
A Relaxed Algorithm for Online Matrix Inversion

Arne Storjohann
astorjoh@uwaterloo.ca

David R. Cheriton School of Computer Science
University of Waterloo, Ontario, Canada

N2L 3G1

Shiyun Yang
shiyyang@amazon.com

Amazon Canada Fullfillment Services Inc
1071 Mainland St, Vancouver, BC, Canada

V6B 5P9

ABSTRACT

We consider a variation of the well known problem of com-
puting the unique solution to a nonsingular system Ax = b of
n linear equations over a field K. The variation assumes that
A has generic rank profile and requires as output not only
the single solution vector A−1b ∈ K

n×1, but rather the solu-
tion to all leading principle subsystems. Most importantly,
the rows of the augmented system

[
A b

]
are given one at

a time from first to last, and as soon as the next row is given
the solution to the next leading principal subsystem should
be produced. We call this problem OnlineSystem. The
obvious iterative algorithm for OnlineSystem has a cost
in terms of field operations that is cubic in the dimension
of A. In this paper we introduce a relaxed representation
for the inverse and show how to obtain an algorithm for
OnlineSystem that allows us to incorporate matrix multi-
plication. As an application we show how to introduce fast
matrix multiplication into the inherently iterative algorithm
for row rank profile computation presented previously by the
authors.

Categories and Subject Descriptors

I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—algebraic algorithms, analysis of algorithms; G.4
[Mathematical Software]: Algorithm Design and Analy-
sis; F.2.1 [Analysis of Algorithms and Problem Com-

plexity]: Numerical Algorithms and Problems—computa-
tions in finite fields, computations on matrices

General Terms

Algorithms

Keywords

Linear system; finite field; relaxed algorithm; rank profile

1. INTRODUCTION
Consider the well known problem of computing the solu-

tion to a nonsingular system of linear equations over a finite

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSAC’15, July 6–9, 2015, Bath, United Kingdom.

Copyright c© 2015 ACM 978-1-4503-3435-8/15/07 ...$15.00.

DOI: http://dx.doi.org/10.1145/2755996.2756672.

field K. The problem takes as input a nonsingular matrix
A ∈ K

n×n together with a right hand side vector b ∈ K
n×1,

and requires as output the solution x := A−1b ∈ K
n×1 to

the linear system Ax = b. For an unstructured and dense
input matrix A, the fastest known solutions (in terms of
asymptotic complexity [1, 8] and in practice [2, 4, 5]) all re-
duce the problem to matrix multiplication by computing a
decomposition of A or the inverse of A as the product of
structured matrices, typically upper / lower triangular and
permutation matrices (see [9] for a survey).

In this paper we consider an online version of the non-
singular linear system solving problem. Consider the aug-
mented linear system

[
A b

]
∈ K

n×(n+1). We can de-
compose this augmented system for s = 1, 2, . . . , n as

[
A b

]
=

[
As ∗ bs
∗ ∗ ∗

]

∈ K
n×(n+1),

where As ∈ K
s×s is the principal leading s×s submatrix of A

and bs ∈ K
s×1 is the first s entries of b. Moreover, we assume

that A has generic rank profile, that is, all of A1, A2, . . . , An

are nonsingular. In this paper we show how to compute the
sequence of solutions A−1

1 b1, A
−1
2 b2, . . . , A

−1
n bn in an online

fashion in time O(nω), where 2 < ω ≤ 3 is the exponent of
matrix multiplication. By online we mean that the rows of
the augmented system are given one at a time, from first to
last: as soon as row s is given, the solution to A−1

s bs should
be produced. We call this problem OnlineSystem. Online
algorithms for computer algebra were popularized by van
der Hoeven with the introduction of online algorithms for
formal power series multiplication [7,13]. Recently, an online
algorithm for polynomial matrix order basis computation
has been proposed [6].

Our interest in studying problem OnlineSystem is mo-
tivated by the following two problems that take as input an
A ∈ K

n×m of arbitrary rank.

• MaxIndependentRowSet: Compute the rank r and
a list of r row indices such that these rows are linearly
independent.

• RowRankProfile: Compute the rank r and the lex-
icographically minimal list [i1, i2, . . . , ir] of row indices
of A such that these rows are linearly independent.

In a surprising result, Cheung, Kwok and Lau [3] give a
Monte Carlo algorithm for MaxIndependentRowSet with

running time only (rω + n+m+ |A|)1+o(1) field operations
in K. Here, |A| denotes the number of nonzero entries of A
and ω is the exponent for matrix multiplication. The fol-
lowing year, using an alternative technique [12], a Monte

Carlo algorithm for RowRankProfile was presented that

has running time (r3 + n+m+ |A|)
1+o(1)

operations in K.
The algorithm for RowRankProfile is inherently itera-
tive: the indices i1, i2, . . . , ir are computed in succession,
and each iteration requires the solution of the next principal
subsystem of a linear system comprised of rank profile rows
of A found so far. The main bottleneck to introduce matrix
multiplication into the algorithm for RowRankProfile is
to find a solution to problem OnlineSystem that allows the
use of fast matrix multiplication; this paper presents such
an algorithm.

The rest of the paper is organized as follows. In Sec-
tion 2 we show how problem OnlineSystem can be reduced
to problem OnlineInverse: computing a representation of
A−1

s as the product of 2s structured matrices, with the de-
composition of A−1

s being produced as soon as row s of
A is given, s = 1, 2, . . . , n. Both problem OnlineSystem

and OnlineInverse are defined precisely in Section 2. In
Section 3 we recall the obvious iterative algorithm for On-

lineInverse that has cost O(n3). In Section 4 we propose a
relaxed representation of the inverse of a matrix. Instead of
representing A−1

s as the product of 2s structured matrices,
we define a compressed representation of A−1

s as the product
of O(log s) structured matrices. Finally, Section 5 designs
the algorithm for solving problem OnlineInverse in time
O(nω). Our analysis assumes ω > 2. Section 6 shows how
to incorporate the fast algorithm for OnlineSystem to ob-
tain a fast algorithm for rank profile computation. Section 7
concludes.

Following [12], throughout the paper we use the following
notation. For a list P = [i1, i2, . . . , ik] of distinct row indices
and Q = [j1, j2, . . . , jℓ] of distinct column indices, we write
AP to denote the submatrix of A consisting of rows P, AQ

to denote the submatrix consisting of columns Q, and AP
Q to

denote the submatrix consisting of the intersection of rows
P and columns Q of A.

2. INVERSE DECOMPOSITION
Let A ∈ K

n×n and b ∈ K
n×1 be given. Let As denote the

leading s × s submatrix of A and bs ∈ K
s×1 be the vector

containing the first s elements of b as shown in the following
augmented system.

[
A b

]
=

As bs

Assume A has generic rank profile, that is, As is nonsingular
for 1 ≤ s ≤ n. In this section we consider the following
problem.

• OnlineSystem: Let A ∈ K
n×n with generic rank

profile and b ∈ K
n×1 be given. Suppose the rows of

the augmented system
[
A b

]
are given one at a

time, from first to last. As soon as rows 1, 2, . . . , s of
[
A b

]
are given, produce the subsystem solution

A−1
s bs, for s = 1, 2, . . . , n.

Because A is assumed to have generic rank profile, Gaussian
elimination without pivoting produces a unique decompo-
sition A−1 = Pn · Pn−1 · · ·P1, where Ps = Rs · Ls can be
represented as the product of the pair of structured matri-
ces Rs and Ls, 1 ≤ s ≤ n. The matrices Rs and Ls will be
defined precisely in the next section. For now, consider the

following example which shows the structure of matrices in
the decomposition for n = 6.

A−1 =

R6

1 ∗
1 ∗
1 ∗
1 ∗
1∗
∗

L6

1
1
1
1
1

∗∗∗∗∗1

︸ ︷︷ ︸

P6

R5

1 ∗
1 ∗
1 ∗
1∗
∗
1

L5

1
1
1
1

∗∗∗∗1
1

︸ ︷︷ ︸

P5

· · · (1)

Moreover, PsPs−1 · · ·P1 = diag(A−1
s , In−s) for 1 ≤ s ≤ n.

Thus, computing the sequence

A−1
1 b1, A

−1
2 b2, A

−1
3 b3, . . . , A

−1
n bn (2)

can be accomplished by computing the sequence

P1b, P2P1b, P3P2P1b, . . . , Pn · · ·P3P2P1b. (3)

This motivates the definition of the following problem.

• OnlineInverse: Suppose the rows of an A ∈ K
n×n

with generic rank profile are given one at a time, from
first to last. As soon as rows 1, 2, . . . , s of A are given,
the matrix Ps = Rs · Ls should be produced, for s =
1, 2, . . . , n. Note that Ps should be represented as the
unevaluated product of the two structured matrices Rs

and Ls.

On the one hand, if the representation of P1, P2, . . . , Pn as
the pairs of multiplicands R1 · L1, R2 · L2, . . . , Rn · Ln is
known, the sequence shown in (3) can be computed in O(n2)
field operations. On the other hand, a lower bound on the
cost of solving OnlineInverse is Ω(n2) since this a lower
bound for the total size (number of field elements) to write
down the sequence P1, P2, . . . , Pn. It follows that any algo-
rithm for OnlineInverse immediately gives an algorithm
for OnlineSystem that supports the same running time
bound. For the rest of this paper, we consider algorithms to
solve OnlineInverse.

3. FULL DECOMPOSITION
For 1 ≤ s ≤ n, let

As =

[
As−1 us

vs ds

]

∈ K
s×s,

where us ∈ K
(s−1)×1, vs ∈ K

1×(s−1), and ds ∈ K. Suppose
we have computed a decomposition of A−1

s−1 for some s > 0.
Then Gaussian elimination produces a pair of s×s matrices
L̄s and R̄s such that A−1

s is equal to

R̄s[
Is−1 −A−1

s−1us

(ds − vsA
−1
s−1us)

−1

] L̄s[
Is−1

−vs 1

] [
A−1

s−1

1

]

. (4)

The exact formula for A−1
s could be derived by multiply-

ing together the expression for A−1
s in (4). However, the

algorithms we describe in this paper do not compute A−1
s

explicitly at each stage, but rather keep it as the prod-
uct of structured matrices. For example, applying (4) for
s = 1, 2, . . . , n gives the following full decomposition for the

inverse of A = An.

A−1
n = Pn ·

[
A−1

n−1

1

]

= Pn · Pn−1 ·

[
A−1

n−2

I2

]

...

= Pn · Pn−1 · · ·P1,

where Ps ∈ K
n×n, 1 ≤ s ≤ n, is the product of two struc-

tured matrices:

Ps = Rs · Ls

=

[
R̄s

In−s

]

·

[
L̄s

In−s

]

=

Is−1

In−s

 ·

Is−1

1
In−s

 , (5)

with R̄s and L̄s as in (4). Thus Rs and Ls are the iden-
tity matrices, except for possibly the column vector and row
vector indicated by the rectangles in Rs and Ls, respectively.

Naturally, equation (4) gives an iterative approach to solve
problem OnlineInverse. Once the matrix×vector product
A−1

s−1us has been computed, the representation Ps = Rs ·Ls

can be computed in a furtherO(s) field operations. Comput-
ing A−1

s−1us is equivalent to premultiplying us by the leading
principal (s − 1) × (s − 1) submatrices of P1, P2, · · · , Ps−1

sequentially at a cost of 4s2+O(s) field operations. Overall,
all the pairs of multiplicands Ps = Rs · Ls, 1 ≤ s ≤ n, can
be computed sequentially in 2n3 + O(n2) field operations.
In the next two sections we show how to incorporate matrix
multiplication to solve problem OnlineInverse in overall
time O(nω).

4. RELAXED DECOMPOSITION
To store each A−1

s explicitly as a dense s × s matrix at
each stage is too expensive, but the representation

diag(A−1
s , In−s) = Ps · Ps−1 · · ·P1

as the product of s pairs of structured multiplicands is too
lazy: both of these approaches lead to an algorithm with
running time Ω(n3). In this section, we present a relaxed
inverse decomposition for A−1

s such that, at stage s, after
the first s rows of A are given, A−1

s is represented as the
product of HammingWeight(s) ≤ ⌈log s⌉ pairs of structured
multiplicands, where HammingWeight(s) is the number of
1s in the binary representation of s.

Lemma 1. (Rj ·Lj) · (Rj−1 ·Lj−1) · · · (Ri ·Li) can be ex-
pressed as the product Rj∼i ·Lj∼i of two structured matrices
with the shape

Rj∼i =

Ii−1

· · ·
. . .

In−j

(6)

and

Lj∼i =

Ii−1

1
...

. . .

1
In−j

, (7)

where the column dimension of the submatrix indicated by
the rectangle in Rj∼i and the row dimension of the submatrix
indicated by the rectangle in Lj∼i are both j − i+ 1.

Proof. Decompose

Aj =

[
Ai−1 U
V D

]

where U ∈ K
(i−1)×(j−i+1), V ∈ K

(j−i+1)×(i−1), and D ∈
K

(j−i+1)×(j−i+1), and consider the block case of (4). Block
Gaussian elimination produces a pair of j× j matrices R̄j∼i

and L̄j∼i such that

A−1
j = R̄j∼iL̄j∼i

[
A−1

i−1

Ij−i+1

]

,

where

R̄j∼i =

[
Ii−1 −A−1

i−1U

(D − V A−1
i−1U)−1

]

and

L̄j∼i =

[
Ii−1

−V Ij−i+1

]

.

The augmented matrices

Rj∼i = diag(R̄j∼i, In−j)

and

Lj∼i = diag(L̄j∼i, In−j)

have the shape shown in (6) and (7), respectively. Finally,
note that both

(Rj∼i · Lj∼i)

[
A−1

i−1

In−i+1

]

and

(Rj · Lj) · (Rj−1 · Lj−1) · · · (Ri · Li)

[
A−1

i−1

In−i+1

]

are the inverse of
[

Aj

In−j

]

.

The result follows by the uniqueness of the inverse.

Remark 2. Lemma 1 does not hold for general matrices
(R∗ · L∗) of the shape shown in (5). But it does hold in the
case where the pairs of multiplicands (R∗ · L∗) are arising
from Gaussian elimination of the same matrix A.

Definition 3. Pj∼i denotes the unevaluated product of
the pair of matrices Rj∼i · Lj∼i with the shape as shown
in (6) and (7). The size of Pj∼i is j − i+ 1, the number of
pairs of multiplicands in the product.

Lemma 1 defines Pj∼i in terms of the input matrix Aj . But
since Pj∼i = (Rj ·Lj)·(Rj−1·Lj−1) · · · (Ri·Li) it is possible to

define Pj∼i in terms of the pairs of structured multiplicands
Rj · Lj , Rj−1 · Lj−1, . . . , Ri · Li. We do not give such a
formula for general Pj∼i, but we will give the formula for
a special case later. To have a basic idea we remark that
the submatrix indicated by the rectangle in Lj∼i is equal to

−A
[i,...,j]

[1...,i−1]. The following example gives the formula for a

Pj∼i of size 2.

Example 4. Let P̄j and P̄j−1 be the leading j × j prin-
cipal submatrix of Pj and Pj−1. Let

P̄j =

Ij−2 a
1 b

c

 ·

Ij−2

1
d e 1

 ,

P̄j−1 =

Ij−2 f
g

1

 ·

Ij−2

h 1
1

 ,

and

M =
[
d e

]
[

f
g

]

.

Then P̄j∼j−1 can be expressed as the product of two struc-
tured matrices as follows:

P̄j∼j−1 =

R̄j∼j−1

Ij−2 aM + f a
bM + g b
cM c

 ·

L̄j∼j−1

Ij−2

h 1
d 1

 .

As shown in Section 3, diag(A−1
s , In−s) can be expressed

as the product of s pairs of structured multiplicands of size 1:

diag(A−1
s , In−s) = Ps · Ps−1 · · ·P1.

Based on Lemma 1, we now introduce a relaxed/lazy repre-
sentation for diag(A−1

s , In−s), denoted by (As)
−1
L , that ex-

presses A−1
s as the product of at most log s pairs of struc-

tured multiplicands. We first give a few examples of the
relaxed representation before giving a precise definition.

Example 5. The relaxed representation of A−1
s for 1 ≤

s ≤ 8.

s (As)
−1
L

1 = (1)2 P1∼1

2 = (10)2 P2∼1

3 = (11)2 P3∼3 · P2∼1

4 = (100)2 P4∼1

5 = (101)2 P5∼5 · P4∼1

6 = (110)2 P6∼5 · P4∼1

7 = (111)2 P7∼7 · P6∼5 · P4∼1

8 = (1000)2 P8∼1

The relaxed inverse decomposition for s = 6, 7, 8 are shown
below. Note that for each of these examples we assume

n = s, to avoid having to augment with In−s.

(A6)
−1
L =

R6∼5

1 ∗ ∗
1 ∗ ∗
1 ∗ ∗
1 ∗ ∗
1 ∗ ∗
1 ∗ ∗

 ·

L6∼5

1
1
1
1

∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ 1

︸ ︷︷ ︸

P6∼5

×

R4∼1

∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ 1

1
1

 ·

L4∼1

1
1
1
1
1
1

︸ ︷︷ ︸

P4∼1

(A7)
−1
L =

R7

1 ∗
1 ∗
1 ∗
1 ∗
11 ∗
1 1∗
1 ∗

 ·

L7

1
1
1
1
1
1

∗∗∗∗∗∗1

︸ ︷︷ ︸

P7

×

R6∼5

1 ∗∗
1 ∗∗
1 ∗∗
1∗∗
1∗∗
1∗∗
1 1

 ·

L6∼5

1
1
1
1

∗∗∗∗1
∗∗∗∗ 1

1 1

︸ ︷︷ ︸

P6∼5

×

R4∼1

∗∗∗∗1
∗∗∗∗1
∗∗∗∗1
∗∗∗∗1

1
1

1 1

 ·

L4∼1

1
1
1
1
1
1

1 1

︸ ︷︷ ︸

P4∼1

(A8)
−1
L =

R8∼1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 ·

L8∼1

1
1
1
1
1
1
1
1

︸ ︷︷ ︸

P8∼1

To understand the following formal definition of the relaxed
inverse, consider the case s = 7 and diag(A−1

7 , In−7). The
full inverse decomposition is

diag(A−1
7 , In−7) = P7 · P6 · P5 · P4 · P3 · P2 · P1

while the relaxed/lazy representation is

diag(A−1
7 , In−7) = P7∼7 · P6∼5 · P4∼1.

The structure of the relaxed decomposition is determined as
follows. The largest power of 2 that is less than or equal to
7 is 4, and thus in the relaxed representation the rightmost
four pairs P4 ·P3 ·P2 ·P1 of multiplicands of size 1 are com-
pressed into the single pair of multiplicands P4∼1 of size 4.
Continuing, the largest power of 2 that is less than or equal
to 7 − 4 is 2, so P6 · P5 is compressed to P6∼5. Finally, the
largest power of 2 that is less than or equal to 7 − 4 − 2 is
1, so P7 = P7∼7 is left alone.

Definition 6. Decompose a positive integer s = 2i1 +
2i2 + · · · + 2iℓ in binary representation with i1 > i2 >

· · · > iℓ ≥ 0. The relaxed/lazy representation of the inverse
(As)

−1 is defined as

(As)
−1
L =

(

P
s∼2i1+2i2+···+2

iℓ−1+1

)

· · · ·

· · · ·
(
P2i1+2i2∼2i1+1

)
· (P2i1∼1) .

Note that when s is a power of two, we have s = 2i1 and

(As)
−1
L = P2i1∼1 = R2i∼1 · L2i∼1 = R2i∼1,

so A−1
s is explicitly computed in this case. Otherwise, the

relaxed representation (As)
−1
L is comprised of the product

of a sequence of pairs of structured multiplicands P∗∼∗. Ob-
serve that according to Definition 6 the sizes of the P∗∼∗

from right to left are 2i1 > 2i2 > · · · > 2ℓ.
In the next section we will give algorithms for the online

algorithm that starts with R = (A0)
−1
L (which trivially con-

sists of zero pairs of structured multiplicands) and updates
R so that

R = (A1)
−1
L ,R = (A2)

−1
L ,R = (A3)

−1
L ,

It turns out — and may already be clear from Example 5 —
that the construction of (As)

−1
L from (As−1)

−1
L and Ps∼s

may require the combinations of two adjacent (P∗∼∗) of
equal size. In particular, we will need to compute the com-
pression

Pj∼j−2m+1 = Pj∼j−m+1 · Pj−m∼j−2m+1, (8)

where both Pj∼j−m+1 and Pj−m∼j−2m+1 are of sizem. Since
this computation is important in deriving the cost of the re-
laxed approach, we give the formula and derive the cost for
computing the left hand side of (8) given the two pairs of
multiplicands on the right. For brevity, let P2 = R2 · L2,
P1 = R1 ·L1 and P = R ·L denotes the leading j× j princi-
pal submatrix of Pj∼j−m+1, Pj−m∼j−2m+1 and Pj∼j−2m+1

respectively. (Note that we are “overloading” the notation
P2, R2, L2, ..., but only temporarily in this example.) Then
equation (8) is the block case of Example 4. We have

P =

R

Ij−2m

R̄
. . .

·

L

Ij−2m

Ij−2m . . . 1

L̄
. . .

1

=

R2

Ij−m

R̄2

. . .

·

L2

Ij−m

1

L̄2

. . .

1

︸ ︷︷ ︸

P2

×

R1

Ij−2m

R̄1

. . .

Ii

·

L1

Ij−2m

L̄1

. . .

1
Ii

︸ ︷︷ ︸

P1

where

L̄ =

[
L̄1

(L̄2)[1,...,j−2m]

]

∈ K
2m×(j−2m) (9)

and R̄ ∈ K
j×2m can be computed by solving

R = (R2L2R1L1)L
−1

to obtain

R̄ =

[

R̄2(L̄2R̄1) +

[
R̄1

0

]

R̄2

]

. (10)

Theorem 7. There exists an algorithm EqualSizeCom-

press that takes as input the two pairs of multiplicands
Pj∼j−m+1, Pj−m∼j−2m+1 ∈ K

n×n, both with size m, and re-
turns as output the single pair of multiplicands Pj∼j−2m+1 ∈
K

n×n of size 2m such that

Pj∼j−2m+1 = Pj∼j−m+1 · Pj−m∼j−2m+1.

The cost of the algorithm is O(nmω−1) field operations in K.

Proof. See (9) and (10) for the formula for computing
the pair of multiplicands Pj∼j−2m+1. Computing L is free
since L̄ can be read off from L̄2 and L̄1 directly. The domi-
nating cost of computing R is to compute R̄2(L̄2R̄1), where

R̄2 ∈ K
j×m, L̄2 ∈ K

m×(j−m) and R̄1 ∈ K
(j−m)×m. The

product of two m × m matrix can be computed in cmω

field operations, for some fixed constant c. Dividing R̄2, L̄2,
and R̄1 into at most ⌈j/m⌉ blocks of dimension bounded by
m×m, L̄2R̄1 can be computed in ⌈j/m⌉cmω +O(mj) field
operations and R̄2(L̄2R̄1) takes another ⌈j/m⌉cmω+O(mj)
field operations. The result now follows by noting that
j ≤ n.

5. RELAXED ONLINE INVERSION
The iterative approach to solve problem OnlineInverse

has overall cost 2n3 + O(n2). In this section we show how
to incorporate matrix multiplication to solve the problem
OnlineInverse in O(nω) field operations in K. We adopt
two ideas used in relaxed [7] and online [6] algorithms.

The first idea is to relax, that is, to use the relaxed rep-
resentation (As)

−1
L for A−1

s as in Definition 6. The rep-
resentation (As)

−1
L for s = 1, 2, . . . , n is constructed in an

incremental fashion. Let s > 0 and suppose (As−1)
−1
L and

Ps are known. Since (As)
−1 = Ps(As−1)

−1
L , the relaxed rep-

resentation (As)
−1
L is computed by compressing the pair of

multiplicands Ps (of size one) and the first pair of multipli-
cands of (As−1)

−1
L into a single pair if they have equal size,

repeating if required. Algorithm 1 outlines the algorithm
that starts with R = (As−1)

−1
L and Ps and updates R so

that R = (As)
−1
L .

Algorithm 1 UpdateRelaxedInverse[R](Ps)

Require: R = (As−1)
−1
L , Ps ∈ K

n×n

Ensure: R is updated so that R = (As)
−1
L

1: P := Ps;
2: Pl := first pair of multiplicands in R;
3: while (size of P = size of Pl) do
4: P := EqualSizeCompress(P, Pl);
5: Remove Pl from R;
6: Pl := first pair of multiplicands in R;
7: end while

8: R := P · R;

Note that when s is odd, then by Definition 6 the first
pair of multiplicands in (As−1)

−1
L has size greater than one,

so the while loop is never executed. For even values of s

the while loop is executed at least once, possibly as many as
log s times.

Example 8. If R = (A7)
−1
L , the steps to update to R =

(A8)
−1
L are as follows.

(A8)
−1
L = P8 · (A7)

−1
L

= P8 · (P7 · P6∼5 · P4∼1)

= P8∼7 · P6∼5 · P4∼1 (11)

= P8∼5 · P4∼1 (12)

= P8∼1 (13)

Three compressions are required:

• P8∼7 := EqualSizeCompress(P8∼8, P7∼7) of size 1 to 2
in (11),

• P8∼5 := EqualSizeCompress(P8∼7, P6∼5) of size 2 to 4
in (12), and

• P8∼1 := EqualSizeCompress(P8∼5, P4∼1) of size 4 to 8
in (13).

The second idea is to anticipate computations. To make it
clear that rows of A are given one at a time, we use a work
matrix B for the anticipated computations. B is initialized
to be the n × n zero matrix. At stage s > 0, row A[s] is
copied to row B[s]. At stage s the first s rows of the input
matrix A are defined, and the (untransformed) input matrix
can be decomposed as

A =

As−1 us A
[1...s−1]

[s+1...n]

vs ds A
[s]

[s+1...n]

0

∈ K
n×n. (14)

Recall that the dominant cost of computing the pair of mul-
tiplicands Ps = Rs ·Ls arises from computing the matrix ×
vector product A−1

s−1us as shown in (5). At stage s−1, when

(As−1)
−1
L has been computed, we do not apply A−1

s−1 to the
single column us of A, which would be sufficient to compute
the pair of multiplicands Ps at the next stage. Rather, we
anticipate computations by applying the first element Ps∼∗

of the lazy representation (As−1)
−1
L to m columns of the

work matrix B, where m is the size of Ps∼∗. This effectively
incorporates matrix multiplication, and ensures that at the

beginning of stage s we have B
[1,...,s−1]

[s] = (As−1)
−1us. Al-

gorithm 2 computes Ps given row s of A using the work
matrix B and R = (As−1)

−1
L . As a side effect, the algo-

rithm updates the work matrix B as described above and
updates R so that R = (As)

−1
L . The algorithm first checks

whether Ps exists, and reports “FAIL” if not. Detection is
simple: if ds − vs(As−1)

−1us = 0 then Ps does not exist.

Example 9. We consider the computations of the first
four stages of the relaxed online inverse update for A ∈
K

8×8. The following shows the work matrix B with certain

Algorithm 2 ComputeP[R, B](A[s])

Require: R = (As−1)
−1
L and B ∈ K

n×n with B
[1,...,s−1]

[s] =

(As−1)
−1us

Require: row A[s] of nonsingular A ∈ K
n×n

Ensure: R is updated so that R = (As)
−1
L

Ensure: B is updated by copying row A[s] to row B[s] and
applying the first element Ps∼∗ of (As)

−1
L to columns

s+ 1, s+ 2, . . . ,min(s+m,n) of B, where m is the size
of Ps∼∗

Ensure: Ps ∈ K
n×n

1: Copy A[s] to row B[s];

2: if (ds − vsB
[1,...,s−1]

[s] = 0) then

3: return “FAIL”;
4: end if

5: Compute Ps := Rs · Ls using Equation (5);
6: if (s < n) then
7: UpdateRelaxedInverse[R](Ps);
8: Let Ps∼∗ be the first element of (As)

−1
L ;

9: Let m be the size of Ps∼∗;
10: B[s+1,...,min(s+m,n)] := Ps∼∗B[s+1,...,min(s+m,n)];
11: end if ;
12: return Ps;

submatrices highlighted.

1 2 3 4 5 6 7 8

0

. . .

1
2
3
4
5
6
7
8

At stage s = 0, B is initialized to be the 8× 8 zero matrix.
For s = 1, 2, 3, 4, the computations done at each stage are
summarized below.

1. Copy row A[1] to row B[1] and compute P1 = R1 · L1.
Apply P1 to column 2 of B (s area).

2. Copy row A[2] to row B[2] and compute P2 = R2 · L2.
Compress P2 · P1 = P2∼1.
Apply P2∼1 to columns 3, 4 of B (s area).

3. Copy row A[3] to row B[3] and compute P3 = R3 · L3.
Apply P3 to column 4 of B (s area).

4. Copy row A[4] to row B[4] and compute P4 = R4 · L4.
Compress P4 · P3 = P4∼3.
Compress P4∼3 · P2∼1 = P4∼1.
Apply P4∼1 to columns 5,6,7,8 of B (s area).

At stages 2k = 1, 2, 4, . . . the explicit inverse has been com-
puted since L2k∼1 = In and R2k∼1 = diag(A−1

2k
, n − 2k).

At the end of stage 3, though, we only have the relaxed
representation diag(A−1

3 , n− 3) = P3 · P2∼1.

The relaxed algorithm to solve problem OnlineInverse

is thus to initialize R = (A0)
−1
L , initialize B to be the n× n

zero matrix, and call Algorithm 2 ComputeP[R, B](A[s]) for
s = 1, 2, . . . , n.

Theorem 10. There exists a relaxed algorithm to solve
problem OnlineInverse in O(nω) field operations in K.

Proof. For simplicity, assume n is a power of two; other-
wise, we can augment A as diag(A, I∗). There are two parts
of the cost: (1) computing Ps and updating B; (2) updating
(As−1)

−1
L to (As)

−1
L using Ps.

For part (1), the dominant cost is to perform the update
to B according to step 10 of Algorithm 2. At each stage s,
step 10 costs O(s ·mw−1) field operations in K, where m is
the size of the first element of (As)

−1
L . From Definition 6, m

is the highest power of 2 that is less than or equal to s. Note
that for s = n no update to B is required. The sequence of
sizes m for stages s = 1, 2, . . . , n− 1 stages are given by

(2ν2(s))n−1
s=1 = 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, . . . , 2, 1,

where ν2(s) is the highest power of two dividing s (sequence
A00659 [11]). Note that the number 2i in the sequence ap-
pears n/2i+1 times. For instance, 1 appears every other
number, 2 appears every four numbers, etc. For some abso-
lute constant c, the total cost of all the updates to B is thus
bounded by

(logn)−2
∑

i=0

n

2i+1

(

cn(2i)ω−1
)

=
cn2

2

(logn)−2
∑

i=0

2i(ω−2)

=
cn2

2

(

1 + 2ω−2 + 4(ω−2) + · · ·+ (n/4)ω−2
)

=
cn2

2

(
2(ω−2)(logn−1) − 1

2ω−2 − 1

)

=
cn2

2

(
(n/2)ω−2 − 1

2ω−2 − 1

)

=
cn2

2
O(nω−2)

= O(nω).

Now consider part (2). The number of compressions done
at stage s is equal to the maximal t ∈ Z such that 2t | s.
Thus some stages are more costly than others. For example,
when s is odd, t = 0 and no compressions are performed.
When s is a power of 2, t = log2 s compressions are required
(see Figure 1, where compressions performed are highlighted
in dashed lines).

We consider the overall cost for 1 ≤ s ≤ n as shown
in Figure 2. Nodes in the inverse tree are computed in a
bottom-up fashion. We label level l = 0, 1, . . . , log n from
leaf up to root level. For l > 0, nodes at level l can be
computed using Theorem 7 with m = 2l−1. The number of
nodes at level l is n/2l. Overall, the cost of constructing the
whole inverse tree is

logn∑

l=1

(

cn(2l−1)w−1
) n

2l
= O(nω).

The derivation of the closed form for this summation are
omitted since it is similar to the previous summation. The
result follows by adding the cost of both parts.

P8∼1

P4∼1

P2∼1

P1P2

P4∼3

P3P4

P8∼5

P6∼5

P5P6

P8∼7

P7P8

(a) (A5)
−1
L

P8∼1

P4∼1

P2∼1

P1P2

P4∼3

P3P4

P8∼5

P6∼5

P5P6

P8∼7

P7P8

(b) (A8)
−1
L

Figure 1: Examples of relaxed representation up-

date

Corollary 11. There exists an algorithm to solve prob-
lem OnlineSystem in O(nω) field operations in K.

6. APPLICATION TO RANK PROFILE
The algorithm for OnlineInverse allows matrix multi-

plication to be incorporated in the algorithm for row rank
profile presented in [12]. A complete exposition can be found
in [14, Chapter 8] but we sketch the approach here.

• Reduction to matrix of full column rank: Use
the Monte Carlo rank algorithm in [3, Theorem 2.11]
to find a submatrix B of A that consists of s ≤ r
linearly independent columns of A in time

(rω + n+m+ |A|)1+o(1).

Pn∼1

Pn
2
∼1

Pn
4
∼1

...

P2∼1

P1P2

...

...

· · ·

Pn
2
∼

n
4
+1

...

...

· · ·

...

...

· · ·

P
n∼

n
2
+1

P 3n
4

∼
n
2
+1

...

...

· · ·

...

...

· · ·

P
n∼

3n
4

+1

...

...

· · ·

...

Pn∼n−1

Pn−1Pn

Figure 2: Online inverse tree

The algorithm should return s = r with probability at
least 3/4. Provided r = s, the column space of the
resulting matrix is equal to that of A so they must
have the same row rank profile.

• Reduction to matrix generic rank profile: Let
L be a lower triangular Toeplitz matrix L with entries
chosen uniformly and randomly from K. Work with the
unevaluated pair of matrices B ·L. With probability at
least 1−m(m+1)/(2#K) the matrix obtained from the
submatrix comprised of the rank profile columns of B
postmultiplied by L will have generic rank profile [10,
Theorem 2].

• Use a modification of the Monte Carlo rank profile al-
gorithm supporting [12, Theorem 19] to compute the
row rank profile of B · L, where B · L is kept unevalu-
ated. The key observation is that, if v is a linear com-
bination of the rows of B, and we need to compute
the dot product vLu for a column vector u, we can
compute v(Lu) instead of (vL)u: the latter expression
implies we can construct a linear independence oracle
from the rows of the (possibly sparse) B instead of the
(probably dense) BL.

The above approach gives a Monte Carlo algorithm to com-
pute the row rank profile of an arbitrary input matrix in

time (rω + n+m+ |A|)1+o(1) field operations in K.

7. CONCLUSIONS
Our online algorithm for OnlineInverse assumed that

at stage s the first s rows of A comprising the submatrix
A[1···s] be produced, s = 1, 2, . . . , n. The requirement that
the entire row be produced at each stage can be weakened
somewhat. For example, at stage s, it suffices that the first
2 · 2⌊log2 s⌋ ≤ 2s entries of A[1...s] be produced. In other
words, at stage 1 the first 2 entries of the row is required,
at stages 2–3 the first 4 entries of the rows are required, at
stages 4–7 the first 8 entries of the rows are required, etc.

8. REFERENCES
[1] J. Bunch and J. Hopcroft. Triangular factorization

and inversion by fast matrix multiplication.
Mathematics of Computation, 28:231–236, 1974.

[2] Z. Chen and A. Storjohann. A BLAS based C library
for exact linear algebra on integer matrices. In
M. Kauers, editor, Proc. Int’l. Symp. on Symbolic and
Algebraic Computation: ISSAC’05, pages 92–99. ACM
Press, New York, 2005.

[3] H. Y. Cheung, T. C. Kwok, and L. C. Lau. Fast
matrix rank algorithms and applications. Journal of
the ACM, 60(5):733–751, 2013. Article No. 31.

[4] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi,
B. Hovinen, E. Kaltofen, B. D. Saunders, W. J.
Turner, and G. Villard. LinBox: A generic library for
exact linear algebra. In A. J. Cohen and N. Gao, X.-S.
andl Takayama, editors, Proc. First Internat.
Congress Math. Software ICMS 2002, Beijing, China,
pages 40–50, Singapore, 2002. World Scientific.

[5] J.-G. Dumas, T. Gautier, and C. Pernet. Finite field
linear algebra subroutines. In T. Mora, editor, Proc.
Int’l. Symp. on Symbolic and Algebraic Computation:
ISSAC’02, pages 63–74. ACM Press, New York, 2002.

[6] P. Giorgi and R. Lebreton. Online order basis
algorithm and its impact on block Wiedemann
algorithm. In Proc. Int’l. Symp. on Symbolic and
Algebraic Computation: ISSAC’14. ACM Press, New
York, 2014.

[7] J. van der Hoeven. Relax, but don’t be too lazy.
Journal of Symbolic Computation, 36(6):479–542,
2002.

[8] O. Ibarra, S. Moran, and R. Hui. A generalization of
the fast LUP matrix decomposition algorithm and
applications. Journal of Algorithms, 3:45–56, 1982.

[9] C.-P. Jeannerod, C. Pernet, and A. Storjohann.
Rank-profile revealing Gaussian elimination and the
CUP matrix decomposition. Journal of Symbolic
Computation, 56:56–58, 2013.

[10] E. Kaltofen and B. D. Saunders. On Wiedemann’s
method of solving sparse linear systems. In Proc.
AAECC-9, Lecture Notes in Comput. Sci., vol. 539,
pages 29–38, 1991.

[11] N. J. A. Sloane. The on-line encyclopedia of integer
sequences. Notices of the American Mathematical
Society, 50(8):912–915, 2003.

[12] A. Storjohan and S. Yang. Linear independence
oracles and applications to rectangular and low rank
linear systems. In Proc. Int’l. Symp. on Symbolic and
Algebraic Computation: ISSAC’14. ACM Press, New
York, 2014.

[13] J. van der Hoeven. Lazy multiplication of formal
power series. In W. W. Küchlin, editor, Proc. Int’l.
Symp. on Symbolic and Algebraic Computation:
ISSAC’97, pages 17–20. ACM Press, New York, 1997.

[14] S. Yang. Algorithms for fast linear system solving and
rank profile computation. Master’s thesis, David
R. Cheriton School of Computer Science, University of
Waterloo, 2014.

	Introduction
	Inverse decomposition
	Full decomposition
	Relaxed decomposition
	Relaxed online inversion
	Application to rank profile
	Conclusions
	References

