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ABSTRACT

A Reliable and Resource Aware Framework for Data Dissemination 
in Wireless Sensor Networks

by

Vasu Jolly
Shahram Latifi, PhD., P.E., Examination Committee Chair 

Professor of Electrical & Computer Engineering 
University of Nevada, Las Vegas

Distinctive from traditional wireless ad hoc networks, wireless sensor networks 

(WSN) comprise a large number of low-cost miniaturized nodes each acting 

autonomously and equipped with short-range wireless communication mechanism, 

limited memory, processing power, and a physical sensing capability. Since sensor 

networks are resource constrained in terms of power, bandwidth and computational 

capability, an optimal system design radically changes the performance o f the sensor 

network. Here, a comprehensive information dissemination scheme for wireless sensor 

networks is performed. Two main research issues are considered: (I) a collaborative flow 

of information packet/s from the source to sink and (2) energy efficiency of the sensor 

nodes and the entire system. For the first issue, we designed and evaluated a reactive and 

on-demand routing paradigm for distributed sensing applications. We name this scheme 

as IDLF-lnformation Dissemination via Label Forwarding. IDLF incorporates point to 

point data transmission where the source initiates the routing scheme and disseminates 

the information toward the sink (destination) node. Prior to transmission o f actual data

111
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packet/s, a data tunnel is formed followed by the source node issuing small label 

information to its neighbors locally. These labels are in turn disseminated in the network. 

By using small size labels, IDLF avoids generation of unnecessary network traffic and 

transmission of duplicate packets to nodes. To study the impact o f node failures and to 

improve the reliability of the network, we developed another scheme which is an 

extension to IDLF. This new scheme, RM-IDLF - Reliable Multipath Information 

dissemination by Label Forwarding, employ an alternate disjoint path. This alternate path 

scheme (RM-IDLF) may have a higher path cost in terms o f energy eonsumption, but is 

more reliable in terms of data packet delivery to sink than the single path scheme (IDLF). 

In the latter scheme, the protocol establishes multiple (alternate) disjoint path/s from 

source to destination with negligible control overhead to balance load due to heavy data 

traffic among intermediate nodes from source to the destination. Another point of interest 

in this framework is the study of trade-offs between the achieved routing reliability using 

multiple disjoint path routing and extra energy consumption due to the use o f additional 

path/s. Also, the effect of the failed nodes on the network performance is evaluated 

within the sensor system.

Performance o f the label dissemination seheme is evaluated and compared with 

the classic flooding and SPIN. For the second issue, we proposed discrete energy 

efficient schemes, which are incorporated in the system in conjunction with RM-IDLF. 

Setting up a battery threshold ensures that data packets will not be dropped after the 

sensor node’s battery level falls below the threshold value. Minimum transmission 

around the sink prevents fast energy dissipation of the neighboring nodes to the sink. 

Finally, directional forwarding is applied to RM-IDLF. In directional forwarding, the

IV
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sensor nodes narrow the range of broadcasting data packets by restricting communication 

only to the nodes lying in the direction toward sink/s. A C++ simulator is implemented to 

validate the design and to study the performance of the wireless sensor network.
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CHAPTER 1 

INTRODUCTION

Embedded systems technology has come a long way in the last few years. These 

systems have specific requirements and perform pre-defined tasks. The hardware-based 

applications of the past can be converted into sophisticated modules using embedded 

systems. Such systems generally use microcontrollers, or they may use custom-designed 

chips or both. The presence of ubiquitous computing in everyday life has been strongly 

felt due to seamless integration of discrete computing elements in the embedded systems 

[1]. They are used in maintaining the communication infrastructures, automobiles, 

machine tools, wide-range monitoring, space vehicles, cell phones etc. The uses are 

endless and the consumption of billions of microprocessors every year for numerous 

applications speaks for itself.

Advancements in CMOS integrated circuits and Bi CMOS micromachining has 

led to a positive expansion in micro-electro-mechanical system (MEMS) and wireless 

technology. These advances have abridged the size, energy requirements and the circuitry 

cost of the embedded systems. One such derivative of this momentum is wireless sensor 

networks. It consists o f collection o f sensor nodes deployed in a distributed fashion, 

within the given area for a specific set o f applieation/s. These sensor nodes are minute, 

low power discrete devices that embed sensors and actuators with limited on board
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processing and ability to communicate over the wireless media (typically over an RF 

Channel). In this chapter we first describe the fundamental components, design 

requirements, challenges and limitations for such sensor networks. We highlight the use 

of wireless sensor networks over a broad range of applications. The thrust for designing 

routing protocols will be explained followed by the outline of the dissertation. The 

specific network architecture and related assumptions used in the rest of the dissertation 

are also introduced later in the chapter.

1.1 Wireless Micro- Sensor Networks

A wireless sensor network [2], [3], [4], [5] consists of a collection of minuscule 

wireless nodes with embedded sensors that are spatially diverse. Sensor nodes are 

appealing due to their autonomous ad hoc connectivity, ease o f deployment and almost 

no dependency on any human intervention. The sensors are deployed in various 

environments and are capable of sensing and acquiring signals, processing signals, 

performing simple computational tasks and communicating with other nodes in a 

collaborative manner. The processing capability of each processing node is limited. 

Nevertheless, the coordination of information from a large subset of nodes makes it 

possible to measure a respective physical environment in great detail. The low cost of 

sensor nodes makes it possible to have a network of hundreds or thousands of these 

sensors nodes. One advantage of using the large number o f nodes is to enhance the 

accuracy of the data retrieved and to make the system fault tolerant.
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IntemeT

End User

Figure 1.1 Wireless sensor network

Wireless sensor network is a peer-to-peer multi-hop wireless network where data 

towards the sink is transmitted in a store and forward pattern via intermediary nodes, as 

shown in Figure 1.1. The sensor nodes are connected by radio frequency, infrared, or 

other medium without any physical wire connection. On detecting a physical 

phenomenon, a sensor node collects and processes the event data. The event data is then 

destined to sink node and traverses among other nodes in a wireless medium in a multi­

hop fashion [6], [7]. Each sensor node has a radio range, which is referred to as the 

distance at which the signal strength remains above the minimum usable level for that 

particular node to transmit and receive. If two nodes, A and B cannot communicate 

directly, other nodes, located between those two nodes, transmit an information packet 

from the source node to the destination node. Information is received only by nodes 

within the radio range o f the forwarding node in a wireless medium. Data communication 

in ad hoc networks uses intermediate nodes as routers. This can be well related to a single 

hop mobile network model that supports the needs of wireless communications by 

installing base stations as access points. Finally the data from sensor nodes is gathered by 

a sink node. Multiple sink nodes may exist in one wireless sensor network [8], [9].
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Usually, the sink node is robust in terms of processing speed, battery capacity and 

memory size as compared to other sensor nodes in the network. End user can be 

connected to the sink using Internet or satellite to access the collected data.

1.2 Sensor Node Architecture

Sensor node includes a sensing module or a transducer, a small power unit, a 

microprocessor to process the sensed signals, a small memory unit to temporary hold 

sensor data, and a wireless interface to communicate with the other nodes (Fig 1.2). 

Depending on the application to be performed, a transducer translates a physical 

phenomenon to or from an electronic signal. Once the physical quantity has been sensed, 

the signal is fed to an A/D converter. The microprocessor takes this digital input and 

processes it, sending the ensuing data out to the network. Network communications are 

conducted by the interface block.

Sensor ADC <—
Ji i i

Processing 
Unit 

& Memory

Location 
Fiading Unit

Transceiver

Power Supply Unit

Figure 1.2 Architecture o f a Sensor Node
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Expected size of each sensor node is approximately 1 cm^ in its volume and nearly 100 

g in its weight. Its memory size, combining data and program memory, will be several 

tens of Mbytes. On the contrary, the sensor node currently available on the shelf [10] has 

its volume of 70 cm^ with 128 KB of instruction memory, 4 KB of data RAM, and 512 

KB of flash memory. The processor is operated at 4 MHz.

1.2.1 SMART DUST 

Smart dust was envisaged in 1998 by Kris Pister of the UC Berkeley [11], [12]. 

Smart dust sets out to build a device with a sensor, communication device, and small 

computer integrated into a single package [14]. The Defense Advanced Research 

Projects Agency (DARPA)’ funded the project, setting as a goal the demonstration “that 

a complete sensor/communication system can be integrated into a cubic millimeter 

package’’ [13]. "Smart dust" device is a tiny wireless micro-electro-mechanical sensors 

(MEMS) that can detect everything from light to vibrations. Recent innovations in 

fabrication techniques are leading these sensors "motes" to emerge to the size of a grain 

of sand. Each mote encapsulates sensors, computing circuits, power supply and a 

bidirectional wireless communication capability.

The goal of the Smart Dust project [15], [16], [17], [18] is to build a self- 

contained, millimeter-scale sensing and communication platform for a massively 

distributed sensor network. Figure 1.3 (a-h) illustrates some o f the motes designed under 

smart dust project. The RF mote [19], [20], Fig. 1.3 (a) was designed by Seth Hollar at 

UC Berkeley in the early part of year 1999. Since then, various projects have been

' The Defense Advanced Research Projects Agency (DARPA) is the central research and development 
organization for the Department o f  D efense (DoD ) It manages and directs selected basic and applied 
research and development projects for DoD, and pursues research and technology where success may 
provide dramatic advances for traditional military roles and missions..
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undertaken to test communication protocols for distributed sensor networks with the RF 

motes. It consisted of an Atmel AT90LS8535 processor, a 916 MHz RF transceiver and 5 

sensors (temperature, light, barometric pressure, a 2 axis accelerometer and a 2 axis 

magnetometer). It operated on a 3V lithium coin cell battery that could support a mote for 

5 days of continuous operation or 1.5 years at a duty cycle of 1%. The mote used a single 

radio carrier frequency to transmit data.

The RF mote had a communication range of about 5 - 30m at a rate o f 5Kbps 

depending on other physical conditions. The Laser Mote, [19], [20], Fig. 1.3 (b) has been 

used to reveal the long range communication abilities in a small silicon package. It uses 

an active laser communication to send sensor data over long distances. A Laser module 

acting as a transmitter from a laser pointer needs to be manually pointed towards the 

receiver. These motes can only send data back to a base station as they have no receiver 

module on board. The mote runs on 2 AA batteries and contains humidity, light, 

temperature and pressure sensors. Matthew Last et al [21] have demonstrated 21 Km one 

way communication from San Francisco to Berkeley. A CCD camera linked to a laptop 

computer was used as the receiver. However due to the slow speed of the camera data 

was sent at extremely low data rates but with commercial high speed camera data rates in 

excess of 1 Kbps are possible.

The Comer Cube Reflector (CCR) [19], [20], Fig 1.3 (c) is a MEMS device that 

allows for passive laser communications. It was designed at UC Berkeley by Seth Hollar 

and Farr ah Santoso. The mote outfitted with a temperature sensor and a comer cube 

reflector (CCR) module allows passive laser communication. Initially an interrogator 

must project a swerve laser beam in the direction o f the motes. This beam contains
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instructions to be performed by the motes. The motes receive this signal and by 

modulating and reflecting the beam back to the interrogator the mote can send back data. 

The communication range is a function of the laser beams intensity. The device is being 

used as a test platform to exhibit the communication algorithms that will ultimately be 

implemented on SMART DUST.

The Mini mote, [19], [20], Fig 1.3 (d) was designed by Seth Hollar and Christina 

Adela at UC Berkeley. It is a miniaturized edition of the RF Mote. Smaller size and 

simpler circuit design makes it cheaper and easier to handle. It has an Atmel AT90S2313 

processor and an on-board temperature sensor. It can communicate via a radio link at 10 

Kbps over a distance of 20m depending on the physical conditions. MALT (Motorized 

Active Laser Transceiver), [21].Fig 1.3 (e) is designed by Sean Hubert. It was built in 

order to demonstrate steerable laser beam communication. MALT uses two linear 

actuators to tilt a plate with a mirror attached. Laser macro mote board drives the motors 

and laser, and collects data from the onboard light sensor.

IrDA, [19], [20], Fig 1.3 (!) designed by Brett Wameke is designed to interface 

with other IrDA (Infrared Data Association) compliant devices, e.g. Palm Pilot. The 

ubiquity of the IrDA standard allows these motes direct communication with commercial 

technology, like Bluetooth. The Mica mote [22], Fig 1.3 (g) is designed by Crossbow in 

the United States. Mainly used for research and development o f low power wireless 

sensor networks, it contains an Atmel Atmega 128L processor which is capable of 

running at 4 MHz. The device has a battery life o f one year depending on the applications.
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(a) RF MOTES 

#
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(d) MINI MOTE

(b) LASER MOTES

(e) MALT

(c) CCR MOTE

(!) IrDA

(g) MICA (h) weC

Figure 1.3 UCB, SMART DUST Project [ reproduced in consent with Seth Hollar]

The mote is able to communicate with the sensor network via a radio link which 

operates on the 916 or 433 MHz bands and can carry data at 40 Kbps over distances of up 

to 100 feet. Figure 1.3 (g) illustrates weC [19], [20], Courtesy, Seth Hollar and James 

McLurkin at UC Berkeley. It is an improvement over the Mini mote which has a number

8
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of additions and a slightly larger size. weC is equipped with temperature and light sensors 

as well as an integrated PCB antenna to improve the motes communication performance. 

weC mote can be reprogrammed wirelessly. Currently, weC mote is being used in an 

EECS graduate class at Berkeley.

1.3 WSN Protocol Stack 

The sensor network protocol stack is similar to the traditional protocol stack. In 

addition, this protocol stack blends (a) energy and routing awareness, (b) integrates data 

with networking protocols, (c) communicates energy efficiently through the wireless 

medium, and (d) encourages cooperative efforts of sensor nodes. [23], [24] The protocol 

stack in a sensor communication network has five layers: application, transport, network, 

data link, and physical layer (Fig 1.4) and three planes: power management plane, 

mobility management plane, and task management plane. Different application software 

can be developed and used on the application layer, depending upon the sensing task. The 

physical layer controls the transmission of data packets over the communication channel, 

which includes selecting a frequency, modulation, and demodulation. The minimum 

output power required to transmit over a distance “d” is proportional to “d” to the power 

of “n”, where “n” varies from 2 to 4 and is closer to four when the antenna is close to the 

ground as is typical in wireless sensor networks. The main task of the data link layer is to 

make the data transmitted or received free from any errors. Data Link Layer helps in 

multiplexing data streams, data frame detection, medium access and error control. A 

wireless sensor network must have a dedicated MAC protocol to address the issues of 

energy conservation and data-centric routing. MAC protocol should satisfy two
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requirements in sensor network operation, (a) to establish a network infrastructure, which 

includes establishing communication links among possibly hundreds of nodes, and 

providing the network with self-organizing capabilities and (b) to share communication 

resources among all the nodes. Traditional MAC protocols do not meet these two goals 

because energy constraint is not prevalent in wired networks. Also, wireless sensor 

networks have no centralized control.
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Figure 1.4: Protocol Stack

The MAC protocols proposed for the sensor networks are sensor-MAC (SMAC) 

[25], TRAMA (traffic-adaptive medium access protocol) [26], Etiquette Protocol [27], 

and CSMA for Sensor Networks [28]. The network layer is designed to perform routing 

among sensor nodes. The transport layer controls the flow of data. It manages each 

packet of data to arrive at the destination correctly. Finally, the application layer manages 

to handle application software, which will be varied depending on the task of the sensor 

network. The Power Management Plane is responsible for minimizing power
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consumption and may turn off functionality to preserve energy. The mobility 

management plane keeps track of the movement of sensor nodes. It detects and registers 

movement o f nodes so a data route to the sink is always maintained. The task 

management plane decides which node(s) will be activated to carry out the sensing tasks 

among neighboring nodes. It ensures that the required nodes are assigned to do a task 

while the rest can focus their respective power on routing and data aggregation.

1.4 Wireless Sensor Networks and Traditional Ad Hoc Networks

Sensor networks are significantly different from the traditional ad hoc networks. 

One conspicuous difference is a stem constraint on power, computation, storage and 

bandwidth requirements. The nodes are deployed in an unattended arrangement and may 

not have a renewable energy source (except solar nodes, which is gaining popularity 

recently). It becomes imperative for nodes to stay alive on small, limited energy and 

communicate through a wireless communication channel. To prolong the lifetime of the 

sensor networks, the power aware algorithms and routing protocols are designed [29], 

[30], [31]. Output parameters like response delay, accuracy of the received information 

and network performance often take back seat over the energy efficient design. In case of 

traditional ad hoc networks such as cellular systems, the energy o f the mobile nodes can 

be replenished. The number of sensor nodes in a sensor network can be several orders of 

magnitude larger than the nodes in an ad hoc network. Also the topology of a sensor 

network changes very frequently and the end user has a little control over the topology, 

unlike ad hoc networks. Due to the large amount of transmission overhead, sensor nodes 

within a sensor cloud do not use a global identification. In sensor networks, the

II
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transmission power levels are kept low. This is highly preferred in stealthy operations 

[23]. Compared to the traditional ad hoc communication, there is far less noise in signal 

propagation in sensor networks. This is mainly due to low power multi-hop 

communication pattern among the neighboring nodes.

1.5 Motivation and Design Challenges in Wireless Sensor Network 

One of the main design goals of WSNs is to extend the lifetime o f the network and 

utilize the resources efficiently. The motivation for employing aggressive power 

management techniques arises from the fact that sensor nodes are irreplaceable. 

Furthermore, there is no control on the topology of the sensor nodes, thus random 

deployment of the sensor leaves designer with acute design challenges. An extensive 

collaboration o f sensor nodes is needed to execute high level sensing. Additionally, 

sensor networks should be highly reliable and fault tolerant for decisive applications. 

This section discusses about the way sensor networks should perform, the design 

challenges and the limitations.

• Wireless sensor networks need to be robust. The setting up of the network should 

be easy. The operating system of the sensor nodes must not be complex unlike 

conventional computers.

• Sensor networks should be application specific [32], which means some of the 

nodes, in addition to routing the data packets, performs application specific tasks 

to accommodate wide variety of applications

• The sensor nodes need to be densely deployed in a magnitude much greater than 

conventional ad hoc networks [33], [34]. All sensor nodes in a network are
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broadly divided into different divisions or subsets each of which provides a 

blueprint of vital sensing. Different divisions take turns to being repeatedly 

switched on and off depending on a specific duty cycle. Thus, the remaining 

nodes in a dormant subset will remain asleep until the next desired action is 

chosen and the pattern is shifted. It is crucial to accurately estimate the 

availability o f power for a chosen time interval. Nodes can be switched on and off, 

by choosing a specific duty cycle and a random phase difference. In terms of 

power consumption, operation o f a wireless sensor node can be divided into three 

parts: sensing, processing, and transmission. Among those three operations, it is 

known that the most power consuming task is data transmission [35]. 

Approximately, 80% of power consumed in each sensor node is used for data 

transmission.

• Scalability is one of the most important factors governing the effectiveness of 

sensor networks. It is the ability of a network to adjust or maintain its 

performance as the size of the network increases. Diverse applications require 

using large networks, yet the performance of an ad hoc sensor network tends to 

degrade as the number of mobile nodes increases [36], [37]. Therefore there is a 

need for more scalable solutions.

• In a sensor network, it is crucial that the collected data is safely delivered to a 

desired destination. For conventional wired sensor networks, the flow of data 

packets and conditions of sensor nodes are usually monitored and controlled by 

centralized units. On the contrary. Wireless sensor networks are not equipped 

with centralized controlling unit for monitoring the entire network. One of the
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primary reasons for delivery failure is the limited battery power in the sensor node. 

In sensor networks, information packets are disseminated hop-by-hop with each 

sensor node having limited information about its immediate neighbor. To 

minimize the transmission overhead, the neighboring nodes do not exchange their 

status information with each other; hence they are unaware of the battery status of 

next hop node. Therefore, it may occur that while a node is transmitting an 

information packet to its next-hop neighbor, the neighbor node runs out of battery, 

or the information sending node, itself, runs out of battery.

• It is often essential for the sensor communication to meet real-time constraints. In 

combat surveillance systems [45], communication delays within sensing and 

actuating loops directly influence the quality of enemy tracking. Due to the type 

of the wireless communication and unpredictable traffic patterns, it is infeasible to 

ensure hard real-time constrains, however, research that provides probabilistic 

guarantee for timing constraints is crucial.

• With the large amount of sensor nodes deployed for a single application, there is 

absolutely no control over the topology of the network. This, coupled with 

inaccessibility of human intervention strongly necessitates the ability of sensor 

networks to self organize. Neighboring sensors nodes therefore need to be able to 

self organize into sub network, and route the data and messages accordingly. For 

example data aggregation [38] is a self organization scheme at a higher, more 

abstract layer of functionality. Therefore, the network must be able to 

occasionally reconfigure itself so that it can continue to function. Individual
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nodes may become disconnected from the rest of the network, but an extreme 

degree of connectivity must be maintained.

• In-network processing within the sensor nodes requires additional complexity to 

the sensor nodes and designing in-networking processing protocols with 

minimum overhead is a major concern. Traditional networks provide finest 

forwarding where the loss due to the bit error and buffer overflow is much lower 

as compared to the one in wireless networks. With different assumptions, such 

design philosophy is hard to hold in sensor networks. As a result, the wireless 

sensor networks should be highly reliable.

• Data centric processing is a basic consideration in the design o f a sensor network. 

Sensor nodes are not assigned any global identifications like an IP address for the 

computers; instead, sensor nodes and the data are acknowledged through their 

respective (1) Contents (2) Location and (3) Constraints. Unlike conventional 

networks, maintaining a node addressing table, results in a large overhead. Instead 

the data queries are exchanged. For example in the task of monitoring a building’s 

entrance, the request to gather the “The total number o f  people going out” is more 

appropriate than the request to “gather the readings from  the nodes A, B, C & D

• Sensor network applications are driven by physical events, such as fire, inclement 

weather subsequently taking an unpredictable pattern. Node failures are common 

due to the sheer number of sensor nodes and the hostile environment. The radio 

media shared by densely deployed nodes is subject to heavy congestion and 

jamming. Further the communication become highly unpredictable due to low
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bandwidth, high bit error ratio, and asymmetric channel. This affects the quality 

of service in the operation of sensor network.

• Sensor networks are susceptible to all kinds of attacks, such as eavesdropping, 

jamming and hacking. With constrained available resource, it is impracticable to 

deal with all possible security threats [48]; however some measures for expected 

attack must be dealt with while designing the sensor networks.

• Wireless Sensor Network (WSN) is transforming into a multi-service medium 

leading to the convergence of voice, video and data communications. Each type of 

service has a particular constraint and it has to be satisfied for the communication 

to be effective. Adding these with restricted power supply and dynamic hostile 

setting, many networks are established by distributing sensors over the area of 

interest. This strongly suggests that that these disposable sensor nodes have to be 

fairly cheaper in price.

• While in operation, some sensor nodes can fail due to lack of power, external 

damage, intrusion or environmental interference. The malfunction of sensor nodes 

should not affect the overall task of the sensor network. MAC layer and routing 

protocols must adjust the configuration o f new links and routes to the data 

collection nodes. Dynamic regulation of transmission power and signaling rates 

on the existing nodes is required to reduce energy consumption. Furthermore the 

packets need to be rerouted through sections of the network where more energy is 

available. Multiple level o f redundancy is needed in a fault-tolerant sensor 

network.
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•  Sensor nodes may be deployed in harsh environments such as disaster areas, a 

battle field, or ocean bed etc. Sensor network topology is prone to frequent 

change after the deployment [39]. Therefore the sensor nodes should be prone to 

adjusting itself according to the harsh physical and environmental challenges.

• Sensor networks should be adaptive to changes in network connectivity due to 

node failure. In a multi hop network, each node plays as a dual task of sender and 

receiver. Faulty sensor nodes can cause considerable topological changes and may 

call for re- routing information. The moment data is sensed, it should be delivered 

within a certain time span, before it becomes redundant. The transmission latency 

should be optimally designed for each application.

• Upon deployment of the sensor nodes in a network, practically all the nodes have 

an identical initial energy. Within a sensor cloud, variation in the rate of 

consuming power by each node depends on the various factors such as event 

sensing rate, distance from sink node, and location of each node relative to other 

nodes. This disparity in energy consumption in wireless sensor network causes an 

imbalance of node power status resulting in diminishing overall network lifetime. 

Sensor nodes should not be totally dependent on few fading energy nodes at the 

end.

• Position awareness is an important aspect of sensor nodes because the information 

collection depends on relative position between source and the sink nodes. 

Currently, due to hardware and bandwidth constraints, it is not possible to use 

global positioning system GPS for this purpose. Triangulation based methods [40],
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where sensor nodes predict their position using Pico-radio strength from the 

known points.

1.6 Wireless Sensor Network Applications

The design and dimension of the wireless sensor networks highly depends on the 

kind o f application for which the sensor nodes are used. They offer unprecedented 

prospect for a broad spectrum of applications, e.g. environmental and habitat monitoring, 

observing temperature, humidity, and barometric pressure of certain areas, equipment 

diagnoses, disaster management, and traffic control [6]. Varying range of sensor network 

applications made it feasible to design and tailor a network in such a way that it caters to 

the specific requirements of the application. There are some applications which require a 

continuous data updating from the network, like pressure reading, video monitoring etc. 

On the contrary, there are some applications where the network is inactive for a long 

period of time. As soon as an event occurs, the sensor nodes become active and data 

transfer is initiated [35] e.g., in earthquake monitoring system, the traffic is delay 

sensitive and bursty unlike video monitoring. There is a considerable set of different 

issues in designing the two above mentioned networks. Sensor networks can be classified 

into two main subsets as per their respective applications (a) Data gathering applications 

(b) Event detection applications [5], [35].

Culler et al classifies all these applications into three separate types [2]. The first 

type of applications monitor space e.g. applications like environment monitoring, 

agricultural monitoring, climate control, surveillance and smart alarms. The second type 

monitors objects, such as structural monitoring, equipment maintenance, asset tracking.
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and medical diagnostics. The third category monitors the interactions among things and 

the adjoining objects. It includes disaster management, wildlife habitat, ubiquitous 

computing environments, health care and mechanical process flow.

amg

m m

K m

Figure 1.5 (a) Miniature Wiring (b) Nose-on-a-chip sensor 

(Photo reproduced in consent with Oak Ridge National Laboratory Oak Ridge TN.)

Fig 1.5 (a) illustrates wiring on miniature sensors, making it evident that wireless 

technology is becoming more and more important as the sensors shrink. The wireless 

sensor nose-on-a-chip, fig 1.5 (b) is a MEMS-based sensor developed at Oak Ridge 

National Laboratory. It can detect 400 species of gases and transmit a signal indicating 

the level to a central control station. Military sensor networks are capable of detecting 

enemy movements, possible radiations and explosions. Therefore, large area surveillance 

and target detection applications are primary areas of defense research. These systems 

can use assorted collections of sensors to survey and report on various dynamic 

properties of the topography in a timely manner. An analogous solution utilizing 

traditional, wired technology either would be too costly or would produce long delays
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associated with trenching for fiber. Moreover, re-deployment or repositioning can be 

done quickly, and adding new nodes to an existing network is swift and effortless. This 

potential provides unmatched safety and recognition on the battlefield and helps reduce 

casualties even in the most traumatic situations. Brennan et al, developed a sensor array 

for radiation detection [44] using a massive amount of handy sensors to form an array. 

The gamma counts received indicate the sensor network approach provides higher 

sensitivity than traditional portal sensor. It is also portable and much cheaper. An urban 

shooter localization system is proposed by Matori et al [45]. An acoustic model of 

multiple sensors can detect the location o f the shooter by generating the accuracy of 1 

meter using 60 sensors.

Environmental sensor networks detect and monitor environmental changes and 

are deployed mostly to monitor weather changes, thunderstorms or wind motions. There 

is a robust challenge involved in designing a sensor network sustainable in harsh 

environment. GlacsWeb project [46] observes glacial ecosystem using embedded probe 

positioned inside the glacier and the base station is on the surface. Burrell et al designed 

the vineyard computing project [47] for agricultural monitoring to pull out the physical 

information in the vineyard set up. The “data mule” system consists o f sensors to record 

temperature, humidity and weather. In addition, smart shovels trace workers activity. The 

collective data is then analyzed to provide suggestions on the performance and 

production optimization. Homeland Security has been a vital concern for federal and state 

governments. In recent years, the uninterrupted monitoring of public places of strategic 

importance has been very critical. Sensor networks deployed at vulnerable places, equip
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law enforcement agencies with an ability to synchronize data from other security systems 

with video images.
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Figure 1.6 Real time security using sensor networks

Figure 1.6 depicts a real time association of security provisions with active 

sensor networks deployed at business as well as residential complexes. Information 

generated from these stand-alone, discrete components provides an ability to retrieve and 

view important data pertaining to a specific entry from a facial recognition system, or an 

access control system. Sensor networks can also be deployed at building walls to 

determine the wear and tear. Wireless parking lot networks can monitor the free spaces, 

issuing parking tickets, monitoring illegal activities etc. These networks improve 

emergency response and management activities.
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1.7. Contribution and Scope of the Dissertation

This dissertation primarily addresses several issues related to designing a reliable 

and energy efficient schemes for extending the lifetime and fault tolerance o f the network. 

Since sensor networks are resource constrained in terms of power, bandwidth and 

computational capability, an optimal system design radically changes the performance of 

the sensor network. In this research, a comprehensive information dissemination scheme 

for wireless sensor networks is proposed. Two main research issues are considered: (1) a 

collaborative flow of information packet/s from the source to sink and (2) energy 

efficiency of the sensor nodes and the entire system. For the first issue, a new scheme 

called Reliable Multi-path Information Dissemination via Label Forwarding (RM-IDLF), 

which is a reactive and on-demand routing paradigm for distributed sensing applications, 

is designed and evaluated. RM-IDLF incorporates point to point data transmission where 

the source initiates the routing scheme and disseminates the information toward the sink 

(destination) node. Prior to transmission of actual data packet/s, a data tunnel is formed 

followed by the source node issuing small label information to its neighbors locally. 

These labels are in turn disseminated in the network. By using small size labels, RM- 

IDLF avoids generation of unnecessary network traffic and transmission of duplicate 

packets to nodes. We study the trade-offs between the achieved routing reliability using 

multiple disjoint path routing and extra energy consumption due to the use of additional 

path/s. The effect o f the failed nodes on the network performance is evaluated within the 

sensor system. Performance of the scheme is evaluated and compared with the classic 

flooding and SPIN [41], [42], [43].
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For the second issue, we proposed discrete energy efficient schemes, which are 

incorporated in the system in conjunction with RM-IDLF. Setting up a battery threshold 

ensures that data packets will not be dropped after the sensor node’s battery level falls 

below the threshold value. Minimum transmission around the sink prevents fast energy 

dissipation of the neighboring nodes to the sink. Finally, directional forwarding is applied 

to RM-IDLF. In directional forwarding, the sensor nodes narrow the range of 

broadcasting data packets by restricting communication only to the nodes lying in the 

direction toward sink/s. The rest of the thesis is organized as follows. Chapter 2 provides 

an overview of the related work on routing protocols in wireless sensor networks. In this 

chapter we motivate the need of an energy aware routing infrastructure and explain 

relevant design issues to be considered for building a routing framework for sensor 

networks. Chapter 3 explains fault tolerance techniques in general and explores the 

reliability issues in multifusion sensor networks. Chapter 4 provides a detailed discussion 

of the current information dissemination scheme RM-IDLF. Analytical and simulation 

results for the algorithms proposed are included in Chapter 5. The comparison of the 

current scheme with existing routing scheme is also conducted. We demonstrate the 

effectiveness of the new scheme in improving network lifetime and overall network 

reliability. Finally, Chapter 6 provides the conclusion of this dissertation and directions 

for future work.
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CHAPTER 2

ROUTING MANAGEMENT IN WIRELESS SENSOR NETWORKS 

Sensor networks are broadly deployed to sense, examine and manage the physical 

environment/s from remote locations. The precision of the information exchange is 

greatly enhanced with the alliance o f sensor nodes and the reliable routing of the sensed 

data. The functionality of the routing protocols might vary depending on the sensor 

network architecture and the application. A daunting challenge in the design of a reliable 

wireless sensor network is to augment its lifetime in terms of energy and information 

efficiency. Therefore, it is desired to save energy of the sensor nodes while routing query 

responses back to the sink node. This may either be accomplished by cutting down the 

number of nodes or incorporating sleep periods, when nodes are not participating in 

transmitting data on the path ([49], [50]). In terms of power expenditure, operation of a 

sensor node can be categorized in three phases: sensing, processing, and transmission. 

Among these three phases, it is known that the most power consuming task is data 

transmission. Approximately, 80% of power consumed in each sensor node is used for 

data transmission. Energy-aware routing algorithms [51], [52], [53] discuss reducing the 

consumption of battery-power at different nodes. Another concern is the narrow 

computing power of the sensor nodes and the limited bandwidth [41] of the connecting 

nodes, which deter the communication o f sensor nodes within the Wireless sensor cloud. 

Other challenging design requirements are lack o f a centralized awareness o f the network
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topology, scalability due to large network size and fault tolerance due to frequent failure 

of nodes. An optimal objective is to design routing schemes which (a) minimize energy 

requirements at each node to transfer individual packets and (b) maximize the operational 

lifetime of scalable networks. This chapter sets up the foundation o f the research work 

proposed in this dissertation and presents a comprehensive investigation of different 

routing schemes. Depending on the sensor applications, the design challenge, advantage 

and performance concern for each routing protocols is also revealed.

2.1 Routing Techniques in Wireless Sensor Networks 

In this section, we review the state-of-the-art routing techniques for wireless 

sensor networks. The routing scheme for wireless sensor networks has to be 

straightforward and simple which does not expend much computation power and memory, 

and eventually minimize communication among nodes to save its power.

2.1.1 Routing Models 

Routing protocols may be classified into one of the ensuing three models [54] (a) 

single hop model, (b) multi-hop model and (c) Cluster-based hierarchical model. We will 

discuss each model briefly and further classify the protocol based on network structure 

and protocol operation in the subsequent sections. Single hop model is the simplest model 

and act as a direct communication model. In this model, fig 2.1 (a), all the nodes travel 

one hop to reach to a base station or the sink node. This kind of single hop transmission is 

highly unrealistic in the real world. The transmission range of each node and the energy 

consumed plays a erueial role in defining the sensor network. The multi-hop model 

supports the collaborative effort o f several nodes within the sensor cloud, fig 2.1 (b).
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Each sensor node has a radio range, which is referred to as the distance at which the 

signal strength remains above the minimum usable level for that particular node to 

transmit and receive. If two nodes cannot communicate directly, the nodes positioned 

between those two nodes, transmit an information packet from the source node to the 

destination node. Information is received only by nodes within the radio range of the 

forwarding node in a wireless medium. In view of efficient energy consumption, this 

model follows more practically feasible approach and is employed by [41], [55], [56], 

[57], [58]. The multi hop model uses the data aggregation techniques.

SINK

Sensor Nodes

0 ^ 0  pO .  

O -

O  y  jCr Sensor Nodes

Figure 2.1 (a) Single hop routing model (b) Multi-hop routing model

Within a sensor cloud, variation in the rate o f consuming power by each node 

depends on factors such as event sensing rate, distance from sink node, and location of 

each node relative to other nodes. This disparity in energy consumption in wireless sensor 

network causes an imbalance o f node power status (figure 2.2) resulting in diminishing 

overall network lifetime. If  the sink node is at one fixed location, information packets 

gather from the entire network to one fixed sink. This result in denser information traffic 

around the nodes in vicinity o f the sink, as compared with the nodes placed farther from
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the sink. Hence, the nodes close to the sink will exhaust energy at the faster pace. If the 

nodes around the sink drain their energy, the sink is isolated from the entire sensor 

network, thereby making the data collection impossible. The segregation of the sink node 

from entire network is called self induced black hole effect [54]. To avoid isolation of 

sink node from the network, it is necessary to adopt an energy conservation heuristic on 

nodes located around the sink.

Energy Consumption near Sink Node

oooooooooooooooooo #  High
# # # 0 0 0 0 0 0 #  Moderate
# # # 0 0 0 0 0 0 0 Lowo##oooooo

Figure 2.2 Disparities in power spending

In the cluster based model, fig 2.3, the network is divided into clusters 

comprising of “X” amount of nodes. Cluster head, which is master node, within each 

respective cluster is responsible for routing the information to the other cluster head. Data 

is first aggregated within the cluster and then from cluster to cluster. As the data packets 

moves from one cluster to another, it covers larger distances. This results in very low data 

latency as compared to multi hop model and single hop model respectively. However this 

model has a drawback. As the distance between clustering levels increases, the energy 

spent grows proportional by the square of distance. This definitely increases the energy 

consumption of the sensor network.
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Clu

Figure 2.3 Cluster based hierarchical routing model

2.1.2 Protocol Assessment 

In traditional networks, the focus is on Quality of Service (QoS). In wireless 

sensor networks QoS requirements can be relaxed to preserve energy and the network 

lifetime. At each layer of protocol stack, steps must be taken to (a) save energy, (b) allow 

sensor nodes to reconfigure, and (c) update their respective tasks according to the 

resources available. The simulation test bed should be as simple as possible. Diverse 

environmental conditions need to be implemented in analyses and simulations [54]. Some 

of the parameters used to evaluate the routing performance are (a) Energy consumption, 

both with respect to an individual node and the whole network (b) Simulation time and 

latency, (c) success rate of the data packets reaching the sink, (d) network size, and 

finally (e) fault tolerance capability of the entire network. In addition, the routing 

protocol should incorporate some kind of security to evade vulnerability from adversaries.
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2.1.3 Routing Methodology in Wireless Sensor Networks

In WSNs, discovering the routes and then sustaining them is practically 

insignificant because of the energy constraints and sudden node failures. First of all, there 

is no control on topology of the nodes within a sensor network cloud. Secondly the 

unpredictable topological change makes it impossible to stick to a fixed routing strategy. 

Some well known routing plans such as data-centric methods, in-network processing, 

clustering, data diffusion, data aggregation and energy aware methods are proposed in the 

literature to cater the requirements for wireless sensor networks. Figure 2.4 illustrates the 

lineage of the routing protocols in wireless sensor networks. Broad classification is on the 

basis of

• Network structure and

• Protocol operation

Based on the network structure, the protocols are further classified as fiat-network 

routing, hierarchical-based routing, and location-based routing. Flat routing protocols 

distribute information as needed to any reachable sensor node within the sensor cloud. 

No effort is made to organize the network or its traffic, only to discover the best route 

hop by hop to a destination by any path. All nodes are assigned uniform functionality. In 

hierarchical-network routing, nodes play different roles in the network. These protocols 

often group sensor nodes together by functionality and merge them into a hierarchy. 

Location-based routing uses the physical position of a sensor node in the network to route 

packets to that node. If  a node changes location, the connection to that node will be 

broken and another route is required to establish its new location. Based on their 

operation, the protocols are further classified into Query based, negotiation based.
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multipath based, QoS based and coherent routing. The protocols categorized here often 

overlap on top of each other. We will explain each relevant protocol on the basis of 

network structure and protocol operation respectively.

Based on

Structure

Based on

Flat Network Rouünq

Hierarchical Network Routing

Locatk)n based Routing

3d Routing

Routing

QoS based Routing

Routing

Coherent and Noncoherent Routing

Wireless
Sensor

Networks

Routing
Protoœls

Figure 2.4 Classification of Routing Protocols [59]

2.2 Flat Routing

In flat network architecture all the sensor nodes are equal and connections 

between nodes are set up in short distance to establish the radio communication. Route 

discovery can be carried out in sensor networks using flooding or broadcasting which do
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not involve topology maintenance. In this section, we will provide an in-depth knowledge 

of the flat routing based protocols.

2.2.1 Flooding

Flooding is an example of simple flat routing scheme. When a sensor node 

receives a data packet, it stores the data and broadcasts it to its neighboring nodes. This 

process repeats until the information reaches all the sensor nodes in an entire network. To 

perform flooding, figure 2.5 (a), sensor nodes do not need any knowledge of the network 

configuration. Sensor nodes distinguish each data packet, while receiving or transmitting 

a data packet. This will save the limited memory space of each node. Since flooding does 

not require any complicated routing algorithms, it can be easily implemented for sensor 

networks. Flowever, there are some shortcomings in this scheme which dissipate the 

limited resources of the sensor nodes [41].

One such problem in classic flooding is implosion. Implosion occurs, when a data 

receiving node broadcast the data packet to its all neighboring nodes, irrespective of 

whether the neighboring node already has the same data or not. Figure 2.5 (b) illustrates 

implosion; here node D floods the information to its neighboring nodes E and F 

respectively. Node H being the neighbor to both E and F, gets the same copy of the 

information from both E and F. Due to indiscriminate transmission of data, sensor nodes 

in this scheme expend limited transmission energy and bandwidth. Another problem 

associated with flooding is overlap. This situation occurs when multiple nodes observe 

the same sensor region, they generate the overlapping data. The sensor nodes within its 

neighborhood receive the multiple copies o f the same packet containing the same 

information. Overlap, like implosion expends transmission power and bandwidth. Figure
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2.5 (c) shows that J and K collect overlapped information and flood to their respective 

common neighbor/s, here node L. In flooding, the overlap problem is more difficult to 

solve than the implosion problem, because implosion is a function of network topology, 

whereas overlap is a function of both topology and observed data [41]. Additionally, in 

classic flooding, the sensor nodes are not resource aware, i.e. sensor nodes do not update 

their activity status according to the energy constraints at any given time. These 

shortcomings reduce the battery life o f sensor node and therefore shorten the entire 

network life span.

/  /
X  /

—  E

Figure 2.5 (a) Flooding Techniques

/

Figure 2.5 (b) Implosion Problem
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Figure 2.5 (c) The Overlap Problem associated with Flooding

Nonetheless, Flooding, due to its easier implementation and simple design has 

been investigated intensively to overcome the abovementioned shortcomings. In [43] and 

[60], each sensor node only needs to know a small portion of entire network 

configuration, which is the location information of its neighboring nodes, instead of the 

information of entire network topology. Gossiping is another by-product of flooding 

[42].When a node receives the data packet it selects a subset of its all neighboring nodes 

and transmits the data packet to the subset, instead of all neighboring nodes. This reduces 

the consumption of transmission energy.

2.2.2 SPIN- Sensor Protocols for Information via Negotiation 

Another example of flat routing is negotiation based protocols. Sensor Protocols for 

Information via Negotiation- SPIN [41] intend to disseminate data towards the sink using 

negotiations. It is assumed that the source has an observed data meant to be transported to 

sink node. The source node advertises its data over the sensor network. Those nodes 

desiring the sensor data, request it from the source. For the negotiations, the information 

descriptors called “meta-data” are used. Upon sensing the information packet, figure 2.6,
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the observer or source node transmits a small advertisement packet (ADV) to its all 

neighboring nodes except the one from which the node receives the data packet. The 

ADV contains the information of actual data. Upon receiving the ADV, a neighboring 

node checks its local cache whether the node already has the same data or not. If the 

neighboring node already has the data, the ADV is rejected. If  the node does not have the 

desired data, it sends a request message (REQ) to the receiving node. Then, the receiving 

node transmits the data packet (DATA) to the neighboring nodes, which request the data 

by sending the REQ message.The corresponding neighboring node then replicates this 

procedure with its neighbors. As a result, the entire sensor network will acquire a copy of 

the data. This guarantees that there is no redundant information sent throughout the 

network. The SPIN family o f protocols includes several schemes with minor 

modifications on the actual proposal [41].

SPIN-1 includes negotiation before transmitting information to guarantee that 

only useful information will be transferred. It is a three-way handshake protocol, as 

mentioned above. SPIN-2 is a modification to SPIN-1 which in addition to a three- way 

handshake includes a resource awareness mechanism [59]. SPIN-2 works under resource 

constraint environment. Each sensor node has its own resource manager, which keeps 

account of the expended and remaining power. Before each transmission, the nodes 

examine their resource manager and curb on other energy expending activities to increase 

the lifetime of the node.
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Figure 2.6 (a) Observer / Source node acquiring Data, (b) Receiver sending 

ADV message, (c) Desired nodes sending REQ message and 

(d) Source sending the Data to selective neighbors
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SPIN-BC is developed for broadeast networks in which the sensor nodes use a 

single shared channel to communicate with each other. In SPIN-BC, the sensor node on 

receiving the ADV message does not send a REQ message instantaneously. Instead, it 

waits for a certain time before sending the REQ message. This is to avoid the redundant 

request for the same message. In SPIN-RL, each node keeps track of all the nodes from 

where it hears the advertisement. If it does not receive any requested data within a certain 

period of time, it sends out the request again. Similarly after transmitting the data 

message, sensor node waits for a certain period of time before responding to other 

requests for the same data message. Mainly SPIN-RL is used for the lossy channels. 

SPIN-PP has been developed to work with point-to-point communication. In SPIN-PP, 

two nodes can have a direct communication, without the need for intermediate nodes. It is 

a simple 3-way handshake scheme in which energy is not considered to be a constraint.

[62]. In SPIN-EC the sensor nodes follow the 3-way handshake like SPIN-PP but there is 

an energy-conservation heuristic added to it. Sensor node contributes actively in the 

protocol only if it is above a certain energy threshold and believes it can complete all the 

other stages of the protocol. Performance evaluation of SPIN [41] demonstrates that 

SPIN is more energy-effieient than flooding or gossiping while distributing data at the 

same rate or faster than these protocols. However the SPIN suffers from the weakness

[63] of transmitting all the data packets at the same Energy level and not using the 

distance to a neighbor to adjust the energy level. Besides a large overhead in broadcasting 

the data, energy consumption is a concern in SPIN. The motivation for developing the 

Label dissemination forwarding, IDLE and RM-IDLF schemes surfaced from the above- 

mentioned limitations of currently employed schemes.
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2.2.3 Directed Diffusion 

Directed diffusion, [57], [64] is a data-eentrie and applieation-aware routing scheme 

where all the information generated by sensor nodes is named by attribute-value pairs. 

This is a Sink-initiated reactive routing paradigm in which routes are established as they 

are requested. In data centric routing the data originating from different sources are 

combined with in-network aggregation by eliminating redundancy, minimizing the 

number o f transmissions; thus saving network energy and prolonging its lifetime. Unlike 

conventional networks, maintaining a node addressing table, results in a large overhead. 

Instead the data queries are exchanged. For example in the task of monitoring a 

building’s entrance, the request to gather the “The total number o f  people going o u t” is 

more appropriate than the request to “gather the readings from  the nodes W,X,Y,Z”. The 

sink node requests data by broadcasting “interests” or sensing task. Interest specifies the 

sensing task; include type o f sensing event, sensing area, duration o f sensing task, and 

event transmission frequency. Figure 2.7 illustrates the operation o f directed diffusion. 

The interest is disseminated throughout the network in a hop-by-hop manner. The query 

is initiated by the sink node and it broadcasts its interest message periodically to all of its 

neighbors. An interest cache is maintained by each node. When a node receives an 

interest, it stores the interest and also sets up a gradient toward the node, from which it 

received the interest. This process continues until gradients are established from the 

sources back to the sink. If a respective node has the requested data, which matches the 

received interest, the node sends back the data packet to the sink in multiple paths 

according to the gradients. On receiving the data packet at the sink, the reinforcement of 

the optimal path is initiated by the sink. The criterion for the selecting the optimal path
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highly depends on the application. It may be the shortest path or minimum energy 

consuming path, whichever suits the application. The best path is reinforced by the sink 

sending a new interest to the path.

Source ■ O -
Sink

Figure2.7 (a) Directed diffusion operation - Diffusing interests

Source * o
Sink

Figure].7 (b) Directed diffusion operation- Setting up gradients
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Source

o o o
Figure!.7 (c) Directed diffusion operation - Path reinforcement

In flooding and SPIN, data collection is initiated by source nodes. In other words, 

source nodes start transmitting data whenever an event is observed. On the contrary, in 

directed diffusion data collection is initiated by sink nodes. Because o f sink initiated data 

collection, directed diffusion can limit data flow. By doing so, it will reduce unnecessary 

data transmissions and thus energy consumption of sensor nodes will be reduced. Such 

type of information retrieval is appropriate for continual queries where requesting nodes 

do not anticipate data that fulfill a query for duration of time. Possibility of transmission 

overhead created by interests creates another disadvantage of using this scheme. When a 

sink broadcasts an interest, the sink does not know whether the data, which will match 

the interest, is obtainable or not. I f  the data is not available at that time, sink node can not 

collect any data at all. Furthermore, this makes it unsuitable for one-time queries, as it is 

not worth setting up gradients, which use the path only once. For instance, directed 

diffusion is not applicable data dissemination scheme for surveillance purpose because 

sensor nodes have to transmit data as soon as they detect abnormality.

2.2.4 Rumor Routing 

Rumor routing [65] is a data centric scheme proposed for applications where 

geographic routing is not practically possible. Rumor routing directs the queries to the
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sensor nodes that have observed a specific event rather than flooding the entire sensor 

network to extract information about the occurring events. The rumor routing utilizes a 

set of long-lived agents which create paths that are directed towards the events they 

encounter. On detecting an event, sensor node adds it to its events table, and generates an 

agent. Agents travel within the sensor network to disseminate information about local 

events to distant nodes. When a node generates a query for an event, the nodes that know 

the route, may reply to the query by inspecting its respective event table. The agent has a 

lifetime of a spécifié amount of hops after which it dies. Any node creating a query will 

transmit the query if  it has a route to the event, otherwise it will transmit it in a random 

direction. If the node discovers that the query did not reach the destination, then it will 

flood the network. The fewer the number of queries which flood, the less is the energy 

consumed. Unlike directed diffusion where data can be routed through multiple paths at 

low rates, rumor routing keeps only one path between source and destination. Simulation 

results [65] show that rumor routing can handle the node failure and achieve major 

energy savings when compared to flooding. Rumor routing performs well as long as the 

number of events is small. For the large number of events, the cost of generating and 

maintaining the event tables and agents results in a large overhead [59].

2.2.5 COUGAR

COUGAR [66] is a data- centric protocol and follows the directed diffusion 

model along the database approach. COUGAR utilizes in-network data aggregation for 

power saving. There exists an additional query layer between network and application 

layer. It abstracts the information generated by network in an update-only relational table. 

The attribute in this relational table is (a) details about the sensor node, for example its
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location, ID and (b) information collected from respective node (e.g., temperature, light). 

Sensor applications are often interested in summarized and consolidated data that are 

produced by aggregated queries rather than detailed data. In addition, sensor nodes 

choose a leader node to initiate the aggregation and transmit the information to the sink. 

Sink is liable for generating a query, which specifies the details about the data flow and 

in-network computation for the incoming query and sends it to the appropriate nodes. In 

COUGAR, sensor readings are treated like “virtual” relational database tables and a 

query language like SQL may be used to issue tasks to the WSN. COUGAR has some 

drawbacks [59]. First, inclusion of query layer on each sensor node puts an extra 

overhead on the nodes and the entire network in terms of power and memory storage. 

Second, a high level o f synchronization among the sensor nodes is required to achieve the 

in-network data computation.

2.2.6 ACQUIRE

ACQUIRE [67] stands for active query forwarding in sensor networks. It is a 

data-centric, application specific scheme for querying wireless sensor networks. In 

ACQUIRE an active query is passed through the sensor network. The intermediate sensor 

nodes use cached local information (within the look ahead of “d” hops) to partially 

resolve the query. When the query is resolved an entire response is sent directly back to 

the querying node. For the complex queries, directed diffusion may not be the right 

choice, because it uses flooding based query mechanism, which would expend energy. 

ACQUIRE can adjust the look ahead parameter “d” to offer an efficient querying [59]. 

When d is equal to the network diameter, ACQUIRE performs similar to flooding. If “d” 

is too small, the query has to travel more hops. ACQUIRE performs better than directed
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diffusion and the optimal ACQUIRE can lessen the energy consumption by more than 

60% as compared to expanding the ring search.

2.3 Hierarchical Routing

Due to the nature of the applications supported by the sensor networks such as a 

range of estimations measuring temperature, pressure, humidity, seismic, thermal, 

acoustic, radar, noise levels etc, the sensor nodes need to be densely deployed in a 

magnitude much greater than conventional ad hoc networks [68]. In hierarchical routing, 

the nodes with the higher energy ean be utilized to process and transmit the information. 

The low energy nodes can be assigned sensing in the proximity of an event. This routing 

uses the fact o f division o f labor, among the sensor nodes. Depending upon the remaining 

energy, the task to each node can be assigned accordingly. The formation of clusters 

within the sensor network, allows the sensor nodes to make the decision to choose the 

cluster leader. This enhances the network lifetime, energy efficiency and scalability of the 

sensor networks. According to [59], hierarchical routing consists of two layers where one 

layer is used to select cluster heads and the other layer is used for routing decision. This 

section explains some of the hierarchical routing schemes

2.3.1 Low Energy Adaptive Clustering Hierarchy- LEACH 

LEACH is an energy conserving communication protocol [13] where all the 

nodes in the network are uniform and energy constrained. An end user can access the 

remotely monitored operation, where large numbers of nodes are involved. The nodes 

organize themselves into local clusters, with one node acting as the randomly selected 

local cluster-head. If the allocated cluster-heads are always fixed, then they would die
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quickly, ending the useful lifetime of all nodes belonging to those clusters. LEACH 

includes random alternation of the high-energy cluster-head nodes to enable the sensors 

to uniformly sustain the power. Sensors nominate themselves to be local cluster-heads at 

any given time with some probability. These cluster head nodes relay their status to the 

other sensors in the network. Each sensor node resolves which cluster to follow by 

choosing the cluster-head that requires the minimum communication energy. This allows 

the transceiver of each unassigned node to be turned off at all times except during it’s 

transmit time, thus minimizing the energy dissipated in each sensor. LEACH operates in 

two phases (a) the initializing or set up phase, where the organization of clusters and 

selection o f cluster heads takes place, and (b) steady state phase, where the actual data 

transfer takes place. During the set up phase a set of nodes, “p”, nominate themselves as 

cluster heads respectively. A random number “r” between 0 and 1 is selected by the 

sensor node. If this random number is less than the threshold value, T (n), the respective 

node becomes the eluster head for the particular event. The calculation of threshold value 

T (n) is shown below, G is the set of nodes that were not accepted as cluster head in the 

last “ I/p “events

p I f n ^ G
I -  p{r  mod(I / p))

Each nominated cluster head advertises to the rest of the nodes in the network 

about its status. After receiving the advertisement, the non-cluster head nodes decide as 

to which cluster they want to fit in. This assessment is based on the signal strength o f the 

advertised message. The signal to noise ratio is compared from various cluster heads 

surrounding the node/s. The non cluster-head nodes notify the respective cluster-head/s
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about the decision to join the cluster. This notification takes place using CSMA MAC 

protocol.

On receiving all the messages from interested nodes, the cluster-head nodes 

generate a TDMA schedule and announce it to all the nodes within the cluster. In the 

steady state phase, cluster heads are aware of the schedule of each node transmitting the 

data during the allocated time slot. The sensor nodes start transmitting data to the cluster- 

heads. The cluster-head node receives all the data and aggregate the data by performing 

data fusion algorithms. The resulting information is then sent to the sink node. There 

exists an uncertainty regarding the strength of this protocol [59]. It is proposed that 

during the set up phase a set of nodes, “p”, nominate themselves as cluster heads 

respectively. But the idea of uniformly distributing these cluster heads over the entire 

sensor network cloud is missing. The absence o f uniform cluster heads in the sensor 

network can create the disparity in the rate of energy spending and in some cases may not 

even complete the communication from source to the sink node. Furthermore, the 

hypothesis of dynamic clustering can increase the burden of overhead. Secondly, LEACH 

protocol assumes that all the sensor nodes, irrespective of whether it is a cluster or not, 

consumes the same amount of energy.

Table 2.1 compares SPIN, LEACH and the Directed diffusion [59]. These three 

routing schemes are designed to so that collected data is disseminated efficiently in 

wireless sensor networks. However, due to in-network processing, directed diffusion 

shows a promising approach for energy efficient routing.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.1 Comparison among SPIN, LEACH and Directed Diffusion

SPIN LEACH Directed Diffusion
Optimal Route No No Yes
Network Lifetime Good Very Good Good
Resource Awareness Yes Yes Yes
Use of Meta-Data Yes No Yes

2.3.2 Power-Efficient Gathering in Sensor Information Systems-PEGASIS 

In PEGASIS [69], each sensor node forms a pattern so that each node will receive 

from and transmit to a close neighbor. Each node takes turn being the leader for 

transmission to the base station so that the average energy spent by each node per round 

is reduced. PEGASIS outdoes LEACH’S performance by (I) purging the overhead of 

dynamic cluster formation, (2) decreasing the distance non leader-nodes must transmit, 

(3) reducing the number of transmissions among all nodes, and (4) using only one 

transmission to the base station per round. Principal goals in the operation PEGASIS are 

(a) augment the lifetime of each sensor node by using collaborative techniques (b) 

reducing the bandwidth o f communication by allowing the local coordination among 

neighboring sensor nodes. The performance evaluation in [69] shows that PEGASIS is 

able to enhance the sensor network lifetime twice as much as the network implementing 

LEACH protocol. In PEGASIS, this performance gain is attained through the exclusion 

of the overhead caused by dynamic cluster formation and through reducing the number of 

transmissions and reception by using data aggregation. Though PEGASIS outweighs the 

LEACH protocol, there still exists an uncertainty regarding the depth o f this protocol [59]. 

There should be a dynamic topology adjustment in PEGASIS for the nodes to know
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energy status o f its neighbors for routing its data. Secondly, PEGASIS presume that all 

the sensor nodes maintain a database with the location of all other nodes in the network, 

which increases the overhead. PEGASIS also assumes the communieation of each sensor 

node with the sink directly, without the multihop routing.

2.3.3 Power Concerned Routing 

Since a sensor network has limited bandwidth, it is necessary to minimize 

communication between sensor nodes. In terms of power consumption, operation of a 

wireless sensor node can be divided into three parts: sensing, processing, and 

transmission. Among those three operations, it is known that the most power consuming 

task is data transmission. Approximately, 80% of power consumed in each sensor node is 

used for data transmission. Energy-aware routing algorithms [51], [52], [53] discuss 

reducing the consumption of battery-power at the different nodes. Reference [70] 

explains energy management at the MAC layer using TDMA along with periodic listen 

and sleep to avoid energy wastage. The authors in [41] discuss about the narrow 

computing power of the sensor nodes and the limited bandwidth of the connecting nodes, 

which deter the communication of sensor nodes within the wireless sensor cloud. This 

section explains some power management techniques. They can be broadly classified as

1. Static power management, broadly applied at the (node) design time, aiming at 

different levels of system’s hardware and software components and

2. Dynamic power management, applied at runtime. Dynamic power management 

takes into consideration the runtime events, to reduce power when the sensor 

nodes are idle or catering to trivial workloads.
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2.3.3.1 Dynamic Voltage Scheduling (DVS)

Schemes such as auto shutdown and dynamic voltage scaling (DVS) have 

emerged as powerful methods for power-aware computing. In sensor networks, DVS 

plays an integral part in reducing the power consumed by a processor at each node during 

an active state. In a sensor node, the workload for a processor is not always constant; it 

varies over time [71]. Depending on the application involved and the processing speed, a 

node is either active or idle. This power optimization is realized by distributing 

workloads throughout the entire cycle of a processor. In other words, DVS minimizes the 

workload at a peak and spreads it during the idle times. Processor workload distribution 

can be accomplished by reducing processor frequency and voltage, which decreases the 

processing speed. One important point in designing a DVS system is that the processing 

speed has to be reduced without harming the efficiency of the entire network. Reducing 

only the frequency does not increase the processor power efficiency. By reducing 

frequency, the power consumption is decreased, but, the amount of task processed is also 

reduced. Because of the linear relationship between power consumption and task 

processing, the energy consumed by the task does not change. On the other hand, 

reducing the voltage applied to a processor by reducing the processing frequency, leads to 

a quadratic energy reduction [71]. Therefore, by changing the frequency and the voltage, 

the total power consumed per task can be reduced. One aspect of DVS is predicting 

future workloads. Since decisions to spread workload are based on the current and future 

workloads, the accuracy of future workload estimation can dramatically change the 

efficiency of DVS. Thus, it is crucial to develop a good algorithm, for predicting future 

workloads of nodes. Energy eonservation is uniquely vital for embedded systems, sueh as
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obscured wireless sensors, which are deployed in applications where it is difficult to 

physically access sensors. Since the amount of power available to these systems is limited, 

it is considered a daunting challenge to minimize the energy consumption in order to 

broaden the life o f the battery. In this section, we discuss the related power efficient 

routing schemes.

2.3.3.2 Minimum Total Transmission Power Routing (MTTPR)

MTTPR [50] protocol is an on-demand, reactive routing scheme which seeks an optimal 

path from a source to a destination node in mobile ad hoc networks only when such a 

path is needed. The objective of MTPR development was to design an algorithm for 

finding a minimum transmission power consumption path from a source to a destination 

in a power-constrained network. The basic idea is that if  a shortest path between two 

nodes is employed to transmit a data packet, the power consumed by the transmission 

will be minimized, because radio transmission power is proportional to the distance. 

More specifically, the power consumed is directly proportional to “d“ ’ where “d “ is the 

distance between the two nodes and the value of “n” depends on “d”; namely n=2 for 

short distances and n=4 for long distance [72]. Since data packets in ad hoc networks are 

transmitted in a multihop manner, the total power required in transmitting between a 

source and a destination is the sum of the transmission power consumed by each hop 

between two nodes necessary for a packet to reach the destination node. Therefore, the 

total transmission power Pt, can be expressed as follows;

P,

where D is the total number o f nodes in the route, and no and no are the source and 

destination nodes respectively [50]. An optimal route is determined by minimizing the
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total transmission power P, over all possible routes between a source and destination node. 

This can be achieved by applying a shortest path algorithm, such as Dijkstra algorithm. 

Because the value of “n” in “d" is determined by the distance between the two nodes, 

MTTPR protocol tends to select routes, which have more nodes, but with shorter 

distances for each hop.

By selecting a path between a souree and destination node with many short-distance 

hops, the total transmission power efficiency will be optimal. However, another 

consideration of the MTTPR is propagation delay. Because of the MTTPR route seleeting 

method and the proportionality o f transmission power to the distance, more nodes are 

usually involved in delivering data packets. Since each node requires some processing 

time, each node contributes to the propagation delay. Therefore, the more nodes in the 

route, the longer the propagation delay. Further more, each node consumes power in 

processing data packets. To address this problem, the receiving power of a node was 

introduced in addition to the transmission power [50]. By considering both power 

consumption factors, propagation delay and the number o f nodes included in an optimal 

path can be reduced. Other consideration of the MTTPR protocol is the energy state of 

each node. Once an optimal path is selected, it can be used to transmit data packets as 

long as the route remains connected. Since some nodes can consume all of their energy 

while other nodes consume very little, patches can get disconnected and the network 

become fragmented.
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2.3.3.3 Min-Max Battery Cost Routing -  MMBCR 

This scheme [50] is also an on-demand reactive routing scheme. It selects an 

optimal data path based on the power remaining in each node. To measure how much a 

node is willing to transmit a data packet at any given time, “t”, one proposed equation is

-  —

-  c; ’

where is the battery capacity o f node “i” at time “f ’. As the residual battery capacity 

decreases, a node is less willing to participate in transmitting data packets. This 

phenomenon is expressed by increasing the f-value. The battery cost of a route j, Rj, is 

defined as the maximum f  value among nodes in the j-route.

Rj = m a x / ( c j

Hence, an optimal route in the MMBCR protocol is determined by finding a route having 

a minimum Rj value over the set A o f all the possible routes j e  A between two nodes.

=  m i n K  I  y  G  ^ ) }

The MMBCR protocol is guaranteed to select a path, whose minimum power capacity 

node is a maximum. However, unlike the MTTPR protocol, MMBCR does not take into 

account the total transmission energy consumed by each data packet transmission. 

Therefore, the path selected by MMBCR is not necessarily the most energy efficient path.

2.3.3.4 Conditional Max-Min Battery Capacity Routing 

CMMBCR protocol [50] is a routing scheme, which combines MTPR and MMBCR 

in an effort to maximize network power efficiency. CMMCR considers the best possible 

routing in terms of total transmission power and power consumption fairness over all
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routes in a network. In CMMBCR, the battery capacities o f a node are divided into two 

states according to a threshold capacity value. There are three possible scenarios:

• all nodes have capacities above the threshold

• all nodes’ have capacities below the threshold and

• Some capacities are above and some are below the threshold.

If the battery capacities of all nodes are above the threshold value, MTPR is used 

and CMMBCR selects a route with minimum total transmission power consumed per 

packet. Consequently, the power consumption of the whole network is minimized. On the 

other hand, if the battery capacities o f all nodes are less than the threshold value, 

MMBCR is used, so that the lifetime of nodes with low capacity can be extended. In the 

third case, if  there exists a route, between a source and a destination for which all nodes 

have capacities above the threshold value; the optimal route is selected by applying 

MTPR. If all possible routes from a source to a destination contain only nodes with 

capacities below the threshold value, a route is selected by applying MMBCR. One 

disadvantage of CMMBCR is that it does not allocate energy evenly throughout all nodes, 

as was expected [50]. Since the CMMBCR scheme is also a reactive routing scheme, a 

routing process is activated only when a route is needed for transmitting data packets. 

The power status o f each node is not monitored continuously unlike proactive routing 

schemes which maintain routes periodically. Thus, after an optimal route is selected and 

as long as it is used for transmitting data packets, the power status of all nodes on the 

route is not monitored. This means that even if the power capacity o f a node on a route is 

below the threshold level, it has to keep transmitting data packets as long as the route is 

active.
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2.3.3.5 Modified Conditional Max-Min Battery Capacity Routing 

In this scheme [50], two threshold values -  selective-victim-search-zone (SVSZ) 

and forced-victim-search-zone (FVSZ) -  are used in addition to the threshold value, y, 

used by the conventional CMMBCR. The general idea of Modified-CMMBCR is as 

follows. The two constant values, SVSZ and FVSZ are applied to all nodes in a network, 

where SVSZ > FVSZ. On the other hand, y is determined by a source node, so if  a source 

applies a low y value for one route, the route can be used despite having a low node 

capacity. A source node can change the threshold value depending on the data type 

transmitted. Also, each route can have a different y value. Then, if  the remaining power 

of node on a route becomes less than y, a new route will be sought. Unless the remaining 

power of a node becomes less than both y and SVSZ, all nodes continue transmitting data 

packets. In case a remaining power is less than SVSZ and greater than FVSZ, a source 

node receives a signal from a low power node to seek a new route, while the low power 

node continues to transmit data packets. Finally, if  the remaining power of node is less 

than FVSZ, it sends a signal to a source node to seek a new route, and stops transmitting 

data packets. At this point, a node transmits data packets only when it is a source node. 

One advantage of this scheme over CMMBCR is that it reflects the power status of all 

nodes on a route during the data transmission state, so more power-aware routing can be 

achieved. In addition, since each source can determine the y-value, a route can be 

selected according to the priority o f data packets. For instance, if  a source has a low y 

value, more nodes participate in a selected route than if the source has a high y-value, so 

a better route, which will be a shorter and have smaller propagation delay, can be selected. 

On the contrary, one disadvantage o f this modified CMMBCR is the overhead created by
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transmitting control signals. When the remaining power of a node reaches SVSZ, FVSZ, 

or y, it has to transmit a control signal to its source node to select another route. This will 

cause more control signals throughout the network as compared to MTPR, MMBCR, and 

CMBCR.

2.3.4 Threshold Sensitive Energy Efficient Sensor Network Protocol 

TEEN [74] is a hierarchical protocol using data centric mechanism to route the 

data to sink. It is designed to be responsive to abrupt variations in the sensed physical 

attributes such as temperature, pressure etc. In TEEN, physical phenomenon is sensed 

constantly, but the actual data transmission is done sparingly. Clusters are formed and 

cluster heads are chosen. The cluster head sends two thresholds to the fellow nodes 

within the cluster. These two threshold values are (a) Hard Threshold, which is the 

threshold value of the sensed attribute and (b) Soft Threshold, is a small modification in 

the value of the sensed attribute that triggers the sensor node to switch on its transmitter 

and transmits to the respective cluster head. This way the sensor nodes transmit only 

when the sensed attribute is in the span of interest. The soft threshold lessens the number 

o f transmissions that would have otherwise taken place without any change in the sensed 

attributes. To organize an effective data transmission, values for both soft and hard 

threshold can be attuned. TEEN protocol is a trade-offs between energy efficiency and 

data accuracy. This protocol is appropriate for time critical sensing applications, such as 

forest fires, sudden temperature increase etc. Downside of TEEN protocol is that if  the 

updated threshold values do not reach the cluster head, the nodes cannot communicate 

and the information can never reach to the end user.
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APTEEN [75], Adaptive Threshold sensitive Energy Efficient sensor Network 

protocol is an augmentation to TEEN. It is intended to acquire periodic data collections 

and is more receptive to time-critical events depending on the type of the application. In 

APTEEN, the cluster-heads broadcasts hard and soft thresholds, and the transmission 

schedules to all the nodes within the cluster. The node senses the environment constantly, 

and the sensor nodes which sense the physical data value beyond the hard threshold are 

allowed to transmit. The sensor node will transmit data only when the values of that 

attribute changes by an amount equal to or greater than the soft threshold [59]. In 

APTEEN, the count time is the maximum time period between two successive reports 

sent by the sensor node. If the sensor node does not send data beyond the count time, 

TDMA schedule is used and each node in the cluster is assigned a transmission slot. The 

performance evaluation o f TEEN [74] and APTEEN [75] shows that both of them 

outperform LEACH. Performance o f APTEEN in terms of network lifetime and energy 

dissipation is better than LEACH. On the negative feature of this scheme, is the added 

complexity required to execute the threshold functions and the count time. The problem 

of overhead on forming clusters at multiple levels and the method of implementing 

threshold-based functions still remains in APTEEN.

2.3.5 Self-Organizing Protocol 

Self Organizing Protocol [76] is a protocol with self-organizing capabilities and 

taxonomy based on the sensor applications. The self organizing protocol architecture 

support heterogeneous sensors that can either be mobile or stationary. A subset of the 

sensor nodes probe the environment and forward the data to a selected set o f nodes that 

acts as routers. Router nodes are stationary and form the backbone for communication.
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The sink nodes are the robust nodes in terms of energy. The collected data is forwarded 

through the routers to sink node. The routing architecture is hierarchical where set of 

nodes are formed and merged when needed. In order to maintain fault tolerance, Local 

Markov Loops (LML) algorithm, which executes a random walk on spanning trees of a 

graph, is used in broadcasting.

The algorithm for self organizing the router nodes and creating the routing tables 

consists o f four phases, (a) Discovery phase, where each sensor node, discover its 

respective neighbor/s. (b) Association phase, in this phase based on the grouping of each 

sensor node a hierarchy is formed. Each sensor node is allocated an address depending 

upon its position in the hierarchy. A routing table of size O (log N) is created for each 

sensor node. Broadcast trees that cover all the nodes are created, (c) Maintenance phase, 

in this phase each node notifies the neighbors about its respective energy level and 

routing table. Updating o f routing tables and the energy levels of sensor nodes are made 

in the maintenance phase. Local markov loops are used to maintain the broadcast trees, 

(d) S e lf reorganization phase, where the group reorganization is performed in case of 

node failures. There is a small cost of maintaining the routing tables in this protocol and 

performance evaluation shows that the energy consumed for broadcasting a message 

using self organization protocol is less than that consumed in SPIN [41] due to the 

broadcast trees utilized in the algorithm.
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Table 2.2: Hierarchical vs. Flat topologies routing [59]

Flat Routing Hierarchical routing

Contention-based scheduling Reservation-based scheduling
Collision overhead present Collisions avoided
Variable duty cycle by controlling sleep 
time of nodes

Reduced duty cycle due to periodic 
sleeping

Node on multi-hop path aggregates 
incoming data from neighbors

Data aggregation by cluster head

Routing is complex but optimal Simple but non-optimal routing
Links formed on the fly without 
synchronization

Requires global and local synchronization

Routes formed only in regions that have 
data for transmission

Overhead of cluster formation throughout 
the network

Latency in waking up intermediate 
nodes and setting up the multipath

Lower latency as multiple hops network 
formed by cluster heads always available

Energy dissipation depends on traffic 
patterns

Energy dissipation is uniform

Energy dissipation adapts to traffic 
pattern

Energy dissipation cannot be controlled

Fairness not guaranteed Fair channel allocation

This protocol, however, is not an on-demand protocol especially in the 

organization phase o f algorithm, thereby causing an extra overhead. Secondly there is 

another drawback in forming hierarchy when there are many cuts in the network [59]. 

This will be expensive since network-cuts enhance the probability of employing 

reorganization phase. Table 2.2 compares the different aspects and issues of hierarchical 

routing and flat routing.
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2.3 Location Based Routing Protocols 

Wireless sensor networks are spatially deployed over a region depending on the 

application. There is no global addressing scheme for sensor networks like IF-addresses. 

In location based routing sensor nodes are addressed by means of their physical locations. 

The distance between neighboring nodes can be calculated on the basis of incoming 

signal strengths. Comparative coordinates o f the neighboring nodes can be acquired by 

exchanging information between neighbors [40], [77], [78]. In location based scheme, 

some nodes go to sleep, in order to save the energy. The problem of designing sleep 

period schedules for each node in a localized manner was explained in [79]. If the 

location of the sensor nodes and the region to be sensed is known, a query can be diffused 

only to that specific region which will reduce the number o f transmissions significantly. 

Initially a number o f protocols from mobile ad hoc networks were employed on wireless 

sensor networks [81], [82], [83], [84], [85], [86]. These location-based protocols utilize 

the location information of ad-hoc nodes to achieve scalability in large-scale networks. 

However, many o f these protocols are not applicable to sensor networks since they are 

not power aware. This Section discusses some relevant location aware routing protocols.

2.4.1 Geographic Adaptive Fidelity 

GAF [81] is a power-aware location-based routing algorithm designed primarily 

for ad hoc networks, but can be applicable to wireless sensor networks too. GAF 

conserves energy by switching off unnecessary sensor nodes in the network without any 

effect on the level of routing fidelity. The sensor cloud is first divided into fixed zones 

and forms a virtual grid. Inside each zone, nodes poll resources with each other to play 

different roles. For example, one sensor node is elected by others to stay awake for a
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certain period of time and then they go to sleep. This node is responsible for monitoring 

and reporting data to the sink on behalf of the nodes in the zone [80]. Each sensor node 

uses its GPS-indicated position to associate itself with a spot in the virtual grid. Nodes 

related with the same point on the grid are considered equivalent in terms o f the cost of 

packet routing. Such equivalence can be removed by keeping some nodes positioned in a 

particular grid area in sleeping state in order to save energy.

Figure 2.8 [81], an example of virtual grid in GAF is depicted. Node 1 can reach 2, 

3 and 4 and nodes 2, 3, and 4 can reach 5. This shows that nodes 2, 3 and 4 are equivalent 

and two of them can sleep. In order to balance the load, each node change state from 

sleep to active mode. The three stages namely defined in GAF are (a) Discovery stage, 

this stage decide the neighbors within the grid, (b) active stage, which includes the active 

routing and (c) sleep stage, when the radio is turned off. The state transitions in GAF are 

depicted in Figure 2.9, redrawn from [81], [80].

In order to control the mobility, each sensor node in the grid estimates its 

respective leaving time from the grid and sends to its neighbor. In order to reliably route 

the data, the inactive or sleeping neighbors adjust their sleeping time accordingly. Before 

the departure time of the active node expires, the inactive node wake up and becomes 

active. GAF is implemented both for non-mobile sensor nodes (GAF-basic) and for 

mobile sensor nodes (GAF-mobility adaptation).
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Figure 2.8 Example of virtual grid in GAF

Active

Figure 2.9 State transitions in GAF

GAF [81] assume that sensor nodes ean identify their locations using GPS cards, 

which is inconceivable with the current technology. Performance evaluation o f GAF 

shows that it performs reasonably well as a normal ad hoc routing protocol in terms of 

latency and packet loss. Besides it increases the lifetime of the network by saving energy. 

GAF may also be considered as a hierarchical protocol, where the clusters are based on 

geographic location [59]. For each particular grid area, a master node acts as the leader to 

transmit the data to subsequent nodes. It is worth mentioning that in GAF, the leader

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



node does not do any data aggregation like other hierarchical protocols discussed earlier 

in this article.

2.4.2 Minimum Energy Communication Network

Minimum Energy Communication Network (MECN) [87] sets up and maintains a 

minimum energy network for wireless networks by utilizing low power GPS. The initial 

assumption of this protocol is for a mobile network, but it is applicable to the wireless 

sensor networks. MECN identifies a relay region for each sensor node. This relay region 

is a collection o f the sensor nodes in a surrounding area, through which transmission is 

more energy efficient than the direct transmission. Eigure 2.10 shows the relay region for 

a node pair (i, r) [87], [80]. The enclosure of a node “i” is then formed by taking the 

union of all the relay regions that node “i” can reach. The key proposal of MECN is to 

find a sub-network, which will have less number of nodes and require less power for 

transmission between any two particular source and destination pair. A localized search 

for each sensor node is performed considering its respective relay regions. This way the 

minimum power paths are found without taking into account all the nodes in the network. 

MECN protocol is s e lf  reconfiguring and can dynamically adjust to node’s failure or the 

deployment of new nodes.

SMECN [88], Small minimum energy communication network is a realistic 

modification over the MECN. SMECN assumes possible obstacles between any pair of 

nodes unlike the assumption in MECN that each node can transmit to every other node. 

The sub-network constructed by SMECN for minimum energy relaying is smaller in 

terms of number o f edges. As a result, the number of hops for transmissions will decrease. 

Simulation results show that SMECN uses less energy than MECN and maintenance cost
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of the links is less. However, finding a sub-network with smaller number of edges 

introduces more overhead in the algorithm.

RELAY 1
-------Reiay region bomida»y

REGION /

//
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Figure 2.10 Relay region of transmit-relay node pair (i, r)

2.4.3 Geographic and Energy Aware Routing (GEAR)

GEAR, [89] discusses the utilization of geographic information while 

disseminating queries to suitable regions since data queries often include geographic 

attributes. GEAR uses an energy aware and geographically-informed neighbor select 

heuristics to route a data packet towards the sink region. This routing algorithm limits the 

number of interests in directed diffusion by only taking into aecount, a certain region 

instead of sending the interests to the entire network. Each sensor node in GEAR 

maintains an estimated cost and a learned cost of reaching the destination. The estimated 

cost is calculated by the combination of distance to the sink and the residual energy. The 

learned cost is the supplement o f the estimated cost that accounts for routing around holes
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in the network. Formation of hole occurs when a node does not have any neighbor in the 

target region other than itself. In absence of the holes, the estimated cost is equal to the 

learned cost. The learned cost is transmitted one hop back every time a data packet 

reaches the sink so that route setup for next packet can be adjusted. There are two phases 

in the algorithm

• Forwarding packets towards the target region: On receiving the packet, sensor 

node make sure that there is at least one neighbor, which is closer to the target 

region than itself. If there is one neighbor, it is selected. If it’s more than one, the 

nearest neighbor to the target region is selected as the next hop. If no neighbor is 

found, it is accounted as a hole. Then one of the neighbors is chosen to forward 

the packet based on the learning cost function.

•  Forwarding the packets within the region: After the packet has reached the region, 

it can be disseminated by restricting flooding or recursive geographic forwarding. 

In high-density networks, recursive geographic flooding is more energy efficient 

than restricted flooding.

2.4 Multipath Routing Protocols

There is another subset o f routing in wireless sensor networks called multipath 

routing. In this routing scheme, instead of one single path, the notion o f multi paths 

available from source to sink is established. This scheme definitely enhances the network 

performance by improving the fault tolerance o f the network. At the same time the 

multipath routing increases the overhead of maintaining the alternate paths. The fault 

tolerance of a protocol is measured by the possibility o f existence of an alternate path
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between the source and the sink node, provided the initial path fails. Design of an optimal 

routing protocol must take into consideration the trade off between the network 

performance and fault tolerance capability. In this section we will discuss some multipath 

routing schemes. Disjoint paths are created to endure node/link failures. Disjoint 

multipaths are very resilient but at the same time they are extremely energy inefficient. 

[90], [91] propose an optimal algorithm to estimate the link disjoint paths in the network. 

An optimal algorithm for finding both node-disjoint and link-disjoint paths in the wireless 

network is proposed in [92]. Fault-tolerant clustering algorithm is proposed in [93] to 

detect the failure and to recover sensors from the failed gateway node. Fault-tolerant 

relay sensor node placement problem is studied in [94]. A polynomial time 

approximation algorithm is proposed to solve this problem. Using a set of sub-optimal 

paths occasionally to increase the lifetime o f the network is proposed in [95]. These sub- 

optimal paths are chosen by the probability of amount of energy consumption in each 

path. The path with the most residual energy may be expensive for routing the data in the 

network. A balance must be made to minimize the total power consumed and the residual 

energy of the network. The authors in [96] proposed an algorithm in which the residual 

energy of the route is relaxed to enable it to select a more energy efficient path

The reliable multipath routing was proposed in [97]. This scheme is useful for 

delivering data in harsh physical environments. The tradeoff between the amount of data 

traffic and the reliability of the sensor network is analyzed. The data traffic increases by 

initializing several paths from the source to destination. This tradeoff is analyzed by 

using a redundancy function that is dependent on (a) degree of multipath and (b) failing 

probabilities of the available paths. Data packets are split into subpackets and then send
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to each sub packet through one of the available multipaths. The simulation proves that 

even if some of the sub packets were lost, the actual message can still he reconstructed. It 

has been concluded from this algorithm that for a given maximum node failure 

probability, using a higher multipath degree than a certain optimal value will rather 

augment the total probability of failure.

In Directed diffusion [64], when a path between a source and the sink fails, an 

alternative path should be identified. For this. Directed Diffusion basically reinitiates 

reinforcement by searching among other paths, which are sending data in lower rates. An 

extended version of directed diffusion [98], suggest initializing multiple paths in advance 

so that in case o f a path failure, one of the alternative paths is chosen without probing for 

another one. There is an extra overhead involved in maintenance of these alternative 

paths. The alternate paths are kept alive by sending a low data rate message constantly

2.5 Negotiation Based Protocols

In negotiation based protocols, high level data descriptors or labels are 

incorporated within the sensor network. With the help of these data descriptors, sensor 

nodes negotiate with the neighboring nodes to eliminate redundant data transmissions. 

Exchange of communication between the sensor nodes depends on the resources 

available to each senor node within the network. SPIN [41] family o f protocol is based on 

the continuous collaborative negotiation o f sensor nodes. The SPIN protocols are 

designed to disseminate the data of one sensor to all other sensors assuming these sensors 

are potential base-stations. The key idea o f negotiation based routing in WSNs is to hold 

back the superfluous information and avert redundant data from being sent to neighboring
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sensor node. This is accomplished by performing a series of negotiation messages before 

the real data transmission begins.

2.6 Coherent and Non Coherent Routing 

In wireless sensor networks the processing of the data is required at the node level. 

The sensor nodes make a collaborative effort to process the data within the sensor 

network. The routing mechanism which initiates the data processing module is proposed 

in [99]. This mechanism is divided into two categories;

• Coherent Data Processing Based Routing: This category is an energy efficient 

mechanism where only the minimum processing is done by the sensor node. Time 

stamping, duplicate suppression etc are the tasks accomplished in minimum 

processing. After the minimum processing, the data is forwarded to the 

aggregators.

• Non Coherent Data processing based routing: In this category the, the sensor 

nodes locally process the actual data and then send to the other nodes for further 

processing. The nodes that perform further processing are called the aggregators. 

There are three phases o f data processing in non-coherent routing, (a) Target 

detection, data collection, and preprocessing (b) Membership declaration, and (c) 

Central node election [59]. In target detection stage, an event is detected, its 

information collected and preprocessed. In the membership declaration phase, 

sensor node chooses to participate in a cooperative function and declare this 

intention to all neighbors. In the central node election stage, a central node is 

chosen to perform more refined information processing.
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Additionally, single and multiple winner algorithms were proposed for non-coherent 

and coherent processing, respectively [99]. A single aggregator node is chosen for 

complex processing in the single winner algorithm (SWE). The selection of this node is 

established on the robustness o f the sensor nodes in terms of energy and computational 

ability. By the end of the SWE process, a minimum-hop spanning tree completely covers 

the network. In multiple winner algorithm (MWE), when all the nodes send the data to 

the central aggregator node, this expends more energy. In this algorithm, limit the number 

of nodes that can send data to the central aggregator node. Each node maintains a record 

of up to “n” nodes, instead of only the best candidate node. This way each sensor node in 

the network has a set of minimum-energy paths to each source node (SN). Single winner 

algorithm is employed to find that node which yields the minimum energy consumption. 

This node can then operate as the central node for the coherent processing.

2.7 QOS Based Routing

Quality o f Service enables the sensor network to provide better service to 

information flows. The performance o f sensor network should be the balance between 

energy consumption and data quality. The network while delivering data to sink has to 

assure certain QoS metrics like latency, power, bandwidth etc. Sequential Assignment 

Routing (SAR) [99] takes into account the quality of service requirements in the sensor 

networks. It takes into account three factors (a) energy resources, (b) QoS on each path, 

and the (c) priority level o f each data packet. SAR includes the multipath approach and 

localized path restoration. To create multiple paths from a source node, a tree is formed 

from the source node to the sink. The paths of the tree are formed in accordance to QoS
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metrics. At the end of this process, each sensor node will be part o f multi-path tree. SAR 

algorithm takes into account the weighted QoS metric, which is the product of the (a) 

additive QoS metric and (b) weight coefficient associated with the priority level of the 

packet. Throughout the network lifetime, the objective of SAR algorithm is to minimize 

the average weighted QoS metric. A path re-computation is needed in case of node 

failure. SAR is a multipath routing scheme, which ensures fault-tolerance and easy 

recovery. But at the same time the protocol suffers from the overhead cost of maintaining 

the tables at each sensor node.

2.8 Open Issues in Sensor Network Routing 

Sensor nodes are not assigned any global identifications like an IP address for the 

computers; instead, sensor nodes and the data are acknowledged through their respective 

contents, location and constraints. The data centric routing is generally followed in order 

to avoid the overhead of forming clusters. The naming schemes such as attribute-value 

pairs might not be adequate for complex queries and they are usually dependent on the 

application. Efficient standard naming scheme is one o f the most appealing future 

research direction related to this category. Another interesting research issue regarding 

the formation of cluster heads is to optimize the latency and the energy consumption. 

According to [80], cluster formation and cluster-head communication are open issues for 

future research. The fusion among different clusters is also an interesting problem to 

explore. Protocols that employ the physical information and topological establishment of 

sensor nodes are classified as location-based. An optimized energy efficient solution to 

utilize the location information needs to be studied further. Quality of Service is another
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issue for the concentration of research. Real time applications such as signal processing, 

broadcasting video etc. demand an optimal balance between QoS requirements and 

energy efficiency. Another interesting issue for routing protocols is the consideration of 

node mobility. Most o f the current protocols assume that the sensor nodes and the sink 

are stationary. However, there might be situations such as battle environments where the 

sink and possibly the sensors need to be mobile. In such cases, the frequent update of the 

position of the command node and the sensor nodes and the propagation of that 

information through the network may excessively drain the energy o f nodes. New routing 

algorithms are needed in order to handle the overhead o f mobility and topology changes 

in such energy constrained environment. Other possible future research for routing 

protocols includes the integration of sensor networks with wired networks (i.e. Internet). 

Most of the applications in security and environmental monitoring require the data 

collected from the sensor nodes to be transmitted to a server so that further analysis can 

be done. On the other hand, the requests from the user should be made to the sink through 

Internet. Since the routing requirements of each environment are different, further 

research is necessary for handling these kinds o f situations.

2.9 Conclusions

Advances in sensor node architecture have made the large-scale deployment of 

sensor networks a reality. A variety o f applications require sensor nodes to collect 

information over a continuous time period and forward to the sink directly or co­

operating with other sensor nodes. The sensor networks, jointly with sensing devices, 

embedded processors, and communication components, uses an appropriate energy-
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efficient and fast routing strategy to deliver the data to the desired node. This chapter, 

besides setting the background for the proposed framework, also attempts to classify the 

key routing techniques used in sensor networks. Each routing technique is studied in 

terms of resource usage, efficiency, applicability and scalability and the most challenging 

research directions are outlined. Each o f the routing schemes and algorithms has the 

common objective of trying to extend the lifetime of the sensor network. This chapter 

also focuses on the design tradeoffs between the energy consumption and fault tolerance 

in different routing scheme. There are some hybrid protocols that can be placed under 

more than one category. The summarize research results is shown in table 2.3 [59]. The 

Table compares different routing techniques according to many metrics.
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Aware
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Usage
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Based
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Local- 
izatio 

n
QoS State

Complexity Scalability
Multi
path

Query
Based

SPIN Flat Possible No Limited Yes Yes No No Low Limited Yes Yes

Directed
Diffusion

Flat Limited No Limited Yes Yes Yes N o Low Limited Yes Yes

Rumor
Routing Flat

Very
Limited

No N/A No Yes No No Low Good No Yes

COUGAR Flat No No Limited No Yes No No Low Limited No Yes

ACQUIRE Flat Limited No N/A No Yes No No Low Limited No Yes

LEACH Hierarchical
Fixed

BS
No Maximum No Yes Yes No C H s Good No No

TEEN & 
APTEEN Hierarchical

Fixed
BS

No Maximum No Yes Yes No CH’S Good No No

PEGASIS Hierarchical
Fixed

BS
No Maximum N o No Yes No Low Good No No

MECN & 
SMECN

Hierarchical No No Maximum No No No No Low Low No No

SOP Hierarchical No No N/A No No No No Low Low No No

GAP Location Limited No Limited No No No No Low Good No No

GEAR Location Limited No Limited No No No No Low Limited No No

SAR QoS No No N/A Yes Yes No Yes Moderate Limited No Yes



CHAPTER 3

RELIABILITY IN WIRELESS SENSOR NETWORKS 

Increasing computing and wireless communication capabilities will expand the 

role of the sensors from mere information dissemination to more demanding tasks as 

sensor fusion, classification and collaborative target tracking. Fault tolerance and 

reliability performs an exclusively vital role for embedded systems, such as obscured 

wireless sensors, which are deployed in some applications where it is difficult to access 

them physically. Due to their complex architecture and possible deployment in harsh 

environments, wireless sensor nodes and the entire network are exposed to a variety of 

malfunctioning. Ideally, a reliable output is obtained at the sink node with the help o f a 

set o f processors which assimilates information in a collaborative manner. The sensor 

architecture, network topologies, different integration techniques and heuristics should be 

robust and fault tolerant even in unfriendly environments. In wireless sensor networks 

from the perspective o f fault-tolerance:

1. The quality of the output should not be affected adversely and despite of transient 

or random failure of nodes, the network must be capable to function.

2. There should be an appropriate integration o f information in real-time, even when 

the sequential control at the nodes is not so perfect.

3. The protocols should dynamically adapt to changes in the network environment.
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4. The network should be able to re-configure on loss of nodes, or failure of wireless 

links which is not unusual in a sensor network

5. Sensor network topology changes frequently, due to node failures, introduction of 

additional nodes, variations in sensor location etc. The network should be able to 

identify the most important types of faults, techniques for their discovery, and to 

ensure efficiency of fault resiliency methods.

6. Research on information security is still is in its infancy. Much of the work is 

directly taken from the wireless ad hoc networks. A methodological analysis 

needs to be performed in terms of primary threats and possible attacks to the 

proper functioning of sensor networks.

In this chapter, besides describing a comprehensive overview of fault 

tolerance techniques in general, we also explore the reliability issues in multifusion 

sensor networks. We present Markov models for the reliability using different types of 

sensors and spares that replace sensors when failed. We compare these models in terms 

of reliability, cost and MTTF (Mean-Time-To-Failure). We conclude by outlining the 

potential future research directions along several dimensions.

3.1 Fault Tolerance Techniques in Wireless Sensor Networks 

Sensor nodes can have various reasons for failures e.g. physical damage, 

environmental interference, deficiency of power and an adversary's malicious attacks. 

Without fault tolerance, these failures can have a crucial effect on the functioning of the 

sensor network. Fault tolerance is the ability to sustain overall sensor network 

functionalities without any interruption despite sensor node failures [100], [101], [123].
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In the current research literature there are several fault tolerance techniques for sensor 

networks, including fault models, self organization algorithms, design of reliability model, 

and availability of nodes to generate a robust performance.

The faulty sensor nodes can send incorrect information and can even be 

inconsistent when sending information to different sensors. This faulty behavior is 

referred as Byzantine [102]. In the presence of such faults, agreement needs to be 

performed for all the non faulty sensors to arrive at the same final decision. Numerous 

studies have been conducted on agreement and it is proven that to reaeh agreement in the 

presence of “m” Byzantine faulty sensors, the network must contain “N > 3m + 1” 

sensors. Value-fusion and Decision fusion [103] are the two distinctive approaches 

studied for achieving fault-tolerance in collaborative target detection algorithms. These 

approaches guarantee that when exchanging values, all the non faulty sensors obtain the 

same set of values and all the values sent by non faulty sensors are part of this set. 

Inconsistent values sent by faulty sensors are replaced by a majority vote or a default 

value.

al bl
i Ï 2 b 2 a 4  I 4 b4

a 3  I 3 1 I ! a 5  ; I s  b 5  1

a6 ; ; I f i  b6 ! ;

1 ' ' «nwpPi^Miv

F in a l O u tp u t

E std in ate

Figure 3.1 : Marzullo Model
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In Marzullo model [104], a processor receives inputs from several sensors whose 

outputs are connected intervals as shown in figure 3.1. A fault tolerant algorithm takes 

these discrete intervals as inputs and provides the output as a connected interval 

representing the sensor values. If there are “n” sensors, each providing certain output and 

measuring a certain physical value, the integration of these overlapped intervals will hold 

the correct or actual physical value in its interval. The wider this interval, the lesser is the 

accuracy of the processor output. If we assume that “f  ’ sensors are faulty from a total of 

“n” sensors, it follows that at least “n - f ’ sensors are correct. Marzullo considers all 

possible non-empty (n-f) intersections o f the “n” sensors and a sensor that doesn’t belong 

to any of the (n-f) intersections is considered faulty. A correct sensor will overlap with at 

least (n-f-1) other correct sensors. The smallest connected interval containing all the (n-f) 

intersections is considered to be the output o f the processor and we can conclusively say 

that this interval contains the actual physical value.

IL
2 I 2  1 3

I 5

4  I 7
J s . 4

4

_______ ^ 0  2 I n    h i

3 In

 *   .................. ........  ...Output Estimates from

Output Estimate in ^ y e n g a r  Model with #
Marzullo's Model ^  maximum Reliabilities

Comparison of output estimates from Marzullo's method and Iyengar model.The 
Shaded strip shows overlapping regions of three or more interval intersections, 
where n=13, f=10 and n-f =3

Figure 3.2 Iyengar Model
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Table 3.1 Popularities o f the intervals that make up the output interval

Interval II l2 I3 I4 I5 l6 I7 Is I9 Iio 111 I 12 I l3

Popularity 4 2 4 4 3 2 4 4 4 2 2 4 3

Iyengar’s Model [105], [106] builds on the Marzullo’s model but reduces the 

output interval estimate considerably. It explains that a sensor may wildly fail if  there is 

no correlation between the actual physical value being measured and the interval estimate 

of the faulty sensor. Tame faults are those where the interval estimate lies significantly 

close to the correct value, even though the interval might not contain the actual physical 

value. It considers the case where the number o f integrated sensors is large and most of 

the faults are tame and proved that the number o f overlapping intervals is relatively large, 

as tamely-faulty sensors tend to overlap with the correct sensor estimates. Weights are 

assigned to each sensor overlap interval, based on the possibility o f its containing the 

actual physical value. The maximum weight is set to that interval which is having the 

maximum probability o f containing the physical value. The maximum weighted interval 

is taken to be the output estimate. According to [106], the reliability o f the output 

estimate is a computation of the clustering of sensors around the maximum weighted 

interval and is addition of the popularities o f the intervals that make up the output interval, 

(Tahle 3.1). Steps for algorithm [105], [106] are as follows:

1) Take all the (n-f) intersections to yield separate intersection intervals.

2) For each interval, count the number o f intervals intersecting it having non 

empty intersections
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3) Add these values to obtain the sum of the intervals involved with the 

formation of the weighted interval

4) Choose the maximum weight and call it “r”. This choice is based on the 

estimation of the number of wildly faulty sensors and tame sensors

5) The higher the weight, the smaller the connected interval.

6) Assign I* as the integrated output estimate Now the integrated output estimate 

is much smaller than the entire overlapping estimate

With a very large number of sensors and by taking tamely faulty sensors into 

consideration, Iyengar’s model reduces the output interval widths considerably compared 

to Marzullo’s output interval estimate. Figure 3.2 shows the comparison of failure models 

where the width o f the output interval estimate reduces significantly.

3.2. Fault Tolerance and Multisensor Fusion

Wireless Sensor Network (WSN) is transforming into a multi-service medium 

leading to the convergence of voice, video and data communications. Each type of 

service has a particular constraint and it has to be satisfied for the communication to be 

effective. For example a voice or video data is delay sensitive and has to be transmitted 

within a certain delay. So the service for each type of data needs to be met. Traditionally 

the current infrastructure only provided the best effort service, where the traffic is 

processed as quickly as possible, but there is no guarantee to the timeliness and assurance 

of actual delivery. This type of single service can no longer meet the need of the present 

day constraints. In [107], an interesting research regarding the fault tolerance aspects of a 

sensor network assumes that the nodes are either active or inactive with Bernoulli model.
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In case that one or more sensors fail, other sensors of a different type can substitute their 

work, such that the fault goes undetected. This is called multimodal sensor fusion, and an 

interesting research of multimodal sensor fusion was done in [108]. The multimodal 

sensor fusion intrigues scientists in other disciplines, for example a still incompletely 

solved question is how we identify and deal with three dimensional objects while the eye 

retina works with only two dimensional patterns o f light.

Given a network of multitype sensors, we study the aspects of fault tolerance o f a 

multimodal sensor network [122]. We consider different models on achieving fault 

tolerance. The assumption of one failure at a time is not a strong assumption; two failures 

that happen at the same time can be consider consecutive, because we assume 

independent events. Another assumption made is that the failure of the components is 

independent o f one another. There are cases o f fault dependent events: the temperature 

raises suddenly, power fluctuations, etc, but we assume that any two faults are 

independent. As a result, any two events are disjoint in terms of probabilities.

Definition: The reliability function of a component at time t, R(t) is a conditional 

probability that the component is operational at time t given that it was operational at 

time to- The unreliability o f a system is Q(t) = 1 -  R(t). For any system, these conditions 

are generally true:

- Initially the system is functional at t=0\ R(0)=1, Q(0) =0.

- Eventually the system will fail at t=T, R(T)=0, QfT) =1.

The reliability block diagram (RBD) shows the dependence of the system 

reliability versus the reliability o f each component. The Markov model for reliability o f a 

system is based on two concepts: the possible states of the system, and the transitions
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between states. The failed state is annotated as F. The reliability o f  the system is defined 

to be as the probability of the system to be in any of those states except F; it is the 

probability o f being in any state other than F (which is the sum of the probabilities of 

each state), or 1 -  probability of the system to be in the F state. To measure the average 

time that each system operates before failing we consider the Mean-Time-To-Failure 

(MTTF).

Definition: MTTF is the expected value of the failure time

MTTF = ^ j t^ ^ p -d t  p R { t) d t

MTTF = ^ t ^ ^ ^ d t  =^R(t)dt 
Definition: The, failure rate ‘‘X ” is defiuvu aa un̂  hun.uvi iailui.-a per time unit and is

expressed as

a(R(Q

;;(0

The spares can replace faulty components. We consider in our models hot or 

stand-by spares, which means that they replace immediately the failed sensor (there is no 

gap in time between the moment the sensor has failed and the moment the spare replaces 

it.) When a spare substitutes a module, then it has the same failure rate as the module. We 

study different models. We start with a model in which a spare can replace only one type 

of sensor, so there are different types of spares for different type of sensors, and we 

consider the case of two types. We continue with spares that can replace any type, and 

here we consider two-type and three-type pooled spares. To achieve a better reliability for 

the system, one solution is to improve the quality of the spares; another one is to increase 

the number of spares.
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3.2.1 Modeling Single-Type Spares 

Let A and B be two different types o f sensors and two spares SA and SB that can 

replace only own type sensors (SA can replace only A, SB only B) (Figure 3.3).

S A S B

Figure 3.3 RBD diagram for two-single type spares

Given the failure rate for each component (XA,iB, XSA,  and XSB), the Markov 

model for this example is drawn in Figure 3.4. If we consider only one spare or no spare, 

we obtain only portions o f the Markov model drawn in Figure 3.4. If all components 

have the same failure rate X (XA = XB = XSA = XSB = X) then the reliability function is 

=

= ^  = 1.217

If we consider only one single-type spare, then the reliability function of the system 

becomes

and

MTTF.o n e - s in  g le - ty p e

21

20/1
= 1.05

If we have no spare, then the reliability function becomes
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= -4 g - " '' ' + g " '^ 'a n d  = - ^  = 0.917.IZ/i

SA

A B

AB

Figure 3.4 Markov model for two-single type spares
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3.2.2 Modeling Pooled Spares 

For modeling pooled spares, consider the case in which we have pooled spares 

that can replace any type of sensors.

3.2.2.1 Two-Type

Let A and B be two different types of sensors, and two spares o f type AB that can 

replace any of the failed sensors, including themselves (see Figure 3.3 for the same RBD). 

Given the failure rate for each component ^ b, ^ ab) the Markov model is drawn in 

Figure 3.5, where S means AB.

Figure 3.5 Markov model for two-pooled type spares
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Assuming identical failure rates, Àa = A,b = ^ab = K  the reliability function of the 

system is R{t) = 1 -  20e~^^‘ + 1 and

77MTTF.t w o - p o o le d - ty p e 60A
1.283

If  we consider only one pooled-type spare, then the reliability function becomes

MTTF,.. 6 7 = 1.117tw o  -  p o o led  - ty p e  ^ Q / [

If we consider no spare, then

= i  =  0 .9 1 7

3.2.2.2 Three-Type

Let A, B, and C be three different types of sensors, with the following RBD, and 

the spare of type ABC can replace any of the failed sensors, including themselves (Figure 

3.6).

ABC

ABC

ABC

Figure 3.6 RBD diagram for three-pooled type spares
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Given the failure rate for each component, A,a, Xg, Lc, and Labc, the Markov model for 

this example is drawn in Figure 3.7, where S means ABC.

I A* 3 - -  -• t

A'B'C

i.

Figure 3.7 Markov model for three-pooled type spares
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If we consider that all units including the spares have the same failure rate X (k \  = Xb =

Xc = Xabc = X) then

-8 4 e  '" ' +36e-'"'
5 5 5 5

and
2719

'ee~  p o o le d —type  2 5 2 0 > ^

If we consider only two-pooled spares, then the reliability function becomes

R(t) = — e -5 6 e '^^ ' -r56e'^^' -28e"®^‘ +8e^’"‘ - - e '" ^ '
5 5

271
and ~ 2.S0À

3.2.3 Reliability versus Cost 

Consider the three models; two-single-type spares, two-pooled-type spares and 

three-pooled-type spares. In Figure 3.8 (a-d) are presented different reliability values, 

taking particular values for X: 0.02, 0.03, 0.05 and O.IO as the number of failures per 

10000 seconds. Comparing these models in terms of MTTF, the third model has the 

lowest value, followed by the first model and the second model is the best, independent 

of the value o f X:

M T T F jji^g^  — 22207. ^  ^ '^ '^ ^ tw o -s m g le - ty p e  ~  2520À, ^  ^"^"^^ tw o -po o led -type  ~  2520À,

The cost of a non-redundant system is C; the added cost of a simple spare is cj 

and the added cost of a pooled spare is c?. If a spare physically replaces a failed sensor 

then the cost of the system increases from C to C+ci. If a spare virtually replaces a failed 

sensor, then the cost of the system increases from C to C+cz.
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Riitabiliiy V alues for Ihe Failure Rate o l  0.&2

Two- Single-type-spare model 
Two- pooled-type-spare model 

Three- pooled-type-spare model

I
■**
»

55 60 701C 30 30 iC K
Time w ife  ■  * 0 0 0  w o o n ih

Reliability Values for the Failure Rale of 0.13

Two- Single-type-spare model 
Two- pooled-type-spare model 

Three- pooled-type-spare model

E £5ID 50 32‘ i: 35
Time unte m *000

Figure 3.8 (a) (b) Reliability values for X = 0.02, 0.03 failures per 10000 seconds
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Reliability V a lues for the  Failure Rate of 0.05

Two- Single-type-spare model 
Two- pooled-type-spare model 

Three- pooled-type-spare model

0.8

I

40 5530 4520 25 35
T im e  u n i t s  in  lEKOO

1
Reli ability Values for lb e Faifore Rate of 0.10

-  Two- Single-type jip are inndel
-  Two pooled type jrpare model 

l i a r e e  p o o le d  l y p e ^ p a r e  m o d e l
0.6

Cl 4

0.

0
4:10

Tin# u n is  In 10000 sec«KJ*

Figure 3.8 (c), (d) Reliability values for A, = 0.05, 0.10 failures per 10000 seconds
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In Figure 3.9 an example is shown, where C=4 for a two-type sensor system with no 

redundancy (no spares) with the cost of each component of 0.5. The single-type spare 

costs the same as one component, c/ = 0.5. The pooled-type spare costs more than one 

component but less than two components, C2 = 0.75.

KTTF verses Cost

♦ ngle-type snare 
-'ooled-type spare

0 4 3.5 C-4
« T T F

Figure 3.9 MTTF versus Cost for C=4, ci=0.5 and C 2 = 0 .7 5

3.2.4 Multifusion Sensor Networks 

Consider a set N  o ï n objects ( |jV| = n ), a set M  o f m sensors ( | M  | = m )  o f k

k

types; sensors of type i, ' ^ m . = m  . The output of each sensor is binary
/ — I

output.{j) e  {0,1}, V /  e M , j  e TV . Shortly, consider i(j) to be output i(j).

Definition: Given two objects a and b, if  i(a) ^  i(b) then we can say that from the point 

of view of sensor i, the objects a and b are distinguishable. The assumption of the 

problem is that no two objects have the same properties, which means that for any two
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objects, there will be always a sensor which will differentiate them (the outputs of the 

sensor for those objects will be binary bit-wise).

Definition: \ f  M  = { si, S2, .. Sm} is a set of sensors, then the binary coding of an objeet a 

is the ordered set of bits representing the output of each sensor Si with regard to a : 

coding M(a) = S|(a) si(a)...Sm(a).

Observation 1: By definition, two objects a and b is individualized by the set of sensors 

M is their binary encodings are different: coding m (a) ^coding m (b).

Observation 2: The maximum no. of sensors required to individualize n objects is n-1. 

Observation 3: The minimum number of sensors required to individualize n objects is

Flogn 7

Proof: Given L = flog n ] , we can have 2 different binary coding of length L.

Based on observation 1, this means that we can have 2 individualized objects. 

Because 2 > 2 = n, L is a correct value. We prove by contradiction that taking

less than L sensors, we cannot individualize all the n objects. Take Lj = Flog n ]  -  1 and 

Ml the set of Li sensors. The set of all binary coding of length Lj has 2^ elements and 

log n + 1 > Flog n l  > log n log n > Flog n F l  ^ log « -7 => 2 > 2 ^

» > 2 ^ .

So there is only 2^ different binary coding but n objects, which mean that at 

least two binary coding of the objects in N  are the same. This implies that with Li sensors 

we cannot individualize each object. As we see from the above observations, there is a 

parallel between dimension redundancy and error correcting codes. Given n bits of data, 

k bits of information and (n-k) redundant bits, out of 2" total number o f binary strings, 2* 

code words can be generated. Without redundant information, you are closing the room
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for error detection and error correction. So more redundant bits you have, better the 

chances of getting error correction.

3.3. Conclusions

This Chapter explored the reliability issues in multimodal fusion sensor networks. 

We presented the system reliability for the case of two types of sensors and three types of 

sensors. The system reliability was calculated and suggestive values for different A are 

given in both cases. We compared these models in terms of reliability, cost and MTTF 

(Mean-Time-To-Failure). Finally we emphasize the similarity between dimension 

redundancy and error correcting codes. Chapter 4, Energy Efficient Information 

Dissemination in Wireless Sensor Networks, offer a detailed discussion of the proposed 

information dissemination scheme RM-IDLF.
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CHAPTER 4

ENERGY EFFICIENT INFORMATION DISSEMINATION IN

WIRELESS SENSOR NETWORKS 

In this chapter, we begin with an explanation of the Information dissemination in 

WSNs and the basic assumptions that steer the design of our protocol scheme. We then 

define the network topology and actual working o f IDLE- Information Dissemination by 

Label Forwarding. We also focus on the available alternate paths based on the quality of 

response time each path can provide. This is followed by an illustration of the steps 

involved in the construction of multiple paths as part of the proposed algorithm, RM 

IDLF- Reliable Multi-path Information Dissemination by Label Forwarding. In the end, 

we discuss salient features of the proposed multiple path protocol.

4.1. Motivation of Current Research 

Wireless Sensor nodes are arbitrarily dispersed over the area o f interest and are 

capable of RF communication to administer the communication protocols and 

Information processing tasks. Energy efficient routing protocols help optimize the 

number of transmissions required to set up routing paths and economize the cost of 

transmitting data packets. One of the challenges in designing a routing protocol for
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wireless sensor networks is to the find the most reliable path from the source to 

destination node, i.e. this path should deliver the data packets without retransmitting or 

discovering a new path. Secondly, a routing protocol for wireless sensor network should 

be well aware o f sensor limitations. It should also take into consideration, the unique 

aspects of various applications running over wireless sensor networks, such as monitoring 

applications or acquisition of the sensitive data etc. Thirdly, the routing protocol design 

should support minimum-hop, hierarchical network topology with relatively high data 

throughput, and a deterministic latency. Finally, the routing in sensor networks must not 

involve creation o f large routing-tables. Protocols must avoid network congestion.

In this section, an informal description of the shortcomings of the existing 

algorithms is illustrated. The criteria throughput, delay, complexity of routing algorithm, 

ease of implementation and number of request accepted are being used to evaluate the 

routing algorithms. In WSNs, Information dissemination protocols characterize methods 

for sensor nodes to transmit and receive queries and sense data in wireless sensor 

networks efficiently. There has also been interest in minimizing the transmission of 

redundant data in the network. In baseline protocols, such as flooding, the sensor nodes 

retransmits the data it receives to all its neighbors and broadcast within the entire sensor 

cloud. However, it results in data implosion with the destination getting multiple data 

packets from multiple paths. Due to indiscriminate transmission o f data, sensor nodes in 

this scheme expend limited transmission energy and bandwidth. Another problem 

associated with flooding is overlap. This situation occurs when multiple nodes observe 

the same sensor region, and generate overlapping data. The sensor node within its 

neighborhood receives multiple copies o f the same packet containing the same
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information. Overlap, like implosion expends transmission power and bandwidth. 

Similarly SPIN [41] (Sensor Protocols for Information via Negotiation) is based on the 

idea that a sensor node handshakes with its neighbors and the decision to forward the data 

packet is made after the handshake. Nodes in SPIN use high-level data descriptors called 

meta-data. SPIN uses meta-data negotiation to determine if  a node needs the data and 

thus eliminates redundant transmissions. However the SPIN suffers from the weakness 

[63] of transmitting all the data packets at the same Energy level and not using the 

distance to a neighbor to adjust the energy level. Besides a large overhead in broadcasting 

the data is a concern in SPIN, which cannot be overruled.

On the other hand, directed diffusion is more suitable for applications with point- 

to-point data transmission. In directed diffusion, a sink node broadcasts an interest to 

initiate data collection. The interest is disseminated throughout the network in a hop-by- 

hop manner. The query is initiated by the sink node and it broadcasts its interest message 

periodically to all of its neighbors. An interest caehe is maintained by each node. When a 

node receives an interest, it stores the interest and also sets up a gradient toward the node, 

from which it received the interest. This process continues until gradients are setup from 

the sources back to the sink. If a respective node has the requested data, which matches 

the received interest, the node sends back the data packet to the sink in multiple paths 

according to the gradients. On receiving the data packet at the sink, the reinforcement of 

the optimal path is initiated by the sink. The criterion for the selecting the optimal path 

highly depends on the application. It may be the shortest path or minimum energy 

consuming path, whichever suits the application. The best path is reinforced by the sink 

sending a new interest to the path.
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Due to absence of a centralized control, wireless sensor networks are considered 

to be unreliable systems, where failures should be expected occasionally. Some of the 

common factors which make the sensor network communication unreliable are 

constrained power consumption requirements, high channel bit error ratio, external 

interference, asymmetric channel, data jamming and the hacking o f the sensor 

information. Additionally, Sensor networks are highly dynamic. Within the network the 

node topologies frequently change due to a high rate of node failure, changes of power 

modes, and node mobility. It is a daunting research challenge to provide a robust data 

delivery under such a situation. Acknowledging that flooding based solutions fall short to 

handle the highly dynamic sensor networks, we propose a ‘‘label forwarding 

dissemination ” solution for robust and reliable data delivery. In this solution, we aim at 

providing not only a reliable communication scheme, but also a fast response and 

recovery from the failures with a much less control overhead.

The two major contributions of the performed work, which are explained in this 

chapter are (1) Designing a scheme for a collaborative flow of information packet/s from 

source to sink. This scheme is further studied in different scenarios: (a) Fault-free single 

path (b) Fault-free multi-path (c) Single path with faulty nodes and (d) Multi-path with 

faulty nodes. For the ease of understanding we named this framework as IDLF- 

Information Dissemination by Label forwarding. IDLF is designed for point-to-point data 

transmission, and routing scheme is initiated by source nodes. IDLF is a reactive and on- 

demand routing scheme, which seeks a routing path only when it is needed. Every time a 

sensor node detects an event, a new data path is constructed. An extension to this scheme 

RM-IDLF- Reliable Information Dissemination by Label forwarding is proposed. RM-
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IDLF also incorporates point to point data transmission where the source initiates the 

routing scheme and disseminates the information toward the sink (destination) node. 

Prior to transmission of actual data packet/s, a label path is formed, which is established 

by the source node issuing small label information to its neighbors locally. These labels 

are in turn disseminated in the network. By using small size labels, RM-IDLF avoids 

generation of unnecessary network traffic and transmission of duplicate packets to nodes. 

Another point o f interest in this framework is the study o f trade-offs between the 

achieved routing reliability using multiple disjoint path routing and extra energy 

consumption due to the use of additional path/s. Also, the effect o f the failed nodes on 

the network performance is evaluated within the sensor system. It should be noted at this 

point that for RM-IDLF we used an alternate disjoint path. This alternate path scheme 

(RM-IDLF) may have a higher path cost in terms of energy consumption, but is more 

reliable in terms of data packet delivery to sink than the single path scheme (IDLF). In 

the latter scheme, the protocol establishes multiple (alternate) disjoint path/s from source 

to destination with negligible control overhead to balance load due to heavy data traffic 

among intermediate nodes from source to destination.

The second contribution of this work is the design and implementation of energy 

efficient schemes for uniform energy dissipation and service differentiation in a wireless 

sensor network. Maximizing the overall sensor network lifetime is considered as one of 

the vital objectives while designing a sensor network. Hardware and software design 

should direct towards reducing the energy consumption in sensor nodes. We propose a 

discrete energy efficient scheme, which is incorporated in the system in conjunction with 

IDLF and RM-IDLF. Setting up a battery threshold ensures that data packets will not be
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dropped after the sensor node’s battery level falls below the threshold value. Minimum 

transmission around the sink prevents fast energy dissipation of the neighboring nodes to 

the sink. Finally, directional forwarding is applied to RM-IDLF. In directional forwarding, 

the sensor nodes narrow the range o f broadcasting data packets by restricting 

communication only to the nodes lying in the direction towards the sink node.

4.2 Sensor Network Topology

In a multi-hop sensor network, a large number of potential paths exist between a 

source and a sink. The sensor nodes are initialized and arranged in a grid o f the physical 

coordinates o f the source-sink pair to construct a square boundary, with the sink 

constituting a fixed location within the grid. The location of the sink may or may not be 

fixed in actual scenario, but in this work we will assume the location of the sink to be 

always fixed. Practically, wireless sensor nodes are arbitrarily dispersed over the area of 

interest to administer the information processing and gathering task. These nodes are not 

arranged in a physical grid. Nonetheless, this assumption is necessary to understand the 

proposed routing algorithm and evaluate the overhead associated with it. The size o f the 

physical grid is 10 x 10 unit sensor nodes. Figure 4.1, indicates the sensor network 

topology where the sink node, marked black is at (0, 0). The sink node only collects 

sensed data from other sensor nodes, but does not sense the event. Also, the sink is not 

resource constrained. It is equipped with enough memory space, battery power, and 

processing speed that the power consumed by the sink can be excluded from the total 

power consumed by an entire sensor network during simulations. Lach sensor node can 

directly communicate with other nodes (neighbor nodes), which is located within one unit
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distance from the node. Every node in the network knows its coordinates in the physical 

field. The label dissemination protocols IDLF and RM IDLF intend to disseminate data 

towards the sink using negotiations.
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Figure 4.1 Topology of Sensor Network

4.3 Preliminaries

1) Sensor Node -A  node in a sensor network is defined as a basic unit used to sense, 

process and direct the data packets to other sensor nodes.

2) Source node- a source node is the node which detects and records the event. It may 

have the capability to process the raw data. The primary objective of this listener node is 

to commune the data packets from a source node to a sink efficiently both in terms of 

energy and time. In our work, we assumed the presence of only one source node in the 

sensor field at a given time. After a data packet reaches the sink, a new source will be
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selected randomly. However, depending on the application, the network could have 

multiple sources at the same time. In RM-IDLF, after the data packet reaches the sink, the 

simulation ends and the new source is not selected randomly. In the latter case, we are 

more interested in tracking the rate of successful data packets reaching sink. The 

evaluation o f RM-IDLF is mainly dependant on the tradeoff o f energy consumption and 

the reliability o f the network. We would like to examine the effect of multiple sources on 

energy consumption and data dissemination.

3) Transmission Range- Authors in [ I I I ]  describe that for “n” nodes randomly 

distributed in a disk, the network is asymptotically connected with probability one if the 

transmission range “r” o f all nodes is selected. Range “r” is given by

 ̂ ^ l o g n  +  r ( n )  

V mi

Where y(«) a function that goes to infinity as "n” is becomes large. It is shown in

[112] that the system-wide transport ability o f the wireless network is optimized when 

every “hop” covers a very short distance. It is highly suggestive that the sensor nodes 

should therefore relay packets over very short distances to neighboring nodes, allowing 

them to transmit at low power. Practically, due to variations in implementation of 

physical device and in wireless propagation environment, the transmission ranges of 

different nodes are not exactly identical. In our work we assumed two transmission 

ranges “R I” and “R2”respectively. In range “R I”, each sensor node can directly 

communicate with other nodes (neighbor nodes), which is located within one unit 

distance from the node. As shown in figure 4.2, the source node can directly 

communicate with (grid unit) one hop away node shown in gray region. In our simulation, 

based on the node configuration and communication range o f nodes, each node can have

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a maximum of eight neighbors. On the other hand nodes with range “R2” can 

communicate with other nodes positioned two unit distances from it respectively. Figure 

4.2 shows the range “R2” with black region. Any transmission using range “R2” is on the 

expense of energy, we assumed to be twice as much as using range “R2”. The amount of 

energy consumed for exchanging information during a neighbor discovering stage is the 

same for any routing protocol for the same network topology. Therefore, we do not 

consider energy consumed during neighbor discovery in our energy analysis.
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O Range RI
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Figure 4.2 Transmission range RI and R2

4) Node Initialization

(a) Grid (10 x 10) map

(b) Each node’s parameter

• Location over X axis [x loc]
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• Location over Y axis [y_loc]

• Allocated Energy

• Neighbor (Range R 1 )

• Label Cache

5) Node Allocation

(a) Allocate Sink at (0, 0)

(b) Allocate all nodes by

- getting a random number

- check if the location is not assigned yet

- check if  location is within the transmission range of the existing node

(c) If yes- node is allocated

(d) If not- node is not allocated, find another location

(Note: Default transmission range is R I and a node can travel to 8 grinds around itself

6) Neighbor Discovery

(a) Find nodes within the RI range

(b) Check if the x- axis is in the simulation area (within the grid)

(c) Check if  the y- axis is in the simulation area (within the grid)

(d) Find location to store the node information

7) Sensor Link Bandwidth- Bandwidth of a link is defined as the maximum traffic that 

the sensor node can accommodate at any given time. Wireless sensor networks are often 

used in continuous monitoring and control applications. Two resources—Link bandwidth 

and node energy— are scarce in many sensor networks, and need a careful 

administration .As sensor nodes get even smaller, and sensor networks grow larger in size,
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the bandwidth consideration becomes increasingly more imperative. Sensor networks 

require a bandwidth allocation method, by which the nodes can decide how to assign 

network bandwidth to sensor streams. When a group of nodes in close proximity all 

detect an event of interest, this bandwidth assignment method has to handle traffic that 

demonstrates a high degree of spatial correlation. Depending upon the observed 

phenomenon, the bandwidth allocations should be varied [110]. For example, the goal of 

the temperature monitor sensor is to monitor changes in the temperature. If the sensor 

detects an unusual increase in temperature, it may imply a disastrous event like fire. In 

this case, it would be sensible to allocate almost all of the bandwidth to the main event 

stream.

8) Node Identification- Due to the relatively small sensor cloud size, the unique global 

Identification, such as IP addressing is not used in the sensor network. Node IDs have to 

be assigned before or after deployment [109].

Source ID Event Location Time Stamp I Sender ID

Figure 4.3: Example o f Label Information

9) Label/Data Descriptor- In the current work we defined label as a short and fixed-length 

field containing the minimum information about the event so that it can be distinguished 

from other events. A label may be used as key in determining how to forward data 

packets. Generally labels are locally significant identifiers that are used to describe other 

data. For instance, if  a wireless sensor network collects the data for a homogeneous event, 

the label should include the information about (a) the location where the event originated
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(b) the time when the event generated (c) the identification of the source /listener node 

and (d) the sender node identification (Figure 4.3). Furthermore, the size of generated 

label should be significantly smaller than the size of data packets, because these labels 

are data descriptors and not the data packets themselves.

10) Neighboring Node- The neighboring nodes are those sensor nodes, which reside 

within the node’s radio transmission range. In other words, neighboring nodes are the 

nodes located one transmission hop away from a node.

4.4 Information Dissemination by Label Forwarding 

In the previous chapters, we have described related work in traditional wireless 

networks and sensor networks that has influenced the design of the proposed scheme. In 

this section, we introduce the label forwarding algorithm for Information dissemination. 

We then explain our motivation for applying this algorithm in the context to the wireless 

sensor networks and the associated challenges.

4.4.1 Assumptions

1. Only one sink node in the simulation field.

2. The location of sink node is fixed at (0, 0).

3. There is at least one sensor node within the normal transmission range of another

sensor node

4. A source node will be assigned randomly.

5. There is only one source node in the sensor field at a time. After the data reaches

to the sink, a new source will be assigned randomly.
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6. When a source is neighbor to the sink, the source sends only the data to the sink 

without exchanging a label or request.

7. When transmitting a label, if  the sending node of the label is neighbor o f the sink, 

the sending node will transmit the label only to the sink.

8. However, based on various sensor simulation characteristic models shown in [41 ],

[113], and [114], we assumed that the size of data packet is 31 times greater than 

the size of the label and request packet. Then if we assume that transmitting a 

label or request packet between two neighboring nodes takes one unit time, 

transmitting a data packet will take 31 unit times. Also, we assumed that 

transmitting information consumes 3 times more energy per unit time than 

receiving, so transmission and receiving takes up 3-unit energy per unit time and 

1 -unit energy per unit time respectively. Table 4.1 summarizes the network 

characteristics.

Table 4.1 Sensor Network Characteristics

Simulation Area 10x10  unit area
Number of Nodes 2-100
Number o f Sinks 1

Radio Range 3 x 3  unit area
Data Size 31 unit

Request Size 1 unit
Label Size 1 unit

9. Propagation time between two nodes:

a) Data Propagation Time - 3 1  unit time

b) Request Propagation Time -  1 unit time
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c) Label Propagation Time -  1 unit time

10. Lnergy consumption by a node:

a) Transmission -  3 unit energy/unit time

b) Receiving -  1 unit energy/unit time

4.4.2. Description of IDLF Algorithm 

In the proposed algorithm the sensor nodes are deployed within the sensor cloud. 

The source node, which listens to an event, transmits information packets from sources to 

sink in low latency while conserving the power of each sensor node. The collaborative 

effort of the neighboring nodes reduces imbalance in the network utilization and 

increases the performance of the network. IDLF algorithm is divided into three stages:

• Label transmission stage,

• Request for transmission stage, and

• Data transmission stage

In each stage, a different type o f information is exchanged among sensor nodes. 

To conserve the overall network energy consumption, wireless sensor networks are 

decentralized and distributed. There is no central hub or a server which controls the 

routing information in a routing table. Since, the sensor nodes are resource constrained, 

each node does not have enough memory space to store a routing table. Sensor nodes 

make use of the partial information within the sensor network. Lach sensor node stores 

the information, such as relative location and ID, of neighboring nodes.
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4.4.2.1 Label Transmission Stage 

In this stage labels are flooded from the souree node to sink node. The size of 

generated label is smaller than the size of the actual data packets, because these labels are 

data descriptors and not the data packets in themselves. The source node detects the 

physical phenomenon and listens to the event. On listening to the event, the source node 

forms a small information data descriptor, called a “label”. A label as explained in the 

previous section is a short and fixed-length field containing the minimum information 

about the event so that it can be distinguished from other events. Since each sensor node 

has the local information about the node topology, the source node is unaware o f the 

optimal path to route the query. The source broadcasts the label to all its neighboring 

nodes. On receiving the label, a receiving node examines its label cache, where all 

received labels are stored. If the node receives an entirely new label, the receiving node 

stores the label in the cache and retransmits the label to its neighbors. If the received label 

already exists in the label cache, the node disregards the received label.

Figure 4.4; Label Propagation to immediate neighbors
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In addition, if the label contains the information about a sending node, the 

receiving node can avoid retransmitting the same label to the sending node. This 

mechanism reduces unnecessary communication between nodes. The labels are flooded 

in the network until they reach the sink node or there are no more neighboring nodes left 

in the network.. A snapshot of label propagation is depicted in figure 4.4 below, where 

the sensor node “ 1” is assumed to be the source node, listening to the event. The label is 

initiated by node “ l ”and is transmitted to its neighboring nodes, node “2”, node “3” and 

node “4” respectively. The receiving nodes store the label in their respective cache and at 

this point, the copy of the label information is stored in nodes “2”, “3” and “4”. These 

nodes retransmit the copy of the label to the appropriate neighbors. In label propagation, 

the implosion problem occurs, the same way it occurs in data flooding. When a label 

receiving node transmits the copy of label to its neighboring nodes, irrespective of 

whether the neighboring node already has the copy of the same.

Figure 4.5: Label Propagation -Implosion
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( 2 )

Figure 4.6: Label Propagation -  Path Rejection to avoid implosion

Figure 4.5 shows the retransmission of labels, where node “3” and node “4” takes 

turn to transmit the label. Since node”3” receives the label from node “ 1”, node “3” 

transmit the label to node “5” and node “6” respectively. Similarly, node”4” receives the 

label from node “ 1”, node “4” transmit the label to node “6”. Even though node “6” has 

already received the label from node “3”, node “4” does not know the fact that node “6” 

already has the copy of the label. Node “6” being the neighbor to both node “3” and 

node”4”, gets the same copy of the label information. Due to indiscriminate transmission 

of labels, sensor nodes in this scheme expend limited transmission energy and bandwidth. 

The transmission involves labels and not the actual data, therefore the energy and 

bandwidth expenditure are negligible. Nevertheless, to avoid the implosion, if the 

received label already exists in the label cache, the node disregards the received label. In 

this case, node “6” checks for the copy of the label cache to look for the label and 

disregard the path from node”4” to node”6”,(figure 4.6). Also the label path from 

node”3” to node’T ” or from node”4” to node’T ” never exist because the receiving node 

avoids retransmitting the same label to the sending node. The labels are flooded in the 

network until they reach the sink node or there are no more neighboring nodes left in the
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network. Figure 4.7 & 4.8 shows the effective dissemination of the labels over the entire 

sensor network.
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Figure 4.7: Label Propagation -  Distribution over the network
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Figure 4.8: Promulgation of labels over the network

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4.2.2 Request (Req) for Transmission Stage

At this point it should be noted that the labels are the data advertisement of the 

actual data. In view of the fact that the label contains only metadata, they are smaller, and 

inexpensive to send and receive than the actual information packet. The basic idea is to 

provide a route from source node to the sink using a three way handshake that permits the 

data packets to associate with Sink node securely. Once the labels are propagated in the 

network, the sink receives the label. The Sink wishes to receive the actual data from the 

source node, it responds back by transmitting a request packet (REQ) toward the source.

Similar to a label, this request packet is small in size compared to the actual data 

packet in order to minimize communication burden between sensor nodes. The request 

packet follows the trace, on which the label traversed from the source to the sink. An 

illustration of this scheme is presented below. In figure 4.9, the labels arrive at the sink 

by taking the path (S-I-2-3-4-5-6-7-8-SINK). It should be noted at this point that there 

may be many potential label paths from source to sink. However, we are interested in the 

first established path towards the sink, here (S-I-2-3-4-5-6-7-8-SINK). Figure 4.10 shows 

that the request packet (REQ) is transmitted back to the source node from the sink by 

taking the path (SINK-8-7-6-5-4-3-2-1-S).
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O  O  
%

L J

V

& -  1 % V Ay

f / '
" I

o

SINK

O' r

Figure 4.10 Request packet pursues the trace, on which the label traversed

from the source to the sink.
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4.4.2.3 Data Transmission Stage 

On receiving the request packet (REQ) from the sink, the source node starts 

transmitting the actual data packet by following the same path one more time. Figure 4.11 

below, shows that the data packets are delivered towards the sink through a label tunnel, 

which is an outcome o f the three way handshake between the source and sink node 

respectively.
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Figure 4.11 Data Transmission

If a node notices that its neighbor list has changed, it can spontaneously re- advertise 

the already established labels. The benefit of this routing scheme lies in its performance 

simplicity. Each node in the network has the knowledge of a small portion of the entire 

network topology. Each node stores minimum routing information to save the restricted
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bandwidth of sensor node, which as a result reduces the processing time for routing. Also, 

since an actual data packet is transmitted after a data path has been established; redundant 

data packet transmissions can be avoided. Thus IDLF algorithm can be executed over an 

entirely un-configured sensor network with a small, initialization cost to determine 

nearest neighbors.

4.5 IDLF- Directional Forwarding Model

In IDLF the nodes make local decisions based on label propagation. We use 

directional forwarding as a special case, in which the only prerequisite for the node is to 

know the direction of the fixed sink within the network relative to the source node. To 

disseminate a label to a sensor network, there are several possible methods. One choice is 

just broadcasting a received label to all the neighbor nodes without any restriction, which 

is merely applying a classic flooding. As explained in (section 4.4), this method is simple, 

robust, and effective if  sensor nodes have no knowledge of sink’s location (Figure 4.12).

; Flooding of 

: labels in
• all directions

10)

Figure 4.12 Label Propagation in all directions
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Another possible choice is forwarding the labels by employing the sense of 

directionality within each sensor node. This method is based on the assumption that each 

node in the sensor network has the knowledge of the probable location of the sink node. 

This scheme can lessen the involvement of the neighboring nodes, to which a label has to 

be disseminated. The performance evaluation of this scheme, as explained in chapter 5 

results in energy saving.

Direction of ^  
SWK

Allowed Moves
- Left

- Diagonal Left 
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-  : : I
^ — '-------- '------- —̂

Figure 4.13 Restricting Propagation o f Labels in all directions

Figure 4.13 illustrates an example of directional forwarding; here node “ 1” is a 

source node having its immediate neighbors as nodes “2”, “3”,’’4“, and“5” respectively. 

On the physical grid, the location of sink is (0,0), which is south-west of node “ 1”. The 

label transmission of the source node and subsequent nodes can be restricted to only 

neighbors which has the physical location lying south (bottom), west (left), or south-west 

(diagonally left). In Figure 4.13, with respect to source node “ 1”, node “3” and “4”meet 

the criteria for receiving the label. By limiting the number of nodes information 

disseminated, energy consumed for exchanging information will be reduced.
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Figure 4.14 Directional Forwarding
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Figure 4.15 Probabilistic analysis of simple label flooding

Choosing directional forwarding mechanism, helps propagate the labels from 

source in the direction towards the destination, thereby making the proposed scheme
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more energy effieient. Directional forwarding (figure 4.14) can focus the label tunnel in 

one direction and enhance the efficiency of the system. Figure 4.15 and Figure 4.16 

shows the result of a probabilistic comparison between simple label flooding and 

directional forwarding. For the fixed time “t” and the success probability (to reach the 

sink) ”p” as 70%, the simple label flooding scheme delivers 814 packets as compared to 

the directional forwarding where 969 packets have reached the sink. This is an increase 

of 19 % over the simple label flooding scheme. Performance evaluation of this scheme 

with more detailed comparison is described in chapter 5.
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Figure 4.16 Probabilistic analysis of Directional Forwarding of labels
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Downside of this scheme is (a) the participating nodes falling in the directional 

path can run out of the battery quiekly, (b) unavailability of neighboring node/s meeting 

the criteria for receiving the label. Moreover, employing this scheme encourages 

disparity in energy spending among the sensor nodes. Nevertheless this scheme is a 

suitable candidate for the low bandwidth consuming applications, where the node energy 

takes back seat as compared to the speed o f retrieving the data.

4.6 Energy Management Proposal

Within a wireless sensor network cloud, the sensor nodes may be installed in 

remote areas where repairing and replenishing the nodes may be impossible. The life 

span of the sensor node deeply depends on its battery lifetime. To prolong the sensor 

network lifetime, minimum battery power of the sensor nodes should be consumed. A 

considerable change in the topology of the sensor network may take place with each 

failing node, which requires re-organizing and re-routing the information. The proposed 

energy management, which we describe in this section, is purely decentralized and 

consumes enough power for an efficient information transfer. We address a power 

management routing scheme appropriate for wireless sensor networks, which focuses on 

the dissemination o f information from source to the sink. We concentrate on following 

two issues

• Restricting minimum transmission around the sink and

• Setting up a battery threshold value

we minimize transmission between the sink and its one-hop neighbors to reduce 

energy consumption, and apply a battery threshold value so that the probability of
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information packets being dropped significantly decreases. There are several benefits to 

do so. First, the one-hop neighboring node/s to the sink can transmit the information 

directly to the sink, instead o f broadcasting. Second, it ensures the graceful degradation 

of the network in a low-energy network thereby, enhancing the fault tolerance of the 

system. A detailed explanation is followed in the subsections below.

4.6.1 Minimum Transmission around the Sink 

Upon deployment of the sensor nodes in a network, all the nodes have an 

identical initial energy. Within a sensor cloud, variation in the rate of consuming power 

by each node depends on the various factors such as event sensing rate, distance from 

sink node, and location o f each node relative to other nodes. This disparity in energy 

consumption in wireless sensor network causes an imbalance of node power status 

resulting in diminishing overall network lifetime. If the sink is at an unchanging location, 

data packets are collected from entire network to one fixed location. The data traffic at 

the sensor nodes located around the sink is denser than around the nodes located away 

from the sink. This indicates that those nodes located adjacent to the sink will expend 

more energy in node communication than those away from the sink. Nodes located in 

vicinity to the sink, when expended can isolate the sink from the entire sensor network, 

since no sensor node can reach the sink. To avoid the isolation of sink node from entire 

network, it is primarily important to adapt power management heuristic on nodes located 

around the sink. We propose the scheme to bind the communication between the sink and 

its one-hop neighbors. In our proposed IDLF algorithm, each sensor node has the 

knowledge of its neighboring nodes. The neighboring one-hop away nodes from the sink 

can directly transmit the label to the sink, instead of waiting to broadcast it to other
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neighbors. Consequently, the respective neighboring nodes to the sink expend less energy. 

A detailed evaluation of this scheme is presented in chapter 5.

4.6.2 Battery Threshold Value 

As discussed in detail in previous chapters that in order to optimize the 

performance, wireless sensor networks lack the centralized controlling unit for 

monitoring. There is a high chance that the data packets can be dropped on the way to the 

destination. There could be several reasons for the data packets not delivered to the sink. 

One of the foremost reasons of data delivery failure is the limited battery power of the 

sensor node. In wireless sensor communication, continuous exchange of information 

consumes battery power and the bandwidth of a respective node. A communicating 

sensor node may not be aware of the battery status of the next hop node. It is highly 

likely that, while a node transmits the data packet to its one-hop neighbor, the neighbor 

node runs out o f battery, or the data sending itself runs out o f battery. This results in 

losing the data packet. In [73], to evade the loss o f data packet, a threshold energy value 

is established. This was referred to as Modified Conditional Max-Min Battery Capacity 

Routing (Modified-CMMBR). This scheme uses three possible battery threshold values. 

The source node picks a different routing scheme depending on the residual energy in the 

sensor nodes so that all nodes contribute to data propagation. When a node reaches a 

certain threshold value, the node sends a signal to the source node. After receiving the 

notification about the failure of node, the source then re-route the data using a different 

routing scheme depending on the available battery thresholds for the sensor network 

nodes. This scheme, however, generates transmission overhead by using control signals.
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In our proposal, we employ a single battery threshold value. The threshold value 

is estimated using (a) total energy required to receive and broadcast a label, (b) receive 

and transmit a request, and (c) receive and transmit a data. This scheme does not need the 

control signal even if sensor node’s battery level falls below threshold value. IDLF 

algorithm is used when the nodes operate above the threshold value. When the battery 

level of the sensor node falls below the threshold value, it does not stop participating. 

However, the node does not participate in the rest of routing stages. By utilizing the 

battery threshold value the probability of information packets being dropped significantly 

decreases. Threshold value for a sensor node is employed based on the IDLF algorithm. 

We assumed that a node has a maximum number of neighboring nodes, which is eight, so 

that as long as a node has a battery power over the threshold value, the node will never 

drop a data packet. Table 4.2 shows the assumptions for employing the threshold value. 

We set the total threshold value to be 160 energy units. The performance evaluation is 

shown in chapter 5

Table 4.2: Battery Threshold Value

Receiving Label (8 neighbors) 8 unit energy
Transmitting Label (8 neighbors) 24 unit energy
Receiving Request 1 unit energy
Transmitting Request 3 unit energy
Receiving Data 31 unit energy
Transmitting Data 94 unit energy
Total 160 unit energy
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4.7 Reliable Multipath Information Dissemination

by Label Forwarding (RM-IDLF)

In this section we explain multipath routing by revealing its characteristic 

advantages and overhead. We then explain our motivation for applying multipath routing 

in the perspective of sensor networks and the associated challenges. This is followed by 

the explanation of the RM IDLF algorithm

4.7.1 Background

Multipath routing takes advantage of the connectivity of the underlying 

communication networks by providing multiple paths between souree-destination pairs. 

For the robust exchange of information, sometimes it is desirable to allow packets with 

the identical source and destination to take more than one viable path. The reason for the 

multipath routing can either be to lessen the network congestion or to surmount node 

failures. The initial node therefore can have a preference of more than one potential path 

to a particular destination at any given time. There are two reasons to study the multipath 

routing [115].

(a) Load balancing- Data traffic between the source and destination is divided across 

multiple (partially or fully) disjoint paths to avoid congestion on any one path.

(b) Reliable Information retrieval- Employing multipath routing increases the 

probability of reliable data delivery due to use of independent paths [98]. 

Duplicate copies of the data may be sent along alternate routes, to guarantee the 

reliable data delivery.
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In sensor networks, we study multipath routing to avoid inconsistency in power 

spending in the network. In comparison to the single path routing, multipath routing is 

advantageous for dense sensor node arrangement with heavy information traffic stream. 

With the scattered sensor nodes within the sensor field, there is absolutely no control over 

the topology of the network. Disseminating information load evenly among the nodes 

with discrete topological arrangement poses complexity. Single path routing is more 

desirable for the small set of information packet exchange. Multipath routing is 

economical in dense communication traffic. Implementing load balancing [115] is useful 

in sensor networks as the network lifetime depends more on the relative energy level than 

on the absolute energy level of the participating sensor nodes. In [116], assuming each 

sensor node having a fixed lifetime, the authors explained that the network lifetime can 

be enhanced, if  the routing protocol minimizes the inconsistency in the residual energy of 

every node, rather than minimizing the total energy consumed in routing. For high 

density sensor networks, the connection throughput is improved through multipath 

routing. In [117], the information traffic is distributed proportionally over the nodes 

positioned at different paths between the source and the sink, with respect to their 

residual energy. This helps each node spend the same amount of energy for data 

transmission. The idea is to involve the under-utilized paths and relieve the over-utilized 

path during data communication.

Much energy in the network is consumed by the few nodes closer to sink, which 

is a bottleneck for network. In [124], the distributed sink has been proposed, where the 

information arrives at sink via multiple proxy nodes called “Prongs”. These prongs are 

connected to the sink via high bandwidth links (i.e. when packet arrives at prongs, it is

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



delivered intact to the sink). Each Information packet of “M” fragments is encoded to 

“M+K” fragments with an Erasure Code and sends it over the multiple disjoint paths to 

the prongs. The sink can reconstruct the packet, if  it receives more than “M” fragments. 

The advantage is that the source can send most of the fragments on the path with the 

lowest energy and still achieve the desired reliability by increasing the number of parity 

fragments. The scheme suffers from the weakness that if more than N-M packets are lost, 

the system can not recover the entire data. Also erasure codes introduce a fixed 

redundancy overhead, wasting the bandwidth on all packets. [119] established random 

walks between a source and sink to prevent the overhead of caching multiple paths. The 

node failure is assumed to be temporary, as the nodes are to be powered by a renewable 

source of energy. The nodes are randomly failed to evaluate the performance o f the 

scheme. In [120], Split multipath routing has been proposed, to improve the reliability of 

the network. It employs multipath concurrently by splitting the information among the 

promising paths. [121] used directed diffusion protocol [64] to execute multiple path 

routing. The routing load is spread on more than one path to avoid congestion on any one 

path. Alternate promising paths are discovered during the route discovery phase of the 

directed diffusion. Using probability one o f the paths is chosen for routing.

In [98], a multipath scheme is proposed, the basic idea is to have a power efficient 

and yet resilient protocol. This protocol builds on the directed diffusion [64]. A primary 

path, which is considered the best from the application’s point of view, is eonstmcted (e.g. 

a low delay path). Small numbers o f alternative paths are also constructed, which will be 

used in case of failure in the primary path. The source periodically floods low-rate data 

over all alternate paths, therefore permitting fast recovery from failures on the primary
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path. This approach eliminates the need to flood the entire network for a new path in case 

of failure along the eurrent path (as done in directed diffusion).There are two different 

ways o f constructing the multipaths

(a) Disjoint Multipaths

Disjoint routes are ehosen so that a link failure in one route does not affect the 

others. A small number of alternate paths that are node-disjoint with the primary path, 

and with eaeh other can be constructed .These alternate paths are thus unaffected by 

failures on the primary path, but can potentially be less desirable (e.g., have longer 

latency) than the primary path. But for the applications where the reliable information 

is to be transferred, formation of disjoint paths is very valuable.

SOURCE O  n s i N K

 ̂  -----

  Primary Path
Alternate Path

Figure 4.17 Disjoint Multipath Network

(b) Braided Multipaths

Braided multipath [98] waives the condition for the sensor node to be 

disjoint. Instead of not eompletely node-disjoint path, the alternate paths within a 

braid can partially disjoint from the primary path. For each sensor node on the 

primary path, find the best path from source to sink that does not contain that 

node. This alternate path may not necessarily be eompletely node disjoint with the
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primary path. This creates a braid-like path set eonsisting of a primary path and a 

series of alternate paths. Braided Multi-path inereases the resilience of the path, 

but at a lower path maintenance eost. The links can be expeeted physically 

adjacent to the primary, and so it ean be said, that the braid expends energy 

eomparable to the primary path.

C ^===K ^==#.-.=========^
SOURCE X  SINK

  Primary Path
mmmmm A lt 6 mat G Path

Figure 4.18 Braided Multipath Network

4.7.2 RM-IDLF Explanation 

We have developed a deterministic model whieh is an extension to IDLF 

algorithm introduced in the previous seetions. This scheme involves point to point data 

transmission where the source initiates the routing scheme and disseminates the 

information toward the sink. Similar to IDLF, a label path is formed, prior to the 

transmission of aetual data packet/s. This label path is established by the souree node and 

the labels are disseminated in the network. It should be noted at this point that for RM- 

IDLF we used an alternate disjoint path. This alternate path scheme (RM-IDLF) may 

have a higher path eost in terms o f energy eonsumption, but is more reliable in terms of 

data paeket delivery to sink than the single path scheme (IDLF). In the latter seheme, the 

protocol establishes multiple (alternate) disjoint path/s from source to destination with
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negligible eontrol overhead to balance load due to heavy data traffic among intermediate 

nodes from source to the destination. Another point of interest in this framework is the 

study of trade-offs between the achieved routing reliability using multiple disjoint path 

routing and extra energy eonsumption due to the use of additional path/s. Also, the effeet 

of the failed nodes on the network performance is evaluated within the sensor system.

Similar to IDLF, RM IDLF algorithm is divided into three stages:

•  Label transmission stage,

• Request transmission stage, and

• Data transmission stage

At this point, it is to be noted that the elaborated explanation of each stage is 

described in section 4.4. In this section the brief overview of each stage will be explained. 

In addition, the features, in whieh the RM IDLF differs from the previous scheme is 

elaborated. Initially, an event is deteeted at the source; the souree broadeasts the label to 

all the neighboring nodes. The label receiving node checks for the partieular label in its 

label cache. If the received label already exists in the label cache, the node ignores the 

received label. If  the node receives a fresh label, the receiving node stores the label in the 

cache and retransmits the label to its neighbors. Fig 4.19 shows that, the label is 

transmitted from node A to its neighbor nodes, B, C and D. Node B further transmits the 

label to E, F and C. Although C is the neighbor to B, but C already has the eopy of label 

it received from A, so node C discards label from node B. Similarly C further transmits 

the label to G, H and so on. Node D stores the label in its label caehe, because it has no 

immediate outlet to transmit the label
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Figure 4.19 Label Transmission Path- RMIDLF

This label transmission proeess is repeated until the label reaches the sink or there 

is no more neighboring node, whieh does not have the label in its label caehe. At this 

point all the nodes have the eopy o f the label. Figure 4.20 shows that the path A-B-F-K- 

P-T-SINK is the first label based path from source to sink. At this point the Sink replies 

back by sending a request paeket toward the souree. Similar to a label, this request paeket 

is small in size eompared to the actual data packet in order to minimize eommunication 

burden between sensor nodes. Request packet is similar to the label and much smaller 

than the actual data packet. As shown in Figure 4.21, the request packet follows the trace, 

on whieh the label moves across from the source to the sink, baek to the souree.
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Figure 4.21 Request packet pursues the trace, on which the label traversed from the

source to the sink- RM IDLF

On receiving the request packet source node performs two operations

1. Sends the Information packet along the Primary path, similar to IDLF
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2. Initiate a new label path for the creation o f Disjoint path

s: <_

E l
i f

Ttf » .

T L i  1 /TX

Figure 4.22 Creation o f a new Label Path

Source node initiates a new label whieh is o f the same size as the initial label. The 

source node A, (figure 4.22) has three neighboring nodes B, C and D respectively. Node 

A transmits the new label to nodes C and D. Node B rejeets any label from Node A, 

because it is part o f the initial or primary path. Similarly node C is the neighbor to node B, 

but node B rejeets the copy of the new label from node C. Thus node C will only send the 

label to G and H. This will eontinue until

1. Either a disjoint label path to sink is ereated A-C-H-N-R-W-V-U-SINK ( Figure 

4.23), or

2. Disjoint path is not created -  There is no node in the vicinity of the sender node 

(no outletj.Nodes Q and W has no immediate neighbors. In this case we are 

dependent on the primary path ( Figure 4.24)
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Figure 4.23 Creation of Disjoint Path Figure 4.24 No outlet condition

It is obvious that maintaining multiple paths increase total power consumption. 

However, it increases the probability of information paekets reaehing destination node. 

The main purpose of using Reliable Multipath IDLF is to improve the fault tolerance of 

the sensor networks. Figure 4.25 and Figure 4.26 shows. In ease of isolated node failures, 

existenee of an alternate path helps diverting the information packets through the active 

nodes.
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Figure 4.25 Node failure in path 1 Figure 4.26 Node failure in path 2
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RM-IDLF is resilient to node or link failure. If a route fails and the data delivery 

is not aecomplished, the probability of information reaehing the sink is high beeause the 

ehance of failure of alternate path is small as eompared to single path routing. For the 

experimental purpose, we took one alternate path. Depending on the applieation, the 

number of paths can be inereased to make the system more robust. In single path routing, 

as the path fails, the sink stops receiving the data paekets due to absence of a baekup 

route. Also, in RM IDLF, there are no periodic updates to deteet the availability of the 

alternate paths. This makes the sequential accuraey of the multiple paths independent of 

the frequency of the updates exehanged. Chapter 5 presents the performanee evaluation 

of the proposed routing framework to establish its effectiveness in improving network 

lifetime, throughput, and quality of service
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CHAPTER 5

PERFORMANCE EVALUATION OF THE DATA DISSEMINATION FRAMEWORK

In this chapter, we evaluate the performance of the label dissemination framework 

through extensive simulation results. We begin with a description of the simulation 

scenario, network topology and the simulator employed for eonducting the experiments. 

We then demonstrate simulation results for IDLF and alternate path RM-IDLF and 

compare their performanee with Flooding and SPIN protoeol. The implementation of the 

energy management seheme is evaluated next. Faulty nodes seenario has been 

incorporated for eaeh of the label dissemination schemes and finally the inferences are 

drawn from the outcome.

5.1 Simulation scheme 

We designed a wireless sensor network simulator in C++. In our simulator, a 

specified number o f sensor nodes, whieh is ranging from 2 to 100 nodes ineluding one 

sink node, are randomly plaeed in a 10 xlO unit sensor simulation grid. The sink node, 

marked black is at (0, 0) and is equipped with enough memory space, battery power, and 

processing speed that the power consumed by the sink can be excluded from the total 

power consumed by an entire sensor network during simulations. Every node in the 

network knows its coordinates in the physieal field. The label dissemination protocols
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IDLF and RM-IDLF intend to disseminate data towards the sink using negotiations.

(5) ®

m )  ̂ CO ■ CO 
" ' : 0  0

SINK

Figure 5.1 Sensor network design

An example o f test sensor network configuration is shown in Figure 5.1. As 

explained in the last Chapter, each sensor node directly communicates with other nodes 

located within range "R1 "distance, e.g. node “a” in figure 5.1 can directly communicate 

with nodes ‘b ’, ’c ’, ’d ’” and “g” respeetively. On the basis of node eonfiguration of 

sensor nodes in our simulation, each node can have a maximum of eight neighbors’ .i.e. 

communication range ‘R1 ’ is the default metrics assumed in simulation results. When 

direetional forwarding is applied, a node transmits a packet only to neighboring nodes, 

which are loeated closer to the sink than the sender. For instanee node ‘j ’ disseminates 

information packets only to nodes‘d ’ and ‘n ’ and not to ‘o’ and ‘e’. The amount of energy 

eonsumed for exehanging information during a neighbor discovering stage is the same for 

any routing protocol for the same network topology. Therefore, we do not consider 

energy eonsumed during neighbor discovery in our energy analysis. During a simulation,
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there will be only one source node in the sensor field at a time. In ease of IDLF, after a 

data packet reaches the sink, a new souree will be selected randomly. Then, the new 

souree starts propagating a label. In RM-IDLF, after the data packet reaches the sink, the 

simulation ends and the new source is not selected randomly. In the latter case, we are 

more interested in tracking the rate of successful data packets reaching sink. The 

evaluation of RM-IDLF is mainly dependant on the tradeoff between energy 

eonsumption and the reliability of the network.

5.2 Performanee Assessment -IDLF 

IDLF, as explained in Chapter 4, will be eompared initially with flooding and 

SPIN on the basis of (a) Energy consumption over time, (b) Data transmission over time, 

(e) Energy consumption by a data packet. Next, to measure the effeetiveness of IDLF, we 

implement directional forwarding in IDLF, Flooding and SPIN. For the initial algorithm 

the energy supply of each sensor node is set to be unlimited. Later, the performance of 

proposed energy management scheme will evaluated; first, the effeet of minimum 

transmission around a sink node on the energy consumption of sensor nodes will be 

studied and then, we will diseuss the experimental results of employing a battery 

threshold value on sensor nodes. Finally, we will evaluate the RM -IDLF algorithm in 

the presence o f fault-free and faulty nodes.
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5.3 IDLF Evaluation

In IDLF evaluation, within the physieal grid, we used 30 sensor nodes, each 

within the communication range of eaeh other. A source node is assumed to be randomly 

selected. As explained in Chapter 4, we assumed that the size of data paeket is 31 times 

greater than the size of the label and request packet. Then if we assume that transmitting 

a label or request paeket between two neighboring nodes takes one unit time, transmitting 

a data packet will take 31 unit times. Also, we assumed that transmitting information 

eonsumes 3 times more energy per unit time than receiving.

5.3.1 Consumed Energy over Time 

In this section we evaluate the performance of the IDLF algorithm on the basis of 

the total energy consumed over the simulation time. We then alter the number of nodes 

participating in the network. In addition to IDLF, we also simulate flooding (Flood), 

flooding with directional forwarding (Flood-D), IDLF with directional forwarding 

(IDLF-D), SPIN, and SPIN with directional forwarding (SPIN-D). Figures (5.2 -5.7) 

shows the consumed energy over the simulation time with different nodes for each of the 

above sehemes. The experimental results illustrate that when the number of sensor nodes 

in a network is less, the eost of disseminating the data packets is not high. This holds true 

for any routing scheme.
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Figure 5.2 Energy Consumed by entire sensor network over time - 5 nodes
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Figure 5.3 Energy Consumed by entire sensor network over time - 10 nodes
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Figure 5.4 Energy Consumed by entire sensor network over time - 15 nodes

Figure 5.2 shows that for the total of 5 nodes within the sensor network, the 

differenee in the amount of spent energy by eaeh routing seheme is small. As expected, 

after the simulation time of 3000 units, the flooding consumes 4.3% more energy than 

IDLF with direetionality (IDLF-D).The differenee in energy eonsumption among routing 

schemes beeomes quite obvious as the number of nodes in a network inereases. Figure

5.3 shows that, for 10 nodes in the network, this differenee in energy is 19% more than 

IDLF-D. Similarly for 15 nodes, the differenee is 43% more than IDLF-D (Figure 5.4), 

for 20 nodes, the differenee is 64% more than IDLF-D (Figure 5.5) and for 25 nodes, the 

difference is 89% more than IDLF-D (Figure 5.6). For 30 sensor nodes in a network after 

3,000 simulation time. Flood, Flood-D, IDLF, SPIN, and SPIN-D eonsumed 112,21,29, 

83, and 15% more energy than IDLF-D, respeetively.
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Figure 5.5 Energy Consumed by entire sensor network over time - 20 nodes
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Figure 5.6 Energy Consumed by entire sensor network over time - 25 nodes
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Figure 5.7 Energy Consumed by entire sensor network over time - 30 nodes

The experimental evaluation of IDLF on the basis of expended energy shows that 

by applying directional forwarding each routing scheme achieves significant energy 

savings. This is true irrespective o f the total number of nodes within the sensor network. 

We also conclude that the flooding and SPIN consumes more energy than IDLF (with or 

without directional forwarding). This is because flooding and SPIN are intended for 

disseminating data packets through the entire sensor network, whereas, IDLF is a point- 

to-point data transmission. Also, SPIN performs better than flooding in terms of energy 

consumption, which is true, because it is designed to prevent implosion and overlap in 

flooding.

5.3.2 Data Transmission Over Time 

This section explains the simulation results, where for a given time; we 

accumulate the number of data packets arriving at the sink. We then vary the number of 

participating nodes to study the network behavior. To explain data dissemination 

efficiency for various routing schemes, we incorporated the comparison of IDLF with
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flooding (Flood), flooding with directional forwarding (Flood-D), IDLF with directional 

forwarding (IDLF-D), SPIN, and SPIN with directional forwarding (SPIN-D).
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Figure 5.8 Number of Data Packets Delivered at Sink over Time- 5 nodes
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Figure 5.9 Number of Data Packets Delivered at Sink over T im e-10 nodes
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Figure 5.10 Number of Data Packets Delivered at Sink over Time- 15 nodes

Figure (5.8 -  5.13) shows the number of data packets arrived at a sink for a given 

simulation interval. We then vary the number of nodes and analyze the performance of 

each. For a given time interval, the number of data packets delivered to sink diminishes 

when the number of nodes in a network increases. This is because the average distance 

from a source to a sink increases, so it takes more time to deliver a data packet. IDLF 

with directional forwarding always outshines the routing without directional forwarding. 

In terms of number of data packets delivered. Flooding with directional forwarding 

conveys 22 to 50% more data paekets than normal flooding. SPIN improved its 

performance between 20 to 34% by adopting directional forwarding. Likewise, IDLF 

improved between 23 to 40%. Applying directional forwarding highly improves the data 

transfer efficiency in flooding. This shows that flooding exchanges more information 

among the nodes than other two protocols.

In case o f IDLF, it performs better than SPIN and flooding. IDLF delivers 101% 

more data packets than flooding and 72% more data packets than SPIN respectively for
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30 sensor nodes in a network. Similarly, in a given simulation time interval, IDLF with 

directionality delivered more data packets to sink than other two routing schemes with 

directionality. IDLF-D delivered 80% more data packets than Flood-D and 68% more 

data packets than Flood-D and SPIN-D at 30 sensor nodes respectively. The number of 

data packets delivered by Flooding with directionality is very close to that delivered by 

SPIN with directionality. By applying directional forwarding, inefficiency caused by 

implosion and overlap in flooding is minimized. Thus, flooding can perform as better as 

SPIN in this scenario. Furthermore, SPIN has to exchange ADV and REQ packets before 

transmitting actual data. In some cases, these two packets become overhead compared to 

just transmitting data only. Therefore, in this simulation FIood-D could deliver as many 

packets as SPIN-D.
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Number ofNodes = 20

- -: .
■■

500 1000 1500 2000

Simulation Time (unit time)

2500 3000

Figure 5.11 Number of Data Packets Delivered at Sink over Time- 20 nodes
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Figure 5.12 Number of Data Packets Delivered at Sink over Time- 25 nodes
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Figure 5.13 Number o f Data Packets Delivered at Sink over Time- 30 nodes

5.3.3 Energy Consumption per Data Packet 

This section compares for each scheme, the average energy consumed by 

delivering each data packet from a source to a sink. Varying the number of nodes in the 

sensor network, IDLF-D outperformed other five routing schemes. In directional
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forwarding, the sensor nodes narrow the range of broadcasting data packets by restricting 

communication only to the nodes lying in the direction towards the sink node. With 

IDLF-D, the energy consumed per data packet remains less as compared to IDLF, SPIN- 

D, Flood-D, SPIN and flooding (in the same order).For 5 sensor nodes, IDLF-D 

consumed only 34, 8, 17, 37, and 8% less energy for each data packet than flooding, 

Flood-D, IDLF, SPIN, and SPIN-D respectively, (Table 5.1). When the number of sensor 

nodes is increased to 30, IDLF consumes 447, 99, 67, 325, and 82% less energy for each 

data packet than flooding, Flood-D, IDLF, SPIN, and SPIN-D respectively (Figure 5.14).

Table 5.1 Energy consumed by transmitting each data packet

Number 
of Nodes

Flood
Energy
(units)

Flood-D
Energy
(units)

IDLF
Energ

y
(units)

IDLF-D
Energy
(units)

SPIN
Energy
(units)

SPIN-D
Energy
(units)

0 0 0 0 0 0 0
5 251 203 220 188 257 204

10 811 424 394 307 712 413
15 1345 618 548 391 1160 601
20 2050 833 699 461 1608 782
25 2676 1007 863 533 2058 951
30 3294 1198 1006 602 2557 1094

This pattern signifies that IDLF-D is appropriate for wireless sensor networks 

since scalability is one o f the main concerns in wireless sensor networks. As explained in 

Chapter 4, the limitation of IDLF-D is that (I) the participating nodes located in the 

directional path can run out of the battery quickly, and (2) unavailability of neighboring 

node/s meeting the criteria for receiving the label. Moreover, employing directional 

forwarding encourages disparity in energy spending among the sensor nodes. 

Nevertheless this scheme is a suitable candidate for the low bandwidth consuming
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applications, where the node energy takes back seat as compared to the speed of 

retrieving the data.

F lo o d

r  o o d -D

IDLF-D

SPIN -D

10 15
Number ofN odes

20 25 30

Figure 5.14 Energy consumed per Data Packet

Furthermore, IDLF requires less energy to deliver a data packet than flooding, SPIN, 

Flood-D and SPIN-D. This explains that IDLF, performs better in terms o f energy 

consumed and data packets delivered. Even incorporating directional forwarding in 

flooding and SPIN cannot impact IDLF in its performance. Therefore, IDLF is more 

appropriate for disseminating information point-to-point in wireless sensor networks than 

flooding and SPIN.

5.4 Energy Management 

In this section, we analyze our power saving and management schemes. We study 

the data collected to measure the importance of our scheme. In this power saving scheme,

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



we minimize transmission between the sink and its one-hop neighbors to reduce energy 

consumption, and apply a battery threshold value so that the probability of information 

packets being dropped significantly decreases. The primary purpose is to ensure the 

uniform degradation of the network and enhance the fault tolerance of the system. First, 

the simulation results for measuring the effect o f minimum transmission around a sink 

node on nodes’ energy consumption are studied. Then, we discuss the experimental 

results of employing a battery threshold value on sensor nodes.

5.4.1 Minimum Transmission around the Sink 

Data traffic at the sensor nodes located around the sink node is intense than 

around the nodes located away from the sink. The nodes situated adjacent to the sink will 

expend more energy in node communication than those away from the sink. These nodes, 

when expended can isolate the sink from the entire sensor network, since no sensor node 

can reach the sink. To avoid the isolation o f sink node from entire network, it is primarily 

important to adapt power management heuristic on nodes located around the sink. In the 

minimum transmission scheme, each sensor node has the knowledge of its neighboring 

nodes. The neighboring one-hop away nodes from the sink can directly transmit the label 

to the sink, instead of waiting to broadcast it to other neighbors. Consequently, the 

respective neighboring nodes to the sink expend less energy. We simulated two scenarios 

-  with and without transmission control around a sink node -  and collected energy 

consumption data of nodes. Simulations for each scenario were performed using IDLF 

algorithm using 30 sensor nodes for 3,000 unit time. The average energy consumed by 

sets of sensor nodes, which are located in the same number of hops from the source node, 

is calculated and graphed. The result is shown in Figure 5.15.
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Table 5.2 Average Energy consumed per node at different hop location

from the source node

Number of Hops 
from the source 

node

Unrestricted 
Broadcast 

Energy (units)

Restricted
Broadcast

Energy^ (units)

1 1046 791
2 764 763
3 591 613
4 462 473
5 351 370
6 296 272
7 260 228
8 196 192
9 141 99

t-, DD
U n restfic ted  B ro a d ca st  

O R estr ic ted  T ransm is s io n

3 4 5 6 7
Node Location (# of Hops from Source)

Figure 5.15: Average Sensor Node Energy Consumption by Hop Count

The simulation results in Table 5.2, shows that nodes located one hop away from 

the sink consumed an average of 1046 unit energy in unrestricted broadcast scenario. On 

employing the restricted transmission scheme, the average energy consumed by nodes is 

decreased to 791 unit energy. This shows 24.37 % improvement. Additionally, the energy
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consumption of other nodes is not affected. Hence by applying the restricted transmission 

scheme, total energy consumption of a sensor network can be reduced. Nodes located one 

hop from the sink in unrestricted broadcast scenario consumed 7.5 times more energy 

than those locates nine hops from the sink

5.4.2 Battery Threshold Value 

We employ a single battery threshold value using the IDLF algorithm. The 

threshold value is estimated using (1) total energy required to receive and broadcast a 

label, (2) receive and transmit a request, and (3) receive and transmit a data. Utilizing the 

battery threshold value does not need the control signal even if sensor node’s battery 

level falls below threshold value. The idea is that the sensor node does not stop 

participating even if the battery level o f the sensor node falls below the threshold value. 

However, the node does not participate in the rest of routing stages. By incorporating the 

battery threshold value the probability o f Data packets being dropped significantly 

decreases. Threshold value for a sensor node is employed based on the IDLF algorithm. 

We assumed that a node has a maximum number o f neighboring nodes, which is eight, so 

that as long as a node has a battery power over the threshold value, the node will never 

drop a data packet. We set the total threshold value to be 160 energy units (as explained 

in Table 4.2, chapter 4). We execute the simulations for different number of nodes in a 

sensor network -  25, 30, 35, 40, and 45 nodes -  with four different initial nodes energy -  

600, 700, 800, and 900 respectively. Simulation time was set to 3,000 unit time.
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Figure 5.16 (a) Number of Data Packets Delivered vs. Number ofNodes

600 unit energy

Figures 5.16( a, b) and 5.17( a, b) shows the number of data packets reaching to 

the sink for a given simulation time. To explain this scheme, we took two cases- Initial 

battery energy with and without threshold -T H  and No TH. We observe that, as the 

number of sensor nodes increases in the network, the number of data packets delivered to 

sink decreases. This holds true for any initial node energy. The reason for this behavior is, 

when the number o f nodes increases in the network, the average distance from a source to 

the sink also increases. Thus, it takes more time for each data packet to reach to sink and 

consequently, for a given time, the number of data packets delivered is reduced. Secondly, 

as the number of sensor nodes increases, the difference in number of data packets 

delivered between the two cases (a) with threshold and (b) without threshold value is 

minimized.
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Figure 5.16 (b) Number of Data Packets Delivered vs. Number ofNodes

700 unit energy.

Figure 5.16, 5.17 shows that a network with a large number o f nodes propagates less 

number of data packets. In IDLF algorithm, source node is randomly selected and the 

data path is selected each time. If the number of sensor nodes in the network is large, the 

probability of each sensor node selected as a part of data path is small. It reduces energy 

consumption of each sensor node. Due to this reason, power failure o f sensor nodes in a 

network with large number of sensor nodes is less likely to happen than that with smaller 

number of sensor nodes [118]. Thus we conclude that for the larger number of sensor 

nodes, the data packets delivered by a routing with threshold value becomes close to that 

delivered by a routing without threshold value, i.e. there is no difference between a 

routing with and without battery threshold value. Applying a threshold value is more 

appropriate at low initial battery energy with less number o f participating nodes. At low 

initial battery energy, sensor nodes fail more quickly than those at high initial battery 

energy.
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Figures (5 .1 8 -5 .2 1 ) show the energy consumed by an entire network vs. number 

o f nodes for different values of initial battery. We observe that, for a smaller value of 

initial battery, the difference between (a) with threshold and (b) without threshold is more 

significant as compared to the larger value of initial energy in sensor nodes respectively. 

At initial energy o f 600 units, a network with threshold value consumed more energy 

than that without a threshold value. The reason for consuming more energy is that the 

number of data packets delivered is more in the threshold case. Figures 5.16 and 5.17 

indicate that a network with a threshold value delivers more data packets than that 

without a threshold. As the initial battery energy increases, the difference in energy 

consumption between with and without a threshold value is reduced.

12000
Initial Energy = 600 units

«—  No T H

NumberofNodes

Figure 5.18 Energy consumption in sensor network - 600 unit energy
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Figure 5.19 Energy consumption in sensor network - 700 unit energy

There is a change in power consumption for given number of nodes with respect 

to initial battery energy. Figure 5.16 shows that the number of data packets delivered to 

the sink does not change abruptly for a given number of sensor nodes (except at 25 nodes 

with initial energy of 600). Total energy consumption by a network for a given number of 

sensor nodes steadily increases as initial battery energy increases. However (a) the 

number of nodes in a network, (b) the number of data packets delivered, and (c) the 

simulation time are the same, there should be another factor, which affects energy 

consumption. In IDLF algorithm, this factor can be attributed to the phenomenon of the 

label exchange. For the large initial battery energy, the number o f nodes running out 

battery in a given simulation time will be reduced. Hence, more nodes participate in 

exchanging labels. Therefore, at higher initial battery energy, more total energy is 

consumed by a network.
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Figure 5.20 Energy consumption in sensor network - 800 unit energy

25000
Initial Energy =  900 units

'S  20000

o ^  15000 
O k
gs -
k .-s 10000 

w &  
la
o

H

— ^ -----------------

No TH

\
25 30 35 40 45

N um berofN odes

Figure 5.21 Energy consumption in sensor network - 900 unit energy.

The percentage of information packets dropped vs. number o f sensor nodes are 

shown in figures (5.22 - 5.25). In IDLF, three types o f packet drop occurs a) label drop,
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b) request drop and 3) data drop. A data packet may never reach sink if either request 

drop or data drop happens. However, the label drop can occur because it is broadcasted in 

the network. Many copies of the label packets may travel the sensor network at the same 

time. In a case, when label never reached sink node, it is considered to be a label drop. In 

case of IDLF with threshold value, only label drop occurs. Due to threshold value, 

request drop and the data drop may never happen, because a node does not participate in 

information transmission at all.

Initial Energy=600 units

«— NoTH

_1-------------- j_

25 30 35 40
Number ofNodes

45

Figure 5.22 Percentage o f Data Packets Dropped- 600 unit energy .
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For smaller number o f nodes and small initial battery energy, the percentage of 

information packets dropped is more (Figures 5.22- 5.23). This is due to the scarcity of 

sensor nodes participating. In absence o f alternate paths, it is more likely that labels will 

not reach a sink. Therefore, the phenomenon of dropping labels happens more frequently 

than request and data dropping. However, as the number of nodes increases, the 

difference between threshold and without threshold becomes significant due to the 

availability of alternate paths.

5.5 Faults in Sensor Nodes

When a sensor node crashes due to battery exhaustion or other physical event, the 

primary path breaks down and the re-routing in the network takes place. Most of the 

protocols discussed in the previous chapters, including IDLF, do not offer specific
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knowledge regarding the state (faulty or fault-free) of the sensors in the network. We 

study the impact of faulty nodes on the performance of label dissemination framework. 

We employ an alternate disjoint path. This alternate path scheme (RM-IDLF) may have a 

higher path cost in terms of energy consumption. However, under the faulty nodes 

scenario, it proves to be more reliable in terms of data packet delivery to sink than the 

single path scheme (IDLF). Additionally, in single path routing, as the path fails, the sink 

stops receiving the data packets due to absence of a backup route. In multipath routing, 

we took one alternate path. However, depending on the application and importance o f the 

data delivery, the number of paths can be increased to make the system more robust. We 

set the faulty nodes of the order of 10%, 20%, 30%, 40% and 50% of the total nodes 

participating in the simulation. Thus, if  50 sensor nodes are participating within the 

sensor network and the network has 30% fault, it means that only 35 nodes are actually 

participating in the network. To study the worst case scenario, a faulty node in the sensor 

network is assumed to be functional until the label and request communication. It 

becomes non-functional (fails) before the onset o f data transmission.

5.6 Performance Assessment - RM-IDLF 

RM-IDLF is resilient to sensor node failure. Thus, if  a primary route fails, there is 

still a likelihood of the information reaching sink because the risk of collapse of an 

alternate path is lesser as compared to the single path routing. In RM-IDLF, we are more 

interested in tracking the rate of successful data packets reaching sink. Within the 

physical grid, we used 70 sensor nodes, each within the communication range of each 

other. A source node is assumed to be randomly selected and during the simulation, there
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is only one source node in the sensor field at a time. It is assumed that every node in the 

network knows its coordinates in the physical field. The label dissemination protocol 

RM-IDLF intends to disseminate data towards the sink using negotiations. As explained 

in Chapter 4, we assumed that the size o f data packet is 31 times greater than the size of 

the label and request packet. Then if we assume that transmitting a label or request packet 

between two neighboring nodes takes one unit time, transmitting a data packet will take 

31 unit times. Also, we assumed that transmitting information consumes 3 times more 

energy per unit time than receiving. An average of 1000 simulation is taken for different 

set of nodes. We took 20 nodes in a sensor field and increased to 70 nodes with an 

addition of 10 nodes for various cases. Contrary to 5 nodes in IDLF, In RM-IDLF, we 

started with 20 nodes because for alternate path, it is appropriate to start with 

comparatively larger number of nodes in the sensor network. Also, in RM-IDLF, there 

are no periodic updates to detect the availability o f the alternate paths. This makes the 

sequential accuracy of the multiple paths independent of the frequency of the updates 

exchanged.

5.6.1 RM-IDLF Evaluation 

We will investigate different scenarios: (a) Fault-free single path (b) Fault-free 

multi-path (c) Single path with faulty nodes and (d) Multi-path with faulty nodes. In this 

section we will compare the performance of RM-IDLF with IDLF on the basis of (a) 

Energy consumption over time, (b) Percentage of data packets reaching the sink over 

time (c) Average time to reach to the sink. A brief comparison o f RM-IDLF with 

flooding and SPIN will be performed at the end. To justify the fair comparison of RM- 

IDLF with IDLF, we evaluate the latter under the same assumptions as the former.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.6.1.1. Energy consumed vs. Data packets delivered by entire sensor network over time 

In this section, we assess the performance of the RM-IDLF algorithm on the basis 

of (a) total energy consumed over the simulation time and (b) the percentage o f data 

packets delivered by entire sensor network over time. We study each result under both 

fault-less and faulty situation. Figure 5.26 shows the performance comparison of both 

IDLF and RM-IDLF algorithms involving fixed 70 nodes. The simulation time is varied 

from 50 units to 500 time units. We assumed all the sensor nodes are functioning 

properly and there is no node failure during the simulation. Under this fault-free scenario, 

a plot of total consumed energy vs. simulation time shows that 82.85% extra energy (than 

IDLF) is consumed for the functioning of RM-IDLF. Conversely, figure 5.27 shows the 

analysis of percentage of data packets delivered at sink over time. Under the parallel 

simulation settings both IDLF and RM-IDLF has been compared. This fault-free sensor 

node analysis shows that using RM-IDLF 27.65% of extra data packets is delivered at 

sink. The reason for using an alternate path is not very strong under the fault free scenario. 

This can be explained by the fact that the extra energy is consumed for creating a disjoint 

path. If  the possibility of occurrence of fault does not exist, then a single path routing is 

appropriate for disseminating the information, e.g. low power simple applications. In 

RM-IDLF, an extra amount of energy is consumed to route a data packet through the 

alternate path. In addition, a small amount of energy is also consumed to find an alternate 

path. Furthermore the creation of alternate path is not always guaranteed in RM-IDLF. 

The reason for the delivery o f additional data packets reaching the sink in the latter case 

can be attributed to the fact that using an alternate path ensures less control delay. The 

possibility of delivering the data packets increases in alternate path scenario.
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Similarly, the performance of RM-IDLF is evaluated by increasing the faulty 

nodes in the system. Figures (5.28 -5.29) shows that when 10% nodes are faulty RM- 

IDLF consumes 83.73 % more energy than IDLF, but the percentage of data packets 

delivered at the sink node increases considerably by 84.55 percent. Figures (5.30 and 

5.31) show that for the total of 20% faulty nodes, the percentage of extra energy 

consumed in RM-IDLF is 73.36 %, whereas the increase in percentage of data packets 

delivered is 134.29 %. Likewise, for 30% faulty nodes the energy consumed is 68.06% as 

compared to 240% of increase in data packets delivered, figures (5.32 and 5.33). For 40% 

faulty nodes, the extra energy consumed is 42.91% as compared to i77.33 percent 

increase in fetching the data packets at sink, figures (5.32 and 5.33). For the occurrence 

o f 50% fault in the system, 26.18% of the extra energy is consumed. The percentage of 

extra data packets reaching to sink is increased by 93.42%.
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Figure 5.26 Energy Consumed by entire sensor network over time -  Fault Free
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Table 5.3 Percentage of Extra Energy Consumed in RM-IDLF 

in comparison with IDLF

TIME
(units)

Fault
Free

10%
Fault

20%
Fault

30%
Fault

40%
Fault

50%
Fault

50 11.84 12.15 11.58 11.71 11.04 11.69
100 21.49 20.54 16.09 15.95 10.82 8.74
150 41.08 37.83 36.45 31.56 26.77 15.06
200 49.38 51.81 46.40 40.56 32.91 21.84
250 48.04 55.88 51.68 40.93 31.98 19.81
300 55.08 62.16 63.78 52.75 36.40 25.24
350 57.58 71.58 63.66 57.67 41.06 24.23
400 68.31 69.97 68.05 62.97 43.33 25.13
450 63.92 75.30 73.59 65.64 44.01 22.17
500 82.85 83.73 73.36 68.06 42.91 26.18
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Table 5.4 Percentage of Extra Data Packets delivered in RM-IDLF 

in comparison with IDLF

TIME
(units)

Fault
Free

10%
Fault

20%
Fault

30%
Fault

40%
Fault

50%
Fault

50 17.95 5.41 63.33 14.89 2.04 13.64
100 27.91 80.00 93.33 13.46 15.79 9.09
150 46.51 57.45 53.33 14.55 20.63 1.64
200 30.14 36.23 93.62 47.89 11.27 57.63
250 30.30 34.69 63.53 68.12 23.38 81.25
300 23.97 60.48 63.22 62.65 46.34 62.32
350 22.83 42.59 63.21 143.75 115.58 88.57
400 1.11 76.44 99.20 134.07 115.73 81.33
450 8.81 66.67 112.31 204.88 138.55 114.49
500 27.65 84.55 134.29 240.00 177.33 93.42
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Figure 5.38 Cost Performance Graph -RM-IDLF
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Table 5.3 below illustrate the percentage of extra energy spend in RM-IDLF. 

Simulation result shows that, as the faulty nodes in the network increases the energy 

consumption in the network decreases. The experimental results illustrate that when the 

number of sensor nodes in a network is less, the cost o f disseminating the data packets is 

not high. In Table 5.4, the percentage o f additional data packets delivered is studied. As 

the faulty nodes in the network are increased, the performance of RM-IDLF gets better in 

terms of percentage of data packets delivered. This behavior is expected from RM-IDLF 

in a way that, in the advent of failure of the primary path, an alternate path takes over. As 

the faulty nodes increases, single paths tear down and the network has to re-initiate the 

primary path. Figure 5.38 shows a cost performance graph showing the performance of 

RM-IDLF over IDLF in terms o f energy consumed and the data packets reaching the sink.

5.6.1.2. Energy consumed vs. Number o f Participating Sensor Nodes 

In Section 5.6.1.1, we analyzed the results for energy consumed for the fixed 

number of sensor nodes. In this section, we alter the number o f sensor nodes participating 

in the network and study each result under both fault-less and faulty situation. The 

simulation time is kept constant at 500 time units. Table 5.5 shows the average of 1000 

simulation for both RM-IDLF and IDLF. The experimental results explain that it takes 

more energy to disseminate the data packets when the number of nodes increases in the 

sensor network. For fewer nodes, due to unavailability alternate paths, it is more likely 

that labels will not reach a sink. Therefore, the phenomenon of dropping labels happens 

more frequently than request and data dropping. For 20 nodes, under the fault free 

condition (figure 5.39), it takes 935.46 units of energy for RM-IDLF as compared to 

2319.00 units of energy for 70 nodes. In case o f fewer nodes in the network, the chances
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of data packets not reaching sink is high due to unavailability of the neighboring nodes. 

This causes less consumption of energy due to dropping of data packets. Secondly, as the 

number of nodes increase, the average hop distance from source to sink also increase and 

the possibility o f creation of an alternate path increases as well. Thus, the network 

expends more energy. In presence of faulty nodes, a descending pattern for energy 

consumption is observed, figures 5.40- 5.44. Occurrence of failure creates a void among 

the participating nodes, thereby abandoning the data packets and eventually consuming 

less energy. More the number of faulty nodes exists in the network, the less is the energy 

consumed.

Table 5.5 Energy Consumed in RM-IDLF in comparison with IDLF by varying the

number of sensor nodes

Number of Fault Free 10% 20%
Nodes IDLF RM-IDLF IDLF RM-IDLF IDLF RM-IDLF

20 659.73 935.46 561.29 783.72 469.20 634.42
30 929.93 1463.38 775.96 1188.33 657.43 1003.23
40 1105.06 1840.37 909.48 1563.09 793.75 1269.54
50 1201.95 2026.02 1007.43 1744.57 891.62 1480.85
60 1237.00 2139.52 1040.98 1958.73 945.55 1623.04
70 1268.23 2319.00 1104.22 2028.77 1008.43 1748.22

Number of 0% 40% 50%
Nodes IDLF RM-IDLF IDLF RM-IDLF IDLF RM-IDLF

20 407.48 552.32 368.17 465.79 328.06 389.78
30 580.61 819.72 527.54 671.95 471.14 576,20
40 713.97 1045.18 643.64 862.75 592.67 722,45
50 807.43 1190.57 729.45 981.62 692.23 813,70
60 860.37 1387.23 791.80 1146.89 762.78 952,12
70 914.92 1537.63 870.10 1243.44 833.09 1051.19
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5.6.1.3. Data packets delivered vs. Number of participating Sensor Nodes

Figure (5.45 -  5.50) shows the number o f data packets arrived at a sink for a 

given simulation interval. We then vary the number of nodes and analyze the 

performance of each. For a given time interval, the number of data packets delivered to 

sink diminishes when the number of nodes in a network increases. This is because the 

average distance from a source to a sink increases, so it takes more time to deliver a data 

packet. In presence of faulty nodes, (Table 5.6) a descending pattern for data packet 

delivery is observed. Nonetheless, in RM-IDLF more data packets are delivered to sink. 

Occurrence of failure creates a void among the participating nodes, it takes more time for 

each data packet to reach to sink and consequently, for a given time, the number of data 

packets delivered is reduced.

Table 5.6 Percentage of data packets delivered in RM-IDLF in comparison with IDLF

by varying the number o f sensor nodes

Number of Fault Free 10% 20%
Nodes IDLF RM-IDLF IDLF RM-IDLF IDLF RM-IDLF

20 100 100 71.7 82.5 54.3 66.1
30 98.4 98.9 64.5 81.5 44.1 66.7
40 87.3 91.2 52.4 72.9 37 58.5
50 73.2 77.6 41.9 60.9 27.6 48.9
60 56.3 68.1 30.2 51.9 16 41.4
70 43.4 55.4 22.4 39.1 14 32.8

Number of 30% 40% 50%
Nodes IDLF RM-IDLF IDLF RM-IDLF IDLF RM-IDLF

20 41.7 56.4 31.2 41.7 25.3 34.8
30 32.5 49.9 24.9 37.5 17 27
40 27.2 47 18.1 34.1 14.4 23.1
50 19.1 39.3 15.1 29 11.4 19.1
60 14.7 34.3 11 24.2 7.9 16.3
70 8.5 28.9 7.5 20.8 7.6 14.7
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5.6.1.4. Time to reach sink vs. Number of participating Sensor nodes

Table 5.7 shows the average of 1000 simulation for both RM-IDLF and IDLF. 

The experimental results explain that data packets take more time to traverse to sink 

when the number o f nodes increases in the sensor network. For fewer nodes, due to 

unavailability alternate paths, it is more likely that labels will not reach a sink. Therefore, 

the phenomenon of dropping labels happens more frequently than request and data 

dropping. For 20 nodes, under the fault free condition (figure 5.51), it takes 157.57 time 

for RM-IDLF to reach sink as compared to 315.15 units for 70 nodes.

In case o f fewer nodes in the network, the chances o f data packets not reaching 

sink is high due to unavailability of the neighboring nodes. This causes less time for the 

data packets to reach the sink. As the number o f nodes increase, the average hop distance 

from source to sink also increase and the possibility o f creation of an alternate path 

increases as well. Thus, the network takes more time to deliver the data packet. In 

presence o f faulty nodes, a descending pattern for energy consumption is observed, 

figures 5.52- 5.56. Occurrence of failure creates a void among the participating nodes, 

thereby abandoning the data packets and eventually tearing down the path. More the 

number of faulty nodes exists in the network, the less is the time taken for the data 

packets to reach sink.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5.7 Average time to reach the sink in RM-IDLF in comparison with IDLF by

varying the number of sensor nodes

Number of Fault Free 10% 20%
Nodes IDLF RM-IDLF IDLF RM-IDLF IDLF RM-IDLF

20 149.26 157.57 130.56 153.41 111.29 137.83
30 192.13 197.72 166.07 199.51 135.32 190.19
40 229.33 235.47 190.28 238.24 149.97 226.81
50 264.21 263.64 228.12 269.41 174.87 268.93
60 302.41 292.82 235.28 289.08 199.56 268.40
70 322.26 315.15 278.68 291.29 209.44 283.14

Number of 30% 40% 50%
Nodes IDLF RM-IDLF IDLF RM-IDLF IDLF RM-IDLF

20 91.39 131.13 80.15 113.97 62.54 90.44
30 108.30 176.48 94.79 149.22 70.12 126.04
40 124.70 214.90 100.60 185.98 72.73 151.27
50 133.38 230.17 87.13 194.99 73.75 147.80
60 128.79 250.45 91.93 243.93 72.10 192.36
70 135.33 272.55 83.33 243.10 63.45 191.70
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5.6.2 Comparison of Label Dissemination Scheme with Flooding and SPIN 

In this section, we compare the performance of the RM-IDLF algorithm with 

flooding and SPIN on the basis o f (a) total energy consumed (b) the percentage o f data 

packets delivered by entire sensor network and (c) time it takes for data packets to reach 

sink node. We study each result under both fault-less and faulty situation. Each 

comparison involves fixed 70 nodes at the simulation time 1000 units. Figure 5.57 show 

that for fault free network RM-IDLF consumes 1.81 times more energy than IDLF. SPIN 

consumes 3.98 times more energy than RM-IDLF and Flooding consumes 1.55 times 

more than SPIN. As the fault percentage in the network increases, the total energy 

consumption decreases due to dropping of data packets. However the results show that 

the Flooding and SPIN still consumes more energy than RM-IDLF and IDLF. For 50% 

fault in the network RM-IDLF consumes 1.23 times more energy than IDLF. SPIN
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consumes 2.34 times more energy than RM-IDLF and Flooding consumes 2.28 times 

more than SPIN. Figure 5.58 shows the data packets reaching sink vs. the fault 

percentage. Under fault free scenario, SPIN delivers 1.18 times more data packets than 

flooding. SPIN delivers 1.55 times more data packets than RM-IDLF and RM-IDLF 

delivers 1.24 times more data packets than IDLF. With increasing number of faulty nodes 

within the sensor network the data packets reaching to sink decreases. For 50% fault in 

the network SPIN delivers 1.33 times more data packets than flooding. SPIN delivers 

3.05 times more data packets than RM-IDLF and RM-IDLF delivers 2.22 times more 

data packets than IDLF. Figure 5.59 shows the average time to reach to the sink for each 

scheme. As the fault in the system increases, the average time to reach to the sink 

decreases. It should be noted at this point that in the case of flooding and SPIN, the 

increased number of data packets reaching the sink is attributed to the higher energy 

consumption than IDLF and RM-IDLF.

Table 5.8 Energy to packet ratio for each algorithm

Energy to Packet Ra tio
Flooding SPIN IDLF RM-IDLF

Fault free 17.31 9.46 2.52 3.67
10 Percent 17.49 8.49 4.29 &83
20 Percent 17.48 7.71 8.69 3.94
30 Percent 18.22 6.73 9.85 4.10
40 Percent 18.71 5.89 10.87 5.13
50 Percent 16.29 5.35 12.59 5.21
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Table 5.8 shows the ratio o f energy consumed to data packets reached at sink 

node. For the fault less network, the energy to packet ratio for RM-IDLF is 3.67 as 

compared to 2.52 for IDLF, 9.46 for SPIN and 17.31 for the flooding. For the 50% fault 

in the network, the energy to packet ratio for RM-IDLF is 5.21 as compared to 12.59 for 

IDLF, 5.35 for SPIN and 16.29 for the flooding. SPIN performs better than IDLF when 

fault percentage increases. The reason for this behavior is that IDLF is a point to point 

data transmission and depends on the availability of a single path. SPIN on the other 

hand disseminate the data within the network using negotiation. Also, SPIN performs 

better than flooding in terms o f energy consumption, which is true, because it is designed 

to prevent implosion and overlap in flooding.
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CHAPTER 6 

CONCLUDING NOTE

6.1 Conclusions

We have devised energy efficient routing framework for wireless sensor networks 

in this dissertation. The first study in the dissertation addresses the simple routing seheme 

with a collaborative flow of information packet/s from the source to sink. We introduce 

Information Dissemination via Label Forwarding (IDLF). This forwarding algorithm is a 

reaetive and on-demand routing paradigm for distributed sensing applieations. IDLF 

introduce a point to point data transmission where the source initiates the routing scheme 

and disseminates the information toward the sink (destination) node. Prior to transmission 

of actual data packet/s, a data tunnel is formed followed by the souree node issuing small 

label information to its neighbors locally. These labels are in turn disseminated in the 

network. By using small size labels, IDLF avoids generation of unneeessary network 

traffic and transmission o f duplicate packets to nodes. The label path ensures that a data 

packet is transmitted to the sink node without wasting energy on transmitting a data 

packet to redundant nodes. We also implemented directional flooding. In directional 

forwarding, sensor nodes narrow the range of broadeasting data packets based on location 

information about a sink to reduce transmission energy. This method is based on the
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assumption that each node in the sensor network has the knowledge of the probable 

location of the sink node. This seheme can lessen the involvement of the neighboring 

nodes, to which a label has to be disseminated.

For the energy efficiency, we designed and implemented discrete energy efficient 

schemes in conjunction to IDLF (a) Minimum transmission around the sink and (b) 

setting up a battery threshold value. The effective utilization of neighboring sensor nodes 

is seen in the first scheme. Sensor nodes located one-hop away from the sink transmit 

information packet only to the sink. Sensor nodes below a battery threshold value do not 

participate in the data dissemination process to prevent dropping important data packets. 

Setting up a battery threshold ensures that data packets will not be dropped after the 

sensor node’s battery level falls below the threshold value. Minimum transmission 

around the sink prevents fast energy dissipation of the neighboring nodes to the sink. 

Finally, directional forwarding is applied to IDLF.

One of the challenges in designing a routing protocol for wireless sensor networks 

is to the find the most reliable path from the source to destination node, i.e. which path 

should deliver the data packets without retransmitting or discovering a new path. 

Secondly, a routing protocol for wireless sensor network should be well aware of sensor 

limitations. It should also take into consideration, the unique aspects of various 

applications running over wireless sensor networks, such as monitoring applications or 

acquisition of the sensitive data etc. For the reliable information dissemination, we 

designed and developed Reliable Information Dissemination by Label forwarding - RM­

IDLF. Similar to IDLF, RM-IDLF also incorporates point to point data transmission 

where the souree initiates the routing scheme and disseminates the information toward
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the sink (destination) node. We study the impact of faulty nodes on the performance of 

label dissemination framework. We employ an alternate disjoint path. This alternate path 

scheme (RM-IDLF) has a higher path cost in terms of energy consumption. However, 

under the faulty nodes scenario, it proves to be more reliable in terms o f data packet 

delivery to sink than the single path scheme (IDLF). Additionally, in single path routing, 

as the path fails, the sink stops receiving the data packets due to absence of a backup 

route. In multipath routing, we took one alternate path. However, depending on the 

application and importance of the data delivery, the number of paths can be increased to 

make the system more robust. Another point of interest in this framework is the study of 

trade-offs between the achieved routing reliability using multiple disjoint path routing 

and extra energy consumption due to the use o f additional path/s. We used an alternate 

disjoint path for ease of understanding. This alternate path scheme (RM-IDLF) may have 

a higher path cost in terms of energy consumption, but is more reliable in terms o f data 

packet delivery to sink than the single path scheme (IDLF). In the latter scheme, the 

protocol establishes multiple (alternate) disjoint path/s from source to destination with 

negligible control overhead to balance load due to heavy data traffic among intermediate 

nodes from source to destination.

We conclude that IDLF is more suitable for disseminating information point-to- 

point in wireless sensor networks than flooding and SPIN. By applying directional 

forwarding, the average energy consumed by transmitting one data packet from a source 

to a sink is halved in all three routing protocols. The simulation results of other three 

energy management schemes also show significant improvement in total energy 

consumed by transmitting data. In addition to less energy consumption, when the battery

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



threshold value scheme is applied on sensor nodes, the sensor network drops fewer 

number of data packets than the network without the threshold value. RM-IDLF 

outperforms IDLF, SPIN and Flooding in energy to packet ratio. This scheme is more 

suitable for large number of nodes. The overhead involving the creation of an alternate 

path is to be optimized with the success of receiving the information.

6.2 Future Directions 

In near future sensor networks sensor networks will be an essential element in 

most industries, health care, environmental, agriculture and home applications. To make 

sensor networks truly advantageous for common applications, they must be reliable, 

robust, energy efficient and resistive to topology changes. Although the commercially 

available sensor nodes are very cheap, but designing the infrastructure and application 

usage cost should be minimal. Collecting data and routing appropriate and needed data to 

the end user is a challenging issue in such a wireless battery operated small sensor 

networks. Sensor information is data centric and using traditional network protocols are 

not always appropriate or sufficient. Power consumption is still the primary issue in the 

research for sensor networks. While it is often understood that sensor nodes are driven by 

batteries, other energy sources such as solar power may offer an unlimited power 

resource to a changing classification o f the nodes. Since the sensor nodes can then 

receive and transmit packets without expending battery power, routing via these nodes is 

appealing. There are still a lot o f studies has to be conduced in every field o f sensor 

networks. In our simulation, we assumed that there is only one source node in a sensor 

network at one time. However, the network could have multiple sources at the same time.
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Formation of multipaths increases the probability of data reaching the sink. More 

research is needed to optimize the multiple paths over the reliability o f the network. We 

would like to implement the data dissemination algorithm on a FPGA hardware and work 

on improving the reliability o f the system.
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APPENDIX

Initialization of Algorithm

Setup Stage Algorithm

- Acquire the number o f  sensor nodes and duration o f  simulation

- Locate sensor nodes in the sensor fie ld  randomly

- Find neighboring nodes and store the information

Information Exchange Stage Algorithm

- Until the simulation time expires

I f  it is the beginning o f  simulation or the data reached to sink 

Assign a new source node

Record the source information to the source node

- Add sets o f  pair nodes, between which a label is transmitted (source to neighbors), to 

the Waiting List

-Check all elements in the Waiting List 

I f  pair o f nodes finished exchanging and processing information 

Delete the p a ir ’s info from  the Waiting List 

-I f the information was a Label
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Copy the label information to the receiving node

Add sets o f  pair nodes, between which a label is transmitted to the Waiting List. 

Exclude the neighbors which are the sender o f  the Label and the source.

- I f  the new sending node is neighbor to the sink, transmit the label only to the sink 

I f  the receiving node was the sink, prepare to transmit a request to send 

(REQ) signal 

- I f  the information was a REQ

-Save the sender node’s ID to the receiver

-Addpair nodes, between which a REQ signal is exchanged, to the 

Waiting List

-I f the receiving node was the source, prepare to transmit a Data 

I f  the information was a Data

I f  the receiving node was the sink 

Empty the Waiting List 

Clear the Label cache in the each node 

I f  the receiving node was not the sink

Add pair nodes, between which a Data signal is exchanged, to the Waiting List

- Update the Waiting List (Sort its ’ index numbers)

Until there is no more pair nodes in the Waiting List

Randomly select the pair nodes, between which the information will be 

exchanged, from  the Waiting List
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The selected p a ir ’s transmission range must not interfere with pairs ’ 

transmission ranges, which have been already selected before 

Decrement the simulation time

Pseudo code for IDLF scheme

1) Output 1—> Total number of data packets reaching the sink (destination) node 

Output 2—> Total Energy Consumed in the network (outputI.txt) and (output2.txt)

2) Ask User to Enter

(a) The number o f nodes (numofnodes)

(b) Simulation time (simtime)

3) Initialize {Function Initialize}

(a) the Grid (1 0 x 1 0 ) map

(b) Each node’s parameter— > x loc, y loc, power, neighbors, and labelcache

(defined in structset.h)

4) Allocate N ode.... (Function AllocateNode)

(a) Allocate Sink at (0, 0)

(b) Allocate all nodes (numofnodes) by

- getting a random number

- check if the location is not assigned yet

- check if  location is within the transmission range of the existing node 

(Note: the transmission range is r l and a node can travel to 8 grinds around itself)

(c) If yes- node is allocated
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(d) If not- node is not allocated, find another location

5) Neighbor Discovery Phase.... (Function NeighborDiscj

(a) Find nodes within the rl range

(b) Check if the x- axis is in the simulation area (within the grid)

(c) Check if the y- axis is in the simulation area (within the grid)

(d) Find location to store the node information

(e) Int D type l=label ; 2=Req ;3=data

6) Data Propagation .... (Function DataProp}

(a) Maintain a list of node pair waiting for transmission -  (wlist)

(b) Assign a Source Node (AssignSource) - make sure the assigned source node is 

not sink node and after each event (i.e. after the data packet reaches to sink) select a 

random source

(c) Check if sink is the neighbor to source, If yes then only send label to sink

(d) Transmit label - (Function AddtoWList} If sink is not the neighbor to source, 

then send label to the neighboring nodes

(e) Check WaitingList- If  waiting label -  stop transmission also

(f) Check if a receiver already has the label- (CheckContention) If  the label in 

label cache has the same source and start time, the receiver already has it -  and 

then we are not sending label to that neighbor

(g) If newly arrived label is not in cache save label in cache and transmit to 

further neighbors

(h) If receiving node is sink, transmit Request packet else If receiving node is not 

sink transmit Label packet
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(i) Save label to node's label cache and Reach at sink

(j)Req transmission ->Find the corresponding data in label c a c h e F o u n d  the 

label in cached  save the child Id in node's label cached  Add sets o f pair nodes to 

Waiting L ist^C heck if the receiver node is source

(h)Data transmission-^ Find the corresponding data in label cache-> Found the 

label in c a c h e A d d  sets o f pair nodes to Waiting List->Decrement transmission 

time in the l i s t^ I f  the data reaches to the sink, empty the list

Pseudo Code for the RM-IDLF 

1) Output 1—> Whether Data packet reaching the sink (destination) node- YES/NO 

Output 2—> Total Energy Consumed in the network (output 1 .txt) ” (output2.txt)” 

i.e. the energy consumed for data propagation from the source to sink 

[Continuous simulations over the time period provides the overall evaluation o f  

the scheme]

2) Ask User to Enter

(a) The number of nodes (numofnodes)

(b) Simulation time (simtime)

(c) The failure Rate * (in Percentage)- i.e. 20% means , out of total selected nodes 

say 30, we are failing 20% of the nodes for the simulation- (Note : failure of node 

is occurring, just before the data transmission, WORST CASE)

3) Initialize  {Function Initialize}

(a) Grid (10 x 10) map
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(b) Each node’s parameter— > x loc, y loc, power, neighbors, labelcache 

(defined in structset.h)

4) Allocate N ode.... {Function AllocateNode}

(a) Allocate Sink at (0, 0)

(b) Allocate all nodes (numofnodes) by

- getting a random number

- check if  the location is not assigned yet

- check if location is within the transmission range of the existing node 

(Note: the transmission range is r l and a node can travel to 8 grinds around itself

(c) If yes- node is allocated

(d) If not- node is not allocated, find another location till you allocate

5) Neighbor Discovery Phase.... {Function NeighborDiscj

(a) Find nodes within the rl range

(b) Check if the x- axis is in the simulation area (within the grid)

(c) Check if the y- axis is in the simulation area (within the grid)

(d)Find location to store the node information

(e) Int D type l=label ; 2=Req ;3=data

6) Data Propagation .... {Function DataProp}

(a) Maintain a list of node pair waiting for transmission -  (wlist)

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(b) Assign a Source Node (AssignSource) make sure the assigned source node is 

not sink node ^

(c) Check if  sink is the neighbor to source. If yes then only send label to sink

(d) Transmit label - {Function AddtoWList} if  sink is not the neighbor to source, 

then send label to the neighboring nodes

(e) Check WaitingList- If waiting label -  stop transmission also

(f) Check if a receiver already has the label- (CheckContention)

(g) If newly arrived label is not in cache save label in cache and transmit to 

further neighbors

(h) If receiving node is sink, transmit Request packet else receiving node is not 

sink, transmit Label packet

(i) Save label to node's label cache and Reach at sink

(j) Also, wait for X amount of time and let another label path (an alternate path be 

created and follow steps (1) and (m)

(k) Physically Destroy the nodes (Depending on the percentage, the user selects) - 

Nodes are as good as empty slots, we cannot expect any communication from the 

destroyed nodes (NodeDestroy)* in other words, source and Sink will not be 

affected at all by the node failure. Fail node before the actual data transmission.

(l)Req transmission -^Find the corresponding data in label cache-> Found the 

label in c a c h e S a v e  the child Id in node's label c a c h e A d d  sets of pair nodes to 

Waiting List-> Check if the receiver node is source

2 [In IDLF after each event (i.e. after the data packet reaches to sink, we select a random source; In Multi- 
path IDLF, we are stopping after the data reaches the sink, start a new simulation, its because now (after 
intentionally failing some nodes) we are more concerned about whether the data packet is reaching the sink 
or not]
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(m)Data t r ansmi s s i onF i nd  the corresponding data in label cached  Found the 

label in caehe->Add sets o f pair nodes to Waiting List->Decrement transmission 

time in the l i s t^ l f  the data reaches to the sink, empty the list
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