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Abstract—This paper presents a reliable micro-grid for resi-
dential community with modified control techniques to achieve
enhanced operation during grid connected, islanded and re-
synchronization mode. The proposed micro-grid is a combination
of solar photo-voltaic (PV), battery storage system and locally
distributed DG systems with residential local loads. A modified
power control technique is developed such that, local load
reactive power demand, harmonic currents and load unbalance
is compensated by respective residential local DG. However,
active power demand of all local residential load is shared
between the micro-grid and respective local DG. This control
technique also achieves constant active power loading on the
micro-grid by supporting additional active power local load
demand of respective residential DG. Hence, proposed modified
power control technique achieves transient free operation of the
micro-grid during residential load disturbances. An additional
modified control technique is also developed to achieve seamless
transition of micro-grid between grid connected mode and
islanded mode. The dynamic performance of this micro-grid
during grid connected, islanded and re-synchronization mode
under linear and non-linear load variations is verified using real
time simulator (RTS).

Index Terms—Distributed Generation, Micro-grid,
Power Quality, Islanded Mode, Grid connected mode, re-
synchronization.

I. INTRODUCTION

C
ONSIDERING today’s worldwide energy crises and

global warming issues, power generation using renew-

able energy sources (RES) are gaining more importance in

order to provide continuous and reliable power supply to

all distributed local loads. Distributed generation (DG) units

equipped with RES providing local distributed load demands

forms a structure of micro-grid [1]. This micro-grid can op-

erate either in grid connected mode or in islanded/standalone

mode. In a micro-grid, battery energy storage system (BES) is
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required for energy balancing in the system, especially when it

is operating in islanded/standalone mode. Efficient utilisation

of local DG units can be achieved by operating all DG’s

as constant power sources during grid connected mode of

operation of micro-grid. In this case grid will maintain the

micro-grid voltage [2], [3].

Some of the major challenging issues for smooth operation

of the micro-grid are active power load sharing between DG’s,

harmonics compensation, unbalanced load compensation, re-

active power compensation and transition from grid connected

mode to islanded mode and vice versa [4], [5]. In literature

different control schemes are presented to handle the afore

said issues.

Control techniques presented for active and reactive power

load sharing between DG’s in the micro-grid are divided into

two categories as decentralised control (without communica-

tion) and centralised control (with communication) [6], [7]. In

decentralised control, droop method is used for load sharing

between DG’s in the micro-grid. It has became very popular

due to plug and play type of operation of DG. In this method

the active and reactive power sharing is based on their droop

constant [8]. A virtual output impedance is incorporated in the

droop method in order to achieve accurate active and reactive

power sharing between DG’s [9], [10]. The disadvantages of

basic droop method is variation in voltage and frequency from

nominal values at other than rated load conditions. In order

to overcome this issue, Hierarchical control of droop method

is presented in [11], [12] which comes under the category of

centralised control with communication.

In centralised control, master-slave method and average

power sharing method is used for active and reactive power

sharing in the micro-grid [13]–[15]. Here, master DG should

have high power rating [16]. The disturbances occurred in the

micro-grid are handled by the master DG (i.e total transients

are handled by the master DG). The major disadvantages of

this method are the micro-grid is to be shutdown when master

DG fails and all transients in micro-grid are handled by the

master DG, therefore the burden on the single DG is high

[16]. In [17], authors proposed hybrid load sharing method by

combining droop and master-slave methods. Here, the DG’s

which are operated using droop method will act as master

DG’s and all other DG’s are slaves. With this technique, the

disadvantages of master-slave and droop method are overcome
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Fig. 1. Schematic representation of proposed grid connected micro-grid.

partially.

The non-linear loads demand harmonic currents in the

micro-grid, which leads to distortion in micro-grid voltage.

In [18], the harmonics are shared by incorporating active

compensation in the controller of DG’s. While in, [19], [20]

harmonics are shared by adding additional loops in the droop

controller of DG’s. In the micro-grid, unbalanced loads will

cause unbalance in the terminal voltages [21]. In [22], [23]

the load unbalance current is shared between DG’s without

effecting its output voltage.

For seamless transition between grid connected and islanded

mode,the additional converter is used as dispatch unit (DU) in

[24]. Two PLLs are used in [25] for smooth transition between

the modes of operation by minimizing the error between the

phases of the PLL. In [26], a synchronizing DG is used for

smooth transition during reconnection of micro-grid to the

main grid. With the help of synchronizing DG the micro-

grid instantaneous phase, frequency and instantaneous voltage

is synchronized with the utility grid before reconnection. By

this the transients in the system is avoided during transition

from islanded mode to grid connected mode. In [27], Linear

Quadratic Regulator theory based bumpless transfer scheme is

used to achieve smooth transition between the islanded mode

and grid connected mode.

This paper proposes, a micro-grid and its control technique

to provide reliable power supply to a residential community

with enhanced power quality and to achieve smooth operation

of micro-grid under grid connected mode and islanded mode.

However, the specific challenging issues need to be considered

in order to achieve aforesaid objective are: active power

load sharing between DG’s, reactive power compensation,

harmonics compensation, unbalanced load compensation and

seamless transition of micro-grid from grid connected mode to

islanded mode and re-synchronization to grid. Therefore, the

proposed micro-grid control technique is designed to resolve

all these necessary issues and achieve smooth operation. The

major contributions of this paper are

1) Developed a modified power control technique to achieve

following objectives

• Constant active power loading on the micro-grid

from residential local loads, independent of local load

variations. Therefore the frequency of the system will

not be affected under dynamic load variations.

• The entire reactive power demand from the local

load is compensated by the respective local DG.

Therefore, the system bus voltage is unaffected even

under reactive power load variation.

• The unbalance current and harmonics current de-

manded by the local residential loads are com-

pensated by the respective local DG, in order to

avoid micro-grid voltage distortion. Therefore, the

proposed micro-grid is free from power quality re-

lated issues caused due to unbalanced and harmonics

load current demand under both grid connected and

islanded mode.

• In micro-grid the load disturbances are taken care by

respective local DGs. Hence, the micro-grid is tran-

sient free from the local load disturbances occurred
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in each residence.

2) Developed a control technique for smooth transition

from grid connected mode to islanded mode and re-

synchronisation to grid.

The micro-grid achieves following advantages, with the

proposed control technique of the DG’s

i) The dynamic response of system is increased with the

proposed control of micro-grid during load disturbances.

ii) The transition from grid connected mode to islanded

mode and re-synchronisation to grid is achieved smoothly

without affecting the micro-grid voltage during transition

period.

iii) The stability of the proposed micro-grid is increased

due to transient free operation during the local load

disturbances occurred in the residences.

iv) In micro-grid only the active power sharing is done

between DGs and the utility grid. If reactive power,

harmonics and unbalanced currents are shared between

the DGs and utility grid then the micro-grid voltage will

be affected. To avoid aforesaid issue, the reactive power,

harmonics and unbalanced currents demanded by the local

residential loads are compensated by the respective local

DG with the help of modified power control technique.

II. SYSTEM CONFIGURATION

The schematic in Fig. 1 represents the proposed micro-grid

for residential community. The micro-grid is interconnected

to the main grid through the static transfer switch (STS). The

STS is controlled by DG4 controller. Under healthy condition

of the main grid, micro-grid is operated in grid connected

mode. However during faulty conditions micro-grid is isolated

from the main grid by opening the STS. When the fault is

cleared islanded micro-grid is re-synchronised to the main grid

by operating STS. In micro-grid each residence (residence-1,

residence-2 and residence-3) comprises of local DG’s (DG1,

DG2 and DG3) and local loads. Each DG (DG1, DG2, DG3

and DG4) in the micro-grid is a voltage source converter

(VSC) along with low pass filter Lf , Rf and C at it’s ac

output side. In DG1, DG2 and DG3, the dc side of VSC is

connected with Battery storage system. In DG4, the dc side of

VSC is connected with solar PV and Battery storage system.

R and L are equivalent line resistance and inductance.

III. CONTROLLER DESIGN

The control technique of proposed micro-grid is designed

such that, it can be operated in grid connected mode, islanded

mode and re-synchronisation for grid connected mode. In grid

connected mode all the DG’s will connect as a constant power

sources, here the micro-grid voltage is maintained by the main

grid [28]. If any fault occurred in the main grid, then the micro-

grid is disconnected from the main grid and operate in islanded

mode.

A. Modified power Control technique for DG1, DG2 and

DG3

A modified power control technique is developed for local

residential DG’s (DG1, DG2 and DG3) in order to achieve:

Fig. 2. Schematic of VSC of DG1, DG2, DG3 and DG4.

1) Transient free micro-grid from the local disturbances

occurred in the residences.

2) Constant loading on micro-grid from the residences even

under local load variations.

3) Reactive power compensation, local unbalanced load

compensation and harmonics compensation of local non-

linear load.

Its realization is mainly depends on capability of battery

energy storage, this is the limitation for this technique. In this

control technique, the residential DG’s are controlled by taking

feedback signals as, PCC voltage of respective DG’s, current

supplied by micro-grid to the respective residence. The local

DG’s are controlled in such a way that respective residence

should absorb constant reference active power from the micro-

grid irrespective of disturbances. In order to achieve, constant

active power loading, reactive power reference is assumed

to zero and for supply balance current the neutral current is

assumed to zero.

The reference active power (Pref1, Pref2 and Pref3) ab-

sorbed by the local residential loads from the micro-grid

is estimated using pre-calculated average load demand of

residential local loads(Pavg1, Pavg2 and Pavg3).

Pref = Pavg (1)

To overcome the limitation of modified power control tech-

nique, the selected battery capacity should be 150% of average

load demand of residential local loads, by this it is possible

to simplify the complexity in control.

1) Mathematical modelling of power control: Applying

KVL in Fig. 2, the terminal voltage equation at the output

side of VSC is,

~vt = Rf
~i+ Lf

d~i

dt
+ ~vpcc (2)

Lf

d~i

dt
= ~vt −Rf

~i− ~vpcc (3)

In order to achieve synchronisation, instantaneous phase an-

gle of the micro-grid is estimated using synchronous reference

frame (SRF) Phase lock loop (PLL). This phase angle is used

for park’s transformation and to estimate the reference active

power current component in dq-frame.

Id−ref =
Pref

Vpcc−d

(4)
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Fig. 3. Modified power Control technique for DG1, DG2 and DG3.

Using park’s transformation, equation (3) is transformed

into synchronous dq-reference frame as,

Vt−dqe
jωt = RIdqe

jωt + L
dIdqe

jωt

dt
+ Vpcc−dqe

jωt (5)

By solving equation (5),

Vt−dq = jωLIdq +RIdq + L
dIdq

dt
+ Vpcc−dq (6)

Where Idq is state variable, Vt−dq is terminal voltage control

input and Vpcc−dq is the disturbance input. In order to get

desired control variable Udq , error signal of dq-frame reference

and actual current is passed through proportional and integral

(PI) controller [29].

Udq = RIdq + L
dIdq

dt
(7)

Using equation (6) and (7),

Vt−dq = jωLIdq + Udq + Vpcc−dq (8)

The VSC terminal voltage in dq-frame in terms of modulation

index is,

Vt−dq = mdq

Vdc

2
(9)

Using equation (8) and (9),

mdq

Vdc

2
= jωLIdq + Udq + Vpcc−dq (10)

Decomposing equation (10) into real and imaginary parts,

md =
2

Vdc

(−ωLIq + Ud + Vpcc−d) (11)

mq =
2

Vdc

(ωLId + Uq + Vpcc−q) (12)

The modulating signals to drive the VSC in abc-frame are

estimated by transforming equation (11) and (12). The block

diagram representation of modified power control is shown in

Fig. 3. The controller is designed in synchronous reference

frame (dq-frame), for this the instantaneous phase is required.

The PCC voltage is taken as feedback signal to extract

the instantaneous phase of the micro-grid at respective PCC

point. Currents supplied by the micro-grid to each residence

(isa, isb and isc) is taken as feedback signal for controller

to generate control variables ma,mb and mc. In order to

generate the control variable mn, reference neutral current

is assumed zero and it is subtracted from the actual sensed

neutral current.

B. Modified Control technique of DG4

The modified control technique for DG4 is designed in

order to achieve power control mode during the grid connected

mode of operation, seamless transition from grid connected

mode to islanded mode, voltage control mode during islanded

mode of operation and seamless re-synchronisation to the main

grid from islanded mode of operation. When the micro-grid is

operating in grid connected mode, the DG4 operates in power

control mode. During the fault in main grid, the micro-grid is

islanded from main grid and controller of DG4 is shifted to

voltage control mode from power control mode. In this case, as

micro-grid is isolated from main grid the instantaneous phase

of the reference voltage is generated independently at 50 Hz

frequency.

1) Mathematical modelling of voltage controller: In order

to maintain reference voltage at the PCC4, the DG4 is

designed to control in dual loop control by considering voltage

across the filter capacitor and the current through the inductor

[30]. Hence the reference current is

~iref = C
d~vpcc4

dt
(13)

The equation (13) in dq-frame is,

iref−dqe
jωt = C

d(Vpcc4−dq ejωt)

dt
(14)

iref−dq = C
dVpcc4−dq

dt
+ jωCVpcc4−dq (15)

Where Vpcc4−dq is state variable. In order to get desired control

variable idq−c, error signal of reference voltage (Vdq−ref ) in

dq-frame and actual voltage is passed through PI controller.

idq−c = C
dVpcc4−dq

dt
(16)

iref−dq = idq−c + jωCVpcc4−dq (17)

Decomposing equation (17) into real and imaginary

iref−d = id−c − jωCVpcc4−q (18)

iref−q = iq−c + jωCVpcc4−d (19)

The estimated reference in dq-frame is then used to obtain

modulating signals required to drive DG4 VSC. These mod-

ulating signals are estimated by using mathematical model of

power control from (2) to (12). So, the final modulating signals

in dq-frame are

md =
2

Vdc

(−ωLIq4 + Ud4 + Vpcc4−d) (20)
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Fig. 4. Modified control technique for DG4 in micro-grid to achieve seamless transition between Grid connected and islanded mode .

mq =
2

Vdc

(ωLId4 + Uq4 + Vpcc4−q) (21)

The modulating signals to drive the VSC in abc-frame are

estimated by transforming equation (20) and (21).

Fig. 4 represents the block diagram of DG4 controller. In

grid connected mode of operation, the DG4 is controlled

as a power controlled source. Here, the synchronisation is

done with the grid by using phase lock loop. Whenever fault

occurred in the main grid, then the micro-grid is disconnected

from the main grid by opening the static transfer switch and

operate in islanded mode. While transferring micro-grid to

islanded mode, the DG4 controller is switched from power

control mode to voltage control mode. In islanded mode,

the micro-grid voltage is maintained by DG4. During this

sudden mode transition, it is very important to accurately

select instantaneous phase angle problem of instantaneous

phase jump in the micro-grid voltage. Here, to avoid this,

the instantaneous phase angle value for the reference voltage

is obtained from the previous estimated value during grid

connected mode. This is achieved by switching the mode

selection-1 in modified control block-1 as shown in Fig. 4.

In islanded mode, the instantaneous phase for the reference

voltage is generated at 50 Hz frequency independently.

Whenever fault is cleared in the main grid, then the micro-

grid is switched to grid connected mode. Before switch-

ing to grid connected mode, the micro-grid voltage is re-

synchronised with the main grid voltage. For this, the grid

voltage is taken as reference to the voltage controller by

switching the mode selection-2 as shown in Fig. 4. Sudden

change in reference voltage reflects as spike in the micro-

grid voltage. So to avoid this, the reference voltage is always

passed through rate limiter (RTL) as shown in modified block-

2 of Fig. 4. From this, the voltage spike is reduced while

changing the reference voltage. Once the micro-grid voltage

is synchronised with the main grid voltage, then micro-grid is

reconnected to main grid by closing the static transfer switch.

TABLE I
THE MICRO-GRID SYSTEM PARAMETERS

Sr.No. Parameter Value

1 System Voltage 415V (L-L)

2 DG1 Rating 20 kVA

3 DG2 Rating 25 kVA

4 DG3 Rating 15 kVA

5 DG4 Rating 40 kVA

6 Line Impedance 1.334 Ohm, 3 mH

7 LC Filter (Lf , Rfand C) 6 mH, 0.15 Ω and 50 µ F

8 DC bus Voltage of each DG 760 V

9 Switching Frequency of each DG 3150 Hz

While transferring the micro-grid to grid connected mode,

the DG4 controller is switched to power control mode by

switching the mode selection-1 as shown in Fig. 4.

IV. PERFORMANCE EVALUATION OF PROPOSED

MICRO-GRID USING REAL TIME SIMULATOR

The proposed micro-grid considered for the residential com-

munity is implemented in OPAL-RT real time simulator. The

micro-grid parameters considered for real time implementation

are given in Table I. The performance of proposed control

scheme of DG’s in micro-grid is evaluated in the following

modes of operation

• Micro-grid in grid connected mode.

• Transition of micro-grid from grid connected mode to

islanded mode.

• Micro-grid in islanded mode.

• Transition of micro-grid from islanded mode to grid

connected mode.

A. Micro-grid in grid connected mode

When the micro-grid is operating in grid connected mode,

then the micro-grid voltage is maintained by the main grid.

The DG’s in the micro-grid are controlled as power controlled
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(a) Active power curves.

(b) Reactive power curves.

Fig. 5. Power curves in residence-1.

sources. The performance of proposed modified power control

technique of DG’s in micro-grid is evaluated under the load

disturbances and variation in solar power availability of DG4.

The DG1, DG2 and DG3 in residence-1, residence-2 and

residence-3 are operate in charging mode and sharing mode.

The major objectives of local DG’s modified power control

technique in residence-1, residence-2 and residence-3 are

1) To operate the residence at unity power factor in micro-

grid,

2) To provide the transient free operation of micro-grid dur-

ing each residential load disturbances (i.e the local load

disturbances of residence-1, residence-2 and residence-3

should not reflect in micro-grid),

3) To absorb constant power from the micro-grid under res-

idential load variations and maintain the power quality in

the micro-grid by compensating the harmonics, unbalance

load and reactive power demanded by the local loads in

the residences.

With the knowledge of local load demand in the residences,

the average load of the residence-1, residence-2 and residence-

3 are predefined as 5kW, 8kW and 4kW. For simplicity the bat-

tery storage system capacity of each DG is selected as 150%

of average local load demand. The local DG’s in residence-1,

residence-2 and residence-3 are controlled to absorb constant

reference active power from the micro-grid. The reference

power for DG1, DG2 and DG3 in residence-1, residence-2

and residence-3 are 5kW, 8kW and 4kW respectively.

The local load demand in residence-1 is 4kW active power

and 3kVAR reactive power. But the reference power for

residence-1 is 5kW active power, so the remaining 1kW is

stored in battery by DG1 which is shown in Fig. 5(a). In

order to operate the residence-1 at unity power factor in the

micro-grid, the total reactive power demand by the local loads

in residence-1 is supplied by DG1 as shown in Fig. 5(b).

If the local load demand in residence-1 is increased to 6kW

(a) Load current.

(b) DG1 current.

(c) Residence-1 current (is1) from micro-grid.

(d) PCC-1 Voltage (vpcc−1).

Fig. 6. Current waveforms in residence-1 and voltage at PCC-1.

active power and 4.5kVAR reactive power. Even though local

load demand changed but the power demanded by residence-

1 from micro-grid remains constant as 5kW. The additional

1kW active power is shared by DG1 as shown in Fig. 5(a).

In Fig. 5 it is observed that the micro-grid is transient free

from local disturbances occurred in residence-1. Further the

load demand in residence-1 is increased to 7kW active power

which is unbalance, 5KVAR reactive power and non-linear

load (bridge rectifier with resistive load of 450 Ω) is connected.

The residence-1 absorbs constant 5kW active power at nearly

unity power factor with balanced current, even though the

local load is unbalance and nonlinear. The unbalance current,

reactive power demand and harmonics are compensated by

DG1 as shown in Fig. 6. The power absorbed by the residence-

1 from micro-grid remains constant as 5kW. Even though

the local residential load changes as shown in Fig. 6(a), it

is observed that the PCC voltage remains constant as shown
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(a) Active power curves.

(b) Reactive power curves.

Fig. 7. Power curves in residence-2.

(a) Active power curves.

(b) Reactive power curves.

Fig. 8. Power curves in residence-3.

in Fig. 6(d). During dynamic load variations, in order to meet

the local load variations, the control algorithm will change the

modulating signal of the VSC of the respective DG, hence the

PCC voltage is regulated.

Similarly, the dynamic performance of DG2 and DG3

controller in residence-2 and residence-3 are shown in Fig.

7 and Fig. 8. From figures it is observed that, both residences

absorb constant active power from the main grid. However,

sudden local load variations, reactive power demand, unbal-

anced current and harmonic current demand is compensated

by respective residential DG.

The power input for DG4 is solar power along with BES.

The rating of battery storage system of DG4 is selected as

150% of total average demand of micro-grid. The total demand

in the micro-grid is 17kW (i.e sum of the power demand

Fig. 9. Micro-grid power curves.

from the residence-1, residence-2 and residence-3). The DG4

operate in three mode,

1) Charging mode.

2) Sharing mode.

3) Feeding mode.

1) Charging mode: when the solar power is not available

and battery storage system of DG4 is not fully charged, then

the constant active power absorbed by the DG4 from main

grid is completely utilized to charge the BES of DG4. In

addition the active power demands of residence-1, residence-

2 and residence-3 is also supplied by the main grid as shown

in Fig. 9.

2) Sharing mode: When the solar power available with

DG4 is less than the total power demand from residence-1,

residence-2 and residence-3, then the active power demanded

by all residences is shared between main grid and DG4. In

Fig. 9, it is observed that solar power available with DG4

of 7kW is supplied to all residences. However, the addition

power demand of 10kW is supplied by main grid.

3) Feeding mode: When the BES of DG4 is fully charged

and the solar power available with DG4 is greater than the

total active power demand by all residences, then the surplus

power is injected into main grid. In Fig. 9, it is observed that

out of 23kW solar power available with DG4, 17kW active

power is supply to all residences. However, additional active

power of 6kW is injecting into main grid.

B. Transition of micro-grid from grid connected mode to

islanded mode

Under healthy grid condition the micro-grid is operating

in grid connected mode. In this mode, proposed system

power balance and the terminal voltage of the micro-grid is

maintained by main grid. If any fault occurred in the main grid,

then the micro-grid is disconnected from the main grid and

operate in islanded mode. In this paper an intentional islanding

is done, in order to observe the transition of micro-grid from

grid connected mode to islanded mode. During this transition,

the controller of DG4 is switched to voltage control mode

from power control mode. The micro-grid voltage in islanded

mode is maintained by DG4. For this, the instantaneous phase

angle value for the reference voltage is obtained from the
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Fig. 10. Transition from grid connected to islanded mode.

Fig. 11. PCC4 voltage during grid connected to islanded mode.

previous estimated value during grid connected mode. This

is achieved by switching the mode selection-1 in modified

control block-1 as shown in Fig. 4. From this the instantaneous

phase jump is avoided and smooth transition is occurred from

the grid connected mode to islanded mode as shown in Fig.

11.

C. Micro-grid in islanded mode

During islanded mode of operation of micro-grid, the micro-

grid voltage is maintained by the DG4. In islanded mode DG4

is controlled as voltage source. In this mode of operation, the

controller of DG1, DG2 and DG3 remains same as in grid

connected mode. The residence-1, residence-2 and residence-

3 demands constant load of 5kW, 8kW and 4kW which is

completely supplied by the DG4. However the local load

disturbances are handled by the local DG’s, these disturbances

will not reflect in micro-grid as shown in Fig. 5, Fig. 6,

Fig. 7 and Fig. 8. The harmonics and reactive power demand

of local loads are compensated by the local DG’s. Hence,

proposed control scheme reduces the burden on DG4 due to

load disturbances, harmonics and reactive power demand of

all the residential loads.

D. Transition of micro-grid from islanded mode to grid con-

nected mode

When the main grid is in healthy condition (i.e grid fault

is cleared), then the micro-grid is reconnected to the main

grid. Before the reconnection of micro-grid with main grid, the

Fig. 12. Transition from islanded to grid connected mode.

Fig. 13. PCC4 voltage during islanded to grid connected mode.

micro- grid voltage is synchronised with the voltage magnitude

and instantaneous phase of main grid by switching the mode

selection-2 as shown in modified control block-1 of Fig. 4. The

reference voltage for DG4 is passed through rate limiter (RTL)

as shown in modified control block-2 of Fig. 4, from this the

spike in the micro-grid voltage is reduced while changing the

voltage reference value. After the re-synchronisation of micro-

grid voltage with main grid, the micro-grid is reconnected to

the main grid by closing static transfer switch. From this,

the smooth transition is occurred from the islanded mode

to grid connected mode which can be observed in Fig. 13.

During this mode, the controller of DG4 is switched to power

control mode from voltage control. However, the controllers

of remaining DG’s in residence-1, residence-2 and residence-3

are unchanged.

V. CONCLUSION

The performance of proposed micro-grid for the residential

community under load disturbances, during grid connected

mode, islanded mode and re-synchronisation of micro-grid to

main grid is verified. The performance of modified power con-

trol technique is evaluated in order to achieve constant active

power loading on the micro-grid by supplying additional active

power residential load demand from respective residential DG.

The residential sudden load variations, reactive power demand,

unbalance current and harmonic current is compensated by

respective residential DG. Hence, transient free operation of

micro-grid is achieved. In addition, the smooth transition from
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grid connected mode to islanded mode and re-synchronisation

to main grid is verified.
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