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In the present work, we consider the numerical approximation of pressureless gas dynamics in
one and two spatial dimensions. Two particular phenomena are of special interest for us, namely
δ-shocks and vacuum states. A relaxation scheme is developed which reliably captures these
phenomena. In one space dimension, we prove the validity of several stability criteria, i.e., we
show that a maximum principle as well as the TVD property for the discrete velocity component
and the validity of discrete entropy inequalities hold. Several numerical tests considering not
only the developed first-order scheme but also a classical MUSCL-type second-order extension
confirm the reliability and robustness of the relaxation approach. The paper extends previous
results on the topic: the stability conditions for relaxation methods for the pressureless case are
refined, useful properties for the time stepping procedure are established and two-dimensional
numerical results are presented. c© ??? John Wiley & Sons, Inc.
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I. INTRODUCTION

In this paper, we are concerned with the numerical approximation of the system of pres-
sureless Euler equations in one and two spatial dimensions. The corresponding systems
of equations can be regarded as simplifications of the full Euler equations since the ef-
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fects of pressure differences are neglected; however, the reduced systems obtained in this
fashion are not strictly hyperbolic anymore. The main features of interest within the
pressureless systems are the occurrence of delta-shocks and vacuum states, the latter
being a difficult case to deal with numerically.

The numerical method we propose for the approximation of the arising systems of
equations is a relaxation method. Besides the detailed construction of the scheme, we
show in one space dimension the validity of a maximum principle as well as of the
TVD property for the discrete velocity component, and we also obtain discrete entropy
inequalities for our scheme. These features are in accordance with the exact solutions of
the investigated systems of equations. In addition, we show that the developed relaxation
scheme remains positive for positive initial values. Vacuum states are approximated
with a very high accuracy while the time step size remains reasonable throughout the
simulation of the evolution process. The theoretical investigations are supplemented
by numerical tests in one and two spatial dimensions, showing the robustness of the
developed relaxation method even in the presence of delta-shocks and vacuum states. By
the numerical tests, we also observe that these properties not only hold for the developed
first-order scheme; they are also valid for a straightforward MUSCL-type second-order
extension of the method.

The system of pressureless Euler equations reads in its two-dimensional form





∂tρ+ ∂x (ρu) + ∂y (ρv) = 0,
∂t (ρu) + ∂x

(
ρu2

)
+ ∂y (ρuv) = 0,

∂t (ρv) + ∂x (ρuy) + ∂y

(
ρv2

)
= 0,

(1.1)

where t > 0, x ∈ R, and ρ (x, y, t) ≥ 0, u (x, y, t) and v (x, y, t) are in R. Thereby, ρ
denotes the density, and u, v denote the velocities of the gas under consideration in x-
and y-direction, respectively.

It is a well-recognized fact that gas flow features are formed by two kinds of effects,
namely effects of inertia and effects of pressure differences; see for instance [21] for a
brief discussion. As already indicated, the system (1.1) and its one-dimensional form
can be viewed as simplifications of the corresponding usual system of Euler equations
when the effects of pressure differences are neglected. Thus, the study of the pressureless
system of Euler equations is of twofold interest: on the one hand, such systems may
arise modeling pure transport phenomena. For example, such systems may occur in the
context of plasma physics [7] or cosmological models [26]. With respect to the latter
field of research, the system (1.1) and its one-dimensional form have been the subject of
many mainly theoretically oriented studies within the last years. The reason is that they
are the basis for modeling sticky particle dynamics useful for explaining the formation of
large scale structures in the universe, see e.g. [6, 8, 11, 15] and the references therein. On
the other hand, the splitting of a differential operator into a transport step and a pressure
correction step is the basis of some very robust algorithms. As a concrete example we
mention here [2] where the 1-D Saint-Venant system for shallow water fluid flow is split
into the pure transport system (1.1) in its 1-D form and a pressure correction. However,
let us note that the transport equations are regularized in that work after the operator
splitting. Similar techniques can be encountered in flux splitting approaches, see e.g.
[1, 25].

The numerical difficulties when dealing with the occurrence of vacuum states and
densities close to vacuum are recognized within the literature, see for instance [11, 14]
for discussions. Especially, in the context of pressureless gas dynamics, Bouchut, Jin and
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Li [9] have introduced a kinetic scheme as a means for approximation. Also, in [9] a
special procedure is introduced in order to obtain a reasonable time step size even in the
presence of very low densities. In the context of relaxation schemes, Bouchut proposed
to use the same idea, leading to an additional transport equation within the relaxation
system considered [4]. Concerning the usual setting of relaxation approximations, see
e.g. [3, 4, 13, 18], this is a notable feature since an additional equation should be treated
in the same fashion as the remaining relaxation system. In the present work, we establish
that no such correction is needed when using the relaxation method if the initial density is
positive, an assumption also needed by Bouchut et al. [9] in order to apply the correction
proposed there.

For the numerical tests, we not only consider the first-order relaxation scheme inves-
tigated before; we also propose a MUSCL-type second-order extension of this scheme.
For the one-dimensional test cases, we compare both relaxation schemes with the first-
and second-order kinetic schemes given in [9], respectively. The results are qualitatively
identical; let us note in this context that kinetic schemes and relaxation methods are
connected so that a similar behavior of numerical solutions is no surprise. However, we
obtain a much better approximation of the vacuum state which may be an advantage
for some applications. In addition, we present results of two-dimensional computations
whereby our test case is deduced from the cosmological background mentioned above;
thereby, as usual when focusing on the transport stage, we neglect gravitational influ-
ences. The numerical results for this test case reveal similar patterns as discussed in
[23] while the vacuum is reliably approximated, indicating that the relaxation scheme
developed here may be a useful tool for the simulation of cosmological phenomena as
well as for performing transport steps within other algorithms.

The paper is organized as follows. In the second section, we discuss the relaxation
model for the 1-D case. After that, the first-order relaxation solver is developed, in-
corporating the detailed description of the actual scheme, its stability properties and
a discussion of the vacuum case. The fourth section is devoted to the presentation of
numerical experiments.

II. THE RELAXATION MODEL

After the works of Chen, Levermore and Liu [10], Liu [20], Suliciu [22] and more recently
of Coquel and Perthame [13] (see also [3, 12] for several applications), the relaxation
method can be viewed as a well-established tool to approximate the solutions of the
compressible Euler equations of gas dynamics. The main feature of relaxation solvers
is to use a relaxation system for which the solution of the Riemann problem is easy to
compute.

Of particular interest in the context of this paper is the Suliciu relaxation system
described in [13, 22] as well as by Bouchut [4, 5] which is devoted to the resolution of
the isentropic Euler equations of gas dynamics or some derivate system, see [3].

In the style of the Suliciu approach, we derive a relaxation model in the framework of
the one-dimensional pressureless gas dynamics, i.e., for the system of equations

{
∂tρ+ ∂xρu = 0, x ∈ R, t > 0,
∂tρu + ∂xρu2 = 0. (2.1)
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We introduce a new state variable Π, and we propose as a relaxation model the system





∂tρλ + ∂xρλuλ = 0, x ∈ R, t > 0,
∂tρλuλ + ∂x(ρλ(uλ)2 +Πλ) = 0,
∂tρλΠλ + ∂x(ρλΠλuλ + a2uλ) = −λρλΠλ,

(2.2)

with the inverse relaxation rate λ, see for instance Jin and Xin [18], and where the
positive relaxation parameter a is detailed later on. For simplicity, the superscript λ
indicating the dependence of an actual solution of (2.2) on the relaxation rate will be
omitted when appropriate in the sequel. Employing the simplified notations, the system
(2.2) can be rewritten in the abstract form

∂tv + ∂xGa(v) = λR(v), (2.3)

whereby the associated admissible state space V reads

V =
{
v = (ρ, ρu, ρΠ)T ∈ R3; ρ > 0, u ∈ R, Π ∈ R

}
.

In fact, the considered model exactly coincides with the relaxation model proposed in
[3, 4] in the framework of the isentropic gas dynamic system but for an equilibrium
state defined by a zero pressure. This specific property of the system involves several
difficulties. As indicated within the introduction, the main one turns out to be the
vacuum case.

In [4], a specific relaxation model is proposed to approximate solutions with vacuum.
In the following, we establish that the scheme obtained from the relaxation model (2.2)
is relevant, in a sense to be made precise, to approximate vacuum solutions of (2.1). This
result will be obtained in addition to stability properties like discrete entropy inequalities,
a maximum principle on the velocity u and the TVD property on u.

Now, let us state the basic properties of the relaxation system (2.2).

Lemma 2.1. Assume that a > 0. For any v ∈ V, the first-order system extracted from
(2.2), i.e.,






∂tρλ + ∂xρλuλ = 0,
∂tρλuλ + ∂x(ρλ(uλ)2 +Πλ) = 0,
∂tρλΠλ + ∂x(ρλΠλuλ + a2uλ) = 0,

(2.4)

admits the eigenvalues u and u ± a/ρ with three linearly independent eigenvectors. As
a consequence, the first-order system extracted from (2.2) is hyperbolic. Moreover, each
field is associated with a linearly degenerate field.

Proof. Easy calculations ensure that the vectors ri(v), 1 ≤ i ≤ 3, given by

r1(v) = (ρ, −a/ρ, a2/ρ)T , r2(v) = (1, 0, 0)T , r3(v) = (ρ, a/ρ, a2/ρ)T

are, respectively, the right eigenvectors for the eigenvalues µ1(v) = u − a/ρ, µ2(v) = u
and µ3(v) = u+a/ρ. As long as a is nonzero, these vectors are linearly independent and
the system (2.4) is thus hyperbolic. In addition, it is easy to see that

∇µi(v) · ri(v) = 0

holds for all v ∈ V with 1 ≤ i ≤ 3. The proof is thus complete.

Let us point out that the linear degeneracy of each of the characteristic fields of (2.4)
is actually a desirable property since it ensures that the Riemann problem associated
with (2.2) can be solved in a straightforward fashion for λ = 0.
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For the relaxation parameter λ tending to infinity, we formally recover from (2.2) the
initial system (2.1). Indeed, in this limit refered to as the equilibrium limit, we have
Πλ = 0 implying the conservation of the momentum ρu in (2.1).

Let us note from now on that, after the work of Liu [20] and Chen, Levermore and Liu
[10], both systems (2.1) and (2.2) must satisfy compatibility conditions to prevent insta-
bilities in the regime of infinite λ. This so-called sub-characteristic Whitham condition
[24] reads as follows:

a > 0. (2.5)

We will see that this condition enters the analysis of the numerical scheme.

III. THE RELAXATION SOLVER

We propose to derive from the relaxation system (2.2) an approximate Riemann solver
for the equilibrium system (2.1). The numerical procedure we develop is standard within
the framework of relaxation schemes, see e.g. Jin and Xin [18] or LeVeque [19]. Since
the Riemann problem associated with the system (2.2) is trivially solved (each field is
linearly degenerate), the relaxation scheme we propose in the present work is based on a
Godunov method for (2.2). However, in the framework of the pressureless gas dynamic
system (2.1), the scheme must satisfy additional stability properties (i.e., a maximum
principle and the TVD property with respect to the velocity) in order to be able to
capture vacuum solutions.

For the sake of completeness, we briefly recall the numerical relaxation procedure to
approximate weak solutions of (2.1).

Let an approximation of the equilibrium solution at time tn be given as

un(x) = (ρn, (ρu)n)T (x).

In order to evolve this initial data in time, we propose to solve the relaxation model (2.2)
in the limit of λ → ∞. To approximate the solution at time level tn+1 = tn + ∆t, a
splitting technique is adopted. In a first step, we solve (2.4), i.e., the first-order system
extracted from (2.2). The second step is devoted to the relaxation source terms in the
limit of λ→ ∞.

First step: Evolution in time. For tn ≤ t < tn + ∆t, the Cauchy problem for the
relaxation system (2.2) is solved by setting λ to zero. Thereby, the initial data vn are
prescribed by the equilibrium approximation un:

vn(x) = (ρn, (ρu)n, ρnΠλ,n)T (x). (3.1)

Let us emphasize that, for λ = 0, we have Πλ,n = Π0,n = 0 since vn is given at the
equilibrium. At the end of this first step, the solution is given by v(x, t).
Second step: Relaxation. The second step of the splitting takes the relaxation source
terms into account by solving the ODE system






∂tρ = 0,
∂tρu = 0,
∂tρΠ = −λρΠ,
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whereby the solution v(x, tn +∆t) of the first step serves as initial data. In the limit of
the relaxation parameter λ tending to ∞, the solution is given by

ρn+1(x) = ρ(x, tn +∆t), (ρu)n+1(x) = (ρu)(x, tn +∆t) and Πλ,n+1 = Π∞,n+1 = 0.

Then we can continue the algorithm since the initial states to be prescribed at the first
step are now defined.

Thus, the numerical procedure can be summarised as follows: for a given sequence
un

i∈Z we define the sequence vn
i∈Z setting Πλ,n

i = 0, and vn
i is evolved in time by solving

(2.4).
In the sequel, we adopt a Godunov scheme to perform this time evolution to obtain

vn+1
i and then un+1

i .

A. The relaxation scheme

Now, we give the description of the numerical method. Therefore, we consider a struc-
tured mesh in space and time, defined by the cells Ii = [xi− 1

2
, xi+ 1

2
) and the time intervals

[tn, tn+1):

tn+1 = tn +∆t and xi+ 1
2

=
(

i +
1
2

)
∆x with i ∈ Z, n ∈ N,

where ∆t is the time increment and ∆x the spatial cell width. The time increment ∆t
may vary from an iteration to another according to the CFL stability condition (3.2).

As usual, we consider piecewise constant approximate equilibrium solutions uh(x, t) :
R × R+ → Ω defined by

uh(x, t) = un
i = (ρn

i , (ρu)n
i )T , (x, t) ∈ Ii × [tn, tn+1).

At the initial time t = 0, we set

u0
i =

1
∆x

∫ x
i+1

2

x
i− 1

2

(ρ0, (ρu)0)T (x) dx.

In order to evolve in time the equilibrium approximate solution, we introduce vh(x, t) :
R×R+ → V which is piecewise constant at every time level tk, k ∈ N. With t̃ ∈ (0,∆t),
vh(x, tn + t̃) is the weak solution of the Cauchy problem for (2.2) with λ = 0 using the
following initial data:

vh(x, tn) = vn
i = (ρn

i , (ρu)n
i , ρn

i Π
λ,n
i = 0)T .

Under the CFL-like condition
∆t

∆x
max |µi(vh)| ≤ 1

2
, (3.2)

the solution vh at tn + ∆t is composed of the juxtaposition of the solutions of non-
interacting Riemann problems arising at the cell interfaces xi+ 1

2
, i ∈ Z.

The projection of vh(x, tn + ∆t) on piecewise constant functions undertaken as the
next step in the construction of our algorithm yields

vn+1,−
i =

1
∆x

∫ xi+1
2

xi− 1
2

vh(x, tn+1) dx.
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In the present work, we propose to consider a local definition of the parameter a which
will be assumed to be constant over each cell (xi, xi+1), but may vary from one cell to
another. We set ai+ 1

2
to characterize this parameter on the cell (xi, xi+1). Employing the

formalism introduced by Harten, Lax and van Leer [17] which is particularly well-suited
for a local definition of the parameter a at each interface xi+ 1

2
, i ∈ Z, see [3, 13], we

rewrite the latter equation as

vn+1,−
i =

1
2

(
v̄R(vn

i−1,v
n
i ; ai− 1

2
) + v̄L(vn

i ,vn
i+1; ai+ 1

2
)
)

, (3.3)

where

v̄L(vL,vR; a) =
2∆t

∆x

∫ 0

− ∆x
2∆t

wa(ξ;vL,vR) dξ,

= vL − 2∆t

∆x

(
Ga(wa(0+;vL,vR)) − Ga(vL)

)
(3.4)

and

v̄R(vL,vR; a) =
2∆t

∆x

∫ ∆x
2∆t

0
wa(ξ;vL,vR) dξ,

= vR − 2∆t

∆x

(
Ga(vR) − Ga(wa(0+;vL,vR))

)
. (3.5)

For a constant fixed parameter a, the function Ga refers to the exact flux function of the
relaxation system (2.2) while wa(.;vL,vR) denotes the solution of the Riemann problem
for (2.2) with the initial data v0(x) = vL if x < 0 and vR otherwise.

As long as vL = v(uL) and vR = v(uR) are defined according to the equilibrium (i.e.,
ΠL = ΠR = 0),

Gρ
a(vL,R) = ρL,RuL,R and Gρu

a (vL,R) = ρL,R(uL,R)2

hold independently from the choice of the parameter a.
Finally, we evolve the equilibrium solution in time, and so we set

un+1
i :=

(
ρn+1

i = ρn+1,−
i , (ρu)n+1

i = (ρu)n+1,−
i

)T
(3.6)

in each cell Ii.

The scheme can then be summarised as follows:

un+1
i = un

i − ∆t

∆x

(
Fn

i+ 1
2
−Fn

i− 1
2

)
, (3.7)

where

Fn
i+ 1

2
= F(un

i ,un
i+1),

=

( Gρ
ai+ 1

2

(
wa

i+ 1
2
(0+;v(un

i ),v(un
i+1))

)

Gρu
ai+ 1

2

(
wa

i+ 1
2
(0+;v(un

i ),v(un
i+1))

)
)

. (3.8)

The numerical procedure we have just described is thus written in the style of a finite
volume method. Let us emphasize that the value ai+ 1

2
may vary from one cell interface

to another because of the influence of the CFL condition (3.2).
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To conclude the presentation of the relaxation scheme, we give the exact solution of
the Riemann problem for the system (2.2) with λ = 0 which we need for the Godunov
solver.

We recall that all the fields are linearly degenerate. The solution is thus composed
of four constant states separated by three contact discontinuities, see Godlewski and
Raviart [16]. For the initial data v0(x) = vL if x < 0 and vR otherwise, with vL and vR

in V , the Riemann solution always reads

v(x, t) =






vL if x
t < µ1,

vj if µj < x
t < µj+1, j = 1, 2,

vR if x
t > µ3,

where the eigenvalues µj (µj is the speed of propagation of the jth-contact discontinuity)
are assumed to be increasingly ordered.

Lemma 3.1. Let us set

u# =
uL + uR

2
, Π# =

ΠL +ΠR

2
+

a

2
(uL − uR),

1
ρ#

L

=
1
ρL

+
uR − uL

2a
+
ΠL −ΠR

2a2
,

1
ρ#

R

=
1
ρR

+
uR − uL

2a
− ΠL −ΠR

2a2
.

(3.9)

Assume that a is large enough to ensure ρ#
L and ρ#

R to be positive. Then, the eigenvalues
are increasingly re-ordered: µ1(vL) < µ2(v1) < µ3(v2). The intermediate states are
given by

v1 =




ρ#

L
ρ#

Lu#

ρ#
LΠ#



 , v2 =




ρ#

R
ρ#

Ru#

ρ#
RΠ#



 . (3.10)

Let us note that the requirement for positivity of the intermediate densities ρ#
L and ρ#

R
(a large enough) has nothing to do with the stability condition (2.5). As a consequence,
this requirement imposes an additional restriction on the parameter a.

Before we prove Lemma 3.1, let us state without a proof a special case of the above
result where vL = v(uL) and vR = v(uR) correspond to the equilibrium.

Proposition 3.2. Let us assume that ΠL = 0 and ΠR = 0. Let us set

u# =
uL + uR

2
, Π# =

a

2
(uL − uR),

1
ρ#

L

=
1
ρL

+
uR − uL

2a
,

1
ρ#

R

=
1
ρR

+
uR − uL

2a
.

(3.11)

Assume that

a > max
(

0, ρL
uL − uR

2
, ρR

uL − uR

2

)
. (3.12)

Then, the intermediate states are given by (3.10)-(3.11).

Proof of the Lemma 3.1. The Riemann solution is uniquely composed of contact
discontinuities. We recall that across the jth-contact discontinuity, the Riemann in-
variants associated with the jth-eigenvector are continuous. These Riemann invariants,
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denoted ϕj , are defined by ∇ϕj · rj = 0 where rj is the jth right eigenvector. After a
straightforward computation, we obtain the following Riemann invariants (two invariants
per field):

ϕ1
1 = u − a

ρ
, ϕ2

1 = Π+ au,

ϕ1
2 = u, ϕ2

3 = Π,
ϕ1

3 = u +
a

ρ
, ϕ2

3 = Π− au.

Now, exploiting the continuity of these invariants across the associated contact disconti-
nuity, we obtain the following system of equations:

{
uL − a

ρL
= u1 − a

ρ1
,

ΠL + auL = Π1 + au1,
at the first contact wave,

{
u1 = u2,
Π1 = Π2,

at the second contact wave,
{

u2 + a
ρ2

= uR − a
ρR

,
Π2 + au2 = ΠR + auR,

at the third contact wave.

The unique solution of this system is given by

ρ1 = ρ#
L, ρ2 = ρ#

R, u1 = u2 = u#, Π1 = Π2 = Π#,

where ρ#
L, ρ#

R, u# and Π# are defined by (3.9).

B. The stability properties

Now, we turn to consider the stability properties for one space dimension; namely the
discrete maximum principle concerning the velocity, the discrete entropy inequalities and
also the discrete TVD property of the velocity. All these properties are satisfied by the
exact solutions of (2.1) and should be satisfied also at the discrete level.

In order to establish these properties, we rewrite the scheme (3.7)-(3.8) as follows:

ρn+1
i =

1
2

(
ρ̄R(vn

i−1,v
n
i ; ai− 1

2
) + ρ̄L(vn

i ,vn
i+1; ai+ 1

2
)
)
, (3.13)

(ρu)n+1
i =

1
2

(
¯(ρu)R(vn

i−1,v
n
i ; ai− 1

2
) + ¯(ρu)L(vn

i ,vn
i+1; ai+ 1

2
)
)
, (3.14)

with the notations introduced in (3.4) and (3.5). In the sequel, vn is always assumed to
be in accordance with the equilibrium state, i.e., vn = v(un).

The first result of this section is as follows.

Theorem 3.3. Assume that the parameter a satisfies the condition (3.12). Assume
also the validity of the CFL like condition (3.2). Then the following maximum principle
concerning the velocity is satisfied:

un+1
i ≤ max(un

i−1, un
i , un

i+1).

In addition, for all real convex functions S, we have the following discrete entropy in-
equality:

S(un+1
i ) − S(un

i )
∆t

+
U(un

i , un
i+1) − U(un

i−1, u
n
i )

∆x
≤ 0,
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where U(., .) is the numerical entropy flux function.
Proof. Using the reformulation (3.13)-(3.14) of the relaxation scheme, we propose to

rewrite the velocity-update formula as follows:

un+1
i =

ρ̄
i− 1

2
R

ρ̄
i− 1

2
R + ρ̄

i+ 1
2

L

∫ 2∆t
∆x

0
u
(
wa

i− 1
2
(ξ;vn

i−1,v
n
i )

)
dm+

i− 1
2 (3.15)

+
ρ̄

i+ 1
2

L

ρ̄
i− 1

2
R + ρ̄

i+ 1
2

L

∫ 0

− 2∆t
∆x

u
(
wa

i+ 1
2
(ξ;vn

i ,vn
i+1)

)
dm−

i+ 1
2
,

where we have set

ρ̄
i+ 1

2
L = ρ̄L(vn

i ,vn
i+1; ai+ 1

2
) and ρ̄

i+ 1
2

R = ρ̄R(vn
i ,vn

i+1; ai+ 1
2
).

The measures dm±
i+ 1

2
are defined by:

dm±
i+ 1

2
=

2∆t
∆x ρ

(
wa

i+ 1
2
(ξ;vn

i ,vn
i+1)

)

2∆t
∆x

∫ 2∆t
∆x

0 ρ
(
wa

i+ 1
2
(±ξ;vn

i ,vn
i+1)

)
dξ

dξ.

Since the condition (3.12) is satisfied by a the intermediate densities are positive, and
then we have ρ̄

i− 1
2

R > 0 and ρ̄
i+ 1

2
L > 0. The measures dm±

i+ 1
2

thus define probability

measures. This property satisfied by dm±
i+ 1

2
turns out to be crucial in the sequel to

apply the Jensen inequality useful to establish the entropy inequalities.
Now, arguing on the basis of the structure of the Riemann solution, u

(
wa(ξ;vL,vR))

)

consists of three distinct values: uL, uR and (uL + uR)/2. As a consequence, we have
u
(
wa(ξ;vL,vR))

)
≤ max(uL, uR). We immediately deduce from (3.15) the expected

discrete maximum principle.
Concerning the entropy inequalities, we deduce by the convexity of an otherwise arbi-

trarily chosen but fixed function S, by the well-known Jensen inequality and from (3.15)
the following inequality:

S(un+1
i ) ≤ ρ̄

i− 1
2

R

ρ̄
i− 1

2
R + ρ̄

i+ 1
2

L

∫ 2∆t
∆x

0
S

(
u
(
wa

i− 1
2
(ξ;vn

i−1,v
n
i )

))
dm+

i− 1
2

+
ρ̄

i+ 1
2

L

ρ̄
i− 1

2
R + ρ̄

i+ 1
2

L

∫ 0

− 2∆t
∆x

S
(
u
(
wa

i+ 1
2
(ξ;vn

i ,vn
i+1)

))
dm−

i+ 1
2
,

which is the desired entropy inequality. The proof is thus complete.

Now, we consider the discrete TVD property of the velocity when establishing the
following result:

Theorem 3.4. Assume that the relaxation parameter a satisfies the condition (3.12).
Assume also the validity of the CFL-like condition (3.2). Then, the velocity data are
TVD, i.e.,

TV(un) ≤ TV(u0)

holds for all n ∈ N.
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Proof. In order to establish the TVD property of the velocity data, we propose to
write the update formula (3.15) for the variable u in the incremental form (see Godlewski
and Raviart [16], or Bouchut [6]).

To do so, let us introduce several pieces of notation. First, from Proposition 3.2, we
recall that we have

u
(
wa(

x

∆t
;vn

i ,vn
i+1)

)
=






ui if x < µ
i+ 1

2
1 ,

ui + ui+1

2
if µ

i+ 1
2

1 < x < µ
i+ 1

2
3 ,

ui+1 if x > µ
i+ 1

2
3 ,

where we have set

µ
i+ 1

2
1 = un

i − a

ρn
i

, µ
i+ 1

2
3 = un

i+1 −
a

ρn
i+1

.

Let us recall that µ
i+ 1

2
1 < µ

i+ 1
2

3 under the condition (3.12). Next, we set

L
i+ 1

2
1 = max

(
0, µ

i+ 1
2

1

)
, l

i+ 1
2

1 = min
(
0, µ

i+ 1
2

1

)
,

L
i+ 1

2
3 = max

(
0, µ

i+ 1
2

3

)
, l

i+ 1
2

3 = min
(
0, µ

i+ 1
2

3

)
,

to obtain, under the CFL condition (3.2), the formula

un+1
i =

ρ̄
i− 1

2
R

ρ̄
i− 1

2
R + ρ̄

i+ 1
2

L

×



un
i−1

∫ L
i− 1

2
1

0
dm+

i− 1
2

+
un

i−1 + un
i

2

∫ L
i− 1

2
3

L
i− 1

2
1

dm+
i− 1

2
+ un

i

∫

L
i− 1

2
3

∆x

2∆t
dm+

i− 1
2





+
ρ̄

i+ 1
2

L

ρ̄
i− 1

2
R + ρ̄

i+ 1
2

L

×



un
i

∫ l
i+ 1

2
1

− ∆x
2∆t

dm−
i+ 1

2
+

un
i + un

i+1

2

∫ l
i+ 1

2
3

l
i+ 1

2
1

dm−
i+ 1

2
+ un

i+1

∫ 0

l
i+ 1

2
3

dm−
i+ 1

2



 .

Since dm+
i+ 1

2
and dm−

i+ 1
2

define probability measures on the intervals (0, ∆x
2∆t) and

(− ∆x
2∆t , 0), respectively, we immediately deduce the following incremental coefficients:

un+1
i = Cn

i+ 1
2
un

i+1 + (1 − Cn
i+ 1

2
− Dn

i− 1
2
)un

i + Dn
i− 1

2
un

i−1,

Cn
i+ 1

2
=

ρ̄
i+ 1

2
L

ρ̄
i− 1

2
R + ρ̄

i+ 1
2

L



1
2

∫ l
i+ 1

2
3

l
i+ 1

2
1

dm−
i+ 1

2
+

∫ 0

l
i+ 1

2
3

dm−
i+ 1

2



 ,

Dn
i− 1

2
=

ρ̄
i− 1

2
R

ρ̄
i− 1

2
R + ρ̄

i+ 1
2

L




∫ L

i− 1
2

1

0
dm+

i− 1
2

+
1
2

∫ L
i− 1

2
3

L
i− 1

2
1

dm+
i− 1

2



 .

A straightforward computation yields that Cn
i+ 1

2
≥ 0, Dn

i+ 1
2
≥ 0 and 1−Ci+ 1

2
n −Dn

i− 1
2
≥

0 hold for all i ∈ Z. The proof will be complete as soon as we establish, for all i ∈ Z, the
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relation

Cn
i+ 1

2
+ Dn

i+ 1
2
≤ 1,

see [16]. Depending on the sign of µ
i+ 1

2
1 and µ

i+ 1
2

3 , three cases must be distinguished.
First, let us assume that µ

i+ 1
2

1 < µ
i+ 1

2
3 < 0 in order to obtain

L
i+ 1

2
1 = L

i+ 1
2

3 = 0, l
i+ 1

2
1 = µ

i+ 1
2

1 , and l
i+ 1

2
3 = µ

i+ 1
2

3 .

As a consequence, we have Dn
i+ 1

2
= 0 and then Cn

i+ 1
2

+ Dn
i+ 1

2
= Cn

i+ 1
2
≤ 1. Similarly, if

we consider 0 < µ
i+ 1

2
1 < µ

i+ 1
2

3 , we have Cn
i+ 1

2
= 0 and then Cn

i+ 1
2

+ Dn
i+ 1

2
= Dn

i+ 1
2
≤ 1.

Finally, assume that µ
i+ 1

2
1 < 0 < µ

i+ 1
2

3 to obtain

Cn
i+ 1

2
+ Dn

i+ 1
2

=
1

ρ̄
i− 1

2
R + ρ̄

i+ 1
2

L

∆t

∆x

∫ 0

µ
i+ 1

2
1

ρ
(
wa

i+ 1
2
(ξ;vn

i ,vn
i+1)

)
dξ

+
1

ρ̄
i+ 1

2
R + ρ̄

i+1+ 1
2

L

∆t

∆x

∫ µ
i+ 1

2
3

0
ρ
(
wa

i+ 1
2
(ξ;vn

i ,vn
i+1)

)
dξ.

From the identities (3.4) and (3.5), we deduce

∆t

∆x

∫ 0

µ
i+ 1

2
1

ρ
(
wa

i+ 1
2
(ξ;vn

i ,vn
i+1)

)
dξ ≤ ρ̄

i+ 1
2

L

2
,

∆t

∆x

∫ µ
i+ 1

2
3

0
ρ
(
wa

i+ 1
2
(ξ;vn

i ,vn
i+1)

)
dξ ≤ ρ̄

i+ 1
2

R

2
.

We immediately obtain the required inequality Cn
i+ 1

2
+ Dn

i+ 1
2
≤ 1. The proof is thus

complete.

C. About the approximation of the vacuum

From the works of Bouchut [6], Bouchut and James [8] and Chen and Liu [11], we know
that we have to deal with the vacuum problem. Two distinct numerical difficulties
must be distinguished in the case of vacuum. First, as soon as the density vanishes, the
numerical flux function Fn

i+ 1
2

defined by (3.8) cannot be evaluated since we need to divide
by ρ. The second difficulty which arises is related to the computation of a reasonable
time step size since we have ∆t = O(∆xmin(ρ)). As a consequence, ∆t goes to zero as
the density vanishes.

In [4], a vacuum correction is proposed. This correction is based on an additional
transport equation for the relaxation parameter a. Such an approach allows to consider
a variable relaxation parameter, imposing a bound on the ratio a/ρ, i.e., a = cρ where
c > 0 is a constant.

In the present work, we establish that no correction is needed by the scheme (3.7)-
(3.8) in order to approximate vacuum solutions provided that the following assumption
is satisfied: the initial density is positive. Let us note that this assumption must also be
imposed in order to apply the correction proposed by Bouchut [4].

First, we remark that the updated density ρn+1
i obtained by the relaxation scheme

(3.7)-(3.8) is positive for all i ∈ Z as long as ρn
i > 0 for all i ∈ Z. Indeed, under
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the stability condition (3.12), we have ρ
(
wa

i+ 1
2
(ξ;vn

i ,vn
i+1)

)
> 0 for all ξ ∈ R (see

Proposition 3.2). Since ρn+1
i = (ρ̄i− 1

2
R + ρ̄

i+ 1
2

L )/2 where ρ̄
i+ 1

2
L,R = ρ̄L,R(vn

i ,vn
i+1; ai+ 1

2
) is

defined by (3.4)-(3.5), we immediately obtain the positivity of the updated density.
Now, the ability of the relaxation scheme (3.7)-(3.8) to approximate vacuum solutions

is ensured if we establish that the time increment ∆t does not tend to zero as the density
goes to zero. In order to assess this issue, we give the following result.

Lemma 3.5. Let ε > 0 and C > max(0, uR − uL) be fixed. Assume that the relaxation
parameter a satisfies (3.12). If uL ≥ uR we have, for all ξ ∈ R:

ρ
(
wa(ξ;vL,vR)

)
≥ min(ρL, ρR). (3.16)

If uL < uR, let us assume that

0 < a < min
(
ε,

1
2

min(ρL, ρR)(C + uL − uR)
)

. (3.17)

Then, the following inequality holds for all ξ ∈ R:

ρ
(
wa(ξ;vL,vR)

)
≥ 2a

C
> 0. (3.18)

Let us note that the restrictive condition (3.17) is somewhat unusual since it requires
a to be small enough while the usual stability condition requires a to be large enough
(see the condition (3.12) and also [10, 20, 24]). In fact, as long as uL < uR holds, the
restriction (3.12) imposes that a > 0. Then, the stability condition (3.12) holds for all
a > 0 such that (3.17) is satisfied.

In the above result, we establish that the intermediate densities decrease as long as
uL < uR. Under the restrictive condition (3.17), the density decreases proportionally to
the relaxation parameter a and stays positive. As an immediate consequence, as long as
uL < uR, the eigenvalues are bounded as follows:

max(|µ1|, |µ2|, |µ3|) = max
(∣∣∣∣

uL + uR

2
− a

ρ#
L

∣∣∣∣ ,

∣∣∣∣
uL + uR

2

∣∣∣∣ ,
∣∣∣∣
uL + uR

2
+

a

ρ#
R

∣∣∣∣

)

≤
∣∣∣∣
uL + uR

2

∣∣∣∣ +
C

2
,

where the intermediate states are defined in Proposition 3.2. In other words, the eigen-
values are bounded as the density tends to zero. By employing the CFL-like condition
(3.2), the time increment ∆t does not tend to zero as the density decreases to zero.

In the numerical experiments, we will impose C > TV(u0), where u0 defines the initial
velocity. Indeed, considering the TVD property of the velocity, we have C > TV(u0) >
max(0, un

i+1 − un
i ) for all i ∈ Z and n ∈ N.

We conclude the present section with the proof of Lemma 3.5.

Proof. In the Riemann solution, ρ
(
wa(ξ;vL,vR)

)
is made up of

ρL, ρR,
1

1
ρL

+
uR − uL

2a

,
1

1
ρR

+
uR − uL

2a

.
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First assume that uL < uR to obtain, under the condition (3.17), after a straightforward
computation the expected estimation (3.18). Similarly, (3.16) is a direct consequence of
the structure of the Riemann solution with uL > uR.

IV. NUMERICAL RESULTS

In this section, we perform several numerical tests using the relaxation scheme (3.7)-(3.8)
we have investigated as well as a straightforward second-order MUSCL-type extension;
the reader is refered to Godlewski and Raviart [16] or LeVeque [19] for further details
concerning this type of high-resolution schemes. The second order extension is performed
using a linear reconstruction on the characteristic variables (ρ, u). The classical minmod
function is considered for the slope limitation (see [16, 19]).

First, we propose 1-D tests devoted to approximate vacuum solutions and a delta-shock
solution. These approximate solutions are systematically compared with the numerical
solutions obtained by the first- and second-order kinetic schemes proposed by Bouchut
in [9], respectively. In all the corresponding numerical tests, we use a uniform 200 points
mesh and the CFL number is fixed at 0.5. Finally, we consider a twodimensional test
case employing a 2-D extension of the developed relaxation scheme.

In the first test, we consider the following initial data:

ρ0(x) = 0.5, u0(x) =






−0.5 if x < −0.5,
0.4 if − 0.5 < x < 0,
0.4 − x if 0 < x < 0.8,
−0.4 if x > 0.8.

!1 !0.5 0 0.5 1
0

0.5

1

1.5

density

!1 !0.5 0 0.5 1

0

0.4

!0.5

velocity

FIG. 1. Comparison of results of the first experiment showing the exact solution (lines) together
with the numerical results obtained by the first-order kinetic scheme (boxes) and the proposed
relaxation method (circles).

The approximate solutions obtained using the first-order kinetic and relaxation scheme,
respectively, are displayed in Figure 1 and are compared with the exact solution. We
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obtain a fairly good agreement except for a spike within the density due to some incon-
sistency at the sonic point that was already noticed in [6].

In the second numerical test, see Figure 2, we focus our attention on the vacuum
problem. Therefore, we consider the initial data

ρ0(x) = 0.5, u0(x) =
{

−0.5 if x < 0,
0.4 if x > 0.

The exact solution at time t = 0.5 is

ρ0(x) =






0.5 if x < −0.25,
0 if − 0.25 < x < 0.2,
0.5 if x > 0.2,

u0(x) =






−0.5 if x < −0.25,
undefined if − 0.25 < x < 0.2,
0.4 if x > 0.2.

For both first-order schemes, the vacuum approximation at time t = 0.5 is obtained after
100 iterations. This illustrates Lemma 3.5, since even if the density is very close to zero,
the number of time iterations remains bounded. In Figure 3 we display the minimal
density obtained in the vacuum approximation when using both first-order schemes. Let
us note that that the minimal density obtained with the kinetic scheme is of the order of
magnitude 10−15 while the minimal density computed by the relaxation scheme is close
to 10−323.

-0,5 -0,25 0 0,25 0,5

0

0,5

0,25

density

-0,4 -0,2 0 0,2 0,4

0

0,4
velocity

FIG. 2. Comparison of first-order results of the vacuum experiment, showing analogously to
the first figure the exact solution (lines) together with the numerical results obtained by the
kinetic scheme (boxes) and the proposed relaxation scheme (circles).

We now employ as indicated the second-order MUSCL-type relaxation scheme, com-
paring it with the second-order kinetic scheme from [9]. The second-order approximate
solution is displayed in Figure 4. As expected, we observe the effect of smaller dissi-
pation compared to the first-order schemes when approximating the discontinuities. In
Figure 5, the minimal density and the L1-error for the schemes of interest are displayed.
Let us note that the L1-error graphs involve straight lines with the slopes 0.5 and 1 for
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0 1 2 3 4 5 6 7
time

-400

-300

-200

-100

0

Lo
g(

m
in

(rh
o)

)

kinetic scheme
relaxation scheme

FIG. 3. Logarithmic minimal density versus time in the vacuum experiment, showing the
numerical results obtained by the kinetic scheme (boxes) and the relaxation scheme (circles).

-0,4 -0,2 0 0,2 0,4
0

0,5

0,25

density

-0,4 -0,2 0 0,2 0,4

0

0,4
velocity

FIG. 4. Comparison of second-order results of the vacuum experiment, showing the exact
solution (lines) together with the numerical results obtained by the kinetic scheme (boxes) and
the relaxation scheme (circles).
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relaxation scheme

-3 -2,5 -2
Log( dx )

-3,5

-3

-2,5

-2

-1,5

Lo
g(

 || 
rh

o_
nu

m
 - 

rh
o_

ex
a 

|| )

kinetic order 1
relaxation order 1
kinetic order 2
relaxation order 2

FIG. 5. Logarithmic minimal density obtained using the discussed second-order schemes versus
time and logarithmic L1-error versus logarithmic space increment ∆x in the vacuum experiment.

the first-order and second-order schemes, respectively: this coincides with the expected
convergence rates (given by

√
∆x) when approximating discontinuous solutions.
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The last 1-D numerical experiment is devoted to the delta-shock. In Figure 6, we
display the numerical result obtained at the time t = 0.5 for the following initial data:

ρ0(x) =
{

1 if x < −0,
0.25 if x > 0,

u0(x) =
{

1 if x < 0,
0 if x > 0.

A delta-shock is immediately developed and the shock speed is 2/3. Both the numerical
schemes are able of capturing the delta-shock with the correct propagation speed.

(a)

!0.5 !0.25 0 0.25 0.5
0

5

10

000000000000000000

density

!0.5 !0.25 0 0.25 0.5
0

1

0.5

velocity

(b)

-0,4 -0,2 0 0,2 0,4
0

10

20

30
density

-0,4 -0,2 0 0,2 0,4
0

1

0,5

velocity

FIG. 6. Comparison of (a) first-order and (b) second-order numerical approximations for the
delta-shock experiment, showing the numerical results obtained by the corresponding kinetic
schemes (boxes) and the relaxation schemes (circles), respectively.

The last numerical experiment we have considered in the present paper is devoted to
a bidimentional simulation. From (1.1), we recall that the 2-D pressureless gas dynamics
equations read as follows:






∂tρ+ ∂xρu + ∂yρv = 0, (x, y) ∈ R2, t > 0,
∂tρu + ∂xρu2 + ∂yρuv = 0,
∂tρv + ∂xρuv + ∂yρv2 = 0.

(4.1)
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FIG. 7. Initial density distribution.

We adopt a standard 2-D extension procedure and we refer the reader to Godlewski
and Raviart [16] or LeVeque [19] for further details. We briefly recall that the variable
u = (ρ, ρu, ρv)T is updated as follows:

un+1
i = un

i − ∆t

Ai

∑

i∈ϑ(i)

φij ,

where Ai is the area of the corresponding cell and where ϑ(i) denotes the set of neighbor-
ing cells for the cell i. The numerical flux φij is computed from the approximate solution
of the Riemann problem given at the cell interface:

φij = φ(nij ,ui,uj),

where nij is the normal to the cell interface between the cells i and j which points from
cell i to cell j.

The physical model considered here is derived from large scale structure simulations;
for instance, see the work of Vergassola, Dubrulle, Frisch and Noullez [23] or the work of
Zeldovich [26]. In fact, the system (4.1) coincides with the Zeldovich approximation in
the absence of the expansion of the universe and the gravitational potential. We consider
well-prepared initial data where ρ0 is a Gaussian field, see Figure 7, and where the initial
velocity vector is the solution of






u = −∂xφ,
v = −∂yφ,
∆φ = 4ΠG(ρ− ρb) over Ω,
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FIG. 8. A typical intermediate state obtained by the 2-D version of our relaxation method.
We clearly observe the arising filament structure within the density distribution.

with G > 0 a constant and ρb =
∫
Ω ρ dxdy. All boundary conditions are assumed to be

periodic.
In Figures 8 and 9, we observe the evolution of the large-scale structures. The numeri-

cal results are analogous to results obtained in cosmological applications, see for instance
[23]. However, in the present work, no cosmological interpretations are proposed since
the expansion and gravitational potential have been omitted.

The second author would like to thank the Deutsche Forschungsgemeinschaft
(DFG) for supporting his research by grant No. BR 2245/1-1.
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