
A Reliable Multicast Framework for Light-weight Sessions
and Application Level Framing

Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia Zhang
to appear in IEEE/ACM Transactions on Networking, December 1997

—This paper describes SRM (Scalable Reliable Multicast), a
reliable multicast framework for light-weight sessions and application level
framing. The algorithms of this framework are efficient, robust, and scale
well to both very large networks and very large sessions. The SRM frame-
work has been prototyped in wb, a distributed whiteboard application,
which has been used on a global scale with sessions ranging from a few
to a few hundred participants. The paper describes the principles that have
guided the SRM design, including the IP multicast group delivery model,
an end-to-end, receiver-based model of reliability, and the application level
framing protocol model. As with unicast communications, the performance
of a reliable multicast delivery algorithm depends on the underlying topol-
ogy and operational environment. We investigate that dependence via anal-
ysis and simulation, and demonstrate an adaptive algorithm that uses the
results of previous loss recovery events to adapt the control parameters used
for future loss recovery. With the adaptive algorithm, our reliable multicast
delivery algorithm provides good performance over a wide range of under-
lying topologies.

1 Introduction

Several researchers have proposed generic reliable multicast pro-
tocols, much as TCP is a generic transport protocol for reliable
unicast transmission. In this paper we take a different view: un-
like the unicast case where requirements for reliable, sequenced
data delivery are fairly general, different multicast applications
have widely different requirements for reliability. For exam-
ple, some applications require that delivery obey a total order-
ing while many others do not. Some applications have many or
all the members sending data while others have only one data
source. Some applications have replicated data, for example in
an -redundant file store, so several members are capable of
transmitting a data item while for others all data originates at a
single source. These differences all affect the design of a reliable
multicast protocol. Although one could design a protocol for
the worst-case requirements, e.g., guaranteeing totally ordered
delivery of replicated data from a large number of sources, such
an approach results in substantial overhead for applications with
more modest requirements. One cannot make a single reliable
multicast delivery scheme that optimally meets the functional-
ity, scalability, and efficiency requirements of all applications.

The weakness of “one size fits all” protocols has long been

S. Floyd and V. Jacobson are both with the Network Research Group, Lawrence Berke-
ley Laboratory, Berkeley CA, and S. McCanne is with the University of California, Berke-
ley, CA (email: floyd, van@ee.lbl.gov, mccanne@eecs.berkeley.edu). S. Floyd, V. Jacob-
son, and S. McCanne were supported by the Director, Office of Energy Research, Scien-
tific Computing Staff, of the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098.

Ching-Gung Liu is with the University of Southern California, Los Angeles, CA (email:
charley@carlsbad.usc.edu).

Lixia Zhang is with UCLA, Los Angeles, CA (email: lixia@cs.ucla.edu). Ching-Gung
Liu and Lixia Zhang were supported in part by the Advanced Research Projects Agency,
monitored by Fort Huachuca under contract DABT63-94-C-0073.

An earlier version of this paper appeared in ACM SIGCOMM 95.

recognized. In 1990 Clark and Tennenhouse proposed a new
protocol model called Application Level Framing (ALF) which
explicitly includes an application's semantics in the design of
that application's protocol [6]. ALF was later elaborated with
a light-weight rendezvous mechanism based on the IP multicast
distribution model, and with a notion of receiver-based adap-
tation for unreliable, real-time applications such as audio and
video conferencing. The result, known as Light-Weight Ses-
sions (LWS) [19], has been very successful in the design of
wide-area, large-scale, conferencing applications. This paper
further evolves the principles of ALF and LWS to add a frame-
work for Scalable Reliable Multicast (SRM).

ALF says that the best way to meet diverse application re-
quirements is to leave as much functionality and flexibility as
possible to the application. Therefore SRM is designed to meet
only the minimal definition of reliable multicast, i.e., eventual
delivery of all the data to all the group members, without en-
forcing any particular delivery order. We believe that if the need
arises, machinery to enforce a particular delivery order can be
easily added on top of this reliable delivery service.

It has been argued [36, 34] that a single dynamically config-
urable protocol should be used to accommodate different appli-
cation requirements. The ALF argument is even stronger: not
only do different applications require different types of error re-
covery, flow control, and rate control mechanisms, but further,
these mechanisms must explicitly account for the structure of
the underlying application data itself.

SRM is also heavily based on the group delivery model that
is the centerpiece of the IP multicast protocol [8]. In IP multi-
cast, data sources simply send to the group' s multicast address
(a normal IP address chosen from a reserved range of addresses)
without needing any advance knowledge of the group member-
ship. To receive any data sent to the group, receivers simply an-
nounce that they are interested (via a “join” message multicast
on the local subnet) — no knowledge of the group membership
or active senders is required. Each receiver joins and leaves the
group individually, without affecting the data transmission to
any other member. SRM further enhances the multicast group
concept by maximizing information and data sharing among all
the members, and strengthens the individuality of membership
by making each member responsible for its own correct recep-
tion of all the data.

Finally, SRM attempts to follow the core design principles of
TCP/IP. First, SRM requires only the basic IP delivery model
— best-effort with possible duplication and reordering of pack-
ets — and builds reliability on an end-to-end basis. No change
or special support is required from the underlying IP network.

1

Second, in a fashion similar to TCP adaptively setting timers
or congestion control windows, the algorithms in SRM dynami-
cally adjust their control parameters based on the observed per-
formance within a session. This allows applications using the
SRM framework to adapt to a wide range of group sizes, topolo-
gies and link bandwidths while maintaining robust and high per-
formance.

Wb, the distributed whiteboard tool designed and implemented
by McCanne and Jacobson [17, 23], is the first application based
on the SRM framework. In this paper we discuss wb in some de-
tail, to illustrate the use of SRM in a specific application.

The paper proceeds as follows: Section 2 discusses general is-
sues for reliable multicast delivery. Section 3 describes the SRM
framework, and discusses the wb instantiation of this frame-
work. Section 4 discusses the performance of SRM in sim-
ple topologies such as chains, stars, and bounded-degree trees,
and Section 5 presents simulation results from more complex
topologies. Section 6 examines the behavior of the loss recovery
algorithm in SRM as a function of the timer parameters. Sec-
tion 7 discusses extensions to the basic reliable multicast frame-
work, such as adaptive algorithms for adjusting the timer pa-
rameters and algorithms for local recovery. Section 8 discusses
related work on reliable multicast. Section 9 discusses future
work on SRM.

2 The design of reliable multicast

2.1 Reliable data delivery: adding the word “mul-
ticast”

The problem of reliable unicast data delivery is well understood
and a variety of well-tested solutions are available. However,
for the reliable transmission of data to a potentially large group
of receivers, multicast transmission offers the most promising
approach. If a sender were to open N separate unicast TCP con-
nections to N different receivers, then N copies of each packet
might have to be sent over links close to the sender, making poor
use of the available bandwidth. In addition, the sender would
have to keep track of the status of each of the N receivers. Mul-
ticast delivery permits a much more efficient use of the available
bandwidth, with at most one copy of each packet sent over each
link in the absence of dropped packets. In addition, IP multicast
allows the sender to send to a group without having to have any
knowledge of the group membership. At the same time, adding
“multicast” to the data transport problem significantly changes
the solution set for reliable delivery.

For example, in any reliable protocol some party must take
responsibility for loss detection and recovery. Because of the
“fate-sharing” implicit in unicast communication, i.e., the data
transmission fails if either of the two ends fails, either the sender
or receiver can take on this role. In TCP, the sender times trans-
missions and keeps retransmitting until an acknowledgment is
received. NETBLT [7] uses the opposite model and makes the
receiver responsible for all loss detection and recovery. Both
approaches have been shown to work well for unicast.

However, if a TCP-style, sender-based approach is applied
to multicast distribution, a number of problems occur. First,

because data packets trigger acknowledgments (positive or neg-
ative) from all the receivers, the sender is subject to the well-
known ACK implosion effect [10]. Also, if the sender is re-
sponsible for reliable delivery, it must continuously track the
changing set of active receivers and the reception state of each.
Since the IP multicast model deliberately imposes a level of in-
direction between senders and receivers (i.e., data is sent to the
multicast group, not to the set of receivers), the receiver set may
be expensive or impossible to obtain. Finally, the algorithms
that are used to adapt to changing network conditions tend to
lose their meaning in the case of multicast. E.g., how should
the round-trip time estimate for a retransmit timer be computed
when there may be several orders of magnitude difference in
propagation time to different receivers? What is a congestion
window if the delay-bandwidth product to different receivers
varies by orders of magnitude? What self-clocking information
exists in the ACK stream(s) if some receivers share one bottle-
neck link and some another?

These problems illustrate that single-point, sender-based con-
trol does not adapt or scale well for multicast delivery. Since
members of a multicast group have different communication
paths and may come and go at any time, the “fate-shared” cou-
pling of sender and receiver in unicast transmissions does not
generalize to multicast. Thus it is clear that receiver-based reli-
ability is a far better building block for reliable multicast [33].

Another unicast convention that migrates poorly to multicast
has to do with the vocabulary used by the sender and receiver(s)
to describe the progress of their communication. A receiver can
request a retransmission either in application data units (“sector
5 of file sigcomm-slides.ps”) or in terms of the shared communi-
cation state (“sequence numbers 2560 to 3071 of this conversa-
tion”). Both models have been used successfully (e.g., NFS uses
the former and TCP the latter) but, because the use of commu-
nication state for naming data allows the protocol to be entirely
independent of any application's namespace, it is by far the most
popular approach for unicast applications. However, since mul-
ticast transmission tends to have much weaker and more diverse
state synchronization than does unicast, using shared commu-
nication state to name data does not work well in the multicast
case.

For example, if a receiver joins a conversation late and re-
ceives sequence numbers 2560 to 3071, it has no idea of what's
been missed (since the sender' s starting number is arbitrary)
and so can neither do anything useful with the data nor make
an intelligent request for retransmission. If receivers hear from
a sender again after a lengthy network partition, they have no
way of knowing whether “2560” is a retransmission of data they
received before the partition or is completely new (due to se-
quence number wrapping during the partition). Thus the “nam-
ing in application data units (ADUs)” model works far better for
multicast.

Use of this model also has two beneficial side effects. As
Clark and Tennenhouse [6] point out, a separate protocol names-
pace can impose delays and inefficiencies on an application,
e.g., TCP will only deliver data in sequence even though a file
transfer application might be perfectly happy to receive sectors
in any order. The ADU model eliminates this delay and puts
the application back in control. Also, since ADU names can

2

be made independent of the sending host, it is possible to use
the anonymity of IP multicast to exploit the redundancy of mul-
tiple receivers. E.g., if some receiver asks for a retransmit of
“sigcomm-slides.ps sector 5”, any member who has a copy of
the data, not just the original sender, can carry out the retrans-
mission.

2.2 Reliable multicast requirements

While the ALF model says that applications should be actively
involved in their communications and that communication should
be done in terms of ADUs rather than some generic protocol
namespace, we do not claim that every application's protocol
must be completely different from every other' s or that there
can be no shared design or code. A great deal of design com-
monality is imposed simply because different applications are
attempting to solve the same problem: scalable, reliable, multi-
point communication over the Internet. As Section 2.1 pointed
out, just going from unicast to multicast greatly limits the vi-
able protocol design choices. In addition, experience with the
Internet has shown that successful protocols must accommo-
date many orders of magnitude variation in every possible di-
mension. While several algorithms meet the constraints of Sec-
tion 2.1, very few of them continue to work if the delay, band-
width and user population are all varied by factors of 1000 or
more.

In the end we believe the ALF model results in a framework
that is then filled in with application specific details. Portions
of the SRM framework are completely determined by network
dynamics and scaling considerations and apply to any applica-
tion. For example, the scalable request and repair algorithms
described in Sections 3 through 7 are completely generic and
apply to a wide variety of reliable multicast applications. Each
different application supplies this reliability framework with a
namespace to talk about what data has been sent and received;
a policy and machinery to determine how much bandwidth is
available to the group as a whole; a policy to determine how the
available bandwidth should be apportioned between the partici-
pants in the group; and a local send policy that a participant uses
to arbitrate the different demands on its bandwidth (e.g., locally
originated data, requests and responses, etc.). It is the intent of
this paper to describe the framework common to scalable, reli-
able multicast applications. In particular, this paper focuses on
reliability rather than on congestion control. We believe that for
multicast applications, the congestion control mechanisms will
have to take into account application-specific needs and capa-
bilities.

To make the SRM framework concrete, we first describe a
widely used application — wb, the LBNL network whiteboard
— that has been implemented according to the SRM framework.
One component of wb is an application-level reliable multicast
protocol that is the precursor to SRM. However, the goal of this
paper is not to explore the specifics of wb, but to use wb to illus-
trate the underlying reliable multicast framework. After men-
tioning some details of wb's operation that are direct results of
the design considerations outlined in Section 2.1, we then fac-
tor out the wb specifics to expose the generic SRM framework
underneath. The remaining sections of this paper are an explo-

ration of that framework.

2.3 Wb's assumptions about reliable multicast

This section briefly describes wb, a network conferencing tool
that provides a distributed whiteboard, and explores some of the
assumptions made in wb's use of reliable multicast.

Wb separates the drawing into pages, where a new page can
correspond to a new viewgraph in a talk or the clearing of the
screen by a member of a meeting. Any member can create a
page and any member can draw on any page. There are floor
control mechanisms, largely external to wb, that can be used if
necessary to control who can create or draw on pages. These can
be combined with normal Internet privacy mechanisms (e.g.,
symmetric-key encryption of all the wb data) to limit partici-
pation to a particular group and/or with normal authentication
mechanisms (e.g., participants signing their drawing operations
via public-key encryption of a cryptographic hash over the data)
[24, 18].

Each member is identified by a globally unique identifier, the
Source-ID, and each page is identified by a Page-ID consisting
of the Source-ID of the initiator of the page and a page number
locally unique to that initiator. Each member drawing on the
whiteboard produces a stream of drawing operations, or “dra-
wops”, that are timestamped and assigned sequence numbers,
relative to the sender. Each sequence of drawops is sent with the
Page-ID of the relevant page. An example would be a drawop
to draw a blue line at a particular set of coordinates on a page.

Wb has no requirement for ordered delivery because most
drawing operations are idempotent and are rendered immedi-
ately upon receipt; out of order drawops are sorted upon arrival
according to their timestamps. Each member' s graphics stream
is thus independent from that of other sites. Operations that are
not strictly idempotent, such as a “delete” that references an ear-
lier drawop, can be patched after the fact, when the missing data
arrives.

The following assumptions are made in wb's reliable multi-
cast design:

All data has a unique, persistent name.
This global name consists of the end host's Source-ID and
a locally-unique sequence number.
The name always refers to the same data.
It is impossible to achieve consistency among different re-
ceivers in the face of late arrivals and network partitions if,
say, drawop “floyd:5” initially means to draw a blue line
and later means to draw a red circle. This does not mean
that the drawing can' t change, only that drawops must ef-
fect the change. E.g., to change a blue line to a red circle,
a “delete” drawop for “floyd:5” is sent, then a drawop for
the circle is sent.
Source-ID's are persistent.
A user will often quit a session and later re-join, obtaining
the session's history from the network. By ensuring that
Source-ID's are persistent across invocations of the appli-
cation, the user maintains ownership of any data created
before quitting.
IP multicast datagram delivery is available.
All participants join the same multicast group; there is no

3

distinction between senders and receivers.

3 The SRM framework

SRM is the reliable multicast framework intended for a range of
applications that share wb's assumptions above, including that
of IP multicast datagram delivery. One assumption central to
SRM is that the data has unique, persistent names. An open re-
search challenge is to design a data naming scheme that reflects
the flexibility of ALF yet allows the SRM framework to manip-
ulate names in a generic fashion. A second assumption is that
the application naming conventions allow us to impose a hierar-
chy over the name space. For the rest of this paper, we assume
that the data space is subdivided into groups or containers that
we call “pages”, and that the locally unique name is a simple
sequence number with sufficient precision to never wrap. (The
term “page” refers to a general concept even though it reflects
our whiteboard-biased design.)

Whenever a member generates new data, the data is multi-
cast to the group. Each member of the group is individually
responsible for detecting loss, generally by detecting a gap in
the sequence space, and requesting retransmission. However,
since it is possible that the last object of a sequence is dropped,
each member multicasts low-rate, periodic, session messages
that announce the highest sequence number received from ev-
ery member for the current page. In addition to the reception
state, the session messages contain timestamps that are used to
estimate the distance (in time) from each member to every other
(described in Section 3.1).

To prevent the implosion of control packets sent from re-
ceivers in a multicast group, receivers in the Xpress Transport
Protocol (XTP) design [36] multicast control packets to the en-
tire group. Using the slotting and damping mechanisms in the
XTP design, receivers wait for a random time before sending
a control packet, and refrain from sending a control packet if
they see a control packet from another receiver with the same
information. SRM uses similar mechanisms to control the send-
ing of request and repair packets, with the addition that in the
SRM design, the random delay before sending a request or re-
pair packet is a function of that member' s distance in seconds
from the node that triggered the request or repair. The timer
calculations are described in detail in Section 3.2.

As with the original data, repair requests and retransmissions
are always multicast to the whole group. Thus, although a num-
ber of hosts may all miss the same packet, a host close to the
point of failure is likely to timeout first and multicast the re-
quest. Other hosts that are also missing the data hear that re-
quest and suppress their own request. Any host that has a copy
of the requested data can answer a request. It will set a repair
timer, and multicast the repair when the timer goes off. Other
hosts that had the data and scheduled repairs will cancel their
repair timers when they hear the multicast from the first host.
This does not require that all session members keep all of the
data all of the time; reliable data delivery is ensured as long as
each data item is available from at least one member. Ideally, a
lost packet triggers only a single request from a host just down-
stream of the point of failure and a single repair from a host

just upstream of the point of failure. Section 5 explores in more
detail the number of requests and repairs in different topologies.

3.1 Session messages

In SRM, each member multicasts periodic session messages that
report the sequence number state for active sources. Session
messages for reliable multicast [10] have been previously pro-
posed to enable receivers to detect the loss of the last packet
in a burst, and to enable the sender to monitor the status of re-
ceivers. Members can also use session messages in SRM to
determine the current participants of the session. The average
bandwidth consumed by session messages is limited to a small
fraction (e.g., 5%) of the aggregate data bandwidth, whether
pre-allocated by a reservation protocol or measured adaptively
by a congestion control algorithm. SRM members use the algo-
rithm developed for vat and described in [32] for dynamically
adjusting the generation rate of session messages in proportion
to the multicast group size.

In a large, long-lived session, the state would become unman-
ageable if each receiver had to report the sequence numbers of
everyone who had ever sent data to the group. To prevent this
explosion, we impose hierarchy on the data by partitioning the
state space into `pages'. Each member only reports the state
of the page it is currently viewing. A receiver browsing over
previous pages may issue page requests to learn the sequence
number state for that page. If a receiver joins late, it may is-
sue page requests to learn the existence of previous pages. We
omit the details of the page state recovery protocol as it is almost
identical to the repair request/response protocol for data.

In addition to state exchange, receivers use the session mes-
sages to estimate the one-way distance between nodes. All pack-
ets for that group, including session packets, include a Source-
ID and a timestamp. The session packet timestamps are used
to estimate the host-to-host distances needed by the repair algo-
rithm.

The timestamps are used in a highly simplified version of the
NTP time synchronization algorithm [26]. Assume that host
sends a session packet at time and host receives
at time . At some later time, , host generates a session
packet , marked with where (time
is included in to make the algorithm robust to lost session
packets). Upon receiving at time , host can estimate the
latency from host to host as , or equivalently,
as . Note that while this estimate does
not assume synchronized clocks, it does assume that paths are
roughly symmetric. We have not yet explored the performance
of these algorithms in topologies with strong asymmetry in the
one-way delays of forward and reverse paths.

3.2 Loss recovery

This section describes SRM's loss recovery algorithm, which
provides the foundation for reliable delivery. Section 7.1 de-
scribes a modified version of this algorithm with an adaptive ad-
justment of the timer parameters. Section 7.2 discusses the local
recovery algorithms that would be a critical component of SRM
for efficient operation in large multicast groups in a congested

4

environment.
In SRM, members who detect a loss wait a random time and

then multicast their repair request, to suppress requests from
other members sharing that loss. These repair requests differ
from traditional negative acknowledgements (NACKs) in two
respects: they are not addressed to a specific sender, and they
request data by its unique, persistent name. When a host A de-
tects a loss, it schedules a repair request for a random time in
the future. When the request timer expires, host A multicasts
a request for the missing data, and doubles the request timer to
wait for the repair.

In SRM, the interval over which the request timer is set is a
function of the member' s estimated distance to the source of the
packet. The request timer is chosen from the uniform distribu-
tion on seconds, where is host
A's estimate of the one-way delay to the original source S of the
missing data. The numbers and are parameters of the
request algorithm that are discussed at length later in the paper.

If host A receives a request for the missing data before its own
request timer for that data expires, then host A does a (random)
exponential backoff, and resets its request timer. That is, if the
current timer had been chosen from the uniform distribution on

then the backed-off timer is randomly chosen from the uniform
distribution on

When some other host B (where B may be the original source
S) receives a request from A that host B is capable of answering,
host B sets a repair timer to a value from the uniform distribution
on

seconds, where is host B's estimate of the one-way delay
to host A, and the numbers and are parameters of the
repair algorithm discussed later in the paper. If host B receives
a repair for the missing data before its repair timer expires, then
host B cancels its repair timer. Otherwise, when host B's repair
timer expires host B multicasts the repair. In keeping with the
philosophy that the receiver is responsible for ensuring its own
correct reception of the data, host B does not verify whether host
A actually receives the repair.

Due to the probabilistic nature of these algorithms, it is not
unusual for a dropped packet to be followed by more than one
request. When two or more hosts generate a request for the same
data at roughly the same time, we have redundant control traffic
(i.e., wasted bandwidth) and the colliding participants should
increase the spread in their retransmission distribution to avoid
similar collisions in the future.

Some care is required in deciding when to back-off an already backed-off timer. In
our simulator, we use a heuristic to detect requests that belong to the same iteration of loss
recovery. When member A backs-off the request timer, then member A sets an ignore-
backoff variable to a time halfway between the current time and the expiration time, and
ignores additional duplicate requests until ignore-backoff time. Requests received before
the ignore-backoff time are assumed to belong to the same iteration of the loss recovery as
the request that resulted in the most recent backoff. A request received after the ignore-
backoff time is assumed to belong to the next iteration, and causes member A to again
back-off its request timer.

Because there can be more than one request, a host could re-
ceive a duplicate request immediately after sending a repair, or
immediately after receiving a repair in response to its own ear-
lier request. In order to prevent duplicate requests from trigger-
ing a responding set of duplicate repairs, host B ignores requests
for data D for seconds after sending or receiving a repair
for that data, where host S is either the original source of data D
or the source of the first request.

3.3 Congestion control

The simplest congestion control mechanism for SRM would
be for all members of the multicast group to assume a fixed
bandwidth constraint over the aggregate session. This would
be appropriate, for example, if members of the multicast group
used an out-of-band mechanism (e.g., explicit bandwidth reser-
vations, or the informal, consensus-based procedures of the cur-
rent Mbone) to verify bandwidth availability. However, different
congestion control mechanisms are likely to be required for dif-
ferent applications and different contexts. Congestion control
mechanisms for SRM are discussed further in Section 9.3.

Because data represents idempotent operations, loss recovery
can proceed independently from the transmission of new data.
Similarly, recovery for losses from two different sources can
also proceed independently. Since transmission bandwidth is of-
ten limited, a single transmission rate is allocated to control the
throughput across all these different modes of operation, while
the application determines the order of packet transmission ac-
cording to their relative importance.

3.4 Network partitioning and other concerns

Because SRM relies on the underlying concept of an IP multi-
cast group, where members can arrive and depart independently,
SRM does not distinguish a network partition from a normal de-
parture of members from the multicast session. During a parti-
tion, members can continue to send data in the connected com-
ponents of the partitions. After recovery all data will still have
unique names and the repair mechanism will distribute any new
state throughout the entire group.

For applications that may require partial or total data order-
ing, the SRM framework could be used to reliably deliver the
data to all group members, and a partial or total ordering proto-
col could be built on top that is specifically tailored to the order-
ing needs of that application. Ordering is further complicated by
disagreements about how the ordering itself should be defined:
Cheriton and Skeen [5] have argued (and Birman [1] has rebut-
ted) that for applications with ordering requirements, preserving
the ordering of messages as they appear in the network can be an
expensive and inadequate substitute for preserving the “seman-
tic ordering” of the messages appropriate for the application.

Potential applications for SRM other than wb, including rout-
ing protocol updates, Usenet news, and adaptive web caches, are
discussed briefly in [12, 13].

5

3.5 Wb's instantiation of SRM

This section describes both the design and the current state of
the implementation of reliable multicast for wb. As discussed
below, the rate-contol mechanism and the estimates of one-way
delay are key aspects of the design that are not yet included in
the current implementation of wb.

In the present implementation of wb (version 1.59), mem-
bers set a request timer to a random value from the interval [,

], where is set to a fixed value of 30 msec. The estimation
of the distance to other members has not yet been included in
the current implementation. Similarly, after receiving a request
members set a repair timer to a random value from the interval
[,]. For the original source of the data, is set to a fixed
value of 100 msec., and for other members is set to 200 msec.
These fixed values for and were chosen after examinations
of traces taken over several typical wide-area wb sessions. The
current values for and are sufficiently large to ensure that
there is generally only one request and one repair. When the
original source of the data is still on-line, the repair generally
comes from that original source.

The current implementation of wb relies on the informal, consensus-
based “admissions-control procedure” of the current Mbone. The
congestion control mechanism in the design for wb assumes a
fixed maximum bandwidth allocation for each session. In this
design, each wb session would have a sender bandwidth limit
advertised as part of the session announcement, and individual
members would use a token bucket rate limiter to enforce this
peak rate on transmissions. As of the writing of this paper, this
rate control mechanism has not yet been added to the wb imple-
mentation. In practice, wb sessions generally use considerably
less average bandwidth than their accompanying audio sessions.
However, the need for this rate control can at times be made
painfully obvious, for example, when new members join a ses-
sion and ask for back history.

One application-specific issue concerns the relative priorities
between sending new data, requests, and repairs. When a mem-
ber of a wb session is able to send a packet, the highest priority
goes to requests or repairs for the current page, middle priority
to new data, and lowest priority to requests or repairs for previ-
ous pages.

One issue that has been made obvious from implementation
experience has been the persistence of the data. Wb does not
necessarily store all of the data on backup storage on a disk;
data for current pages is kept only in memory. If data somehow
becomes corrupt — either due to internal application bugs or
because of external system failures — it can spread like a virus
throughout the wb session. When the corrupted data is used to
answer repair requests, the corrupted data is distributed through-
out the multicast group, and persists for the life of the session.
To avoid this, each piece of data can be accompanied by a tag
that not only authenticates the source of the data but also verifies
its integrity.

4 Request/repair algorithms for simple
topologies

We now turn to a more detailed investigation of the loss recovery
algorithms in SRM. Because multiple hosts may detect the same
losses, and multiple hosts may attempt to handle the same repair
request, the goal of the request/repair timer algorithms is to de-
synchronize host actions to keep the number of duplicates low.
Among hosts that have diverse delays to other hosts in the same
group, this difference in delay can be used to differentiate hosts;
for hosts that have similar delays to reach others, we can only
rely on randomization to de-synchronize their actions.

This section discusses a few simple, yet representative, topolo-
gies, namely chain, star, and tree topologies, to provide a foun-
dation for understanding the loss recovery algorithms in more
complex environments. For a chain the essential feature of a
loss recovery algorithm is that the timer value is a function of
distance. For a star topology the essential feature of the loss re-
covery algorithm is the randomization used to reduce implosion.
Request/repair algorithms in a tree combine both the randomiza-
tion and the setting of the timer as a function of distance. This
section shows that the performance of the loss recovery algo-
rithms depends on the underlying network topology.

4.1 Chains

Figure 1 shows a chain topology where all nodes in the chain are
members of the multicast session. Each node in the underlying
multicast tree has degree at most two. The chain is an extreme
topology where a simple deterministic loss recovery algorithm
suffices. In this section we assume that the timer parameters
and are set to 1, and that and are set to 0. This results
in request timers set deterministically to , and repair timers
set to .

For the chain, as in most of the other scenarios in this paper,
link distance and delay are both normalized. We assume that
packets take one unit of time to travel each link, i.e., all links
have distance of 1.

.

Lj L2 L1 R1 R2 RkL(j+1)
S

: source of dropped packet

: congested edge

Figure 1: A chain topology.

In Figure 1 the nodes in the chain are labeled as either to the
right or to the left of the congested link. Assume that source
multicasts a packet that is subsequently dropped on link (,

), and that the second packet sent from source is not
dropped. We call the edge that dropped the packet, whether due
to congestion or to other problems, the congested link. Let the
right-hand nodes each detect the failure when they receive the
second packet from .

Let node first detect the loss at time , and let each link
have distance 1. Then node multicasts a request at time .

6

Node receives the request at time and multicasts
a repair at time . Node receives the repair at time

.
Note that all nodes to the right of node receive the request

from before their own request timers expire. We call this
deterministic suppression. The reader can verify that, due to
deterministic suppression, there will be only one request and one
repair. For example, node detects the loss at time ,
sets its request timer for time

, and receives the request from node at time
, well before its own request timer expires.

Had the loss repair been done by unicast, i.e. node sent a
unicast request to the source as soon as it detected the failure
and sent a unicast repair to as soon as it received the
request, node would not receive the repair until time

. Thus, with a chain and with a simple deterministic loss
recovery algorithm, the furthest node receives the repair sooner
than it would if it had to rely on its own unicast communication
with the original source, because both the request and the repair
come from nodes immediately adjacent to the congested link.

4.2 Stars

For the star topology in Figure 2 we assume that all links are
identical and that the center node is not a member of the mul-
ticast group. For a star topology, setting the request timer as a
function of the distance from the source is not an essential fea-
ture, as all nodes detect a loss at exactly the same time. Instead,
the essential feature of the loss recovery algorithm in a star is
the randomization used to reduce implosion; we call this proba-
bilistic suppression.

N1

N2

N3

N4
N5

N6

. . .
Ng

: source of dropped packet

: congested edge

Figure 2: A star topology.

For the star topology in Figure 2 assume that the first packet
from node is dropped on the adjacent link. There are
members of the multicast session, and the other members detect
the loss at exactly the same time. For the discussion of this
topology we assume that the timer parameters and are
set to 0; because all nodes detect losses and receive requests at
the same time, and are not needed to amplify differences
in delay. For a star topology, the only benefits in setting
greater than 0 are to avoid unnecessary requests from out-of-
order packets and to ensure a minimum delay when a request
timer is backed-off.

If is at most 1, then there will always be requests.
Increasing reduces the expected number of requests but in-
creases the expected time until the first request is sent. For

, the expected number of requests is roughly ,
and the expected delay until the first timer expires is sec-

onds (where one unit of time is one second). For example, if
is set to , then the expected number of requests is roughly
, and the expected delay until the first timer expires is

seconds.
Note that if was the source of the dropped packet, then

would be the only node to send a request, and the other session
members would receive the request at the same time. The same
remarks as above would then apply to with respect to repairs.

4.3 Bounded-degree trees

The loss recovery performance in a tree topology uses both the
deterministic suppression described for chain topologies and the
probabilistic suppression described for star topologies. Con-
sider a network topology of a bounded-degree tree with nodes
where interior nodes have degree . A tree topology combines
aspects of both chains and stars. The timer value should be a
function of distance, to enable requests and repairs to suppress
request and repair timers at nodes further down in the tree. In
addition, randomization is needed to reduce request/repair im-
plosion from nodes that are at an equal distance from the source
(of the dropped packet, or of the first request). In this section, we
show that the behavior of the request algorithms in a tree topol-
ogy depends principally on the distance of the sender from the
congested link, and on the ratio between the timer parameters

and .
We assume that node S in the tree is the source of the dropped

packet, and that link (B,A) drops a packet from source S. We call
nodes on the source's side of the congested link (including node
B) good nodes, and nodes on the other side of the congested
link (including node A) bad nodes. Node A detects the dropped
packet at time , when it receives the next packet from node S.
We designate node A as a level-0 node, and we call a bad node
a level-i node if it is at distance from node A.

Assume that the source of the dropped packet is at distance
from node A. Node A's request timer expires at time

where denotes a uniform random variable between 0 and
. Assuming that node A's request is not suppressed, a level-

node receives node A's request at time

Node B receives node A's repair request at time

A bad level- node detects the loss at time , and such a
node' s request timer expires at some time

Note that regardless of the values of and , a level-
node receives node A's request by time

The nodes all detect the failure at the same time, and all set their timers to a
uniform value in an interval of width . If the first timer expires at time , then the other

receivers receive that first request at time . So the expected number of duplicate
requests is equal to the expected number of timers that expire in the interval [,].

7

and a level- node' s request timer expires no sooner than
If

that is, if

then the level- node' s request timer will always be suppressed
by the request from the level-0 node. Thus, the smaller the
ratio , the fewer the number of levels that could be in-
volved in duplicate requests. This relation also demonstrates
why the number of duplicate requests or repairs is smaller when
the source (of the dropped packet, or of the request) is close to
the congested link.

Note that the parameter serves two different functions. A
smaller value for gives a smaller delay for node B to receive
the first request. At the same time, for nodes further away from
the congested link, a larger value for contributes to suppress-
ing additional levels of request timers. A similar tradeoff occurs
with the parameter . A smaller value for gives a smaller
delay for node B to receive the first repair request. At the same
time, for topologies such as star topologies, a larger value for
helps to prevent duplicate requests from session members at the
same distance from the congested link. Similar remarks apply
to the functions of and in the repair timer algorithm.

5 Simulations of the request and repair
algorithms

For a given underlying network, set of session members, ses-
sion sources, and congested link, it should be feasible to ana-
lyze the behavior of the repair and request algorithms with fixed
timer parameters , , , and . However, we are inter-
ested in the repair and request algorithms across a wide range
of topologies and scenarios. We use simulations to examine
the performance of the loss recovery algorithms for individual
packet drops in random and bounded-degree trees. We do not
claim to be presenting realistic topologies or typical patterns of
packet loss.

We define the density of a session as the fraction of nodes in
the underlying network that are members of the multicast ses-
sion. The simulations in this section show that the loss recovery
algorithms with fixed timer parameters perform well in a ran-
dom or bounded-degree tree for dense sessions, where many of
the nodes in the underlying tree are members of the multicast
session. The loss recovery algorithms perform somewhat less
well for a sparse session, where the session size is small relative
to the size of the underlying network, and the members might
be scattered throughout the net. This motivates the development
on the adaptive loss recovery algorithm in Section 7.1, where the
timer parameters , , , and are adjusted in response
to past performance.

In these simulations the fixed timer parameters are set as fol-
lows: , and , where is the
number of members in the same multicast session. The choice
of for and is not critical, but gives slightly better
performance than for large G.

Each simulation constructs either a random tree or a bounded
degree tree with nodes as the network topology. Next, of
the nodes are randomly chosen to be session members; these
session members are not necessarily leaf nodes in the network
topology. Finally, a source S is randomly chosen from the
session members.

We assume that messages are multicast to members of the
multicast group along a shortest-path tree from the source of the
message. In each simulation we randomly choose a link L on
the shortest-path tree from source S to the members of the
multicast group. We assume that the first packet from source
S is dropped by link L, and that receivers detect this loss when
they receive the subsequent packet from source S.

[13] discusses the tools that we used to verify that our sim-
ulator is correctly implementing the loss recovery algorithms.
The simulator that we used for the simulations in this paper is
not publically available. However, much of the same function-
ality has been implemented in the ns-2 simulator [28]. Further
progress will be reported on the SRM web page [38].

5.1 Simulations on random trees

In this section we consider networks of random labeled trees,
where all nodes in the networks are session members. The next
section considers large networks with nodes of degree four, where
only a fraction of the nodes are members of the multicast group.

For the simulations on random labeled trees of nodes, the
random labeled trees are constructed according to the labeling
algorithm in [30, p.99]. These trees have unbounded degree, but
for large , the probability that a particular vertex in a random
labeled tree has degree at most four approaches (approximately)
0.98 [30, p.114]. Figure 3 shows simulations of the loss re-
covery algorithm for this case, where all nodes in the tree
are members of the multicast session (that is,). For
each graph the -axis shows the session size ; twenty simula-
tions were run for each value of . For each simulation, a new
random tree was constructed, and session members, a source,
and a congested link were randomly chosen. Each simulation is
represented by a jittered dot , and the median from the twenty
simulations is shown by a solid line. The two dotted lines mark
the upper and lower quartiles; thus, the results from half of the
simulations lie between the two dotted lines. While there are not
enough simulations to make accurate predictions of the behav-
ior of the loss recovery algorithms, the simulations do illustrate
the loss recovery algorithms under a range of circumstances.

The top two graphs in Figure 3 show the number of requests
and repairs to recover from a single loss. In these graphs the
median, lower quartile, and upper quartile lines are the same;
the -axis was chosen for an easy visual comparison with other
simulations later in the paper.

For each member affected by the loss, we define the loss re-
covery delay as the time from when the member first detects
the loss until the member first receives a repair. For each sim-
ulation, there is a dot in the bottom graph in Figure 3 showing
the loss recovery delay for the last member of the multicast ses-

A jittered dot is a dot for which some small random jitter has been added to the and
coordinates. In this way, the reader can differentiate between a single dot, and multiple

dots all with the same coordinates.

8

Session Size

N
um

be
r

of
 R

eq
ue

st
s

20 40 60 80 100

0
5

10
15

20

...................
.

.................

...
..................
..

...
.
.

..................

..
..

...
.

...
..................
.
.

Session Size

N
um

be
r

of
 R

ep
ai

rs

20 40 60 80 100

0
5

10
15

20

....................
.
.

....................
.

.
.

Session Size

D
el

ay
 (

in
 u

ni
ts

 o
f R

T
T

)

20 40 60 80 100

0
1

2
3

4
5

6

.

.

.......

........

.

.

.

.

...

....
.....
...
..
..

....
...
........
....
.

..

...

......
.....
...
.

...

....
.......
....
.

.

.
.....
....
.....
...
.

.

....

.
...
....
.......
.

.

..

......

..
.......
.
.

...
.
......
....
.....
.

..
...
...
......
.....
.

Figure 3: Random trees with a random congested link and a
single packet loss, where all nodes are members of the multicast
session.

sion to receive the repair. This loss recovery delay is given as
a multiple of the RTT, the roundtrip time from that member to
the original source of the dropped packet. While this member
has the largest loss recovery delay in absolute terms, this mem-
ber generally does not have the largest delay when expressed in
units of its own RTT.

Note that with unicast communications the ratio of loss re-
covery delay to RTT is at least one. For a unicast receiver that
detects a packet loss by waiting for a retransmit timer to time
out, the typical ratio of delay to RTT is closer to 2. With mul-
ticast loss recovery algorithms the ratio of delay to RTT can be
less than one, because the request and repair could each come
from a node close to the point of failure.

Figure 3 shows that the repair/request algorithm with fixed
timer parameters works well for a tree topology where all nodes
of the tree are members of the multicast session. There is usually
only one request and one repair. (Some lack of symmetry re-
sults from the fact that the original source of the dropped packet
might be far from the point of failure, while the first request
comes from a node close to the point of failure.) The average
recovery delay for the farthest node is less than 2 RTT, compet-
itive with the average delay available from a unicast algorithm
such as TCP. The results are similar in simulations where the
congested link is chosen adjacent to the source of the dropped
packet, and for simulations on a bounded-degree tree of size

where interior nodes have degree four. (We do not
claim that this is the average degree for a router in the Inter-
net, in the current Mbone, or in the likely multicast backbone

of the foreseeable future. From looking at a map of the current
Mbone topology, choosing a degree of four seemed as reason-
able a choice as any other that we might have made.)

5.2 Simulations on large bounded-degree trees

The loss recovery algorithms with fixed timer parameters per-
form less well for a sparse session in a large bounded-degree
tree. The underlying topology for the simulations in this section
is a balanced bounded-degree tree of nodes, with in-
terior nodes of degree four. In these simulations the session size

is significantly less than . For a session that is sparse rela-
tive to the underlying network, the nodes close to the congested
link might not be members of the session.

Session Size

N
um

be
r

of
 R

eq
ue

st
s

20 40 60 80 100

0
5

10
15

20
.................
..
.

..............

..

.

.

.
.

..................
.
.

....................
.
.

..................

.

.
...............
..
.
..

................

.

..

.

...................

.
...................
.

Session Size

N
um

be
r

of
 R

ep
ai

rs

20 40 60 80 100

0
5

10
15

20

......

.

.

...

.
....
...
.

......

...

..
.
.....
..

.

......

..

..

..

...

..

..

.

.....

.....

....

.

.

..
.

.

...
....
.

.
...
....
.
.
.

.

......

...

...

.

.

..
.
.

.

.

.....

......

..

.

..

...

.

.........

......

.

.

.

..

.......

..
....
...
..
.
.

.......
...
..
..
..
..
.
.

Session Size

D
el

ay
 (

in
 u

ni
ts

 o
f R

T
T

)

20 40 60 80 100

0
1

2
3

4
5

6

.

.....

.....

....

....
.

.......
......
....
..
.

.

....

........
..
.....

..
.......
....
....
..
.

....

....

....

....
...
.

.

.....

......
...
..
..
.

..

..........

.....

.

..

..

.....

.....

.....
..

.

..
.
.....
..
.....
...
.
.

..

.......

......

...
.
.

Figure 4: Bounded-degree tree, degree 4, 1000 nodes, with a
random congested link.

As Figure 4 shows, the average number of repairs for each
loss is somewhat high. In simulations shown in [13] where the
congested link is always adjacent to the source, the number of
repairs is low but the average number of requests is high.

The performance of the loss recovery algorithm on a range
of topologies is shown in [13]. These include topologies where
each of the nodes in the underlying network is a router with
an adjacent Ethernet with 5 workstations, point-to-point topolo-
gies where the edges have a range of propagation delays, and
topologies where the underlying network is more dense that a
tree. None of these variations that we have explored have signif-
icantly affected the performance of the loss recovery algorithms
with fixed timer parameters.

9

6 Exploring the parameter space

As the previous section showed, a particular set of values for
the timer parameters , , , and that performs well
in one scenario might not perform well in another scenario. In
this section we choose a few simple topologies, and explore the
behavior of the request/repair algorithms as a function of the
request timer parameter . In the following section we discuss
adaptive algorithms where the timer parameters are adjusted as a
function of the past performance of the loss recovery algorithms.

The results in this section can be briefly summarized as fol-
lows. The only simulations in this section that give unaccept-
ably large numbers of requests are those with small values for

on stars or for sparse sessions on trees. For these scenarios,
increasing reduces the number of duplicate requests, accom-
panied by moderate increases in the loss recovery delay. For a
star topology, there is a clear tradeoff between the delay and the
number of duplicates. In contrast, with a chain topology, setting

to zero gives the optimal behavior both in terms of delay and
in the number of duplicates. For a dense session in a tree topol-
ogy, a small value for gives good performance in terms of
both delay and duplicates.

For the simulations in this section, is set to 2. As Section
4.1 showed, for a chain with a deterministic loss recovery algo-
rithm, it is sufficient to set to 1. However, for a chain with
a randomized loss recovery algorithm, a higher value of is
needed to ensure that members further from the congested link
receive a request before their own request timer expires.

Figure 5 shows the tradeoffs between delay and duplicates in
a star topology of size 100, where the congested link is adjacent
to the source of the dropped packet. We define the request delay
for a session member as the delay from when the request timer
is set until a request was either sent by that member or received
from another member. The top graph in Figure 5 contains a dot
for each integer value of from 0 to 100, for the star topology
described in Section 4.2. For each dot, the -coordinate is the
expected request delay for that value of , and the -coordinate
is the expected number of requests.

More precisely, the -coordinate is given by the expected re-
quest delay for the bad member closest to the source of the
dropped packet, expressed as a multiple of the roundtrip time
from that member to the source of the dropped packet. When
there is not a unique bad member at the minimum distance from
the source, as in a star topology, then the -axis shows the ex-
pected smallest request delay from those members at the min-
imum distance from the source. For a star topology this is the
request delay for that member whose request timer expires first.

From the heuristic analysis in Section 4.2, the expected re-
quest delay (in units of the RTT of) is as follows:

where is the distance in seconds from the source to a session
member. From Section 4.2, the expected number of requests is
estimated as . The “x” in Figure 5 shows the
results for , and the circle shows the results for .
Thus the top graph of Figure 5 shows that increasing in a

Star Topology
Expected Request Delay (in units of RTT)

E
xp

ec
te

d
N

um
be

r
of

 R
eq

ue
st

s

1.0 1.1 1.2 1.3 1.4 1.5

0
20

40
60

80
10

0 .

.

.
.
..

x

o

Star Topology
Simulation Results of Average Request Delay (in units of RTT)

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
s

1.0 1.1 1.2 1.3 1.4 1.5

0
20

40
60

80
10

0 ..

.

.
.......

.

..

.
.

.
..

. ..
.

..

.

.
.

..

.. .
.. .
.
..

. .. .
..

.
.
..
.

.
.

.
.. .

.
.

.

.
.

. ...

.
...

.
. .

...
.

. .
.. .
. ...

.

.
.

..
.

..
.

.

..
. .
..

...
.

. .
.
.

.
. ...

.

.

...
.. .

.
.

.
.

...
.

.
.

... .. .
..

.
. . . .

. .
...

.
..

..
..

.........

.
.

.
..

...
.

..

.
.
.
..

.. .

.. .
.
..

. .. .
..

.
.
..

.

.
.

.
.. .

.
.

.
.

.
. ...

.
. . .

.
..

...
.

..
. . .
. ...

.

. .. .
..

.
..

.
. .

..

.

. . ..
. .

...
.

. .
.
.

.
. ...
.

.

...
.. .

..
.

. . ..
.
.

... .. .
..

.
.

.
... .. .

..
.

. .. .
. .

...
.

..
..

..

........x

o

..

.

.
.......

.

x

o

..

.

.
.......

.

x

o

..

.

.
.......

.

x

o

Figure 5: Tradeoff between delay and duplicates in a star topol-
ogy.

Chain Topology
Simulation Results of Average Request Delay (in units of RTT)

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
s

1 2 3 4 5 6

1.
0

2.
0

3.
0

4.
0

.
. . .

.
.

.

.

...

..

..

.

.. .

.

..

.

...

.

.

.

...

.

.

.

...

.

...

.

.

.

.

.

.

.

. .

.

..

.

.

.

.

.

.

.

. .

.

..

.

.

.

.

.

. ..

.

. .

.

..

.

.

.

. .

. .

. .

.

.

.

.

.

.

. .

. .

. .

.

.

.

.

.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

. . .

.

...

.

. . .

.

..

.

..

.

. . .

.

..

. .

..

.

..

. .

..

.

...

..

..

.

.. .

.

..

.

...

.

.

.

...

.

.

.

...

.

...

.

.

.

.

.

.

.

. .

.

..

.

.

.

.

.

.

.

. .

.

..

.

.

.

.

.

. ..

.

. .

.

..

.

.

.

. .

. .

. .

.

.

.

.

.

.

. .

. .

. .

.

.

.

.

.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

. . .

.

...

.

. . .

.

..

.

..

.

. . .

.

..

. .

..

.

..

. .

..x
o

. .
.

x o.x o.
x o

Figure 6: Tradeoff between delay and duplicates in a chain
topology.

star topology increases the expected request delay slightly while
significantly decreasing the expected number of requests.

The bottom graph in Figure 5 shows the results from simula-
tions, which concur with the analytical results in the top graph.
For each integer value of from 0 to 100, twenty simulations
are run, and the request delay and total number of requests is
calculated for each simulation. Each simulation is represented
by a jittered dot, and the line shows the average for each value of

. For example, for set to one hundred the average number
of requests is 1.5 and the average request delay, as a multiple of
the RTT, is 1.42. The minimum request delay of 1 comes from
the fixed value of 2 for request parameter .

These results generally concur with those of [31], which in-
vestigates the relative benefits of using unicast or multicast NACKs.
La Porta and Schwartz [31] conclude that for a scenario simi-
lar to our star topology, where a message sent by any member
is received by all other members exactly seconds later, and
for a multicast group with ten members, the random interval
over which NACK timers were set would have to be at least
10 times for the multicasting of NACKs to result in band-
width savings over a scheme of unicasting NACKs to the source.
La Porta and Schwartz [31] conclude that unicasting NACKs
would be desirable in some scenarios, but for multicast groups
that could have hundreds of members, and for multicast groups
where the receivers were somewhat tolerant of delay, multicast-

10

ing NACKs would be quite effective in reducing the unnecessary
use of bandwidth.

Figure 6 shows the results from the chain topology discussed
in Section 4.1. For a chain, with set to zero there will be ex-
actly one request, with request delay . Increasing
can increase both the expected request delay and the expected
number of duplicates. The four lines in Figure 6 show the re-
sults for a chain topology with a failed edge 1, 2, 5, or 10 hops,
respectively, from the source of the dropped packet. For the
simulations with a failed edge one hop from the source, the in-
dividual simulations are shown by a dot. For each scenario
ranges from 0 to 10 in increments of 1, and then from 10 to 100
in increments of 10. While increasing can increase the num-
ber of duplicates, the magnitude of the increase is quite small.

(Tree Topology, Degree 4, Session Membership Density 1),
Simulation Results of Average Request Delay (in units of RTT)

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
s

2 4 6 8 10

2
4

6
8

10
12

.
.

.
. .

.

.....................

.

... .

.

..
.

...

.

... .

.

..

.

...

..

.. .
.

..

.

...

.

... .

.

.. .

.

..

..

..
.

...

.

...

..

.. .

.

..

.

...
.

...

.

...

..

.. .

.

..

.

.

.

.

.

...

.

...

.

.

.. .

.

..

.

.

.

.

.

...

.

...

.

.

.. .

.

..

.

.

.

.

.

...

.

.

.. .

.

..

.

.

.

.

.

...

.

.

.. .

.

..

.

.

.
.

.

...

.

.

.. .

.

..

.

.

.

.

.

...

.

.

.. .
.

..

.

.

.

.
.

...

.

.

.. .

.

..

.

.

.

.

.

.

..

.

.
.. .

.

..

.

. ..

.

.

.. .
.

..

.

..
. .

.

..

.

. ..

.

.

.. .

.

..

.

..

. .

.

..

.

. ..

.

.

.. .

.

..

.

..

. .

.
..

.

. ..

.

.

.. .

.

..

.

.

.

. .

.

.

.

.

. ..

..

. .

.
.

.

.

..

.

.

.

.

.

. ..

. .

. .

.

.

.

.

..

.

.

.

.

.

. ..

.

.
. .

.

.

.

.

..

.

.

.

.

.

. ..

.

.

.. .

.

.

.

.

..

.

.

.

.

.

. ..

.

.

.. .

.

.

.

.

..

.

.

.

.

.

. ..

.

.

.. .

.

.

.

.

..

.

.

.

. ..

.

.

.. .

.

.

.

.

..

.

.

.

. ..

.

.. .

.

.....................

.

... .

.

..

.

...

.

... .

.

..

.

...

..

.. .

.

..

.

...

.

... .
.

.. .

.

..

..

..
.

...

.

...

..

.. .

.

..

.

...

.

...

.

...

..

.. .

.

..

.

.

.

.

.

...

.

...

.
.

.. .

.

..

.

.

.

.

.

...

.

..x
o

.
.

.

x

o

.
..

x

o
.. ..

..x
o

(Tree Topology, Degree 4, Session Membership Density 0.1),
Simulation Results of Average Request Delay (in units of RTT)

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
s

2 4 6 8 10

2
4

6
8

10
12

.

. .
.

.
.

.

....................

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

..

.
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... .

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

. .

..

. .

.

.

.

.

.

.

.

.

.

.

.

.

..

. .

..

. .

.

..

.

.

.

.

.

.

.

.

.

..

. .

. .

. .

.

..

.

.

..

.

.

.

. .

.

.

.

.

. .

.

.

.

.

.
.

.

.

.

.

. ..

.

.

.. .

.

.. .
.

.

. .

.

.

.

.

. ..

.

.

.

. .

. .
.

.

.

...

.

.

.

.

. ..

.

.

.

.

.

.
...

.

.

.

.

. ..

.

.

.

.
.

.

...

.
.

.

.

. ..

.

.

.

.

.
.

...

.

.

.

.

. ..

.

.

.

.

.

.

...

.

.

.

.

. ..
.

.

.

.

.

.

...

. ..

.

.

.

.

...

. ..

....................

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... .

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

. .

..

. .

.

.

.

.

.

.

.

.

.

.

.

.

..

. .

..

. .

.

..

.

.

.

.

.

.

.

.

.

..

. .

. .

. .

.

..

.

.

..

.

.

.

. .

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

. ..

.

.

.. .
.

.. .

.

.

. .

.

.

.

.

. ..

.

.
.

. .

. .

.

.

.

...

.

.

.

.

. ..

.

.
.

.

.

.

...

.

.

.

.

. ..

.

.

.
.

.

.
...

.

.

.

.

. ..

.

.

.

.

.

.

...

.

.

.

.

. ..

.

.

.

.

.

.

...

.

.

.

.

. ..

.
.

.

.

.

.
...

. ..

.

.

.

.

...
. ..

x

o
. .

.

x

o

.

.
. . .

.

.
.

x

o

.x o

Figure 7: Tradeoff between delay and duplicates for dense ses-
sions in tree topologies.

(Tree Topology, Degree 4, Session Membership Density 0.02),
Simulation Results of Average Request Delay (in units of RTT)

A
ve

ra
ge

 N
um

be
r

of
 R

eq
ue

st
s

2 4 6 8 10

0
5

10
15

20
25

30

.

.

.
.

.

........

.

.

.

.

..

.

.
.

.

.

.

.

.

.

.

..

.

.

.
.

.

.
..

.

.
..

.

.

.
.

.

.

..

.

.

.

.
.

. .

.
. .

..

.

.
...

.

..

.

.

.

.
.

. .

.. .

..

.

..
..

.

.
.

.

.

.

.
.

.
.

.
.

..

.

.

.
...

.

...

.

.

..

. .

.. ...

.
.
...

.

. ..

.

.
.

.
.

.

..
..

.

.
.
...

.

.
.

.

.

.
.

. .
.

.
. ..

.
.

. . ..

.

. ..

.

.
.

.
.

.
.

.
..

.
.

. . ..

.

.
.

.

.

.
..

. .
..
..

.
.

.
. ..

.

. .
.

.

.
.. .. .

.
. ..
.

.

.
...

.
.

.
..

.

. .
.

.
.
.

.
..

.

. ..

.
.

.
.

.
.

.... ..

.

.
.

.
.

.
.... ..

.

. ..
.

. .
.

.
.... ..

.

.

.

. .. .
.

.
.

.
.

.... ..

.

.
..

...
.

..

.

. ..
.

.
.

.
.

.

....................

.

.

.

.

..

.

.
.

.

.

.

.

.

.

.

..

.

.

.
.

.

.
..

.

...

.

.

..
.

.

..

.

.

.

.
.

..

.
.

.

.
.

.

.
...

.

..

.

.

.

..

. .

.
. .

..

.

....

.

.
.

.

.

.

.
.

.
.

.
.

..

.

.

.
.

..

.

.
..

.

.

..

. .

.. ...

.
..

..

.

. ..

.

.
.

. .
.

..
..

.

.
. ...

.

. .
.

.

.
.. .

.
..
..

.
.

. . .
.

.

.
..

.

.
.

. .
. .

. ..
.

.
. . ..

.

.
.

.

.

. .. .

. ..
..

.
.

. ...
.

. .
.

.

.

. .
... .. .

. .

.
..

.

. . .
.... ..

.

.
.

.
.

.
...

.
..

.

. ..
.

.
.

.
.

.
.... ..

.

. ..
..

.

. .. .
.

..
.

..... .
.

.

. .. .
.

.
.

.
.... ..

.

.
.

.
.

.
.

.

. ..
.

.
.

.

x

o

.
.

.

x

o

.

.

.

.
.

.

x

o

.

.

.

.
.

.

x

o

Figure 8: Tradeoff between delay and duplicates for sparse ses-
sions in a tree topology.

Figures 7 and 8 show the results for a range of tree topologies.
Each line shows the results for a particular fixed scenario, as

varies from 0 to 100. In all of the scenarios the session size is at
least 100. In each graph, the lines represent scenarios that differ
only in the number of hops between the source and the failed
edge. The four lines represent scenarios with failed edges that
are one, two, three, or four hops, respectively, from the source
of the dropped packet. For all of the topologies, the failed edge
closest to the source gives the line with the worst-case number
of duplicate requests. For this line, the individual simulations
are each shown by a jittered dot. The graphs are sized for easy
comparisons, and do not necessarily show all of the dots.

As an example, the top graph in Figure 7 shows the results
for trees of density 1. For each of the lines the average number
of duplicates is minimized for , and maximized for an
intermediate value of .

7 Extending the basic approach

7.1 Adaptive adjustment of random timer algo-
rithms

The results in the previous section suggest that the SRM loss re-
covery algorithms with fixed timer parameters give acceptable
performance for sessions willing to tolerate a small number of
duplicate requests and repairs and willing to accept a moderate
request and repair delay (in terms of the roundtrip times of the
underlying multicast group). However, there is not a single set-
ting for the timer parameters that gives optimal performance for
all topologies, session memberships, and loss patterns. For ap-
plications where it is desirable to optimize the tradeoff between
delay and the number of duplicate requests and repairs, an adap-
tive algorithm can be used that adjusts the timer parameters ,

, , and in response to the past behavior of the loss re-
covery algorithms.

In this section we describe an adaptive algorithm that adjusts
the timer parameters as a function of both the delay and of the
number of duplicate requests and repairs in recent loss recov-
ery exchanges. A related strategy to minimize the number of
duplicate requests is to rely on deterministic suppression, with
members closest to the point of failure sending requests first.
The rest of Section VII-A describes the adaptive algorithm for
adjusting the timer parameters in some detail. Section VII-B
continues with a discussion of local recovery mechanisms.

One mechanism for encouraging deterministic suppression
is for members to reduce after they send a request. Be-
cause members who frequently send requests are likely to also
be members who are close to the point of failure, reducing
for those members aids the deterministic suppression. In a star
topology, where otherwise the loss recovery mechanisms rely
on probabilistic suppression, reducing in this fashion helps
to break symmetry, encouraging certain members to continue
sending requests early.

A second mechanism for encouraging deterministic suppres-
sion is for members who have sent requests to reduce if they
have received duplicate requests from members significantly fur-
ther from the source of the failed packet. This mechanism for
requests requires that requests include the requestor' s estimated
distance from the original source of the requested packet. The

11

corresponding mechanism for replies requires that replies in-
clude the replier' s estimated distance from the source of the re-
quest.

After sending a request:
decrease start of req. timer interval

Before each new request timer is set:
if requests sent in prev. rounds, and any
dup. requests were from further away:

decrease request timer interval
else if ave. dup. requests high:

increase request timer interval
else if ave. dup. requests low
and ave. req. delay too high:

decrease request timer interval

Figure 9: Dynamic adjustment algorithm for request timer in-
terval.

Figure 9 gives the outline of the dynamic adjustment algo-
rithm for adjusting the request timer parameters. A correspond-
ing algorithm applies for adjusting the reply timer parameters.
This adaptive algorithm combines the general adaptation per-
formed by all members when they set a request timer with more
specific adaptations performed only by members who have re-
cently sent requests. A member determines if the average num-
ber of duplicate requests is “too high” by comparing the ob-
served average to a predefined threshold; in this paper the pre-
defined threshold is one duplicate request. If the average num-
ber of duplicate requests is too high, then the adaptive algorithm
increases the request timer interval. Alternately, if the average
number of duplicates is okay but the average delay in sending
a request is too high, then the adaptive algorithm decreases the
request timer interval. In this fashion the algorithm can adapt
the timer parameters not only to fit the generally-fixed underly-
ing topology, but also to fit a changing session membership and
pattern of congestion.

First we describe how a session member measures the average
delay and number of duplicate requests in previous loss recovery
rounds in which that member has been a participant. A request
period begins when a member first detects a loss and sets a re-
quest timer, and ends when that member detects a subsequent
loss and begins a new request period. The variable dup req
keeps count of the number of duplicate requests received during
one request period; these could be duplicates of the most recent
request or of some previous request, but do not include requests
for data for which that member never set a request timer. At the
end of each request period, the member updates ave dup req,
the average number of duplicate requests per request period, be-
fore resetting dup req to zero. The average is computed as an
exponential-weighted moving average,

with in our simulations. Thus, ave dup req gives the
average number of duplicate requests for those request events
for which that member has actually set a request timer.

When a request timer either expires or is reset for the first
time, indicating that either this member or some other member
has sent a request for that data, the member computes ,

the delay from the time the request timer was first set (follow-
ing the detection of a loss) until a request was sent (as indicated
by the time that the request timer either expired or was reset).
The variable expresses this delay as a multiple of the
roundtrip time to the source of the missing data. The member
computes the average request delay, .

In a similar fashion, a repair period begins when a member
receives a request and sets a repair timer, and ends when a mem-
ber receives a request and sets a repair timer for a different data
item. In computing dup rep, the number of duplicate repairs,
the member considers only those repairs for which that member
at some point set a repair timer. At the end of a repair period the
member updates ave dup rep, the average number of duplicate
repairs.

When a repair timer either expires or is cleared, indicating
that this member or some other member sent a repair for that
data, the member computes , the delay from the time
the repair timer was set (following the receipt of a request) until
a repair was sent (as indicated by the time that the repair timer
either expired or was cleared). As above, the variable
expresses this delay as a multiple of the roundtrip time to the
source of the missing data. The member computes the average
repair delay, .

After a request timer expires or is first
reset:

update ave req delay
After sending a request:

Before each new request timer is set:
update ave dup req
if closest requestor on past requests:

else if (ave dup req AveDups)):

else if (ave dup req AveDups):
if (ave req delay AveDelay):

if (ave dup req 1/4):

else

Figure 10: Dynamic adjustment algorithm for request timer pa-
rameters. In our simulations

Figure 10 gives the adaptive adjustment algorithm used in
our simulator to adjust the request timer parameters and

. The adaptive algorithm is based on comparing the mea-
surements ave dup req and ave req delay with AveDups and
AveDelay, the target bounds for the average number of dupli-
cates and the average delay. An identical adjustment algorithm
is used to adapt the repair timer parameters and , based
on the measurements ave dup rep and ave rep delay. Figure
11 gives the initial values used in our simulations for the timer
parameters. All four timer parameters are constrained to stay
within the minimum and maximum values in Figure 11.

The numerical parameters in Figure 10 of 0.05, 0.1, and 0.5
were chosen somewhat arbitrarily. While this might look like a

12

Nonadaptive Timer Parameters.
Round Number

N
um

be
r

of
 R

ep
ai

rs

0 20 40 60 80 100

0
5

10
15

20
25

..

..

...

..

.

.

....

.

..

.

.

..

.....

.

.

.

.

..

..

.

.

.

.

.

.

....

..

.

..

..

..

..

.

...

.

..

..

.

..

.

.

.

..

..

...

..

...

..

..

..

.

...

..

.

..

..

...

..

...

.

.

.

..

..

.

.

..

.

..

..

..

..

.

.

.

.

..

.

...

.

.

...

.

.

.

.

..

.

.

..

.

..

..

.

.

...

..

..

.

.

.

..

...

..

.

..

.

..

.

.

..

..

.

.

..

..

.

.

..

.

.

..

.

.

.

...

.

.

...

.

.

...

.

..

...

...

.

.

..

.
.
.
..
.
.
.

.

..

.

...

.

..

.

..

..

..

.

..

.

.

....

..

.

.

.

...

.

..

.

..

..

.

..

..

..

.

.

..

..

...

..

.

...

..

..

..

...

.

..

..

..

.

..

....

.

.

.

.

....

.

...

.

.

...

.

.

.

...

...

.

..

..

.

.

.

..

..

...

..

..

..

.

..

.

..

.

.

..

...

..

.

.

...

.

..

.

.

.

...

..

..

.

..

..
..

..

..

..

.

..

....

.

.

.

..

.

..

..

.

.

.

....

...

..

.

....

..

.

.

.

.

.

.

..

..

..

..

.

.

..

..

..

..

..

...

.

.

.

.

.

.

..

..

.

.

..

.

...

..

..

.

.

.

.

...

..

.

.

.

.

.

...

..

.

..

.

...

..

...

..

..

...

...

.

.

...

..

.

.

.

..

..

...

..

.

..

.

..

.

..
.
.
.

.

..

....

.

.

.

.

.

..

..

..

.

.

.

.

..

.

..

.

.

.

.

.

..

..

..

.

.

.

....

.

..

..

.

..

...

..

.

.

.

..

..

.

...

.

.

.

....

.

..

..

...

..

.

.
..
.

.

.

..

..

..

.

.

.

.

.

...

.

..

.

.

..

..

..

..

.

...

.

.

..

.

.

.

..
..
..
.
.
.

.

.

......

..

.

..

...

...

.

.

.

.

....

...

.

.

...

...

.

..

..

.

..

.

..

.

.

..

..

.

.

.

.

.

.

..

.

.

.

...

.

.

....

..

.

.

.

.

.

.

...

..

..

.

.

.

.
..
...
.

.

...

.

.

..

.

.

.

.

...

....

.

.

...

...

.

.
.

.

.

.

.

.

....

.

.

.

..

..

...

.

.

..

.

.

.

..

.

.

.

.

..

...

.

.

.

.

.

..

..

..

..

.

..

..

...

.

.

.

..

..

.

.

.

..

.

.

...

.

..

.

.

.

.

..

..

..

.

..

.

..

..

..

..

.

.

..

.

..

..

.

.

.

.

...

..

.

.

.

.

..

..

.

.

.

.

.

..

....

.

.

..

...

..

...

..

Nonadaptive Timer Parameters.
Round Number

A
ve

ra
ge

 D
el

ay
 (

in
 u

ni
ts

 o
f R

T
T

)

0 20 40 60 80 100

0
1

2
3

4
5

6

..

..

....

..

......

.

...

......

....
...
.....
..

...

....

...

....

.....

.

...

...

...

.

..

.....

...

.....

..

...
...
.......

...

.......
..
.......
.

..

.......

.

...

..

.....

...
....
..
.

....

....
..

.

....

.....
..
......
.
.

....
..
...
.

..

...

.....

....

...

...

.....

..

.

..

...

...

..

..

...

...

....

.....

....

.

.....

...
..

.....

...

..

...

......

.
..
.....
...

.

......

...

....

...

...

.

......

...

...

...

....

...

......

.

...

......

.
....
......
...
..
...
..

.....

...

..

.....

...

..

..

...

...

.

.

...
....
...

.....

...

..
...
....
...

......

....
.....
....
.

..

....

...

.

...

....

...

...

..

....

.

....

.....

.

....

...

...

....

...

..

.

...

.....

..

...

....

...

...

.....

..

...

..

....

.

...

...

...

.

...

....

...

..

.......

.
.....
.....
..
....
....

....

...

..

.

....

...

...

......

...

.

....

.....

.

....

...

..

.

.......

..

.

....

.....

.

...

..

....

.

...
..
..
...

.

.....

..

..

.....

....

.

......

..

.

.

...

...

....

.....

..

...

...

.....

..
...
....
...

..

.....

..

.

...

.....

..

...

...

...

.

.

......

...

..

...

....

.

...

....

...
..
.....
..
.

......

...

.

..

......

..

..

......

..
..
....
....

..

....

...

.

..

...

.....
......
...
.

..

....

...

.

..

....

....

.

.....

..

..

...
.....
..

.....

..

..

.

..

.....

...

...

.....

..

..

....

...

.

.......

..

.

....
....
..

Figure 12: The non-adaptive algorithm.

Adaptive Timer Parameters: AveDups=1, AveDelay=1
Round Number

N
um

be
r

of
 R

ep
ai

rs

0 20 40 60 80 100

0
5

10
15

20
25

.

.

...

..

.

..

...

.

.

..

..

.

.

..

.

.

...

.

.

..

.

.

.

.

..

..

.

.

...

..

.
.
.

..

...

..

..

.

..

..

..

..

..

..

..

.
..
.
.

.

..

..

..

..

..

.

....

...

.

.

...

.

..

..

.

.

...

..

..

.

..

.

...

..

..

..

.....

..

.

..

..

...

..

...

.

..

..

.

..

.

.

..

.

..

...

..

...

.

....

..

.

.

......

.

.

...

..

...

.

.

.....

.

.

.

..

.....

..

...

...

..

...

.

.

.

.

.

...

...

.

...

....

.

.

.

.

..

...

..

..

.....

...

..

.

....

...

.

.

..

...

..

...

...

..

..

.

..

....

.

...

..

...

..

.

....

.....
..
.
.
.

....

...

...

..

..

...

..

.

.

....

..

..

.

.

...

.....

.

...

....

..

.

....

...

.

.

.

....
..
...
.

.....
.......
...
.
..
.
.

.....

..

...

.....

...

.

.

....

...

..

.

......

.

..

.

.

....

...

.

.

.

....

...

..

...

...

....
....
.
..
..
.

...

......

.

..

.....

..

.

.......

.

..

...

......

.
.....
..
.
..

......

.

...

.

...

..

..

.

.

....

..

...

.

....

.....

.
....
.
...
.
.

.......

..

.

...

....

.

.

.

...

...

.

...

......

...

.

........

......
..
...
.

....

..

...

.

......

.

..

.

....

...

.

..

......

..

..

..

...

.....
.....
..
..
.

....

...

.

.

.

.

........

.

....

...

.

..

...

....

...
....
..
.
.
..

......

..

..

.....

....

.

....

...

...

......

...

.

....

.

...

.

.

.....

...

..

...

......

.

.......

.......
....
..
..
......
..

......
..
.
.

...

.....

..

..

......

..

....

.....

.

.....

...

..

....

..

...

.

...

...

....

....

.....

.

....

.....

.

...

...

....

.....

....

.

.....

.

....
.....
.
...
.

Adaptive Timer Parameters: AveDups=1, AveDelay=1
Round Number

A
ve

ra
ge

 D
el

ay
 (

in
 u

ni
ts

 o
f R

T
T

)

0 20 40 60 80 100

0
1

2
3

4
5

6

....

.

....

.

.....

...

..
....
....
..

.......
...

.

......

...
....
.....
.

......

...

.

....

.....

.
...
.....
..
......
....

...

...

...

.

.

.......

..

.....

....

.

...
...
...
.

.....

....

.

....

....

.

.

..

.....

...

....

...

...

...

....

..

.

.

..

......

.

..

....

...

.

....

....

..

.

......

..

.

..

.

.....

..

....

..

...

.
...
....
...

....

.

...

..

.

....

..

...

..

....

..

..

.

...

...

...

..

.

....

...

....

.....

.

...

....

..

.

.

....

.....

.

.....

..

..

....
...
..
.
......
....

.....

..

...

...

...

...

.

.

......

...

.

.....

...

.

..

....

...

.

...

....

..

.

.

....

..

...

....

....

..

...

..

..

..

.

.....

...

..

...

...

...

.

.

...

..

...

.

.

...

.....

.

..

..

.....

.

.....

..

...

.

...

..

...

.

....
..
..
..

...

...

...

.

.
...
....
..

..

.

....

..

.

...

....

..

.

.

..

.....

.

.

.
...
....
..

.

.

......

..

...

...

....

...

......

.

...

..

....

.

.....

.

...

.

.

...

..

...

.

......

..
..

.

..

...

...

.

.....

....

.

..

....

.

..

.

....

..
...
.

..

...

....

.

.

..

....

...

...

....

..

.

..

..

....

.

.

.

.....

...

.

...

...

....

...

...

.

..

.

.

...

.

...

.

.

..

..

.

..

..

.

..

.....

.

.

.

..

...

.

..

.

.

..

..

....

.

.

...

....

..

.

....

...

..

.

.

...

....

..

..

...

...

.

.

.

..

...

...

.

.

...

......

.

.

......

..

....

.

...

.

.

...

..

..

..

.

..

.....

...

.

...

....

.

.

..

....

..

..

..
...
.....

.

.

..

...

..

.

....

..

..

..

.

....

..

...

.

..

...

....

Figure 13: The adaptive algorithm.

Initial values:
;

;
Fixed parameters:

;
;
;

;
;

Figure 11: Parameters for adaptive algorithms

multitude of constants, the exact value of these constants is not
important - all that matters is that they represent small adjust-
ments to the timer parameters and as a function of the
past observed behavior of the loss recovery algorithms. The ad-
justments of and for are small, as the adjustment
of is not the primary mechanism for controlling the number
of duplicates. The adjustments of and for are
sufficiently small to minimize oscillations in the setting of the
timer parameters. Sample trajectories of the loss recovery algo-
rithms confirm that the variations from the random component
of the timer algorithms dominate the behavior of the algorithms,
minimizing the effect of oscillations.

In our simulations we use a multiplicative factor of 3 rather
than 2 for the request timer backoff described in Section 3.2.
With a multiplicative factor of 2, and with an adaptive algo-
rithm with small minimum values for , a single node that ex-
periences a packet loss could have its backed-off request timer
expire before receiving the repair packet, resulting in an unnec-
essary duplicate request.

We have not attempted to devise an optimal adaptive algo-
rithm for reducing some function of both delay and of the num-
ber of duplicates; such an optimal algorithm could involve rather
complex decisions about whether to adjust mainly or ,

possibly depending on such factors as that member' s relative
distance to the source of the lost packet. For a sparse session in a
tree topology, increasing reduces the number of duplicate re-
quests; our adaptive algorithm relies largely on increases of
to reduce duplicates. Our adaptive algorithm also decreases
for members who have sent requests, if duplicate requests have
come from members further from the source of the requested
packet. (In our simulations “further from the source” is defined
as “at a reported distance greater than 1.5 times the distance of
the current member”.) Our adaptive algorithm only decreases

for members who have sent requests, or when the average
number of duplicates is already small.

Figures 12 and 13 show simulations comparing adaptive and
non-adaptive algorithms. The simulation set in Figure 12 uses
fixed values for the timer parameters, and the one in Figure 13
uses the adaptive algorithm. From the simulation set in Figure
4, we chose a network topology, session membership, and drop
scenario that resulted in a large number of duplicate requests
with the non-adaptive algorithm. The network topology is a
bounded-degree tree of 1000 nodes with degree 4 for interior
nodes, and the multicast session consists of 50 members.

Each of the two figures shows ten runs of the simulation, with
100 loss recovery rounds in each run. The same topology and
loss scenario is used for each of the ten runs, but each run uses
a new seed for the pseudo-random number generator to con-
trol the timer choices for the requests and repairs. In each loss
recovery round a packet from the source is dropped on the con-
gested link, a second packet from the source is not dropped, and
the loss recovery algorithms are run until all members have re-
ceived the dropped packet. The -axis of each graph shows the
round number. For each figure, the top graph shows the number
of requests in that round, and the bottom graph shows the loss
recovery delay. Each round of each simulation is marked with a
jittered dot, and a solid line shows the median from the ten sim-
ulations. The dotted lines show the upper and lower quartiles.

13

For the simulations in Figure 12 with fixed timer parameters,
one round differs from another only in that each round uses a
different set of random numbers for choosing the timers.

For the simulations with the adaptive algorithm in Figure 13,
after each round of the simulation each session member uses the
adaptive algorithms to adjust the timer parameters, based on the
results from previous rounds. Figure 13 shows that for this sce-
nario, the adaptive algorithms quickly reduce the average num-
ber of repairs, reaching steady state after about forty iterations.
Figure 13 also shows a small reduction in delay.

Session Size

N
um

be
r

of
 R

eq
ue

st
s

20 40 60 80 100

0
5

10
15

20

........

............
...........
.

......
..............

......
........
...........
.

.............

.......
.............
.......

.......
.........

........

Session Size

N
um

be
r

of
 R

ep
ai

rs

20 40 60 80 100

0
5

10
15

20

.............

....

..
.

......

...........

..

.

........

....

......

.

.

.............
..
...
.
.

......
....
.....
...
.
.

.........
......
.
...
.

..........
.....
.
..
..

..............

...

.
..

...........

....
...
.

.

............

....

.

..

.

Session Size

D
el

ay
 (

in
 u

ni
ts

 o
f R

T
T

)

20 40 60 80 100

0
1

2
3

4
5

6

..
..
.
.......
...
...
.

.

.

.....
....
.....
..
.

..

..
..
....
...
....
.....

.

....

..

...
....
...
.
.

.

...

..
....
.....
....
.

.

..

..
....
..
......
...
.

..

..

...
....
.....
..
..

.......
.....
..
...
..
.

...
...
......
..
..
..
.

.

.....

....

...

.....
..
.

Figure 14: Adaptive algorithm on round 40, for a bounded-
degree tree of 1000 nodes with degree 4 and a randomly picked
congested link.

To explore the adaptive algorithms in a range of scenarios,
Figure 14 shows the results of the adaptive algorithm on the
same set of scenarios as that in Figure 4. For each scenario
(i.e., network topology, session membership, source member,
and congested link) in Figure 14, the adaptive algorithm is run
repeatedly for 40 loss recovery rounds, and Figure 14 shows the
results from the 40th loss recovery round. Comparing Figures 4
and 14 shows that the adaptive algorithm is effective in control-
ling the number of duplicates over a range of scenarios.

Simulations in [13] show that the adaptive algorithm works
well in a wide range of conditions. These include scenarios
where only one session member experiences the packet loss;
where the congested link is chosen adjacent to the source of the
packet to be dropped; and for a range of underlying topologies,
including 5000-node trees, trees with interior nodes of degree
10; and connected graphs that are more dense that trees, with
1000 nodes and 1500 edges.

In actual multicast sessions, successive packet losses are not

necessarily from the same source or on the same network link.
Simulations in [13] show that in this case, the adaptive timer al-
gorithms tune themselves to give good average performance for
the range of packet drops encountered. Simulations in [13] show
that, by choosing different values for AveDelay and AveDups,
tradeoffs can be made between the relative importance of low
delay and a low number of duplicates.

In the simulations in this section, there is only one congested
link, and each packet that is dropped is dropped on only that one
link. More realistic simulations would include scenarios with
multiple locations for drops of a single packet, and would use
an extended SRM that incorporates local recovery mechanisms
into the loss recovery algorithms.

Similarly, in the simulations in this section, none of the re-
quests or repairs are themselves dropped. In more realistic sce-
narios where not only data messages but requests and repairs
can be dropped at congested links as well, members have to rely
on retransmit timer algorithms to retransmit requests and repairs
as needed. Obviously, this will increase not only the delay, but
also the number of duplicate requests and repairs in different
parts of the network. The use of local recovery, described in the
following section, would help to reduce the unnecessary use of
bandwidth in the loss recovery algorithms.

7.2 Local recovery

With SRM's global loss recovery algorithm described above,
even if a packet is dropped on a link to a single member, both
the request and the repair are multicast to the entire group. In
cases where the neighborhood affected by the loss is small, the
bandwidth costs of the loss recovery algorithm can be reduced
if requests and repairs are multicast to a limited area. In this
section we sugest that local recovery can be quite effective in
reducing the unnecessary use of bandwidth.

Scenarios that could benefit from local recovery include ses-
sions with persistent losses to a small neighborhood of members
and isolated late arrivals to a multicast session asking for back
history. Studies of packet loss patterns in the current Mbone
[39] suggest that packet loss in multicast traffic is most likely
to occur not in the “backbone” but in the “edges” of the mul-
ticast network. In addition, the larger the multicast group, the
more likely it is that a packet will be dropped somewhere along
the multicast tree, even in the absence of a particular persistent
point of congestion. Forward Error Correction (FEC) [29] and
Explicit Congestion Notification (ECN) [11] both have great po-
tential for reducing the negative impacts of transient or mild
congestion for reliable multicast applications. However, links
with persistent congestion and persistent packet drops are likely
to remain. In this case, local recovery is needed to ensure that
the fraction of bandwidth used for request and repair messages
scales well as the multicast group grows.

We are not at this stage proposing a complete set of algo-
rithms for implementing local recovery. We explore in this sec-
tion a set of mechanisms that can be used to limit the scope of
a request and of an answering repair. The question of how a
member decides the scope to use for a particular request is an
area for future research.

Local recovery assumes that the member sending the request

14

has some information about the neighborhood of members shar-
ing recent losses. We define a loss neighborhood as a set of
members who are all experiencing the same set of losses. End
nodes should not know about network topology, but end nodes
can learn about “loss neighborhoods” from information in ses-
sion messages, without learning about the network topology.

For each member, we call a loss a local loss if the number
of members experiencing the loss is much smaller than the total
number of members in the session. To help identify loss neigh-
borhoods, session messages could report a member' s loss rate,
that is, the fraction of data for which a request timer was set. In
addition, session messages could report a “loss fingerprint”, i.e.,
the names of the last few local losses.

A member should send a request with local scope when re-
cent losses have been confined to a single loss neighborhood,
and when this local request seems likely to reach some member
capable of answering it. If no repair is received before a backed-
off request timer expires, then the next request can be sent with
a wider scope.

7.2.1 Administrative scoping

One simple and now widely available mechanism for local re-
covery is the use of administrative scope in IP multicast. If a
member believes that both the loss neighborhood and a poten-
tial source of repairs are contained in the local administratively-
scoped neighborhood, then both the request and the repair can
be sent with administrative scoping, so that both messages are
restricted to that neighborhood. This is most likely to be of use
for larger administratively-scoped neighborhoods.

7.2.2 Separate multicast groups

Another potential mechanism under investigation is the use of
separate multicast groups for local recovery [22]. In this scheme,
the initial requestor creates a separate multicast group for local
recovery and invites other nearby members to join that multi-
cast group. The multicast group must include some member ca-
pable of sending repairs. This mechanism is appropriate when
there is a stable loss neighborhood that results from a particu-
lar lossy link, or when an isolated member joins a group late
and asks for past history. Kasera, Kurose, and Towsley [20]
explore a somewhat-different use of multiple multicast groups
for recovery aimed primarily at reducing the costs of processing
unwanted packets at receivers.

7.2.3 TTL-based scoping

A third possible mechanism for local recovery is for members
to use time-to-live- or TTL-based scope to limit the reach of
request and repair messages. In the current Mbone, each link
(more precisely, each interface or tunnel) is assigned a thresh-
old, with a default threshold of one. The threshold is the min-
imum TTL required for an IP multicast packet to be forwarded
on that link, and is used to control the scope of multicast pack-
ets. Every multicast router decrements the TTL of a forwarded
packet by one. In order to limit the scope of a request or repair
message, the sender simply sets each packet's TTL field to an
appropriate value. By including the initial TTL in a separate

packet field, members receiving the request (or reply) message
explicitly learn the original TTL as well as the hop count for the
path from the source.

The simplest version of TTL-based local recovery is a one-
step repair algorithm. In this approach, a request sent with TTL

might be answered with a repair sent with TTL , where
is the number of hops to the original requestor. In this way, the
repair would be guaranteed to reach all of the members reached
by the original request (if we optimistically assume that mul-
ticast routes and thresholds are symmetric). However, simula-
tions suggest that one-step repair is not very effective — there is
significant unnecessary use of bandwidth by the repair packets.

A two-step repair message is considerably more effective in
limiting the unnecessary use of bandwidth. In the first step of
the repair, a local repair is sent with the same TTL used in the
request. This TTL should be sufficiently large to reach the origi-
nal requestor, given sufficient symmetry, but not necessarily suf-
ficiently large to reach all of the members reached by the orig-
inal request. The local repair includes the name of the member
whose request triggered the repair. In the second step of the re-
pair, the requestor, upon receiving the first local repair naming
itself as the original requestor, resends the repair using the same
TTL as in the original request. In this way the repair is received
by all of the members who saw the original request.

We use simulations to explore the optimal behavior that could
be achieved from two-step local recovery. First we examine net-
works where all links have a link threshold of one, and next we
examine networks with a range of values for the link thresholds.

To explore the optimal possible performance, we assume that
the loss neighborhood is stable, and that members have some
method for estimating and , where is the minimum TTL
needed to reach all members in the loss neighborhood, and
is the minimum TTL needed to reach some member not in the
loss neighborhood. Further, we assume that for each loss re-
covery event, the request/repair algorithms exhibit their optimal
behavior. That is, we assume that there is a single request and
a single repair, and that both come from the members closest
to the point of failure. We restrict attention to scenarios where
the loss neighborhood contains at most 1/10-th of the session
members.

Figure 15 shows the results of such an optimal execution of
the two-step local recovery algorithms in a large bounded-degree
network of degree four, with link thresholds of one. The -axis
in each graph shows the session size. For each session size,
twenty simulations are run, each with a different session mem-
bership, source, and randomly-chosen congested link for the
dropped packet. The results of each simulation are represented
by a jittered dot. The three lines indicate the first, second, and
third quartiles.

In the top graph of Figure 15, the -axis shows the fraction of
session members reached by the repair. In the bottom graph of
Figure 15, the -axis shows the number of session members in
the repair neighborhood, that is, the number of session members
reached by the repair, as a multiple of the number of members
in the loss neighborhood. Additional simulations not reported
here show that local recovery with two-step repairs can work
well in networks with a range of topologies and link thresholds.
Simulations in [13] show that, in contrast to two-step repairs,

15

Session Size

F
ra

ct
io

n
of

 N
od

es
 R

ea
ch

ed

0 100 200 300 400 500

0.
0

0.
4

0.
8

..

..

..

..

.

.

.

...

..

..

..

.

.

.

..

.

.

.

..

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

.

.

..

...

.

.

.

.

.

.

.

...

.

.

.

.

..

..

.

.

..

.

.

.

.

.

.

.

...

..

...

...

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

...

.

..

.

.

.

.

.....

.

..

..
.
.

.

..

..

.

.

.

..

..

.

..

.

.

.

...

.

.

..

.

.

..

....

..

..

..

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

Session Size

R
ep

ai
r/

Lo
ss

 N
ei

gh
bo

rh
oo

ds

0 100 200 300 400 500

0
20

40
60

80

....

....
....
...
..

.....

....

..

......

.

.

.

.......

...

..

.

.

.....

...

.

.

.

......

...

.

.

.

.

.....

.

.

.

.......

..

..

.

.

.

......

..

.

..

.

.

.

........

..

.

.......

...

..

.

........

.

.......

..

.

..

....

....
....
...
..

.....

....

..

......

.

.

.

......

Figure 15: Local recovery with two-step repairs in bounded-
degree trees with 1000 nodes, thresholds of one.

one-step repairs are fairly inefficient in their use of bandwidth,
even given an optimal setting of the the TTL of the original re-
quest.

8 Related research on reliable multicast

The literature is rich with architectures for reliable multicast
[27, 9]. Several of the centralized approaches to reliable mul-
ticast are discussed briefly in [12, 13]. In this section we focus
on those approaches to reliable multicast that are more closely
related to SRM.

The Xpress Transport Protocol (XTP) [36, 37] is designed
for either unicast or one-to-many multicast communication. Re-
liable communication is based on negative acknowledgments.
The sender may also initiate a synchronizing handshake, to de-
termine the status of the receivers. In this case, receivers each
use a “slotting” technique to wait a random delay before sending
their control packet, to reduce a control packet implosion. The
combined slotting and damping techniques proposed in [36] to
reduce NACK suppression have been described earlier in this
paper. In XTP receivers or routers can impose a maximum data
rate and maximum burst size on the sender.

Several proposals for reliable multicast use secondary servers
(also called Designated Routers or Group Controllers in differ-
ent proposals), to handle retransmissions within a subgroup of
the multicast group. One such protocol, Log-based Receiver-
reliable Multicast (LBRM) [15], was designed to support Dis-
tributed Interactive Simulation (DIS). The receiver-based reli-
ability is provided by primary and secondary logging servers.
Receivers request retransmissions from the secondary logging
servers, which requests retransmissions from the primary log-
ging server. Both the source and the secondary logging servers
use either deterministic or probabilistic requests to select be-
tween unicast and multicast retransmissions.

LBRM uses a variable heartbeat scheme that sends heartbeat
messages (e.g., session messages) more frequently immediately

after a data transmission. In an environment when the basic
transmission rate is low, this variable heartbeat enables receivers
to detect losses sooner, with no penalty in terms of the total num-
ber of heartbeat messages transmitted. While the variable heart-
beat scheme would not be appropriate for an application such as
wb, where the original congestion could itself result from many
senders sending data at the same time, the variable heartbeat
scheme could be quite useful for an application with a natu-
ral limit on the worst-case number of concurrent senders, and
would be easily implementable in SRM.

Like LBRM and SRM, the Reliable Multicast Transport Pro-
tocol (RMTP) [21] also includes among its goals scalability and
receiver-based reliability. RMTP accomplishes this by using
Designated Routers (DRs) in each region of the multicast group,
where the DRs receive incoming acknowledgements and per-
form retransmissions as needed. RMTP uses windowed flow
control tuned to the requirements of the worst-case receiver. The
problem of dynamically choosing DRs for a given multicast tree
is left for continued research.

A Local Group Concept is proposed in [14], where the mul-
ticast group is divided into Local Groups, each represented by
a Group Controller that handles retransmissions for members
in the Local Group. The Group Controller is not a router or
a separate server, but simply one of the members of the mul-
ticast group. Hofmann in [14] aims at the dynamic generation
of Local Groups and of Group Controllers, but does not explore
in detail the algorithms for finding the nearby Local Group, re-
sponding to the failure of a local Group Controller, or choosing
a new Group Controller.

Perhaps the most well-known work on reliable multicast is
the ISIS distributed programming system developed at Cornell
University [2, 16]. ISIS provides causal ordering and, if desired,
total ordering of messages on top of a reliable multicast delivery
protocol. Therefore the ISIS work is to some extent orthogonal
to the work described in this paper, and further confirms our
notion that a partial or total ordering, when desired, can always
be added on top of a reliable multicast delivery system.

There is also a growing literature on the analysis of reliable
multicast schemes. As one example, Bhagwat, Mishra, and Tri-
pathi [4] consider the performance of one-to-many reliable mul-
ticast with a block-based ACK scheme. The paper investigates
the regime where transfer sizes are large, receivers have limited
buffering, and all retransmissions come from the original sender.

Pejhan, Schwartz, and Anastassiou [31] compare several re-
transmission schemes for multicast protocols for real-time me-
dia. The retransmission schemes are intended for real-time me-
dia with playback times, so that packets received after the play-
back time are dropped. They assume that receivers unicast NACKs
to the sender, and retransmissions are done by the sender. Note
that these assumptions differ from those of SRM, which is in-
tended for applications without fixed deadlines by which pack-
ets have to be received, and which allows retransmissions from
members other than the original source.

16

9 Future work

9.1 Future work on scalable session messages

The SRM framework outlined in this paper assumes that mem-
bers of the multicast group send session messages and estimate
the distance to each of the other group members. For larger
groups, we are investigating a hierarchical approach for scalable
session messages [35], where members in a local area dynam-
ically select one of the local members to be the representative,
as far as session messages are concerned. The representatives
would each send global session messages, and maintain an es-
timate of their distance in seconds from each of the other rep-
resentatives. All other members would send local session mes-
sages with limited scope sufficient to reach their representative.

9.2 Future work on local recovery

Section 7.2 has shown that local recovery can be effective in lim-
iting the unnecessary use of bandwidth in loss recovery events,
if members can estimate the scope to use in sending local re-
quests. While we discuss in [13] some of the issues in imple-
menting TTL-based local recovery, there are many open ques-
tions about which mechanisms should be used to define local-
recovery neighborhoods, how individual members should deter-
mine whether to send requests with local or global scope, etc.
For local recovery based on separate multicast groups, there is
ongoing research on algorithms for initiating, joining, and leav-
ing such multicast groups, and for soliciting additional members
to join such groups.

In many topologies, the effectiveness of local recovery could
be improved by adding members to the multicast group in strate-
gic locations. For example, consider the known stable topolo-
gies discussed in [15], where losses are expected to occur mainly
on the tail circuits, rather than in the backbone or in the LANs,
and the design priority is to keep unnecessary traffic off of the
tail circuits. The addition of a session member (i.e., cache) on a
node near the local end of the tail circuit, coupled with a local-
recovery neighborhood defined to include all members on that
end of the tail circuit, would allow local recovery to continue
for losses on the local area without adding any unnecessary traf-
fic to the tail circuit itself. For losses on the tail circuit itself, a
larger local recovery area that spanned the tail circuit just into
the backbone would isolate individual local recovery to inde-
pendent tail circuits.

9.3 Future work on congestion control

SRM's basic framework for congestion control assumes that the
members of the multicast session have an estimate of the avail-
able bandwidth for the session, and constrain the data trans-
mitted to be within this estimated bandwidth. This framework
raises several somewhat separate issues, such as how members
determine this available bandwidth; how to detect congestion
or avoid potential congestion; and given available bandwidth,
which piece of data a member should send first.

Multicast congestion control is a relatively new area for re-
search. For unicast traffic, there is a single path from source

to receiver, with a feedback loop provided by returning pack-
ets sent by the receiver. In contrast, in a multicast group there
could be several sources, and the various communication paths
from an active source to the members of the multicast group can
have a range of bandwidth, propagation delay, and competing
congestion. In this case, how does one define and detect con-
gestion?

With multicast traffic, there are application-specific policy
decisions about whether or not to tune the congestion control
procedures to the needs of the worst-case receiver; these ques-
tions do not arise with unicast transmissions. Tuning the send-
ing rate to the worst-case receiver is only viable for a multi-
cast group with a controlled membership; otherwise, the multi-
cast group would be vulnerable to denial-of-service attacks by
members joining the group from an extremely-low-bandwidth
path. Given an uncontrolled membership, and a group where
the bandwidth along different paths in the multicast group dif-
fers substantially, the sender could tune the sending rate to the
needs of the majority of receivers, requiring that receivers on
more congested paths unsubscribe from the multicast group.

A receiver-based approach under investigation for the video
tool vic [24] is to divide the total data transmission into sev-
eral substreams, with each being sent to a separate multicast
group [25]. Members that detect congestion unsubscribe from
higher-bandwidth groups. When this approach is used for re-
liable multicast, reliable delivery would be provided separately
within each group. This implies that unsubscribing receivers
would either not receive all of the data, or would receive some
of the data later, at a slower rate than that used for the rest of
the multicast group. In either case, we can exploit this tradeoff
through the use of progressively refinable or layered data repre-
sentations.

While considerable research has been done on layering tech-
niques for video, layering techniques are application-specific,
and layering for wb data remains an area for further research.
Possibilities would be to encode embedded images using Progressive-
JPEG or some other layered scheme, or to tradeoff free-hand
drawing resolution for rate (i.e., one could send line drawings at
50 points/sec for good interactive performance over a high rate
channel but at 1 point/sec over a constrained, low-rate channel).

As another approach to bandwidth adaptation, receivers could
reserve resources where such network services were available;
an example of such services are the guaranteed and controlled
load services currently being developed for the Internet [3]. Such
resource reservation could complement other congestion control
mechanisms of the multicast session.

9.4 Future work on an SRM “toolkit”

Although we have proposed SRM as a framework that applies
to many different applications, we have developed just one such
application, wb. Further, because we based the implementation
on ALF and deliberately factored many application semantics
into the design of the wb transport, it is relatively difficult to
extract and re-use wb's network implementation in another ap-
plication. However, this limitation resulted from our lack of
prior experience with ALF-based design and we argue now that
an ALF protocol architecture does not necessarily preclude sub-

17

stantial code re-use.
Based on our subsequent experience with another ALF archi-

tecture — the Real-time Transport Protocol (RTP) [32] that un-
derlies the MBone tools vic and vat — we know that the core of
an ALF based design can be easily tailored for a range of appli-
cation types. For example, we developed a generic RTP toolkit
as an object-oriented class hierarchy, where the base class im-
plements the common RTP framework and derived subclasses
implement application-specific semantics. Our RTP toolkit sup-
ports a wide range of applications including layered video, tradi-
tional H.261-coded video, LPC-coded audio, generic audio/video
recording and playback tools, and RTP monitoring and debug-
ging tools. Each of these tools shares most of its network imple-
mentation with all of the others, yet each still reflects its indi-
vidual semantics through ALF — RTP is not a generic protocol
layer.

In current work, we are applying these same design princi-
ples to both the next generation of the wb protocol as well a
new set of SRM-based applications. We are developing a object-
oriented SRM toolkit that in a base class implements the SRM
framework described in Section 3 and in a derived subclass re-
flects application semantics like those described in Section 2.3.
For example, the application portion of the SRM class hierar-
chy determines the packet generation order and priority, that
is, whether to send answer repairs before sending new data, or
favoring repairs of one source over another, etc. At the same
time, the SRM base class handles the more generic SRM func-
tionality like the timer adaptatation algorithms and the basic re-
quest/repair event scheduling.

10 Conclusions

This paper has described in detail SRM, a framework for scal-
able reliable multicast. The SRM framework meets a minimal
reliability definition of delivering all data to all group members,
deferring more advanced functionality, when needed, to individ-
ual applications. SRM is based on the assumptions of IP mul-
ticast delivery and of unique persistent names for both data and
sources.

This paper has focused on SRM's request and repair algo-
rithms for the reliable delivery of data. The paper has not pro-
posed a complete set of algorithms for implementing local re-
covery, but has explored a model for local recovery with two-
step repairs. Future work on scalable session messages, local
recovery, congestion control, and an SRM “toolkit” have also
been discussed.

Acknowledgments

This work benefited from discussions with Dave Clark and with
the End-to-End Task Force about general issues of sender-based
vs. receiver-based protocols. We thank Peter Danzig for dis-
cussions about reliable multicasting and web-caching. We also
thank Mark Allman, Todd Montgomery, Kannan Varadhan, and
the anonymous referees for useful feedback on the paper.

References

[1] K. Birman, “A Response to Cheriton and
Skeen's Criticism of Causal and Totally Or-
dered Communication”, Operating Systems Re-
view, 28(1):11-21, January 1994. URL http://cs-
tr.cs.cornell.edu/Dienst/UI/2.0/Contents/ncstrl.cornell/TR93-
1390.

[2] K. Birman, A. Schiper, and P. Stephenson, “Lightweight
Casual and Atomic Group Multicast”, ACM Transactions
on Computer Systems, Vol.9, No. 3, pp. 272-314, Aug.
1991.

[3] B. Braden, D. Clark, and S. Shenker, “Integrated Services
in the Internet Architecture: an Overview”, Request for
Comments (RFC) 1633, IETF, June 1994.

[4] Bhagwat, Mishra, and Tripathi, “Effect of Topology on
Performance of Reliable Multicast Communication”, In-
focom 94, pp. 602-609.

[5] D. Cheriton and D. Skeen, “Understanding the Limita-
tions of Causally and Totally Ordered Communication”,
Proceedings of the 14th Symposium on Operating System
Principles, ACM, December 1993.

[6] D. Clark and D. Tennenhouse, D., “Architectural Consid-
erations for a New Generation of Protocols”, Proceedings
of ACM SIGCOMM '90 , Sept. 1990, pp. 201-208.

[7] D. Clark, M. Lambert, and L. Zhang, “NETBLT: A High
Throughput Transport Protocol”, Proceedings of ACM
SIGCOMM '87 , pp. 353-359, Aug. 1987.

[8] S. Deering, “Multicast Routing in a Datagram Internet-
work”, PhD thesis, Stanford University, Palo Alto, Cali-
fornia, Dec. 1991.

[9] C. Diot, W. Dabbous and J. Crowcroft, “Multipoint Com-
munication: A Survey of Protocols, Functions, and Mech-
anisms”, IEEE Journal on Selected Area in Communica-
tion, Special Issue on Group Communication, May 1997.

[10] A. Erramilli and R.P Singh, “A Reliable and Efficient Mul-
ticast Protocol for Broadband Broadcast Networks”, Pro-
ceedings of ACM SIGCOMM '87 , pp. 343-352, August
1987.

[11] Floyd, S., “TCP and Explicit Congestion Notification”,
ACM Computer Communication Review, V. 24 N. 5, Octo-
ber 1994, p. 10-23.

[12] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and
L. Zhang, “A Reliable Multicast Framework for
Light-weight Sessions and Application Level Fram-
ing”, ACM SIGCOMM 95, August 1995, URL
ftp://ftp.ee.lbl.gov/papers/srm sigcomm.ps.Z, pp. 342-
356.

[13] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L.
Zhang, “A Reliable Multicast Framework for Light-
weight Sessions and Application Level Framing,
Extended Report”, LBNL Technical Report, URL
ftp://ftp.ee.lbl.gov/papers/wb.tech.ps.Z, Sept. 1995.

[14] M. Hofmann, “A Generic Concept for Large-
Scale Multicast”, Proceedings of International
Zurich Seminar on Digital Communications (IZS
'96), URL http://www.telematik.informatik.uni-
karlsruhe.de/ hofmann/paper-izs96.ps, Feb. 1996.

18

[15] H. Holbrook, S. Singhal, and D. Cheriton, “Log-Based
Receiver-Reliable Multicast for Distributed Interactive
Simulation”, Proceedings of ACM SIGCOMM '95 , August
1995.

[16] ISIS and Horus WWW page, URL
http://www.cs.cornell.edu/Info/Projects/ISIS/ISIS.html.

[17] V. Jacobson, “A Portable, Public Domain Network `White-
board' ”, Xerox PARC, viewgraphs, April 28, 1992.
Unpublished document (cited for acknowledgement pur-
poses).

[18] V. Jacobson, “A Privacy and Security Architecture for
Lightweight Sessions”, Sante Fe, NM, Sept. 94. URL
ftp://ftp.ee.lbl.gov/talks/lws-privacy.ps.Z.

[19] V. Jacobson, “Lightweight Sessions - A new architecture
for realtime applications and protocols”, 3rd Annual Prin-
cipal Investigators Meeting, ARPA, Santa Rosa, CA, Sept.
1, 1993. URL ftp://ftp.ee.lbl.gov/talks/vj-nws93-2.ps.Z.

[20] S.K. Kasera, J. Kurose and D. Towsley, “Scalable Reliable
Multicast Using Multiple Multicast Groups”, Proceedings
of 1997 ACM Sigmetrics Conference, June 1997.

[21] J.C. Lin and S. Paul, “RMTP: A Reliable Multicast Trans-
port Protocol”, IEEE INFOCOM '96, pp. 1414-1424.

[22] Liu, C.-G., Estrin, D., Shenker, S., and Zhang, L., “Lo-
cal Error Recovery in SRM: Comparison of Two Ap-
proaches”, USC Technical Report 97-648, January 1997,
URL http://www.usc.edu/dept/cs/technical reports.html.

[23] S. McCanne, “A Distributed Whiteboard for Network
Conferencing”, May 1992, UC Berkeley CS 268 Com-
puter Networks term project. Unpublished report. URL
http://www.cs.berkeley.edu/ mccanne/papers/mccanne-
wb92.ps.gz.

[24] S. McCanne and V. Jacobson, “vic: A Flexible Framework
for Packet Video”, ACM Multimedia 1995, Nov. 1995, San
Francisco, CA, pp. 511-522.

[25] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-
driven Layered Multicast”, ACM SIGCOMM 96, August
1996, Stanford, CA, pp. 117-130.

[26] D.L Mills, “Network Time Protocol (Version 3)”, RFC
(Request For Comments) 1305, March 1992.

[27] Multicast Transport Protocols WWW page, URL
http://hill.lut.ac.uk/DS-Archive/MTP.html.

[28] McCanne, S., “UCB/LBNL Network Simulator - ns”,
URL http://www-mash.cs.berkeley.edu/ns/.

[29] Nonnenmacher, J., Biersack, E., and Don Towsley,
D., “Parity-Based Loss Recovery for Reliable Multicast
Transmission”, ACM SIGCOMM 97.

[30] E. Palmer, Graphical Evolution: An Introduction to the
Theory of Random Graphs, John Wiley & Sons, 1985.

[31] S. Pejhan, M. Schwartz, and D. Anastassiou, “Error Con-
trol Using Retransmission Schemes in Multicast Transport
Protocols for Real-Time Media”, IEEE/ACM Transactions
on Networking, vol. 4 no. 3, pp. 413-427, June 1996.

[32] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
“RTP: A Transport Protocol for Real-Time Applications”,
RFC 1889, January 1996.

[33] S. Pingali, D. Towsley, and J. Kurose, “A
Comparison of Sender-Initiated and Receiver-
Initiated Reliable Multicast Protocols”, IEEE

JSAC, Volume 15, Issue 3, April 1991. URL
ftp://gaia.cs.umass.edu/pub/Tows96:Comparison.ps.Z.
An earlier version of this paper appeared in SIGMETRICS
'94 , May 1994.

[34] Thomas F. La Porta and Mischa Schwartz, “The Multi-
Stream Protocol: a Highly Flexible High-speed Transport
Protocol”, IEEE Journal on Selected Areas in Communi-
cations, vol. 11, pp. 519-530, May 1993.

[35] [PEFZ97] Sharma, P., Estrin, D., Floyd, S.,
and Zhang, L., “Scalable Session Messages in
SRM”, unpublished manuscript, August 1997. URL
ftp://catarina.usc.edu/pub/puneetsh/papers/infocom98.ps.

[36] W.T. Strayer, B.J. Dempsey, and A.C. Weaver,
XTP: The Xpress Transfer Protocol, Addison-
Wesley, Reading, Mass 1992. URL http://heg-
school.aw.com/cseng/authors/dempsey/xtp/xtp.nclk.

[37] Xpress Transport Protocol Specification, XTP Revision
4.0, XTP Forum, Mar. 1995.

[38] Floyd, S., SRM Web Page, URL
http://ftp.ee.lbl.gov/floyd/srm.html.

[39] M. Yajnik, J. Kurose, and D. Towsley, “Packet Loss Cor-
relation in the MBone Multicast Network”, IEEE Global
Internet mini-conference at Globecom '96, Nov. 1996..

19

