
/ Published online:30 August 2021

https://doi.org/10.1007/s10723-021-09580-0

A Reliable Large Distributed Object Store Based
Platform for Collecting Event Metadata

Álvaro Fernández Casanı́ · Juan M. Orduña ·

Javier Sánchez · Santiago González de la Hoz

Received: 23 December 2019 / Accepted: 20 July 2021

© The Author(s) 2021

Abstract The Large Hadron Collider (LHC) is about

to enter its third run at unprecedented energies. The

experiments at the LHC face computational chal-

lenges with enormous data volumes that need to be

analysed by thousands of physics users. The ATLAS

EventIndex project, currently running in production,

builds a complete catalogue of particle collisions,

or events, for the ATLAS experiment at the LHC.

The distributed nature of the experiment data model

is exploited by running jobs at over one hundred

Grid data centers worldwide. Millions of files with

petabytes of data are indexed, extracting a small quan-

tity of metadata per event, that is conveyed with a

data collection system in real time to a central Hadoop

instance at CERN. After a successful first imple-

mentation based on a messaging system, some issues

suggested performance bottlenecks for the challeng-

ing higher rates in next runs of the experiment. In

Á. F. Casanı́ (�) · J. Sánchez · S. G. de la Hoz

Instituto de Fı́sica Corpuscular (IFIC), Universidad

de Valencia and CSIC, Valencia, Burjassot, Spain

e-mail: alvaro.fernandez@ific.uv.es

J. Sánchez

e-mail: javier.sanchez@ific.uv.es

S. G. de la Hoz

e-mail: santiago.gonzalez@ific.uv.es

J. M. Orduña

Departamento de Informática, Universidad de Valencia,

Valencia, Spain

e-mail: Juan.Orduna@uv.es

this work we characterize the weaknesses of the pre-

vious messaging system, regarding complexity, scala-

bility, performance and resource consumption. A new

approach based on an object-based storage method

was designed and implemented, taking into account

the lessons learned and leveraging the ATLAS expe-

rience with this kind of systems. We present the

experiment that we run during three months in the real

production scenario worldwide, in order to evaluate

the messaging and object store approaches. The results

of the experiment show that the new object-based stor-

age method can efficiently support large-scale data

collection for big data environments like the next runs

of the ATLAS experiment at the LHC.

Keywords Grid computing · Hadoop file system ·

Object-Based storage

1 Introduction

The Large Hadron Collider (LHC) is a particle accel-

erator located at CERN near Geneva, at the border of

Switzerland and France, with a circumference of 27

km and placed in a tunnel 175 meters below ground.

Modern High-Energy Physics experiments at CERN,

and in particular the ATLAS experiment [1], produce

petabytes of data per year which have to be cata-

logued in order to be available in a proper way to users

and applications. ATLAS finished its Run-2 phase

(2015-2018) detecting particle collisions, or events, at

Journal of Grid Computing (2021) 19: 39

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-021-09580-0&domain=pdf
http://orcid.org/0000-0003-1394-509X
mailto:alvaro.fernandez@ific.uv.es
mailto:javier.sanchez@ific.uv.es
mailto:santiago.gonzalez@ific.uv.es
mailto:Juan.Orduna@uv.es

rates as high as 40 MHz. A multi-level trigger sys-

tem selects events of interest for offline analysis at

rates up to 1 kHz. These events are recorded in files

and they are processed later in different formats usu-

ally multiple times. This reprocessing is carried out

by the collaboration of 3000 scientists from about 180

institutions all around the world. For example during

year 2017, 10 billion real events were recorded in 7

million files, and then reprocessed to reach 270 bil-

lion event record entries in 38 million files distributed

in the Grid. Additionally every year billions of events

are simulated to perform comparisons between data

and theoretical physics models, as well as for soft-

ware and data validation studies. The EventIndex [2,

3] is a metadata catalogue at the event level which

tries to exploit technologies such as Hadoop [4] as a

backend storage. After a prototype stage, it has been

running in production since the start of LHC Run 2

in 2015, indexing all produced data which is though

to be of interest for physics analysis. The distributed

data collection task of the EventIndex project [5] is

responsible for retrieving the relevant information of

all the events from all the permanent dataset files, and

transferring it to the Hadoop cluster at CERN, where

it can be structured and aggregated by the Hadoop

core task. Thus, the EventIndex project can be consid-

ered as a representative example of real grid systems

in large distributed infrastructures generating big data

[6–8]. The original EventIndex data collection design

follows a producer/consumer architecture as depicted

in Fig. 1, where the producers are processes run-

ning at distributed centers, and the consumers are

processes running at CERN central facilities, com-

municating with an ActiveMQ [9] based messaging

infrastructure.

The original data collection system was designed

with scalability in mind, but the current nature of the

segmented payloads caused the messaging brokers to

become a system bottleneck in some situations [10].

Head-of-line (HOL) blockings [11] arise when large

backlogs of messages destined for one group, block

the processing of messages corresponding to other

groups. As a result, messages accumulate in the bro-

ker, which does not correctly distribute the workload

to consumers. In these cases, the addition of more con-

sumers for a particular broker does not improve the

throughput. Adding more brokers alleviates the prob-

lem, but as the brokers are a more expensive resource

Fig. 1 Original EventIndex messaging data collection architecture

39 Page 2 of 19 J Grid Computing (2021) 19: 39

in terms of hardware and memory, this is a limiting

factor.

This situation did not become a problem yet, since

the current steady rates are still low enough to allow

the backlog produced by the peaks to be absorbed

at slower rates. However the amount of data pro-

duced by ATLAS is expected to increase in the future

with a prediction of 35 billion new real events per

year in Run 3 (2021-2023), and 100 billion new real

events per year in Run 4 (2026-2029). For simulated

events the numbers are even higher, with 100 billion

events/year in Run 3, and 300 billion events/year in

Run 4. Additionally all this data will be reprocessed,

increasing by several orders of magnitude the number

of event entries and the rates of messages to be han-

dled to unmanageable levels. For this reason, several

aspects from the distributed data collection system of

the EventIndex project should be improved, in order to

guarantee an efficient handling of all the indexed data

in the next ATLAS run.

The main contribution of this paper is the redesign

of the data collection system of the ATLAS EventIn-

dex project, addressing the scalability issues and

reducing the overall system complexity. In order to

solve these weaknesses, we proposed and imple-

mented a different approach, using an object storage

system (OBS) [12] for storing temporarily the pay-

load, and sending only a reference to be later used for

consumption. With this approach there is no need for

payload segmentation, as the OBS allows storing all

the payload from a producer in a single object. Big-

ger payloads and binary encoding adds the possibility

of applying different schemas and achieving better

data compression ratios. We therefore avoid large seg-

mented payloads at the messaging broker queues to

be sequentially consumed. OBS do not block the con-

sumption by different consumers, so we can improve

workload distribution and eventually the scalability of

the system. The usage of a temporary storage like an

OBS also allows the dynamic selection of data, elimi-

nating the need to consume duplicated produced data.

OBS systems are a popular technology these days, but

its usage for pull-model scenarios with large payloads,

and dynamic data selection like our application has not

been widely tested in large scale production grids, to

the best of our knowledge.

The new approach results in performance improve-

ments, resource consumption reduction, and better

final user experience, and might be useful for other

large distributed grid systems with similar payloads

and characteristics.

We make a comparative evaluation of both messag-

ing and object store approaches in our real production

environment. The EventIndex production was run dur-

ing three months worldwide evaluating both methods

in parallel, indexing 60 billion events stored in more

than 10 million files, summing up 17 petabytes of

input data. The results show that the object-based stor-

age (OBS) method seems an appropriate option for

large grid systems generating big data like the one

required for the next run of the ATLAS experiment at

CERN.

The rest of this paper is organized as follows:

Section 2 relates the motivation and the design of a

new object-store based data collection system. Next,

Section 3 shows the comparative performance evalu-

ation of both transport methods on a real production

scenario. Finally, Section 4 provides some concluding

remarks.

2 A new design for distributed data collection

The congestion problems and weaknesses mentioned

in the previous section with the messaging approach

[10] limit in practice the performance and scalability

of the data collection system required for the next runs

of the ATLAS experiment.

Based on the experience acquired by running the

ATLAS EventIndex data collection for the last years,

the following weaknesses that should be addressed

were identified:

– Complexity Messaging systems are designed to

handle a large number of small messages, but

our typical payload consists on large data files

that have to be divided into smaller messages.

This segmentation and re-assembly procedure is

complex, and it has an effect on the brokers and

consumers performance.

– Scalability The current messaging data collection

system is not able to scale up to the event process-

ing rates that will come in the following years.

We need a system that does not degrade with the

occurrence of slow consumers, and that does not

produce backlogs.

– Performance and resource consumption

Although the general performance of producer

J Grid Computing (2021) 19: 39 Page 3 of 19 39

and consumers is good, the complexity of pay-

load segmentation and reassembly requires high

rates of CPU and memory consumption. Also,

the usage of a text protocol limits the payload

encoding and compression factors. Additionally

the HDFS backend where the data is written by

consumers is not used in the best possible way, as

the number of written files is very high and their

size small, compared with the ideal bigger files

for Hadoop. There are compaction and grouping

procedures in place, and extra steps needed to val-

idate and remove the invalid data, because some

jobs can be run twice (producing duplicates) due

to the nature of the grid.

– User experience The traversal time since data

starts to be indexed until it is finally available

for users can be improved. The issues explained

above impose limiting factors and extra steps that

could be avoided, making final validated data

available in a faster way.

In order to tackle these challenges, we first

explored other alternatives to convey the EventIndex

data with different transport methods for our dis-

tributed data collection task. The search started with

other messaging systems like RabbitMQ [13]. Also

other big data streaming systems like Flume [14] and

Logstash [15] were considered, but these systems are

log-oriented, which is not suitable for our applica-

tion. We also reviewed Kafka [16] as a promising

alternative, as it is widely used in the context of trans-

porting and loading data into Hadoop. Kafka is shown

as a more performant option with higher throughput

than ActiveMQ and RabbitMQ [16] when assum-

ing at-most-once delivery semantics, and implements

interesting features for our use case like longer term

message store or message replay capabilities. On the

other hand requiring more strict semantics like in-

order delivery of messages imposes a single partition,

and at-least-once delivery semantics reduces perfor-

mance up to a 75% [17]. Yet there are other problems

that make Kafka not suitable for our use case. It does

not currently support transactions as required to assure

atomic collection of related data, and in case of prob-

lems, messages might be replayed and a deduplication

mechanism is needed.

The ATLAS EventIndex project built the data

collection system based on previous experiences

with these messaging systems in large distributed

infrastructures. However, the future EventIndex

project imposes tougher reliability requirements,

pseudo-realtime restrictions in delivery, and a higher

amount of data per producer, which builds a different

scenario. We need a system that allows long-running

producer tasks to be decoupled from consumers, and

that handles reliably bigger payloads per producer (up

to the order of hundred of megabytes). This payload

has to be consumed in an atomic manner, and be tem-

porarily available until is consolidated in the final data

backend. And of course we need a good control over

scaling and performance, that has reached its limits

with the current messaging system.

In general messaging systems are designed to han-

dle a large quantity of small messages, and although

Kafka and recent versions of ActiveMQ (Artemis

release), can be configured to handle some large mes-

sages in case of necessity, its performance degrades

over time, especially with the advent of slow con-

sumers. When we also impose the previous restric-

tions we realize we need another approach.

There are also other methods to convey big data in

large distributed systems. For example, the storage at

large production grids like the WLCG [18] is based on

tape and disk resources in each distributed grid site,

and a global data management system [19].

These restrictions led us to consider a method

based on a completely different approach. Instead of

chunking and submitting the payload with a messag-

ing system, we considered the use of an object-based

storage (OBS) to temporarily store the payload, and

submit a small message with a reference to be used by

the consumers to retrieve the data. With this approach

we can avoid the need for payload segmentation and

the partitions (MessageGroups) that cause the bottle-

necks.

One of the reasons for considering an OBS system

among other options is the satisfactory previous expe-

rience using this kind of system. The ATLAS team had

some experience using OBS systems for storing some

events that are produced on non-grid resources like

HPCs (‘hole filling’), commercial clouds (dynamic

market based ‘spot’ pricing) and volunteer computing

(no resource availability guarantees) [20].

There are some features in OBS systems which

make them an interesting option. Unlike files in

filesystems, OBS systems store data in a flat struc-

ture [12], so there are no folders nor hierarchy among

them, only a pool of objects represented by their object

39 Page 4 of 19 J Grid Computing (2021) 19: 39

identifiers. So in terms of scalability it is a good can-

didate for storing a high quantity of objects like in our

use case. Also, arbitrary metadata can be assigned to

any object, providing more flexibility than classical

file systems. Additionally, the metadata directly live

in the object, rather than for example in a separate i-

node. There are examples of metadata for supporting

data management object movement from one storage

site to another, or associating tags relative to the spe-

cific object content [21]. In the EventIndex case, we

can store specific EventIndex metadata that is use-

ful to identify the event information that the object

includes, like the number of events it contains, the

size, the producer process identifier and the grid job

that executed it, as well as some other data. The third

key point of OBS systems is the existence of a glob-

ally unique identifier of the object in order to be found

in a distributed system. In this way, it is possible to

find the data without having to know the physical loca-

tion of these data, even if the storage is spread among

different parts of the world. Object-based storage gen-

erally differs from block storage, as it generally does

not provide the capability of incrementally modifying

one part of the object. Objects have to be manipu-

lated as a whole unit, requiring the entire object to

be accessed, updated, and/or rewritten entirely, thus

avoiding the complexity added by the message seg-

mentation in the previous approach. The main benefit

is scalability, solving problems of data growth with

the easy management of adding additional nodes. The

flat namespace organization of data and metadata co-

location within the object is by design appropriate

for this capability. Since data are agnostic to loca-

tion, OBS also provides greater flexibility. Moreover,

it also provides increased levels of resiliency, as mul-

tiple copies of data exist over a distributed system. In

the case of a node failure the data can still be made

available, in most cases without the application or the

end user ever being aware of the failure. All these

reasons led us to the selection of the OBS system.

For the EventIndex this approach means a change

in the data collection model, from a push model

where all the data flows through the producer-broker-

consumer chain to the Hadoop backend, to a pull

model where the consumers are signalled what data to

retrieve from the OBS. This pull model also allows the

dynamic selection of which data are finally stored at

the Hadoop servers. This is specially important in our

case, because there can be duplicated produced data,

due to grid job failures or restarts in our extremely

distributed infrastructure. With the messaging push

model, all data, including duplicates, are stored in

Hadoop, and extra cleaning-up procedures are needed

to remove and validate these data. With the pull model

all data, including duplicates, are temporarily stored

at the OBS, but only valid data are consumed and

stored in Hadoop, sending less data than the messag-

ing approach and avoiding the need of extra, expensive

cleaning steps. There are other advantages with the

pull model, like the possibility of consuming the same

produced data several times. This issue is useful to

overcome spurious consumption problems for exam-

ple due to a consumer machine crash. This option was

not possible with the messaging push model, where

the data could be consumed only once.

Many changes are needed in order to adapt a new

transport protocol based on OBS to the EventIn-

dex system. The basic producer/consumer architecture

with the same elements is still valid in this approach,

due to the distributed nature of the EventIndex pro-

duction. However, the payload is not conveyed using

a messaging system with brokers, but temporarily

written by the producers into an OBS system.

Figure 2 represents the new producer/consumer

based architecture that we need due to the distributed

nature of the EventIndex production. Compared with

the original messaging architecture depicted in Fig. 1,

now the payload is not conveyed using a messaging

system with brokers, but temporarily written by the

producers into an OBS system. The supervisor entity

substitutes the validator, enriched with more intelli-

gence needed to orchestrate the procedure. This is

needed because we change the data consumption to a

pull model where the consumers are informed by the

supervisor about the data they have to retrieve from

the OBS. The supervisor is in charge of selecting the

valid produced information and signaling consumers

to retrieve the appropriate data from the OBS sys-

tem. The communication for these entities is done

with control and statistic messages similar to the ones

from the messaging scenario, so we still use queues

from the brokers to distribute the processing messages

among different consumers.

Figure 3 shows the resulting sequence diagram. The

producer now puts all the event index data in a OBS,

without dividing the payload in various messages,

and when it is done it sends a control and statistic

messages to the statistics queue of the broker.

J Grid Computing (2021) 19: 39 Page 5 of 19 39

Fig. 2 New EventIndex object store grid data collection architecture

The previous phase is repeated continuously by

every producer running on the grid or at CERN, with

the supervisor tracking all the data produced. Some

datasets contain hundreds of files with millions of

events, so multiple producers might run in parallel

until all the related data is indexed. The supervisor

entity also takes into account the possibility that some

fraction of the event processing does not reach its

final state, as it was done with the validator in the

messaging scenario. Now the difference is that this

partial data is not being continuously pushed to the

consumers.

When reaching a desired processing granularity

(for example indexing all the data from a dataset),

the supervisor signals the consumer with a control

message as can be seen in Fig. 3, which contains

all the information needed to retrieve the data by

the consumer. This allows a consumer to consoli-

date information in a single step, writing a unique

file in the HDFS filesystem, instead of having mul-

tiple files written by several consumers like in

the messaging scenario. Table 1 shows a summary

on the differences in the new object store pull-

based model compared with the previous messaging

push-model.

Two key differences should be noted in the new

approach. First, the entire payload from a given pro-

ducer can be potentially stored within a single object

regardless of its size. In this manner we can avoid

payload segmentation and the need for partitions and

transactions, so we reduce overall system complexity

and the burden on the messaging brokers. With coarser

Fig. 3 Object store

scenario sequence diagram

39 Page 6 of 19 J Grid Computing (2021) 19: 39

T
a
b

le
1

S
u
m

m
ar

y
o
f

co
n
ce

p
ts

o
f

th
e

m
es

sa
g
in

g
p
u
sh

m
o
d
el

v
er

su
s

o
b
je

ct
st

o
re

p
u
ll

m
o
d
el

C
o
n
ce

p
t

M
es

sa
g
in

g
p
u
sh

-m
o
d
el

O
b
je

ct
S
to

re
p
u
ll

-m
o
d
el

D
a

ta

P
ay

lo
ad

m
an

y
m

es
sa

g
es

p
er

in
p
u
t

fi
le

si
n
g
le

o
b
je

ct
p
er

in
p
u
t

fi
le

S
eg

m
en

ta
ti

o
n

tr
an

sa
ct

io
n
s

g
ro

u
p

m
es

sa
g
es

n
o
t

n
ee

d
ed

R
ec

o
n
st

ru
ct

io
n

co
m

p
le

x
n
o
t

n
ee

d
ed

E
n
co

d
in

g
te

x
tu

al
b
in

ar
y

C
o
m

p
re

ss
io

n
lo

w
h
ig

h

W
o
rk

lo
a
d

d
is

tr
ib

u
ti

o
n

P
ro

d
u
ce

r-
C

o
n
su

m
er

1
-t

o
-1

1
-t

o
-m

an
y

P
ro

d
u
ct

io
n

a
tr

an
sa

ct
io

n
is

re
co

n
st

ru
ct

ed
b
y

a
si

n
g
le

co
n
su

m
er

m
u
lt

ip
le

p
ro

d
u
ce

d
o
b
je

ct
s

ca
n

b
e

re
tr

ie
v
ed

b
y

d
if

fe
re

n
t

co
n
su

m
er

s.

C
o
n
su

m
p
ti

o
n

F
IF

O
(m

es
sa

g
e

q
u
eu

es
ab

st
ra

ct
io

n
)

ar
b
it

ra
ry

as
su

re
al

l
d
at

a
is

co
n
su

m
ed

co
m

p
le

te
an

d
in

o
rd

er
co

n
su

m
p
ti

o
n

o
u
t

o
f

o
rd

er
p
o
ss

ib
le

B
lo

ck
in

g
s

sl
o
w

co
n
su

m
er

s
ca

n
b
lo

ck
o
th

er
s.

n
o

b
lo

ck
in

g
s,

m
o
re

sc
al

ab
le

L
if

et
im

e
sh

o
rt

(m
es

sa
g
es

re
m

o
v
ed

w
h
en

co
n
su

m
ed

)
d
ef

in
ab

le
(o

b
je

ct
ca

n
b
e

re
tr

ie
v
ed

m
u
lt

ip
le

ti
m

es
in

ca
se

o
f

fa
il

u
re

) data granularity we can also apply different encodings

and achieve better compression ratios.

Second, the behavioural change from a push model

to a pull model. This model allows to use the OBS

as temporary storage from which only valid data is

retrieved and consolidated into bigger, more suitable

files in the HDFS filesystem. It also reduces the

amount of data that is consumed, and thereby the net-

work usage from the OBS to the final HDFS backend.

We can also avoid extra and expensive cleaning tasks

on the Hadoop cluster.

With the previous messaging approach, all the data

should be consumed in FIFO order due to the queue

abstraction on the brokers. In addition, data from a

particular producer (multiple messages grouped by

transactions) should be consumed by a single con-

sumer, to assure data was completely retrieved in

order. With the object store approach, object consump-

tion does not need to be in order, and can be done

by different consumers. Objects can be accessed mul-

tiple times if needed, as they have longer lifetimes

than messages that disappear when retrieved from the

broker.

3 Evaluation

To test the validity of the new approach and whether

the new object store method can substitute the previ-

ous messaging-only approach, a scenario in real pro-

duction was set up which collected data and statistics

for three months.

Figure 4 illustrates the evaluation setup. In this sce-

nario, both collection methods are run in parallel, but

only replicating the essential parts that are needed. So

for example there is a set of producers running world-

wide, that index data only once per input file, but

they send the same index data to both messaging and

object store platforms. Then we have two sets of con-

sumers, one for messaging and the other for the object

store, each contacting its source of data and storing

it in different areas of the backend HDFS filesystem.

And we have two different supervisors to control both

data collection paths, and that the overall procedure is

correct.

The object store system (OBS) is implemented with

Ceph [22, 23], installed at CERN and supporting the

S3 interface [24] to store up to 2 PB. The messag-

ing system uses six ActiveMQ brokers also at CERN

J Grid Computing (2021) 19: 39 Page 7 of 19 39

Fig. 4 Evaluation setup

with messaging and object

store in parallel

under a DNS alias to achieve high availability. When

analyzing the input data it is worth noting how data in

ATLAS are stored and logically grouped, to see how

data are distributed to producers to be indexed, and

how data are finally validated and made available to

users. Basically events are stored in files, identified

by a unique GUID (a global grid unique identifier).

Datasets group several files that have related data, and

are named following ATLAS conventions. For group-

ing datasets we use dataset containers, which are a

generalization of the dataset concept. The overall pic-

ture is the following:

Container ⊇ Dataset ⊇ File ⊇ Event

The minimum unit for indexing data by the produc-

ers is the File, but usually the information in a single

file does not contain all the required information for

users, who are more interested in complete Datasets

or more often Containers. So the minimum unit of

information that is validated and made available for

final users is a Dataset. Once validated and available

in Hadoop, all the files from a Dataset are searchable

by the users. Figure 4 illustrates how a Container with

several datasets is indexed. Short lived producers are

spawned with grid jobs, at the sites where the files

reside. Files can be replicated at several grid storage

elements, to achieve redundancy and high availability

for some important or hot data, so the distribution of

grid jobs with producers is rather dynamic. One pro-

ducer may index one or more files from a dataset, so

for big datasets there will be a high number of rel-

atively short-lived producers. During this experiment

scenario, a producer indexes input data only once,

but the same index information is sent along 2 differ-

ent paths, with different data encodings and different

methods controlled with their respective supervisors.

The path of the payload (the index data) is represented

in the figure with solid black arrows, and the control

messages among the different entities are represented

with dashed arrows.

The messaging path can be seen in the bottom

part of the figure: the producer sends the index data

encoded with textual JSON representation, divided

into smaller 10kB messages, to the messaging bro-

kers using the STOMP protocol. For every original

input file indexed, the producer sends its payload with

a unique transaction, grouping several messages. A

producer indexing several input files will establish

several transactions with the broker, each containing

probably hundreds of messages. After completing the

last transaction, it sends a final control message to

the messaging supervisor entity, with identifiers infor-

mation including the files processes and the dataset

they correspond to, along with some statistical infor-

mation including the number of events processed,and

messages and bytes sent.

The messaging consumers are constantly receiving

messages from the brokers. Each original input file is

assured by the broker to be assembled by a unique

consumer, which will store that data in a single HDFS

file. We can see in the figure that the n color-coded

original files of a dataset, will be stored in n different

files in HDFS. Then we can have other m files from a

second dataset, and t files from another one, all resid-

ing in the HDFS directory named after the Container

name. The last step is done by the messaging supervi-

sor, when it has received all the control messages from

producers and consumers to know that the data resides

in HDFS files. Remember that data can contain dupli-

cates, so this step performs asynchronous validation

and cleaning of duplicated data, before making finally

available to users.

The upper path of the figure represents the object

store path, where a producer stores its index data in

a single object in the object store. The approach is

39 Page 8 of 19 J Grid Computing (2021) 19: 39

different from messaging because we don’t need to

divide the payload into smaller chunks, and we can

also use a binary compressed format based on Pro-

tocol Buffers [25], so we can produce more compact

information stored as a single object. This means less

information sent and easier management compared

with the messaging approach. Likewise, when the pro-

ducer ends storing its index data at the object store, it

sends a control message with similar statistics to the

object store based supervisor, including the object id

where to find this stored index information.

The approach with the object store consumers is

also different, since they are not constantly consuming

data, but wait for a signal from the object store super-

visor, pictured with a dashed line in the figure. This

signal is sent from the supervisor when a Dataset is

completely indexed and stored in one or more objects

in the object store. Upon receiving the signal, the con-

sumer retrieves all the needed objects from the OBS,

and stores the index data in a single HDFS file. This is

another difference in the philosophy of the approach,

since we can see in the picture that the n input files

from a Dataset are stored in a single HDFS file. If

there are more Datasets belonging to a particular Con-

tainer, they will be retrieved when indexed in the same

manner, and stored in files in the HDFS directory

named after the Container identification. This second

approach is simpler because it uses fewer, bigger files

in HDFS, and it does not have to run a final clean-

ing and validation step, since all the data read from

the OBS and written in HDFS by the consumers are

already validated online by the supervisor.

3.1 Results indexing a single dataset

As a first step to analyze the differences with both

approaches, we study a concrete example of indexing

a complete dataset within the previous scenario setup.

We will check the information that we obtain from

both paths, messaging and object store. Later on we

will review global results for all the indexed datasets

processed during the 3 months that experiment lasted.

Table 2 shows a summary of the input data and

the results obtained taking into account the producers,

consumers and the overall process.

Input Data This test processed a single dataset of real

ATLAS experimental data taken in June 2017. This

dataset contains just over 21 million events, divided

into 1160 files summing up 6.229 TB of data, which

is the input data to be indexed by the EventIndex

producers.

Producers With this kind of dataset every producer

indexes one input file, but we can see that eventu-

ally more producers were spawned. This means that

287 jobs failed and had to be restarted at some point,

and some of them probably produced some dupli-

cated indexed data. Our system is able to cope with

the nature of the grid and takes into account dupli-

cated data from restarted jobs, to achieve exactly-once

processing semantics. In this scenario the producers

send the indexed data to both messaging and object

store systems. We can see that the data sent through

messaging needed more than 1.5 million messages,

and the same data was stored within 1447 objects

in the object store (corresponding to one object per

producer spawned). Since the data encoding is also

different, we see that data size sent through messag-

ing (15 GB) is higher than through object store (3.3

GB). While the STOMP messaging imposes a text

format, we can use binary compressed format with

the data sent to the object store, achieving better data

size ratios. The indexing time lasted about 55.5 hours

from the start time of the first job until the last job

finished.

Consumers. Messaging consumers receive in ‘real

time’ all produced index data, but object store con-

sumers are signalled to receive only correct validated

data. This means some extra objects are not accessed,

reducing the amount of received data a 25% in this

example (2.5 GB received compared with the 3.3 GB

produced and stored in objects). Object store con-

sumers spend less time accessing and consolidating

data in the final HDFS backend, than the messaging

ones. The bandwidth reading parameter represents the

amount of data received, divided by the time required

to perform this task. The bandwidth writing param-

eter represents the amount of data written in HDFS,

divided by the time required to perform this task. Each

set of consumers writes in its own HDFS area, but

the object store consumers write a unique consolidated

file compared with the thousands written by messag-

ing consumers. The final metric to characterize both

methods is the throughput, and in this example the

object store consumers reach roughly 6 times more

consolidated events per second.

J Grid Computing (2021) 19: 39 Page 9 of 19 39

Table 2 Results of indexing a single dataset comparing both messaging and object store approaches

Concept Messaging Object Store

Input Data

Input Dataset data17 13TeV.00327636.physics Main.merge.AOD.f838 m1824

Total Files 1160

Total Events 21103653

Total Size 6.229 TB

Producers

Instances (short-lived) 1447

Index results 1447 (287 duplicated)

Events indexed(duplicated) 26287826 (5184173)

Time spent 55.5 hours

Transport method 1515131 messages (text) 1447 objects (binary)

Index size 15 GB 3.3 GB (Compressed)

Consumers

Instances (long-lived) 6 6

Files received (Duplicated) 1447(287) 1160(0)

Events received (Duplicated) 26287826 (5184173) 21103653(0)

Receiving method 1515131 messages 1160 objects (287 not accessed)

Data received 15 GB 2.5 GB (Compressed)

Time spent 244 min 34 min

Reading rate (kB/s) 1098 kB/s 1302 kB/s

Throughput (events/s) 1793 events/s 10344 events/s

Output data (HDFS) 1447 HDFS files / 11.2 GB 1 HDFS file / 9 GB

Writing rate (kB/s) 627 kB/s 4464 kB/s

Output Index Data

Validation Method check and remove duplicates not needed

Traversal Time 69 hours 56.1 hours

Consolidated Data (HDFS) 1160 Files / 9 GB / 21103653 events 1 File / 9 GB / 21103653 events

Validation and traversal time The total time for val-

idating data until it is available (traversal time) is

shorter with the object store approach. The valida-

tion is done differently depending on the approach

taken. With messaging, all data is received constantly

by the consumers and written in HDFS, so it requires

an asynchronous final step done by the supervisor,

when all data has been received, to check if all valid

data is available, and to clean duplicates. On the other

hand, with the usage of an intermediate storage like

the object store, the supervisor can make the vali-

dation online and dynamically select and signal the

consumers to read only valid data from the object store

in a single step, writing a unique HDFS valid file. This

also avoids the need to read again the HDFS files and

delete the unnecessary ones. The producer times are

the same for both paths (in this example, around 48

hours until the last data is indexed), so this part of the

process is common. Messaging consumers write 1447

HDFS files as we have seen in the previous paragraph,

and in this validation step done by the supervisor, it

will check the files and remove the 287 extra HDFS

files that contain duplicate data. This final validation

step ends with 1160 HDFS files summing up 9 GB

of index data, containing the 21103653 events. On

the other hand the object store consumers are sig-

nalled to read only the 1160 valid objects in object

store, and write a unique HDFS file with the 21103653

events. As the file format in HDFS is the same, it also

accounts for 9GB of index data. The traversal time,

39 Page 10 of 19 J Grid Computing (2021) 19: 39

from the start of indexing time until it is available for

users, is 69 hours with the messaging approach, and

56.1 hours with the object store approach. So we can

see that with the new object store approach, consumers

spend less total processing time, and the validation

procedure is improved compared with the previous

one, using less resources and making data available to

final users sooner than with the messaging approach.

3.2 Results for all datasets

In this part we analyze all the data obtained during

the 3 months the experiment lasted, with the objec-

tive to show that the strategy based on the object

store solves some of the issues previously described

and yields better performance. For example the new

approach does not produce the bottlenecks by the

head-of-line blockings seen in some cases with the

messaging brokers, and improves system scalability.

As we can see in Table 3, during the 3 months our

experiment lasted both systems were running in par-

allel, analyzing 26367 datasets containing more than

60 billion events, stored in the worldwide grid in more

than 10 million files, and summing up over 17 PB

of data. These input data were eventually indexed

by 587967 producers. We will compare several met-

rics, showing the performance capabilities of both

systems.

Table 3 Complete results of the experiment comparing messaging and object store approaches

Concept Messaging Object Store

Input Data

Experiment Duration 3 months

Total Input Datasets 26367

Total Files 10 million

Total Events 60 billion (6180434175 events)

Total Size 17PB

Producers

Instances (short-lived) 587967

Index results 12311330

Events indexed 70549949057

Time spent 3 months (361k CPU hours)

Transport method 994796792 messages (text) 587967 objects (binary)

Index size 10 TB 2.2 TB (Compressed)

Consumers

Instances (long-lived) 6 6

Files received (Duplicated) 12311330(2379720) 8663430(0)

Events received 70549949057 53845347540

Receiving method 994796792 messages (text) 538442 objects (binary)

Data received 10 TB 2 TB

Time spent 16728.6 hours 1005.38 hours

Reading rate (kB/s) 173.6 kB/s 571 kB/s

Throughput (events/s) 1171 events/s 14877 events/s

Output data (HDFS) 12311330 HDFS files / 17.7 TB 26367 HDFS files / 14.3 TB

Writing rate (KB/s) 282 kB/s 3950 kB/s

Output Index Data

Validation Method Check and remove duplicates Not needed

Traversal Time (typical) >10h (94% of datasets) <10h (85% of datasets)

Consolidated Data (HDFS) 9931610 Files / 14.3 TB / 60 B events 26367 Files / 14.3 TB / 60 B events

J Grid Computing (2021) 19: 39 Page 11 of 19 39

Input Data The input data are stored at hundreds of

grid sites worldwide, and have to be indexed by the

producers that send the results of the indexing process

to the central Hadoop instance at CERN. During the

time of the experiment, 26367 datasets where indexed,

with more than 10 million files that contained more

than 60 billion (109) events. The total size of the

input data to be indexed was in the order of 17 PB of

data, with approximately only 10% of the data stored

at CERN and 90% of the data stored at grid sites

worldwide.

Producers The first phase of the procedure is the

indexing phase done by the producers, reading the

input data and producing the index data. As said,

this step is done only once for both the messaging

and object store approaches. The following figures

constitute a description of the real workload that is

injected to the system in production. We had a total

of 587967 producers spawned along the duration of

the experiment (3 months) in several grid sites world-

wide including CERN, Europe, North America, Asia

and Australia.

Figure 5 shows a histogram representing the time

spent by producers indexing the input data and pro-

ducing the index data file. The x-axis represents the

duration time (in Hours) of a producer, and the y-axis

(logarithmic scale) the number of appearances (fre-

quency) of each case. The indexing time depends on

the number of input files and type of data that the

producer is handling, but also on the type of machine

where the job executes, which in the grid can vary a

lot. Most of the producers finish in less than 1 hour

(mean is 0.61 hours), and some of them take longer,

up to 71 hours. We can count more than 360k hours in

total, adding up all the producers that ran during the 3

month experiment.

Figure 6 shows the outcome of the indexing phase,

the index data, shown as the number of events indexed

per producer. In the x-axis we see the number of

events, and in the y-axis (logarithmic scale) the fre-

quency of the producers, the number of appearances

of each case. We can see that although the biggest pro-

ducer job indexes 30 Million events, the most common

case is to index 100k events per producer, with a fre-

quency of more than 500k entries. The total number of

events indexed is more than the 60 Billion of the input

data, because some files are indexed more than once

due to some job failures, creating some duplicate data

that will be cleaned in a later phase.

In the following figures we can see a characteriza-

tion and comparison of the quantity of data produced,

depending on the approach to encode and convey the

data (messaging or object store).

Figure 7 shows a histogram comparing messaging

(red) and object store (blue) data encoding methods.

This histogram characterizes the produced data size

by the producers. In the x-axis we see the size (in

MegaBytes) of produced and sent data, and the y-axis

represents the frequency or number of occurrences,

in logarithmic scale. Here we can see the results of

the continuous evaluation during all the time of the

experiment (3 months). As we have said, one pro-

ducer analyzes one or more files of the input data and

Fig. 5 Producer Indexing

Time
time_hist

Entries 587967

Mean 0.6141

Std Dev 1.431

0 10 20 30 40 50 60 70

Time(Hours)

1

10

210

310

410

510

F
re

q
u

e
n

c
y

time_hist

Entries 587967

Mean 0.6141

Std Dev 1.431

Producer Indexing Time

39 Page 12 of 19 J Grid Computing (2021) 19: 39

Fig. 6 Number of events

indexed per producer h_pd_events

Entries 587967

Mean 1.03e+05

Std Dev 3.462e+05

0 5 10 15 20 25 30

6
10×

Events

1

10

210

310

410

510

610

F
re

q
u

e
n

c
y

h_pd_events

Entries 587967

Mean 1.03e+05

Std Dev 3.462e+05

Producer Events

generates index data for the messaging and object

store systems. Due to some grid jobs failing and

restarting producers, we will have index data for 12

million entries (compared with the 10 million input

data files). For messaging (red line) every input file

results in one small index file, so in the figure we can

see the frequency of the 12 million produced index

data sent through the messaging system. We can see

that most of the index data is small, with more that

10 million files indexed with producing less than 8

MB of index data per input file (and 99% of the pro-

ducers send less that 12 MB per indexed file). In fact

the mean of the transmitted data per file is 0.8 MB,

and only some are bigger with up to 64 MB. The total

sum of the transmitted data with the messaging sys-

tem is 10.5 TB, or around 102 GB/day during the

experiment. For object store (in blue), every producer

analyzes its input files and stores the index data in a

single object in the object store, so we can see that we

have much less entries. The data produced was stored

in 587867 objects in the object store, with a mean

object size of 3.6 MB. Around 90% of the objects

are less than 8 MB, but we have some bigger objects

up to 670 MB. As a conclusion, we can see that the

workload is concentrated in much fewer, but bigger

index files (objects in this case). Using the object store

Fig. 7 Comparison of

produced index data

(messaging vs. object store)

0 100 200 300 400 500 600 700

Size(MB)

1

10

210

310

410

510

610

710

F
re

q
u

e
n

c
y

Produced Data Size Histogram

Messaging

ObjectStore

J Grid Computing (2021) 19: 39 Page 13 of 19 39

we created 587867 index files(objects), and with the

messaging approach we created 12 million index files.

The object store approach allows bigger index files

(3.6 MB mean index data file, versus 0.8 MB mean

index data file with the messaging approach), because

we don’t have the restrictions imposed by the mes-

saging system and can group information from several

input files (additionally compressing the information).

The index files sent with the messaging system have to

be divided into smaller 10 kB messages, which means

millions of messages sent (994,796,792 messages in

total). The production of fewer files of bigger size in

turns affects the usage of the resources, avoiding the

traffic peaks detected in the messaging systems.

Figure 8 shows the amount of data produced per

hour for messaging (red) and object store (blue). We

see in x-axis the number of elapsed hours since the

experiment start, and the y-axis represents the data in

MegaBytes. We see the amount of data created by each

approach during the 2270 hours the experiment lasted,

with a slow start at the beginning and with production

peaks at some points. With the messaging approach

(red), we can see the peak at hour 1880, that corre-

sponds to almost 60 GB of index data produced during

that hour (sent with around 6 million messages). With

the object store (blue) we can see a peak with 14.25

GB of created index data (with 3538 objects). It is

clearly seen that the amount of data created and sent

with the messaging approach is much larger than with

the object store approach.

In the following Fig. 9 we see the same information,

but accumulating the quantity of data produced until a

particular hour since the beginning of the experiment.

We can see in red the total sum of the transmit-

ted data with the messaging system, which is in total

10 TB, or around 102 GB/day during the experiment.

In blue, we see the produced data stored in the object

store, summing up to a total of 2.2 TB produced data,

or a rate of 22.2 GB/day during the time the experi-

ment lasted. Compared with the messaging approach,

this means 4.5 times less data sent through the wire.

This is also due to the high compression factor that

we can achieve with the binary format, that can reach

roughly a compression factor 10. By achieving to send

the same information with less transmitted data with

the object store approach, we can improve the per-

formance of the overall system compared with the

previous messaging approach. This will allow us to

scale the system in the future ATLAS runs when the

higher production rates will create much more events,

files and data in total.

Consumers. The differences in consuming

approaches can be seen in the following figures,

where we break down produced versus consumed data

depending on the method, messaging or object store.

Figure 10 shows the number of produced versus

consumed messages along the time of the experi-

ment. The red line shows the produced messages, and

Fig. 8 Produced

data(messaging vs. object

store) during the duration of

the experiment

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

 Time(Hours)

0

10

20

30

40

50

60

3
10×

 S
iz

e
(M

B
)

Messaging

ObjectStore

Produced Data Size

39 Page 14 of 19 J Grid Computing (2021) 19: 39

Fig. 9 Cumulative

Produced data(messaging

vs. object store) during the

duration of the experiment

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Time(Hours)

0

2

4

6

8

10

6
10×

C
u

m
u

la
ti
v
e

 S
iz

e
(M

B
)

Messaging

ObjectStore

Produced Data Size (Cumulative)

the green line the consumed ones, reaching the 1000

million messages in total, that corresponds to the

10 TB of index data. By design, all messages pro-

duced have to be consumed from the messaging broker

queues in a constant and ordered manner. In partic-

ular all the messages corresponding to a particular

index file have to reach together a consumer to be

able to reconstruct the original index data file. This

is achieved with transactions and messaging groups,

but imposes some burdens on the messaging brokers

which in some cases can saturate and produce delays.

This is what we see in Fig. 10. At the beginning we

can see that the consumption of the messages is in line

of the production, but in some cases we can see the

red line not being followed by the green one, mean-

ing slow consumption of messages. In particular in

the time periods where the hour x ∈ [1087, 1162],

[1189, 1254], [1611, 1748] and [1879, 1912], bro-

kers became the bottleneck because of a head-of-line

blocking handing the messages to the consumers, and

the produced messages were temporarily stored in

a backlog queue. In this example there are no lost

messages, because all the messages are eventually

consumed (both lines produced in red and consumed

Fig. 10 Produced versus

consumed messages

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Time(Hours)

0

200

400

600

800

1000

6
10×

M
e

s
s
a

g
e

s

Produced

Consumed

Messages Produced/Consumed

J Grid Computing (2021) 19: 39 Page 15 of 19 39

in green converge). But in an extreme situation the

brokers at some point might reject more incoming

messages if memory is exhausted. Besides slow con-

sumption problems caused by this blockings, there

are other issues that make the messaging approach

more prone to errors. Problems in the backend HDFS

filesystem might delay the consumption of messages,

with the consequent creation of a message backlog in

the brokers. The system is designed to deal with this

kind of situations, but again some messages could be

rejected if memory is exhausted. In addition, after a

backlog, the consumption is slowed down due to the

head-of-line blockings. Also a problem dealing with

one message out of all that compose a particular index

file, can invalidate the whole index file. This can not

be recovered, and the file should be indexed and sent

again by a producer.

Figure 11 shows the number of produced versus

consumed objects. In red line we can see the produced

objects, reaching 587967 total objects. As opposed to

the messaging approach, the objects are not inserted

into a queue and they have not to be consumed in

real time, neither in order. In addition, some produced

objects that contain completely duplicate information

have not to be consumed at all, which was not pos-

sible with the previous messaging approach. This is

what we see in this figure, with the green line rep-

resenting the consumed objects, and reaching 538442

objects consumed in total, meaning that 49525 pro-

duced objects with duplicate information which are

not accessed at all during consumption. The consumed

objects sum up a total of 2 TB of index data. Com-

pared with the original 2.2 TB produced index data

data in the object store, this represents 200 GB (10%

of the total) of redundant information that does not

need to be retrieved. Overall, with the object store

approach we need to consume 5 times less amount of

data that was consumed with the messaging approach.

With these improvements we can reduce the amount

of data that is needed to be retrieved by the con-

sumers, spending less time and resources to do this

phase of the process. In addition it is an improvement

because only valid data is written into HDFS. With

the previous messaging approach, an extra validation

step is needed to check and remove duplicate data.

The index data is not segmented like in the messag-

ing approach, and therefore we don’t see blockings or

slowed down consumption rates when using the object

store. Also the object store approach is more con-

sistent and fault tolerant. In case of temporary faults

of the backend HDFS system, the consumers might

temporarily stop consuming from the object store. In

this situation, an object store is designed to main-

tain a much larger quantity of (temporary, as in our

use case) data than messaging brokers. In addition,

when restarting the consumption there are no block-

ings that might slow down the consumption rates, as

in the messaging approach. A problem when dealing

and consuming an object, can be solved by reading

this object again, as it is placed in the object store

Fig. 11 Produced versus

consumed objects

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Time(Hours)

0

100

200

300

400

500

600

3
10×

O
b

je
c
ts

(c
u

m
u

la
ti
v
e

)

Produced

Consumed

Objects Produced/Consumed

39 Page 16 of 19 J Grid Computing (2021) 19: 39

until explicitly deleted. This kind of situation was not

possible with the messaging approach.

Validation Other kind of metrics that we can ana-

lyze to compare both messaging and object store

approaches, is related with the time needed to index

and receive valid data. For the final user, the data

only make sense when the complete dataset is avail-

able. In that sense we define the traversal time metric

for a particular data or dataset, as the period of time

since the first producer starts analyzing data until the

produced index data is received and validated by the

consumers. This is the main performance metric that

the user perceives of the system.

Figure 12 shows a histogram of the traversal time

for the same datasets, with both messaging and object

store approaches. On the x-axis we see the traversal

time in hours, and on the y-axis the relative frequency

or number of dataset occurrences normalized to 1 (in

logarithmic scale). In blue we can see the traversal

time for datasets with the object store path, and we can

observe that most of the datasets (85%) are available

in less than 10 hours. The traversal mean time for a

dataset is x̄ = 12 hours, with Var[x] = 47. We have

some datasets (in the order of tens) consuming more

time, and one spurious dataset that reached just over

1000 hours.

In comparison in red we have the traversal time for

the same datasets with the messaging path, and we see

that only around 6% finish within the first 10 hours.

We have much more variance with with Var[x] = 247.

We have a non negligible amount of datasets that take

a considerable amount of time to be validated, increas-

ing the total traversal time for this datasets up to 1000

hours.

Overall, we see that all datasets flowing through

the object store path have a smaller traversal time

than the datasets flowing through the messaging path,

which means less time until they are available to the

final users. We see latency peaks with the messaging

approach due to head-of-line blockings that are not

present in the object store approach.

Finally, we present the consumers throughput to

retrieve data and make them available for final users.

This metric is shown in terms of the number of events

processed per second, which is independent of the data

encoding method.

Figure 13 shows the consumers throughput, in

terms of processed events per seconds. On the x-axis

we see the number of processed events per second,

and on the y-axis the relative frequency of this con-

sumers. In red we see the messaging consumers, with

a mean of around 1000 events processed per second,

and with a maximum of 5000 events processed per

second. In blue we see that the object store consumers

get a mean of 15000 events processed per second,

and a maximum of 28000 events processed per sec-

ond. We can see that with the object store approach

we get much more performance processing events

than with the previous messaging approach, with an

Fig. 12 Comparison of

typical traversal times for

complete datasets for the

messaging and object store

approaches

0 200 400 600 800 1000

Time(Hours)

4−10

3−10

2−10

1−10

1

F
re

q
u

e
n

c
y
(n

o
rm

)

Messaging

ObjectStore

Dataset Traversal Time

J Grid Computing (2021) 19: 39 Page 17 of 19 39

Fig. 13 Comparison of

consumer throughput in

events processed per second

(messaging vs. object store)

0 5000 10000 15000 20000 25000 30000

Events/s

0

0.1

0.2

0.3

0.4

0.5

0.6

F
re

q
u

e
n

c
y
(n

o
rm

)

Messaging

ObjectStore

Consumer Bandwidth

improvement by a factor 15. With the blockings

detected in the messaging approach, we could not

scale the system effectively, since adding new messag-

ing consumers would not result in better throughput.

On the other hand, the absence of blockings in the

object store approach allows us to scale up by simply

adding new consumers.

4 Conclusions

We have presented a new pull-model approach for the

distributed data collection of the ATLAS EventIndex

project, based on an object store as a shared storage

and with dynamic data selection.

In order to compare it experimentally with the

previous messaging push-model implementation, we

have run both approaches in parallel in our large grid

production infrastructure during three months, index-

ing more than 60 billion events. The results show that

the new approach improves the results in several ways.

With the new model we can avoid payload segmen-

tation, and store all the information from a producer

in a single object. Doing so we can use different data

encodings and compression, improving a factor 4.5

in the amount of total produced and conveyed data.

We don’t see blockings during consumption with the

new object store approach, and the workload distribu-

tion is improved, making better scalability possible.

During our experiments we have seen an improvement

of 15 times in the throughput of the consumers, com-

pared with the previous messaging approach. With

the pull model we can also select which data to con-

sume dynamically, avoiding duplicate information that

might be as much as 10% of the produced data.

We have also improved the way the information

is stored in Hadoop, reducing the number of HDFS

needed files to only 1 per dataset, meaning a fac-

tor 300 improvement with our data. The reduction of

complexity and the resource usage, and better perfor-

mance of the distributed data collection, has improved

the experience for final users, that have seen reduced

the traversal time, or latency, of the datasets until the

indexed data is available.

Overall the results show that the new approach can

efficiently support large-scale data collection for big

data environments, like the next runs of the ATLAS

experiment at CERN.

Acknowledgements This work has been partially supported

by MICINN in Spain under grants FPA2016-75141-C2-1-R,

PID2109-104301RB-C21 and TIN2015-66972-C5-5-R, which

include FEDER funds from the European Union. This work was

done as part of the databases applications research and devel-

opment programme of the ATLAS Collaboration, and we thank

the collaboration for its support and cooperation.

Funding Open Access funding provided thanks to the CRUE-

CSIC agreement with Springer Nature.

39 Page 18 of 19 J Grid Computing (2021) 19: 39

Data Availability The datasets generated during and/or anal-

ysed during the current study are available from the correspond-

ing author on reasonable request.

Open Access This article is licensed under a Creative Com-

mons Attribution 4.0 International License, which permits

use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to

the original author(s) and the source, provide a link to the Cre-

ative Commons licence, and indicate if changes were made. The

images or other third party material in this article are included

in the article’s Creative Commons licence, unless indicated oth-

erwise in a credit line to the material. If material is not included

in the article’s Creative Commons licence and your intended use

is not permitted by statutory regulation or exceeds the permit-

ted use, you will need to obtain permission directly from the

copyright holder. To view a copy of this licence, visit http://

creativecommons.org/licenses/by/4.0/.

References

1. ATLAS Collaboration: The ATLAS experiment at the

CERN Large Hadron Collider. J. Instrum. 3(08), S08003

(2008)

2. Barberis, D., Cárdenas Zárate, S.E., Cranshaw, J., Favareto,

A., Fernández Casanı́, A., Gallas, E.J., Glasman, C.,

González De La Hoz, S., Hřivnáč, J., Malon, D., Prokoshin,

F., Salt Cairols, J., Sánchez, J., Többicke, R., Yuan, R.: The

ATLAS EventIndex: Architecture, design choices, deploy-

ment and first operation experience. J. Phys.: Conf. Ser.

664(4), 042003 (2015)

3. Barberis, D., Cranshaw, J., Favareto, A., Fernández Casanı́,

A., Gallas, E., González de la Hoz, S., Hřivnáč, J., Malon,

D., Nowak, M., Prokoshin, F., Salt, J., Sánchez Martı́nez,

J., Többicke, R., Yuan, R.: The ATLAS EventIndex: Full

chain deployment and first operation. Nuclear and Particle

Physics Proceedings 273-275, 913–918 (2016)

4. White, T.: Hadoop: The definitive guide. O’Reilly Media,

Inc. (2012)

5. Sánchez, J., Casanı́, A.F., de la Hoz, S.G.: Distributed data

collection for the ATLAS EventIndex. J. Phys.: Conf. Ser.

664(4), 042046 (2015)

6. Salomoni, D., Campos, I., Gaido, L., de Lucas, J.M.,

Solagna, P., Gomes, J., Matyska, L., Fuhrman, P., Hardt,

M., Donvito, G., et al: Indigo-datacloud: A platform to

facilitate seamless access to e-infrastructures. J Grid Com-

puting 16(3), 381–408 (2018). https://doi.org/10.1007/s10

723-018-9453-3

7. Krašovec, B., Filipčič, A.: Enhancing the grid with cloud

computing. J Grid Computing 17(1), 119–135 (2019)

8. Hagras, T., Atef, A., Mahdy, Y.B.: Greening duplication-

based dependent-tasks scheduling on heterogeneous large-

scale computing platforms. J. Grid Comput. 19(1), 13

(2021)

9. Activemq, http://activemq.apache.org/

10. Fernandez Casani, A., Sanchez, J., Gonzalez de la Hoz,

S., Orduña, J.M.: Designing Alternative Transport Methods

for the Distributed Data Collection of ATLAS EventIn-

dex Project. http://cds.cern.ch/record/2235644/files/ATL-

SOFT-SLIDE-2016-869.pdf (2016)

11. Karol, M., Hluchyj, M., Morgan, S.: Input versus output

queueing on a space-division packet switch. IEEE Trans-

actions on Communications 35(12), 1347–1356 (1987).

https://doi.org/10.1109/tcom.1987.1096719

12. Mesnier, M., Ganger, G.R., Riedel, E.: Object-based stor-

age. IEEE Commun. Mag. 41(8), 84–90 (2003). https://doi.

org/10.1109/MCOM.2003.1222722

13. Rabbitmq, http://www.rabbitmq.com/

14. Apache flume, http://flume.apache.org/

15. Logstash data processing pipeline, https://www.elastic.co/

products/logstash

16. Kreps, J., Narkhede, N., Rao, J., et al.: Kafka: A distributed

messaging system for log processing. In: Proceedings of

NetDB, pp 1–7 (2011)

17. Dobbelaere, P., Esmaili, K.S.: Kafka versus rabbitmq:

A comparative study of two industry reference pub-

lish/subscribe implementations: Industry paper. In: Pro-

ceedings of the 11th ACM International Conference on Dis-

tributed and Event-based Systems, DEBS ’17, ACM, New

York, NY, USA, pp 227–238 (2017). https://doi.org/10.11

45/3093742.3093908

18. Bird, I.G.: Lhc computing (wlcg): Past, present, and future.

Grid and Cloud Computing: Concepts and Practical Appli-

cations 192, 1 (2016)

19. Garonne, V., Vigne, R., Stewart, G., Barisits, M., Lassnig,

M., Serfon, C., Goossens, L., Nairz, A., Collaboration, A.,

et al: Rucio–the next generation of large scale distributed

system for atlas data management. In: Journal of Physics:

Conference Series, IOP Publishing, 513, pp 042021 (2014)

20. Calafiura, P., De, K., Guan, W., Maeno, T., Nilsson, P.,

Oleynik, D., Panitkin, S., Tsulaia, V., Gemmeren, P.V.,

Wenaus, T.: The atlas event service: A new approach

to event processing. J. Phys.: Conf. Ser. 664(6), 062065

(2015)

21. Amazon simple storage service developer guide, http://

docs.aws.amazon.com/AmazonS3/latest/dev/s3-dg.pdf

22. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E.,

Maltzahn, C.: Ceph: A scalable, high-performance dis-

tributed file system. In: Proceedings of the 7th Symposium

on Operating Systems Design and Implementation, OSDI

’06, USENIX Association, Berkeley, CA, USA, pp 307–

320 (2006)

23. Ceph, http://ceph.com/

24. Amazon s3, cloud computing storage for files, images,

videos. http://aws.amazon.com

25. Google protocol buffers: Google’s data interchange format.

https://developers.google.com/protocol-buffers/

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and institu-

tional affiliations.

J Grid Computing (2021) 19: 39 Page 19 of 19 39

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10723-018-9453-3
https://doi.org/10.1007/s10723-018-9453-3
http://activemq.apache.org/
http://cds.cern.ch/record/2235644/files/ATL-SOFT-SLIDE-2016-869.pdf
http://cds.cern.ch/record/2235644/files/ATL-SOFT-SLIDE-2016-869.pdf
https://doi.org/10.1109/tcom.1987.1096719
https://doi.org/10.1109/MCOM.2003.1222722
https://doi.org/10.1109/MCOM.2003.1222722
http://www.rabbitmq.com/
http://flume.apache.org/
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://doi.org/10.1145/3093742.3093908
https://doi.org/10.1145/3093742.3093908
http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-dg.pdf
http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-dg.pdf
http://ceph.com/
http://aws.amazon.com
https://developers.google.com/protocol-buffers/

	A Reliable Large Distributed Object Store Based Platform for Collecting Event Metadata
	Abstract
	Introduction
	A new design for distributed data collection
	Evaluation
	Results indexing a single dataset
	Input Data
	Producers
	Consumers.
	Validation and traversal time

	Results for all datasets
	Input Data
	Producers
	Consumers.
	Validation

	Conclusions
	References

