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Abstract: In this paper, numerical solution of fractional or-

der Navier-Stokes equations in unsteady viscous fluid flow

is found using q-homotopy analysis transform scheme.

Fractional derivative is considered in Caputo sense. The

proposed technique is a blend of q-homotopy analysis

scheme and transform of Laplace. It executes well in effi-

ciencyandprovides h-curves that showconvergence range

of series solution.

Keywords: Navier-Stokes (N-S) equations; q-homotopy
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1 Introduction

Every phenomenon in fields of Science and Engineer-

ing may be alternately modelled using fractional order

derivatives. It is due to their non-local property, intrin-

sic to several complex systems. They are used as mod-

elling tools in nanotechnology, viscoelasticity, anoma-

lous transport, control theory, financial & biological mod-

elling etc. The most important among such models are

those described by arbitrary order PDEs. Adomian decom-

position [1], homotopy analysis, residual power series,

fractional reduced differential transform, fractional vari-

ational iteration method [2ś4], Laplace homotopy tech-

nique [5], Laplace variational iteration method [6], ho-

motopy perturbation transform method [7], q-homotopy

analysis transformmethod [8ś10], modified trial equation

method [11], new iterative Sumudu transform method [12]

and Laplace perturbationmethod [13] etc. are some impor-
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tant methods which are applied to find numerical solution

of these problems.

N-S equation define motion [14] of incompressible

Newtonian fluid flow extending from enormous scale at-

mospheric motions to lubrication of bearings and express

conservation of mass and momentum. Consider an un-

steady, unidimensional viscous fluid motion in a long cir-

cular pipe. Fluid is initially at rest. Constant pressure gra-

dient alongpipe axis is abruptly imposed to set fluid inmo-

tion. Flow is taken as axially symmetric. It is given in [15]

as,

ρut = −pz + µ

(︂

D2
r u +

1

r
Dru

)︂

, (1)

axis of pipe is z-axis and r is radial direction.

El-Shashed and Salem [16] generalizedN-S Eq. by frac-

tional N-S Eq. of order α, as

Dα
t u = P + µ

(︂

D2
r u +

1

r
Dru

)︂

, 0 < α ≤ 1, (2)

where P = − ∂p
ρ∂z

, α is order of fractional derivative. If

α = 1, fractional N-S Eq. reduces to classical N-S equa-

tion. Here, efficiency of q-HATM is considered to numeri-

cally solve time-fractionalN-S Eq. (2). It is an elegant union

of q-HAM [17, 18] & transform of Laplace. The q-HAM is

actually improvement of parameter q ∈ [0, 1] in HAM to

q ∈
[︀

0, 1
n

]︀

, n ≥ 1. Its authority is its potential of ad-

justing two strong computational methodologies for prob-

ing FDEs. Eq. (2) has been handled by Momani and Odi-

bat by ADM [19], Khan et al. by HPM and variation itera-

tion method [20], Ragab et al. by HAM [21], Kumar et al.

by fractionalmodified Laplace decompositionmethod [22]

and HPTM [23], Wang and Liu by modified reduced differ-

ential transformmethod [24] etc. But it has not been solved

by q-HATM.

2 Preliminaries

Definition2.1.Areal valued function f (t), t > 0 is in space

Cµ , µ ∈ R if ∃ a real number p ( > µ) s.t. f (t) = tp f1 (t) ;f1 ∈

C [0,∞), and is in space Cmµ if fm ∈ Cµ ,M ∈ N
⋃︀

{0} [25,

26].
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Definition 2.2. Caputo fractional derivative [9] of f , f ∈

Cm−1 ,m ∈ N
⋃︀

{0} is

Dα
t f (t) =

⎧

⎪

⎨

⎪

⎩

dn f (t)
dtn

, α = n ∈ N ,
1

Γ(n−α)

∫︀ t

0 (t − τ)
n−α−1f n (τ) dτ,

n − 1 < α < n , n ∈ N .

Definition2.3.Laplace transform (LT) of Caputo fractional

derivative is

L
[︀

Dnα
t u (r, t)

]︀

= snαL [u (r, t)] −

n−1
∑︁

k=0

snα−k−1uk (r, 0) ,

n − 1 < nα ≤ n.

3 Implementation of q-HATM on

Navier-Stokes equation

To illustrate its efficiency, we take a fractional nonlinear

nonhomogeneous PDE,

Dα
t u (r, t) + Ru (r, t) + Nu (r, t) = f (r, t) , n − 1 < α ≤ n,

(3)

whereDα
t u is Caputo fractional derivative, R, N are linear,

nonlinear differential operators, f (r, t) is source term.

Taking LT on Eq. (3) and applying its differentiation

property, we get

L [u (r, t)] −
1

sα

n−1
∑︁

k=0

sα−k−1uk (r, 0)

+
1

sα
{L [Ru (r, t)] + L [Nu (r, t)] − L [f (r, t)]} = 0. (4)

Nonlinear operator N is

N [φ (r, t; q)] = L [φ (r, t; q)] −
1

sα

n−1
∑︁

k=0

sα−k−1φk
(r, t; q)

(︀

0+
)︀

+
1

sα
{L [Rφ (r, t; q)] + L [Nφ (r, t; q)] − L [f (r, t)]} , (5)

here q ∈
[︀

0, 1
n

]︀

and ϕ is real function.

Build homotopy as

(1 − nq) L [φ (r, t; q) − u0 (r, t)] = hqH (r, t)N [φ (r, t; q)] ,

n ≥ 1 (6)

q is embedding parameter, H ≠ 0 is auxiliary function,

h ≠ 0 is auxiliary parameter, u0 is initial guess.

For = 0, 1
n ; following results holds:

φ (r, t;0) = u0 (r, t) , φ

(︂

r, t;
1

n

)︂

= u (r, t) . (7)

As q increases, φ varies from u0 to solution u(r, t).

Expanding φ about q by Taylor’s theorem, we get

φ (r, t; q) = u0 +

∞
∑︁

m=1

um(r, t)q
m , (8)

where

uk (r, t) =
1

k!

∂kφ(r, t; q)

∂qk
|q=0. (9)

With suitable choice of u0, n, ~, H, series (8) con-

verges at q = 1
n , we get

u (r, t) = u0 +

∞
∑︁

m=1

um(r, t)

(︂

1

n

)︂m

(10)

Define vectors as

u⃗m =
{︀

u0 (r, t) , u1 (r, t) , . . . , um(r, t)
}︀

. (11)

Differentiating deformation Eq. (6) m-times w. r. t q,

dividing by m! & taking q = 0, we get

L[um (r, t) − kmum−1 (r, t)] = ~H(r, t)Rm

(︀

u⃗m−1
)︀

. (12)

Using inverse transform, we get

um (r, t) = kmum−1 (r, t) + ~L−1
[︀

H(r, t)Rm

(︀

u⃗m−1
)︀]︀

, (13)

where

Rm

(︀

u⃗m−1
)︀

=
1

(m − 1)!

∂m−1N[φ (r, t; q)]

∂qm−1
|q=0, (14)

and

ks =

{︃

0, s ≤ 1,

n, s > 1.
(15)

4 Numerical Experiments

Now we implement this method on few test problems.

Example 4.1. Consider a time-fractional N-S equation

Dα
t u = D2

r u +
1

r
Dru, 0 < α ≤ 1, (16)

with initial condition

u (r, 0) = r. (17)

Taking transform of Laplace on each side of Eq. (16)

and simplifying, we get

L [u] −
r

s
−

1

sα
L

[︂

D2
r u +

1

r
Dru

]︂

= 0. (18)
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N is defined as,

N [φ (r, t; q)] = L [φ (r, t; q)] −

(︂

1 −
km
n

)︂

r

s

−
1

sα
L

[︂

∂2φ(r, t; q)

∂r2
+
1

r

∂φ(r, t; q)

∂r

]︂

. (19)

The mth-order deformation eqn. for H = 1 is

L [um (r, t) − kmum−1 (r, t)] = ~Rm

(︀

u⃗m−1
)︀

, (20)

where

Rm

(︀

u⃗m−1
)︀

= L [um−1] −

(︂

1 −
km
n

)︂

r

s

−
1

sα
L

[︂

∂2um−1
∂r2

+
1

r

∂um−1
∂r

]︂

. (21)

Taking inverse transform on Eq. (20), we find

um = kmum−1 + ~L−1
{︀

Rm

(︀

u⃗m−1
)︀}︀

. (22)

Taking u0 and solving, we get

u1 =
− ~tα

r Γ(α + 1)
,

u2 =
− (n + ~) ~tα

r Γ (α + 1)
+

~
2t2α

r3 Γ(α + 1)
,

u3 =
−(n + ~)

2
~tα

r Γ (α + 1)
+
2 (n + ~) ~

2t2α

r3 Γ (2n + 1)
−

9 ~
3t3α

r5 Γ (3α + 1)
, . . .

Hence, next values may be got. The series solution of

Eq. (16) is

u (r, t) = u0 +

∞
∑︁

m=1

um(r, t)

(︂

1

n

)︂m

. (23)

If n = 1, ~ = −1 in Eq. (23), we arrive at

u (r, t) = r +

∞
∑︁

n=1

12.32 . . . .(2n − 3)
2

r2n−1
tnα

n!
. (24)

For α = 1 in Eq. (24), we gain solution of standard N-S

equation as

u (r, t) = r +

∞
∑︁

n=1

12.32. . . .(2n − 3)
2

r2n−1
tn

n!
,

(a)

(b)

Fig. 1: Plots of q-HATM solution u (r, t) Vs. r, t when ~ = −1, n = 1,

for (a) α = 0.5 (b) α = 1, for Ex. 4.1

Example 4.2. Now, consider time-fractional N-S equation

Dα
t u = P + D2

r u +
1

r
Dru, 0 < α ≤ 1, (25)

with initial condition

u (r, 0) = 1 − r2. (26)

Taking LT on Eq. (25) and simplifying, we get

L [u] −

(︀

1 − r2
)︀

s
−

P

sα+1
−

1

sα
L

[︂

D2
r u +

1

r
Dru

]︂

= 0. (27)

Also,

N [φ (r, t; q)] = L [φ (r, t; q)] −

(︂

1 −
km
n

)︂

(︀

1 − r2
)︀

s

−
P

sα+1
−

1

sα
L

[︂

∂2φ(r, t; q)

∂r2
+
1

r

∂φ(r, t; q)

∂r

]︂

. (28)

For H = 1, deformation equation is

L [um (r, t) − kmum−1 (r, t)] = ~Rm

(︀

u⃗m−1
)︀

, (29)
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Table 1: Comparison of results by HAM, FMLDM, HPTM, q-HATM at different values of r and t when α = 1, ~ = −1, n = 1 for Ex. 4.1.

r t HAM[21] FMLDM [22] HPTM [23] q-HATM

1.25

1.50

1.75

2.00

0.25

1.4736800000

1.6790123457

1.9001160231

2.1296386719

1.4736800000

1.6790123457

1.9001160231

2.1296386719

1.4736800000

1.6790123457

1.9001160231

2.1296386719

1.4736800000

1.6790123457

1.9001160231

2.1296386719

1.25

1.50

1.75

2.00

0.50

1.7754400000

1.8950617284

2.0704617124

2.2714843750

1.7754400000

1.8950617284

2.0704617124

2.2714843750

1.7754400000

1.8950617284

2.0704617124

2.2714843750

1.7754400000

1.8950617284

2.0704617124

2.2714843750

1.25

1.50

1.75

2.00

0.75

2.2013600000

2.1666666667

2.2696049265

2.4299316406

2.2013600000

2.1666666667

2.2696049265

2.4299316406

2.2013600000

2.1666666667

2.2696049265

2.4299316406

2.2013600000

2.1666666667

2.2696049265

2.4299316406

1.25

1.50

1.75

2.00

1

2.7975200000

2.5123456790

2.5061135241

2.6093750000

2.7975200000

2.5123456790

2.5061135241

2.6093750000

2.7975200000

2.5123456790

2.5061135241

2.6093750000

2.7975200000

2.5123456790

2.5061135241

2.6093750000

Fig. 2: α-curve of solution u (r, t) Vs. t when ~ = −1, n = 1, r = 1.5

for Ex. 4.1

Fig. 3: Plot of solution u (r, t) Vs. t when n = 1 = α = r for Ex. 4.1

Fig. 4: ~-curve of q-HATM solution u (r, t) Vs. h when t = 0.01, r =

1, n = 1 for Ex. 4.1

Fig. 5: ~-curve of q-HATM solution u (r, t) Vs. h when t = 0.01, r =

1, n = 2 for Ex. 4.1
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Fig. 6: ~-curve of q-HATM solution u (r, t) Vs. h when t = 0.01, r =

1, n = 3 for Ex. 4.1

Here

Rm

(︀

u⃗m−1
)︀

= L [um−1] −

(︂

1 −
km
n

)︂

(︀

1 − r2
)︀

s

−
P

sα+1
−

1

sα
L

[︂

∂2um−1
∂r2

+
1

r

∂um−1
∂r

]︂

. (30)

By inverse transform,

um = kmum−1 + ~L−1
{︀

Rm

(︀

u⃗m−1
)︀}︀

. (31)

Taking u0 and solving, we get

u1 =
~(4 − P)tα

Γ(α + 1)
,

u2 =
[(n + ~) (4 − P) − P] ~tα

Γ(α + 1)
,

u3 =

[︁

(n + ~)
2
(4 − P) − (n + ~) P − P

]︁

~tα

Γ(α + 1)
,

and so on . . . .

Series solution of Eq. (25) is

u (r, t) = u0 +

∞
∑︁

m=1

um(r, t)

(︂

1

n

)︂m

.

5 Numerical simulations and

discussion

Figs. 1 and 7 show plots of numerical results of Eqs. (16)

and (25) respectively when α = 0.5 and 1 for Ex. 4.1 and

4.2. Fig. 2 displays behaviour of solution for arbitrary order

α and standard case α = 1 at r = 0.5, ~ = −1, n = 1 for Ex.

4.1. Fig. 8 shows behaviour of solution for arbitrary order

(a)

(b)

Fig. 7: Plots of q-HATM solution u (r, t) Vs. r, t when P = 1, ~ =

−1, n = 1, (a) α = 0.5, (b) α = 1, for Ex. 4.2.

α and standard case α = 1 at r = 1.5, ~ = −1, n = 1 = P

for Ex. 4.2. It is clear from Fig. 2 and 8 that as α tends to

1, the q-HATM solution converges. Fig. 3 and 9 represent

convergence control parameter curves for Ex. 4.1 and 4.2.

The value of ~ should be negative. From Fig. 3 and 9, it

is clear that, as ~ decreases, rate of covergence increases.

Figs. 4ś6 and 10ś12, show ~-curves at distinct order of

fractional derivative at n = 1, 2, 3 for Ex. 4.1 and 4.2.

In h-curves, horizontal line exhibits convergence range

of solution. We observe that as arbitrary order of deriva-

tive increases, range of convergence increases. Also, from

Figs. 4ś6, 10ś12, it is clear that range of convergence de-

pends positively on n. Table 1 shows comparison of results

by HAM, FMLDM, HPTM, q-HATM at different values of

rand twhen α = 1 = n, ~ = −1 for Ex. 4.1. It can be ob-

served from Table 1 that our results are accurate and agree

with existing methods.
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Fig. 8: α-curve of solution u (r, t) Vs. t when P = 1, ~ = −1, n = 1,r =

1.5 for Ex. 4.2.

Fig. 9: Plot of solution u (r, t) Vs. t when P = 1, n = 1, α = 1, r = 1,

for Ex. 4.2.

Fig. 10: h-curve of solution u (r, t) Vs. ~ obtained when t =

0.01, r = 1, n = 1, for Ex. 4.2

6 Conclusion

In this paper, approximate analytic solution of time-

fractional N-S equation is gained by the q-HATM. It is

worthmentioning that q-HATM is capable of reducing time

andworkof computation in comparison to existingnumer-

icalmethods keepinghigher accuracy of results intact. The

Fig. 11: h-curve of solution u (r, t) Vs. ~ obtained when t = 0.01, r =

1, n = 2 for Ex. 4.2

Fig. 12: h-curve of solution u (r, t) Vs. ~ when t = 0.01, r = 1, n =

3 for Ex. 4.2

q-HATMcontains parameters ~ and n, that can be adopted

to manage convergence of solution. It makes this scheme

more powerful and exciting.
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