed framework, including a discussion of novel ways of building subproblems.

Then we present numerical results from extensive computational tests in Sect. 4 with

comparisons to two benchmarks methods from recent literature, showing the effective-

ness of the proposed methodology. Finally, we conclude with some future directions

in Sect. 5.

2 Multi-level lot sizing problems

As we discussed earlier, the RFFO approach developed in this paper is not dependent

on the problem structure so that it can be adapted to other MIP problems. In this

section, we present the MIP formulations of the two classes of multi-level lot-sizing

problems. First, we describe the MIP formulation of Toledo et al. (2013), based on the

formulation of Akartunalı and Miller (2009), for the MLCLSP with backlogging, and

then we describe the MIP formulation for the TGCPSP as presented in Toledo et al.

(2013).
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2.1 MLCLSP with backlogging

In this paper, we consider MLCLSP with families of products, i.e., multiple products

are grouped into families based on their similarities. Since backlogging is a natural

practice in manufacturing environments due to capacity limitations, it is allowed for

products with external demands.

Parameters

J Total number of products.

T Total number of periods.

M Total number of machines/resources.

F Total number of families.

amj Time necessary to produce one unit of product j on machine m.

B j t Upper bound for lot-size of product j in period t .

bc j Backlogging cost of product j .

Cmt Total capacity of machine m in period t .

D j t Primary demand (external) of product j in period t .

h j Holding cost per unit of product j in one period.

p j f 1 if product j belongs to family f .

r jk Quantity of product j necessary to produce one unit of product k.

stm f Setup time for product family f on machine m.

δ( j) Set of the immediate successors of product j .

Δ Set of the end products.

Variables

x j t Lot-size of product j in period t .

w f t Setup variable of family f in period t .

i j t Stock holding quantity of product j in period t .

b j t Backlogging quantity of product j in period t .

Min

J
∑

j=1

T
∑

t=1

(

bc j · b j t + h j · i j t

)

(2.1)

Subject to:

i j t−1 + b j t + x j t = i j t + b j t−1 + D j t ∀ j, t | j ∈ Δ (2.2)

i j t−1 + x j t = i j t +
∑

k∈δ( j)

r jk · xkt ∀ j, t | j /∈ Δ (2.3)

J
∑

j=1

amj · x j t +

F
∑

f =1

stm f · w f t ≤ Cmt ∀m, t (2.4)

x j t ≤ w f t · B j t ∀ j, f, t |p j f = 1 (2.5)

x j t , i j t , b j t ≥ 0 w f t ∈ {0, 1} (2.6)

The inventory and backlogging costs are minimized in the objective function (2.1).

We note that we do not include setup costs for the sake of simplicity of the model (and
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consider setup times only instead), but the proposed model can be easily modified

to include them. The flow balance constraints (2.2) and (2.3) ensure the satisfaction

of external and internal demands, respectively, where the external demand for end

products can also be satisfied through backlogging. Here, we note that we use these

constraints for the sake of simplicity as well as for consistency with the formulations of

Akartunalı and Miller (2009), Toledo et al. (2013); however, external demands as well

as backlogging can also be included in higher levels of the echelon. The big bucket

machine capacities incorporating both variable processing times and fixed setup times

in each period are defined by constraints (2.4), where we assume that each product

belongs to only one product family and there are product family setup times only

(rather than for each product). Constraint (2.5) ensures that a product j cannot be

produced (i.e., x j t = 0) if there is no setup for its product family (i.e., w f t = 0). The

upper bound for the lot-size of product j in period t is represented by parameter B j t ,

which can be defined using the following definitions of (2.7) and (2.8) (in a similar

fashion to Akartunalı and Miller 2009).

B j t = min

(

d j (1..T ),
Cmt − stm f

amj

)

(2.7)

d j (t..T ) =

T
∑

u=t

D ju +
∑

k∈δ( j)

r jk · dk(t..T ) (2.8)

Note that the Eq. (2.7) bounds the lot-size either by the total demand over the hori-

zon (the first term on the right of the equation) or by the maximum capacity available

for production (setup time to be subtracted from the total capacity to identify the pro-

duction time). Finally, the variable domains are established by constraints (2.6). We

note that this formulation can be extended to incorporate other elements of a produc-

tion system, such as overtime, to make it more realistic. However, we leave it as is

for the sake of easier understanding. Finally, we note that due to backlogging allowed

to the final period of the horizon, this problem is always feasible. However, as we

have observed from our own computational experiences as well as from our discus-

sions with some other researchers, this is a characteristic that makes these problems

computationally challenging when attempting to optimize.

2.2 Two-stage glass container production scheduling problem

This problem originates from the glass container manufacturing, where a furnace melts

the raw material in the first stage of the production process, and molding machines are

used in the second stage to finalize the containers. In a typical glass container manufac-

turer, the daily capacity of the furnace can vary from 100 to 650 ton/day. We refer the

interested reader to Toledo et al. (2013) for further technical details of the production

process. In short, the TGCPSP is a two-level lot sizing and scheduling problem with

parallel machines and sequence-dependent setup costs and times. Different than the

problem discussed in the previous section, it does not allow backlogging.
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Parameters

C : Melting capacity of the furnace in a period (in tonnes).

nik : Maximum number of mold cavities of machine k for product i .

nik : Minimum number of mold cavities of machine k for product i .

pik : Amount of product i produced per mold cavity of machine k in a period

(in tonnes).

hi : Holding cost for carrying one tonne of product i into the next period.

ci jk : Cost to set up machine k from product i to product j , i �= j .

si jk : Capacity necessary to set up machine k from product i to product j , i �= j

(in tonnes).

di t : Demand for product i at the end of period t (in tonnes).

ω : Penalty cost per tonne of furnace under-utilization.

Decision variables

Yi tk : 1 if product i is assigned to machine k in period t ; 0 otherwise.

Qt : 1 if the furnace is active in period t; 0 otherwise.

Zi j tk : 1 if there is a setup changeover from product i in period t − 1 to product j

in period t on machine k; 0 otherwise.

Ni tk : Number of active mold cavities on machine k dedicated to product i in

period t .

Ii t : Inventory of product i at the end of period t (in tonnes).

I d t : Idle capacity of the furnace in period t (in tonnes).

Min
∑

i, j,t,k

ci jk · Zi j tk + ω ·
∑

t

I d t +
∑

i,t

hi · Ii t (2.9)

Subject to:

Ii t − Ii,t−1 + di t =
∑

k

pik · Ni tk −
∑

k, j

s j ik · Z j i tk ∀(i, t) (2.10)

∑

i,k

pik · Ni tk + I d t = C · Qt ∀(t) (2.11)

Ni tk ≤ nik · Yi tk ∀(i, t, k) (2.12)

Ni tk ≥ nik · Yi tk ∀(i, t, k) (2.13)
∑

i

Yi tk ≤ 1 ∀(t, k) (2.14)

Qt =
∑

i

Yi tk ∀(t, k) (2.15)

∑

i

Yi tk ≥
∑

i

Yi(t+1)k ∀(t, k)|t < T (2.16)

Y j tk + Yi(t−1)k ≤ Zi j tk + 1 ∀(i, j, t, k) (2.17)
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∑

i, j

Zi j tk ≤ Qt ∀(t, k) (2.18)

pik · Ni tk −
∑

j

s j ik · Z j i tk ≥ 0 ∀(i, t, k) (2.19)

(

Ii t , I d t , Qt

)

≥ 0, Ni tk ∈ Z+,
(

Yi tk, Zi j tk

)

∈ {0, 1} (2.20)

The problem aims to minimize the total cost over the planning horizon that involves

inventory and setup costs as well as penalties for the idle capacities of furnaces, as

noted in (2.9). The glass container demands have to be fulfilled without backlogging

as ensured by (2.10), where the “setup time” (i.e., the number of tonnes of products

wasted from the capacity) is also taken account of. The constraint (2.11) enforces

the capacity limit of the furnace, and also ensures that the idle time is captured if

the furnace is used. The maximum and minimum number of active mold sections in

a given machine are enforced by (2.12) and (2.13) respectively, when a product is

produced. Each machine can produce at most one product in a time period (2.14),

and the two-stage process is synchronized by (2.15), which would activate the furnace

if a product is assigned to a machine. If the furnace is deactivated in period t , then

all associated machines will also be idle in the remainder of the horizon as enforced

by (2.16). Constraints (2.17) and (2.18) capture product changeovers and ensure that

they can happen only when the furnace is active. Constraint (2.19) enforces that the

“setup time” used is not greater than the quantity produced. Finally, (2.20) defines the

variable domains.

3 Proposed heuristic: relax-and-fix with fix-and-optimize

Here we describe the two heuristics and how they are combined to solve the multi-

level lot-sizing problems. For both heuristics, let’s consider a matrix F × T where

each entry is a binary variable w f t . The RF is a construction heuristic which defines

an initial solution by solving several small mixed-integer problems (MIP). This is

done by fixing or relaxing most of binary variables, enforcing only few of them to be

integer and optimizing them. We call this small set of integer variables as window

in the remainder of the paper. The pseudo-code of the RF approach proposed in this

paper is summarized in Fig. 1.

The inputs of the RF are the set of binary variables (sol.w), the number of binary

variables (windowSize) to be chosen, the selection criteria to choose variables

(windowT ype), the overlap rate of binary variables to be re-optimized (overlap)

and the execution time limit (timeLimit). Initially, all binary variables in the RF

solution (sol.w) are relaxed which means they can take any value between 0.0 and

1.0. A window is defined as a set that includes a fixed amount (windowSize) of

variables (line 2, Fig. 1). The variables inside the window are enforced to be integer

in the set wM I P (lines 4 and 10, Fig. 1), while the others are kept relaxed in wL P

(lines 5 and 11, Fig. 1). The resulting MIP is then solved (line 7, Fig. 1). Next, a new

set of variables (window) is defined, a subset of integer variables is fixed (w f i x ), and

another sets of integer and relaxed variables are optimized (lines 8 to 11, Fig. 1).
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Fig. 1 Pseudocode of relax-and-fix

The window type (windowT ype) defines how variables are selected to compound

the window, as well as how it is moved after each iteration. We propose three different

window types: row-wise, in which the window moves along rows; column-wise, in

which the window moves along columns; and value-wise, in which the window selects

the variables with relaxed values closest to 0.5. The window moves step variables at

each iteration, with step = |overlap∗windowSize| (line 8, Fig. 1), where overlap ∈

[0, 1] is the overlap rate defined by the user. Fixing happens to all variables that leave

the window in the next iteration (line 9, Fig. 1), and the same number of relaxed

variables are enforced to be integer. The algorithm continues processing in this fashion

until all variables are fixed. We note that the RF process would benefit if the problem

considered, such as the MLCLSP with backlogging, has always a feasible solution;

this is a property commonly exploited by other researchers using RF as well [see, e.g.,

Stadtler (2003) and Akartunalı and Miller (2009)].

Figure 2 shows examples of the three window types as well as how they proceed for

windowSize = 5 and step = 2. Figure 2a illustrates the row-wise window, where

variables from wF1,T1 to wF1,T5
are first include in window to be optimized as binary

variables. After finding the solution of this MIP, variables wF1,T1 and wF2,T2 are fixed

and leave the windows set, while variables wF1,T6 and wF2,T1 are enforced to be binary

variables. This procedure allows re-optimizing variables wF3,T1 , wF4,T1 and wF5,T1 in

this step. A similar idea is applied in the column-wise window as illustrated by Fig. 2b.

When using the value-wise window, the model is first solved with all variables

relaxed so that the relaxed solution is obtained for evaluation. This is shown by the

first matrix on the left side of Fig. 2c, where wF1,T2 , wF4,T2 , wF3,T3 , wF2,T4 and wF3,T4

variables are the closest to 0.5. Thus, they are selected to be optimized as binary

variables in window set. When two or more variables have the same value, those

within first columns are preferred. If the variable with same value are in the same

column, then first rows will be picked first. In the two-dimensional matrix F × T

defined for lot-sizing problems, this means to choose products in the earlier periods

(first columns) and end products (first rows). These criteria are also used to decide how

to fix variables, after the MIP problem is solved. For example, variables wF1,T2 and

wF4,T2 are chosen to be fixed (middle matrix, Fig. 2c), once they are in the first column
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(a)

(b)

(c)

Fig. 2 Relax-and-fix different types of windows: a row-wise; b column-wise; c value-wise. For each

window, three iterations are shown in sequence. Window size = 5, overlap rate = 60 %

among variables in the window set. In this step, variables wF3,T1 and wF1,T5
are now

included in window, and wF3,T3 , wF2,T4 and wF3,T4 remain to be re-optimized.

In our framework, the solution built by the RF will be used as the solution to initiate

the FO. The steps executed by FO are very similar to RF, where several MIP problems

need to be solved. Figure 3 shows the FO pseudo-code. A rolling window, covering

windowSize number of variables in F × T matrix (sol.w), is also defined for FO

and these variables are adjusted as binary to be optimized by a solver. However all

variables outside the window are kept fixed in the FO heuristic. At each iteration,

after solving the MIP subproblem, the window is moved step variables forward with

step = |overlap ∗ windowSize| (line 9, Fig. 3).

FO improves the binary values following row and column directions and hence two

window types are defined. The first window type combines the row-wise, which covers

the matrix along the rows (Fig. 4a) and column-wise, which does the same along the

columns (Fig. 4b) following the same idea defined for RF. However, FO applies both

windows types during its execution adjusting windowT ype in lines 2 and 14 (Fig. 3).
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Fig. 3 Pseudocode of fix-and-optimize

(a)

(b)

Fig. 4 Fix-and-optimize: a row-wise and b column-wise. Three iterations of each direction are shown with

window size = 5 and overlap rate = 60 %

In this case, windowT ype = 0 means to apply row-wise and windowT ype = 1

column-wise.

The second type is a square-wise window that covers the matrix along rows (Fig. 5

a) and columns (Fig. 5b) simultaneously, compounding a square through the matrix.

Note that this square overlaps in both sides with the same overlap rate, and step is

rounded down to the closest integer multiple of the square side. The square moves

along rows and columns during the FO execution according to the windowT ype

value. In this case, windowT ype = 0 means moving the square in the row direction

and windowT ype = 1 moves it in the column direction.

123



698 C. F. M. Toledo et al.

(a)

(b)

Fig. 5 Fix-and-Optimize with square window following: a row and b column directions. Six iterations of

column direction and three of row direction are shown, both with window size = 9 and overlap rate = 70 %

The Relax-and-Fix with Fix-and-Optimize (RFFO) heuristic proposed is summa-

rized in Fig. 6. After the RF execution is complete, FO tries to improve this initial

solution until the time limit has been reached. If the improvement achieved by a FO

solution did not satisfy a given tolerance tol, the window size is increased by inc

variables, a user-defined parameter. Thereafter, the MIP subproblems become larger

as an attempt to find better solutions. When using the square window, the increment

will affect the window area, making its growth faster when small, and slower when

larger. The window area will be rounded to the closest perfect square integer so that

the square window can be formed, but the rounded value will not be used in future

increment calculations.

4 Computational results

The computational tests reported here were run on a PC with Intel i7 processor, 2.6

GHz, and 8GB RAM, and all mathematical models were implemented and solved

using IBM ILOG Cplex 12.2 callable library. We have implemented RFFO first to

solve the MLCLSP with backlogging, and therefore, we discuss in detail parameter

tuning of the method as well as extensive results achieved for the MLCLSP next. Then,
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Fig. 6 Pseudocode of RFFO

the application of RFFO to TGCPSP will follow with computational results obtained

for instances based on parameters obtained from a glass container manufacturer.

4.1 Results for MLCLSP with backlogging

In order to evaluate the effectiveness of our method solving the MLCLSP, we compare

the RFFO framework to two state-of-the-art methods from the recent literature: Aheur

(Akartunalı and Miller 2009) and LugNP (Wu et al. 2011). The executable codes of

these methods were kindly provided by the respective authors so that we could run all

methods on the same computer for a fair comparison.

We used all the four test sets (SET1 to SET4) of Multi-LSB (2014) for our compu-

tational experiments, where for all problems multi-item and backlogging are allowed.

Each of these test sets has 30 instances with 6 machines, 78 products (divided into

11 product families) and 16 periods, except that SET2 instances have 24 periods. A

product can be component for only one product in the bill of materials (assembly

structure) defined for these instances. The resource utilization factor is 1.05 for SET1

and SET2, 2.0 for SET3 and 1.25 for SET04. This factor determines how much of the

total maximum resource capacity is required to supply all the demand, which means

a factor greater than 1.0 implies that backlogging in the last period is necessary. The

backlogging costs are set to twice the inventory holding cost for SET1 and SET2,

and 10 times the inventory holding costs for SET3 and SET4. These characteristics

make SET3 and SET4 harder to solve, as also noted by Akartunalı and Miller (2012).

Some of the hardest instances from this test are recently included in the MIPLIB

2010 library (MIPLIB 2010) as “open problems”. We make a practical remark that

very high utilization factors of SET3 and SET4 make these test instances unrealistic in

practice. However, the computational challenges they offer as well as the fact that other

researchers have used them make these instances appealing, giving us a significant

opportunity to benchmark.

All three methods were executed for 100 s in SET1, 150 s in SET2 and 300 s in

SET3 and SET4, to remain consistent with the computational times used by Wu et al.

(2011) for LugNP, where the Aheur and LugNP results achieved smaller duality gaps

against those returned by the branch-and-cut (B&C) algorithm embedded in Cplex.

Initially we set RFFO parameter values empirically, based on preliminary tests

executed over randomly chosen instances, where RF and FO apply value-wise and
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row/column-wise, respectively. RFFO was set with an initial window size of 140

variables for RF windows and 5 for FO windows. Overlap rate for RF was set to 80 %,

and for FO to 40 %. FO improvement tolerance used was set to 5 %, and failing to obtain

such improvement would increase the window size by 40 variables. Next, the effects of

changing these initial parameters were evaluated with computational tests conducted

over SET1 to SET4 of MLCLSP as shown by Fig. 7. The new parameter values chosen

from the initial ones are indicated with circles, and they allow us to customize RFFO

to achieve better results for the benchmark set of instance of MLCLSP. The average

deviation for all instances in each set is outlined and such results are compared to

LugNP and Aheur. We calculate the deviation (denoted by Dev(%)) for all instances,

using the Eq. (4.1), where Sol Ref refers to the “Reference” solution, i.e., LugNP and

Aheur.

Dev(%) =

(

Sol RF F O − Sol Ref

Sol Ref
· 100

)

(4.1)

The effect of changing parameter values is negligible for the instances of SET1 and

SET2, and it also remains limited for the instances of SET3, whereas SET4 instances

seem to be in general quite sensitive to parameter changes. A large window for RF

seems to be not as efficient as one with 40 variables, where the results for SET4 seem

to fluctuate as shown in Fig. 7a, b. The RF overlap rate of 80 % seems to be slightly

better than low values (Fig. 7c, d), and increasing the preferable value of 1 % for

FO improvement tolerance worsens the results over SET4 (Fig. 7e, f). A large initial

FO windows size with 40 variables gives some improvement for all sets (Fig. 7g, h),

with significant fluctuation for SET4 instances. Once FO fails to improve solutions by

1 %, an increment of 10 variables seems to be working best for increasing submodels

(Fig. 7i, j). Finally, the overlap rate of 50 % produces slightly better average deviations

than the other values (Fig. 7k, l). We also present the improvement of deviations after

each parameter change from the initial settings in Fig. 8, which indicates that these

adjustments have the biggest impact on SET4 instances.

As shown on all these cases, the RFFO performs better when RF and FO start

solving MIP sub-problems with the RF and FO window size of 40 variables. RF is

able to obtain better solutions for FO when 80 % of its variables can be re-optimized

(Overlap rate), while FO works better re-optimizing 50 % of its variables. Such behav-

ior seems to be related to the fact that FO is an improvement heuristic and RF is a

construction heuristic, so RF needs to review past decision more often to converge

to a feasible solution. We also note that we have experimented with the sensitivity of

other parameters but seen insignificant differences in many cases. For example, RFFO

achieves average values less than 0.1 % different when FO improvement tolerance is

set as 5 and 10 % in SET4. An exhaustive finer evaluation of these parameters and

experimenting with other test sets might potentially lead RFFO to achieve “optimal”

performance. However, as noted earlier, our main focus in this paper is to evaluate

strategies regarding choices of decompositions of MIP sub-models apparent in RF and

FO, which we will discuss next.

A total of six parameter setups were defined in order to determine which window

type combination has better performance for MIP sub-models in RF and FO. Parameter

setups #1 to #3 use RF row-wise, column-wise and value-wise windows, respectively,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 7 Analysis of parameter values: (a, b) RF window size, (c, d) RF overlap rate, (e, f) FO tolerance, (g,

h) FO window size, (i, j) FO increment, (k, l) FO overlap rate

123



702 C. F. M. Toledo et al.

F
ig

.
8

S
u
cc

es
si

v
e

im
p
ro

v
em

en
ts

in
th

e
p
ar

am
et

er
s:

a
L

u
g

D
ev

(%
),

b
A

h
eu

r
D

ev
(%

)

123



A relax-and-fix with fix-and-optimize heuristic applied... 703

Table 1 Average deviation and number of better solutions in all sets for each window type combination

Setup Windows Better solutions

RF FO RFFO Draw LugNP Dev. (%)

#1 Row Row/column 61 38 21 −0.49

#2 Column Row/column 68 41 11 −0.98

#3 Value Row/column 68 37 15 −1.18

#4 Row Square 41 36 43 1.48

#5 Column Square 57 43 20 −0.55

#6 Value Square 49 32 39 0.20

combined with FO row/column window (first type). Setups #4 to #6 use all RF windows

combined now with FO square window (second type). We executed all the six setups

for all test instances, and the results were compared to LugNP. Table 1 summarizes

the results obtained by each setup, showing the number of better solutions found by

RFFO, LugNp and the draws. It is considered draw when the deviation of solution

values for some instance is less than 0.01 %. The last column in Table 1 has the average

deviation of RFFO solutions against LugNP for all instances in all sets.

The setup #3, which combined RF value-wise window and FO row/column-wise

window, showed the best performance with an average deviation of −1.18 % as well

as 68 wins over LugNP. The combination of RF row-wise and column-wise with

FO row/column-wise also returned improvement from LugNP. However, the FO with

square approach seems to be better only when combined with RF column-wise. Thus,

for the remainder of computational tests, we used setup #3.

Next, we present Fig. 9, summarizing how the FO heuristic can improve the initial

solution built by RF. It shows the average deviation of the solutions found by RF

and RFFO from LugNP and Aheur for SET1 to SET4. RFFO was executed with

the parameters values and window types discussed earlier. RF on its own returns on

average solutions with less quality compared to the benchmark methods. However,

the FO improves these initial solutions significantly for all of these four test sets, in

particular for SET3 and SET4.

Finally, we discuss the results comparing the proposed RFFO approach against

Aheur and LugNP, as summarized in Table 2. Regarding average percentage improve-

ment, the results for SET1 and SET2 are not necessarily improved by RFFO, where it

achieved almost the same performance as the benchmark methods with average devia-

tions around 0.0 %. This can be also seen by the high number of draws, but RFFO was

able to return better solutions than LugNp and Aheur for both SET1 and SET2. On

the other hand, RFFO outperforms the two benchmark methods in SET3 and SET4,

achieving more than 4 and 2 % of average improvement, respectively. This is quite

significant, since these sets include the most challenging instances. Considering the

number of better final solution values, our proposed framework outperformed bench-

mark approaches for more than 20 out of 30 instances in each of the sets SET3 and

SET4.
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Table 2 Number of better solutions and deviation values by set

Set RFFO versus Aheur RFFO versus LugNP

RFFO Draw Aheur Dev. (%) RFFO Draw LugNP Dev. (%)

SET1 8 21 1 −0.11 10 19 1 −0.14

SET2 9 15 6 0.08 10 14 6 0.07

SET3 27 0 3 −4.78 22 0 8 −2.94

SET4 28 2 0 −2.23 26 4 0 −1.69

Next we discuss detailed results for each data set, where tables with detailed results

for all instances are provided in Appendix. We start with Appendix Tables 4 and 5

showing results for SET1 and SET2 instances, respectively. We also provide the root

node lower bounds with (ℓ, S) inequalities of Akartunalı and Miller (2012), shown as

XLP, to indicate the computational complexity of the instances. It can be noticed that

deviations are low and most of them are draws, with several deviations between 1.00

and 0.00 %, explaining the low average improvement. Compared to Aheur and LugNP,

SET1 has the most positive deviation of 0.24 % and the most negative deviation (best

improvement) of −0.80 % from Aheur and of −1.83 % from LugNP, respectively.

In SET2, it is worth to note that there are more negative than positive values, but the

high positive deviations for SET2_23, SET2_1 and SET2_7 are the main reasons for

the positive average deviation reported in Table 2. Our computational experience is

that the instances in SET1 and SET2 are quite easy to solve in general, and therefore

harder to improve, most likely because the results from literature are already very good

and close to optimality. This can be verified by the results and comparisons carried

on Akartunalı and Miller (2009) and Wu et al. (2011) to support the performance of

Aheur and LugNP against B&C.

Appendix Table 6 shows the results for SET3, where the results dominantly indicate

negative deviations, reaching −11.77 % from Aheur and −9.18 % from LugNP for the

instances SET3_21 and SET3_16, respectively. Another important remark to make is

that RFFO improves Aheur and LugNP solutions significantly (more than 5 %) for

15 and 9 instances, respectively, whereas the worst performance for RFFO is below

3.1 % compared to these two benchmarks (in case of SET3_14, with 1.14 % against

Aheur and 3.06 % against LugNP in SET3_29). This is important since SET3 includes

hardest to solve instances in these problems.

Appendix Table 7 summarizes the results for SET4. The results are in line with

the results of SET3, indicating noticeable negative deviations (though slightly less

significant compared to SET3). There is no considerable positive deviation with 2 and 4

results considered draws, respectively, against Aheur and LugNP. Negative deviations

reach −8.53 % against Aheur and −5.66 % against LugNP, whereas RFFO improves

Aheur and LugNP solutions more than 3 % for 8 and 7 instances, respectively.

Finally, we present in Fig. 10 computational performance of different methods

(including default Cplex) with extended computational times, where the average value

of the best solutions found by each method is given. All methods were executed for 10-

fold time limits compared to our original time limits, i.e., 1000 s for SET1 instances
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(Fig. 10a), 1500 s for SET02 instances (10(b)), and 3000 s for SET03 and SET04

instances (Fig. 10c, d), respectively.

We have omitted some initial values (e.g., Cplex and AMH first values for SET02),

as they were out of the scale of the graphs used and would have deteriorated the visu-

alization otherwise. As the graphs indicate, RFFO finds high quality solutions quickly

and only improve these solutions slightly during the extended times. Moreover, RFFO

solutions over the extended times are only outperformed in SET02, albeit slightly, by

LugNP and Aheur, where Aheur is able to do so only after 1200 s. RFFO is always

better on average for all other sets showing a more stable performance when compared

with the other methods, achieving these solutions very quickly.

4.2 Results for TGCPSP

The effectiveness of our method is now evaluated solving the TGCPSP, where one

of the key differences compared to previous computational tests is that feasibility of

the problems are not guaranteed, which was ensured with the backlogging to the last

period in case of MLCLSP. We benchmark our results against those returned by the

default Cplex solver and the hybrid genetic algorithm (HGA) of Toledo et al. (2013),

which is a custom-designed method specifically for TGCPSP. HGA runs a genetic

algorithm (GA) with several populations, where their individuals are hierarchically

structured in trees, and integrated with simulated annealing (SA) and the so-called

cavity heuristic (CV). SA is applied over the best individual found by the GA at each

generation to intensify the search over its neighborhood. CV determines the number of

mold cavities and, consequently, the efficiency of the machine during the production

process of containers. HGA ran 10 times over each test problem within 1 h, and

the same time limit was spent by Cplex to solve each test problem using the model

described in Sect. 2.2. More details about the algorithm and parameters used can be

found in Toledo et al. (2013).

The test problems, based on data provided by real-world glass container plants, are

compounded by 150 artificial and 150 real problems. The artificial set is generated

randomly in an academic fashion not necessarily representing a real-world scenario and

it involves small to moderate size instances with T ∈ {7, 14} days, K ∈ {1, 2, 3, 4, 5}

machines and N ∈ {5, 10, 20} products per week. The real set corresponds to actual

scenarios that happen in the glass container plants, where the production process

involves T ∈ {14, 28, 56} days with a number of products around 10–90 per week,

and K ∈ {2, 3, 4, 5} machines per furnace. For each set of problems, the type of

solution returned by the Cplex solver within a 1 h time limit is used to classify test

problems as Optimal (solver returns an optimal solution), Feasible (solver returns a

feasible solution without guaranteed optimality), and Unknown (solver does not return

a feasible solution). Table 3 indicates some characteristics of these test sets as well as

their subsets.

We recall that for the MLCLSP problem discussed in the previous section, RFFO

optimized the setup variables w f t combining RF with value-wise window and FO

with row/column-wise window, meaning that FO first searches through rows (families

f ) and then through columns (periods t) in the two-dimensional data structure of
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Table 3 TGCPSP problem

instances
Average

Type Status # Instances CPU(s) Gap (%)

Artificial test problems

O0 Optimal 27 1.8 0.0

O1 Optimal 27 419 0.0

F0 Feasible 24 3600 3.2

F1 Feasible 24 3600 9.8

F2 Feasible 25 3600 17.1

U Unknown 23 3600 –

Real test problems

O0 Optimal 3 1294 0.0

F0 Feasible 20 3600 9.1

F1 Feasible 21 3600 20.6

U Unknown 106 3600 –

(a)

(b)

Fig. 11 Fix-and-optimize: a machine-product-period and b product-machine-period. Three iterations of

each direction are shown with window size = 5 and overlap rate = 60 %

w f t . Since the setup variables Yi tk of the TGCPSP are three-dimensional, a further

elaboration is necessary for the RFFO framework. This does not pose a problem in

executing RF with value-wise window, but a strategy to execute FO needs to be adapted

from the previous row/column-wise window. Based on our preliminary testing with

various options, we concluded to execute FO following first the sequence product-

machine-period and then machine-product-period as illustrated by Fig. 11.

In Fig. 11a, the window includes variables selecting indexes by machines Ki first

followed for items Ii (products) and periods Ti . After to optimize on this way, the

window in this three-dimensional data-structure selects variables indexes in Fig. 11b

by items followed for machines and periods.

We have executed RFFO for each test instance within the same time limit of 1 h,

where we use the initial parameter settings presented in the previous section. First of
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all, to test the flexibility of our approach, we executed RFFO on all the “Unknown”

instances that were identified by the default Cplex, which correspond to 15.3 and

70.7 % of the artificial and real test problems, respectively. In the same 1 h limit,

RFFO was able to find solutions for 56.5 and 20.8 % of these unknown instances,

respectively, achieving failure rates of 6.67 and 56 % in the overall sets of artificial and

real problems, respectively. Although the improvement over Cplex for the unknown

artificial instances is significant, the unknown real instances still present a challenge, in

particular due to their immense sizes and high number of binary variables (on average

3,329 for real problems). In addition, the involvement of general integer variables

complicate these problems significantly and they were not specifically dealt within our

RFFO framework in order to preserve the simple structure presented earlier for mixed

binary problems. Moreover, the performance might also be affected by the fact that

the accessibility of a feasible solution is less straightforward compared to MLCLSP

with backlogging, where the simple solution of zero production and backlogging total

demand to the last period is always feasible (but costly). We are currently investigating

these areas more thoroughly as needed and plan to address these challenges in our

future research outcomes.

In order to evaluate the solution quality RFFO can achieve for TGCPSP, we have

next executed RFFO for all test instances that are not “Unknown”. Using the same time

limit of 1 h as Cplex and HGA, we present our computational results executing RFFO

with the initial parameter values (RF F Od ) and with the better parameter setting for

the benchmark instances of the MLCLSP (RF F O). Thus, the idea here is to evaluate

the performance of RFFO running with the initial values empirically obtained as well

as with those parameter values customized to solve MLCLSP instances.

In Fig. 12, we compare all methods for the five subsets of artificial test prob-

lems involving 127 instances, where the gap (%) is calculated by Gap(%) =

(U pper Bound − Lower Bound)/(U pper Bound) using the best solution obtained

Fig. 12 GAP(%) comparisons for artificial test problems
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Fig. 13 GAP(%) comparisons for real test problems

by each method for U pper Bound and the lower bound returned by the branch & cut

algorithm of Cplex for Lower Bound.

As Fig. 12 indicates, RF F Od was able to find optimal solutions in the set of

instances, whose optimal values were returned by Cplex (O0 and O1), whereas HGA

and RF F O could not return optimal solutions for all test problems belonging to

set O1 with average gaps 0.5 and 0.1 %, respectively. For the other three subsets

of problems, where only feasible solutions were returned by Cplex, all methods had

similar performance with regards to solution quality, but RF F Od managed to achieve

consistently the lowest average gap value. This is promising, in particular considering

that HGA is a custom-designed method for these problems.

In Fig. 13, we present the same evaluation for three subsets of real test problems

involving 44 instances. Based on the results obtained by RF F Od for the artificial test

problems, we have also implemented a slightly modified version of RF F Od , named

RF F O , where the order to optimize variables in the FO is changed. In this case,

the setup variables Yi tk are optimized by FO following first the sequence machine-

product-period and then the sequence product-machine-period. Similar to artificial

instances, the three RFFO versions were able to find optimal solutions for the real

instances, for which Cplex could return their optimal values, while HGA did not

manage to find the optimal solution for all instances of this set O0. For the two

feasible sets, RF F Od and RF F O return almost the same average gap value as Cplex,

whereas the modified version RF F O outperforms Cplex and HGA for the set F0 and

outperforms Cplex for set F1. On the other hand, HGA generates better solutions

on average than RFFO for the set F1, but our results are competitive, considering

that HGA is specifically designed for these problems. As the experimentation with

RF F O indicated, we remark that other changes in RFFO parameters can potentially

improve its performance as it was done for the benchmark set of MLCLSP. However,

as a general framework, it works effectively. Finally, we note that RFFO is currently

123



A relax-and-fix with fix-and-optimize heuristic applied... 711

designed to optimize only binary variables, but a more sophisticated RFFO framework

could handle general integer variables of the TGCPSP more efficiently, which we plan

to address in near future.

5 Conclusion

A hybrid method, RFFO, was proposed by combining two well-known heuristics,

RF and FO. A simple combination is proposed, where RF is used to build an initial

solution which is further improved by the FO in available computational time. The

RFFO is applied to the MLCLSP with backlogging and Two-stage Glass Container

Production Scheduling Problem (TGCPSP). Using various test problems available

from the literature, the proposed method was benchmarked to state-of-the-art methods

from literature: Aheur of Akartunalı and Miller (2009) and LugNP of Wu et al. (2011)

for MLCLSP, which are also heuristics based on mathematical programming, and

HGA of Toledo et al. (2013) for TGCPSP, which is a genetic algorithm.

In the proposed approach, both heuristics use mathematical programming to solve

mixed-integer subproblems defined by a certain amount of binary variables. These

variables define a window that moves in the solution matrix using different orientations.

Also, the number of binary variables under the window is increased if the solution is

not sufficiently improved in a single execution of the FO.

Different strategies to traverse the matrix optimizing the binary variables were

proposed and tested, where the best one reported combines a value-wise RF with

row/column-wise FO. Thus, the results reported indicate better initial solutions

returned by RF when the optimization is focused on relaxed variables closer to 0.5, fol-

lowed by FO working better trying to optimize separately rows and columns oriented

variables. The best setup found allowed the proposed method significantly outperform

the benchmark approaches in two out of four test sets of MLCLSP. However, it was

also able to return competitive results in the other two sets. More importantly, the

results indicate a better performance of RFFO in the more complex test instances of

SET3 and SET4. Similarly, three configuration of RFFO were also able to return com-

petitive results for the more sophisticated problem of TGCPSP, outperforming default

Cplex regularly and obtaining better or comparable results with HGA, which is a fast

and efficient custom-built method for these problems. We believe that RFFO is overall

an effective method for lot-sizing problems with varying characteristics.

As future work, we plan to conduct extensive computational testing on different

combinations of parameter values. This would give better insight into sensitivity of

different sizes for the MIP’s solved by RF and FO, as well as different overlap rate

values. We are also currently investigating combining RF and FO with other meta-

heuristics. For instance, RF could be used to provide different initial solutions if

a random criteria is incorporated in the value-wise strategy. Also the proposed FO

heuristic could be applied as local search to improve better solutions found by other

meta-heuristics. Another area to investigate is the potential improvement of the method

if it exploited the specific problem structure. We plan to study this for different settings,

e.g., for overtime.
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Finally, we note that the design proposed in this paper is generic and problem-

independent. To verify its robustness, we plan to extend this approach to more general

MIP problems that naturally have a sequential decision making structure, including

problems with general integer variables. In this case, it is in particular our special inter-

est to investigate MIP problems where the RF heuristic could fail to determine an initial

solution. Thus, another construction heuristics could be applied taking advantage from

the partial solution provided by the proposed RF. We are currently investigating some

crew scheduling problems with this framework.

Acknowledgments We would like to thank Dr. Tao Wu for providing us the code of LugNP heuristics used

in the comparisons. The work conducted by the first three authors was supported by Fundação de Amparo

e Pesquisa do Estado de São Paulo (FAPESP) Projects 2010/10133-0, 2011/15534-5 and 2011/15581-3

and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Projects 483474/2013-4 and

312967/2014-4.

6 Appendix

See Tables 4, 5, 6, and 7.

Table 4 Comparison for SET1 instances (time limit = 100 s)

SET1 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

1 17,888 22,382.5 22,460.7 22,382.1 0 −0.35

2 23,534 27,584.8 27,584.8 27,584.6 0 0

3 21,227 25,187.3 25,187.3 25,246.6 0.24 0.24

4 22,232 26,334.7 26,334.7 26,334.7 0 0

5 21,446 25,145.5 25,145.5 25,145.8 0 0

6 22,974 26,667.4 26,770.8 26,667.5 0 −0.39

7 20,360 24,123.8 24,123.8 24,124.2 0 0

8 25,582 29,640.4 29,640.4 29,639.8 0 0

9 16,321 20,971.2 21,362.7 20,971.0 0 −1.83

10 17,998 22,645.8 22,647.5 22,562.8 −0.37 −0.37

11 11,080 12,955.6 12,955.6 12,955.3 0 0

12 24,721 26,831.3 26,831.3 26,831.1 0 0

13 20,782 23,127.8 23,127.8 23,128.5 0 0

14 22,264 25,035.8 25,035.8 25,036.0 0 0

15 12,401 14,118.1 14,118.1 14,117.9 0 0

16 15,122 17,540.2 17,400.1 17,400.1 −0.80 0

17 20,468 23,007.5 23,007.5 22,996.2 −0.05 −0.05

18 11,075 12,973.8 12,973.8 12,973.8 0 0

19 13,276 16,502.9 16,502.9 16,349.2 −0.93 −0.93
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Table 4 continued

SET1 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

20 14,101 17,158.6 17,158.6 17,158.7 0 0

21 10,159 12,421.2 12,421.2 12,421.1 0 0

22 38,040 40,158.3 40,188.7 40,158.4 0 −0.08

23 29,331 30,605.7 30,605.7 30,605.5 0 0

24 28,858 32,190.4 32,145.5 32,007.2 −0.57 −0.43

25 51,371 52,989.2 52,959.9 52,960.3 −0.05 0

26 39,379 41,221.5 41,221.5 41,221.0 0 0

27 40,838 43,319.7 43,319.7 43,289.6 −0.07 −0.07

28 39,846 40,993.5 41,019.8 40,993.5 0 −0.06

29 23,155 25,492.6 25,322.3 25,322.0 −0.67 0

30 68,989 70,863.7 70,863.7 70,863.7 0 0

Table 5 Comparison for SET2 instances (time limit = 150 s)

SET2 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

1 46,116 52,050.7 52,050.7 52,339.4 0.55 0.55

2 47,780 53,863.4 53,713.4 53,713.0 −0.28 0

3 40,551 46,894.5 47,053.2 46,893.3 0 −0.34

4 36,347 43,009.8 42,977.1 43,063.1 0.12 0.20

5 45,395 51,757.6 51,757.6 51,768.8 0.02 0.02

6 45,902 51,858.1 51,858.1 51,858.4 0 0

7 52,825 58,153.8 58,153.8 58,425.2 0.47 0.47

8 48,033 54,396.2 54,449.6 54,182.9 −0.39 −0.49

9 37,553 43,737.8 43,737.8 43,690.0 −0.11 −0.11

10 38,751 45,278.8 45,278.8 45,305.8 0.06 0.06

11 65,210 68,488.8 68,646.4 68,487.8 0 −0.23

12 62,792 66,561.9 66,474.5 66,475.4 −0.13 0

13 34,778 39,120.3 39,082.7 38,852.7 −0.68 −0.59

14 62,907 66,373.7 66,383.2 66,325.1 −0.07 −0.09

15 59,079 61,574.1 61,574.1 61,574.0 0 0

16 75,682 79,364.8 79,385.0 79,363.9 0 −0.03

17 36,809 41,298.6 41,282.4 41,192.6 −0.26 −0.22

18 77,873 81,561.8 81,562.9 81,562.5 0 0

19 54,981 58,426.1 58,426.1 58,425.4 0 0

20 119,568 122,827.6 122,827.6 122,829.0 0 0
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Table 5 continued

SET2 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

21 22,281 24,013.2 24,014.2 24,013.3 0 0

22 51,279 52,887.1 52,887.1 52,886.8 0 0

23 29,793 32,618.2 32,708.8 33,713.9 3.36 3.07

24 65,891 68,640.6 68,575.1 68,574.8 −0.10 0

25 75,627 78,064.3 78,088.2 78,064.2 0 −0.03

26 60,952 63,275.2 63,285.6 63,273.2 0 −0.02

27 53,016 54,794.1 54,794.1 54,793.9 0 0

28 44,545 46,607.9 46,607.9 46,607.6 0 0

29 93,631 96,278.0 96,157.4 96,152.0 −0.13 0

30 68,324 71,408.0 71,408.0 71,408.7 0 0

Table 6 Comparison for SET3 instances (time limit = 300 s)

SET3 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

1 65,668 188,294.0 189,400.6 179,554.0 −4.64 −5.20

2 82,342 216,700.4 217,283.4 216,401.0 −0.14 −0.41

3 74,209 216,517.4 207,362.6 198,215.0 −8.45 −4.41

4 78,282 214,175.7 220,062.4 203,208.0 −5.12 −7.66

5 76,607 220,928.0 220,686.4 201,723.0 −8.69 −8.59

6 79,093 213,987.2 210,339.0 203,253.0 −5.02 −3.37

7 72,979 206,793.3 208,245.8 193,804.0 −6.28 −6.93

8 88,610 231,333.9 224,404.5 226,042.0 −2.29 0.73

9 64,180 198,594.1 183,327.9 178,576.0 −10.08 −2.59

10 66,878 201,771.0 192,069.0 188,790.0 −6.43 −1.71

11 42,946 132,466.6 130,055.9 132,231.0 −0.18 1.67

12 86,047 213,445.5 211,726.2 195,981.0 −8.18 −7.44

13 74,643 199,471.6 197,240.0 195,772.0 −1.85 −0.74

14 85,209 198,005.1 200,193.9 200,257.0 1.14 0.03

15 40,715 135,491.1 125,875.5 127,045.0 −6.23 0.93

16 46,548 144,580.2 149,411.0 135,689.0 −6.15 −9.18

17 71,555 200,971.1 199,875.3 184,830.0 −8.03 −7.53

18 39,533 98,901.8 97,031.1 98,106.0 −0.80 1.11

19 47,495 149,973.9 151,618.8 138,420.0 −7.70 −8.71

20 58,189 170,524.4 163,785.9 163,740.0 −3.98 −0.03
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Table 6 continued

SET3 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

21 44,182 141,578.2 134,625.9 124,919.0 −11.77 −7.21

22 130,235 256,283.6 245,549.4 246,270.0 −3.91 0.29

23 96,810 229,468.8 215,893.6 209,798.0 −8.57 −2.82

24 105,300 272,965.6 245,491.9 241,071.0 −11.68 −1.80

25 203,044 329,382.0 333,236.6 324,800.0 −1.39 −2.53

26 145,184 286,229.0 289,459.6 280,060.0 −2.16 −3.25

27 145,420 294,614.0 297,025.5 286,754.0 −2.67 −3.46

28 145,227 225,567.2 224,734.0 227,483.0 0.85 1.22

29 79,813 189,879.7 185,569.7 191,242.0 0.72 3.06

30 274,018 415,185.0 407,150.8 399,907.0 −3.68 −1.78

Table 7 Comparison for SET4 instances (time limit = 300 s)

SET4 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

1 16,353 57,483.0 53,168.4 53,062.3 −7.69 −0.20

2 31,541 80,772.8 77,346.7 73,884.2 −8.53 −4.48

3 24,864 68,176.9 67,097.7 66,030.7 −3.15 −1.59

4 27,786 72,989.4 68,995.1 68,662.6 −5.93 −0.48

5 25,450 67,329.1 66,993.7 66,328.8 −1.49 −0.99

6 30,632 75,042.4 74,601.8 70,698.3 −5.79 −5.23

7 22,650 62,993.3 64,132.5 62,974.3 −0.03 −1.81

8 40,532 81,200.6 84,586.1 80,914.5 −0.35 −4.34

9 13,490 55,901.5 52,041.0 51,457.5 −7.95 −1.12

10 15,542 55,602.2 57,297.3 55,341.7 −0.47 −3.41

11 12,802 28,415.7 28,323.5 28,207.1 −0.73 −0.41

12 43,341 73,653.4 72,084.8 71,886.9 −2.40 −0.27

13 28,152 52,525.0 55,251.9 52,518.4 −0.01 −4.95

14 56,174 79,086.4 80,501.7 78,903.9 −0.23 −1.98

15 14,628 25,927.5 25,286.3 24,568.9 −5.24 −2.84

16 17,171 35,048.5 35,138.7 34,569.2 −1.37 −1.62

17 29,001 51,396.2 51,671.9 51,266.5 −0.25 −0.78

18 19,184 26,101.5 26,282.3 26,037.4 −0.25 −0.93

19 10,724 31,585.8 33,006.4 31,139.0 −1.41 −5.66

20 18,718 38,796.1 38,781.4 37,179.1 −4.17 −4.13
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Table 7 continued

SET3 XLP Solution values Deviation (%)

Aheur LugNP RFFO Aheur LugNP

21 15,812 25,727.0 25,840.8 25,713.0 −0.05 −0.49

22 91,715 120,008.2 119,481.0 118,749.0 −1.05 −0.61

23 55,058 74,180.4 73,297.4 73,296.6 −1.19 0

24 58,919 82,349.4 82,260.2 80,733.2 −1.96 −1.86

25 171,987 196,626.7 196,025.1 196,023.0 −0.31 0

26 110,570 137,224.6 134,856.0 134,854.0 −1.73 0

27 101,114 135,936.6 132,463.3 132,451.0 −2.56 0

28 112,892 126,553.7 126,157.1 125,872.0 −0.54 −0.23

29 51,149 66,131.1 66,217.4 66,131.4 0 −0.13

30 241,678 262,380.7 263,042.1 262,378.0 0 −0.25
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