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Abstract

In this paper, an efficient technique is employed to study the modified Boussinesq

and approximate long wave equations of the Caputo fractional time derivative,

namely the q-homotopy analysis transform method. These equations play a vital role

in describing the properties of shallow water waves through distinct dispersion

relation. The convergence analysis and error analysis are presented in the present

investigation for the future scheme. We illustrate two examples to demonstrate the

leverage and effectiveness of the proposed scheme, and the error analysis is

discussed to verify the accuracy. The numerical simulation is conducted to ensure the

exactness of the future technique. The obtained numerical and graphical results are

presented, the proposed scheme is computationally very accurate and

straightforward to study and find the solution for fractional coupled nonlinear

complex phenomena arising in science and technology.

Keywords: Laplace transform; Fractional approximate long wave equations;

Fractional modified Boussinesq equations; q-homotopy analysis transform method

1 Introduction

Fractional calculus (FC) was firstly put forward by L’Hopital. FC has received a lot of devo-

tion and appreciation during the last few decades, due to its capability to provide an exact

description for various nonlinear complex phenomena. The differential systems with frac-

tional order have lately gained popularity in developing procedure of models and investi-

gation of dynamical systems. The fractional calculus is the generalization of the traditional

calculus having nonlocal and genetic consequences in the material properties.

The fundamental properties of fractional calculus have been described by many re-

searchers [1–4]. FC plays a vital role and acts as an essential tool in analysing and solving

problems situated in diverse areas of science and technology, like fluid and continuum

mechanics [5], chaos theory [6], biotechnology [7], electrodynamics [8], and many other

fields [9–11]. The solution for differential equations having arbitrary order and describing

the above phenomena plays a pivotal part in labelling the behaviour of complex problems

arising in nature [12–22].

In the twentieth century,Whitham [23], Broer [24] and Kaup [25] studied the equations,

which elucidate the propagation of shallow water waves having distinct dispersion rela-
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tion, called Whitham–Broer–Kaup (WBK) equations. Consider the coupled WBK equa-

tions of fractional order [26]:

⎧

⎨

⎩

Dα
t u + uux + vx + buxx = 0,

Dα
t v + uvx + vux + auxxx – bvxx = 0,

0 < α ≤ 1, (1)

where u = u(x, t) is the horizontal velocity and v = v(x, t) is the height that deviates from

equilibrium position of the liquid. Here, α is the order of the time-fractional derivative.

Further, a and b are constants which represent distinct diffusion powers, i.e. if a = 1 and

b = 0, then Eq. (1) becomes a modified Boussinesq equation. Similarly, for a = 0 and b = 1,

the system signifies conventional long wave equation. These equations arise in hydrody-

namics to illustrate the propagation of waves in dissipative and nonlinear media, and they

are advisable for problems arising in the leakage of water in porous subsurface stratum

and widely used in ocean and coastal engineering. Moreover, Eq. (1) is the foundation of

numerousmodels utilized to portray the unconfined subsurface like drainage and ground-

water flow problems.

Last thirty years has been the testimony for discovery of plenty of new schemes to solve

nonlinear fractional differential equations in parallel to the developments of new compu-

tational algorithms with symbolic programming. In connection with this, Liao proposed

a technique called homotopy analysis method (HAM), which is based on construction

of a homotopy which continuously deforms an initial guess approximation to the exact

solution of the given problem [27]. It does not require any discretization, linearization

and perturbation. However, it requires huge computation and more computer memory to

solve complex nonlinear problems situated in connected areas of science and technology.

Hence, it necessitates an amalgamation of transformation techniques to overcome these

confines.

In the present investigation, we applied the q-homotopy analysis transform method to

find an approximated analytical solution for coupled modified Boussinesq and approx-

imate long wave equations of fractional order. These equations have been studied and

analysed by several authors via distinct techniques like Adomian decomposition method

(ADM) [28], variational iteration method (VIM) [29], coupled fractional reduced dif-

ferential transform method (CFRDTM) [26], Laplace Adomian decomposition method

(LADM) [30] and other techniques [31–33]. In these cited papers, authors used a diffi-

cult solution procedure to find the solution, whereas the solution procedure of the future

technique is very simple and straightforward. Further, these methods require huge com-

putation and have a highly complicated solution procedure to solve coupled differential

equations. The proposed method is a modified technique which is an elegant mixture

of q-HAM and Laplace transform. Hence, it does not require discretization, lineariza-

tion or perturbation; in addition, it will decrease huge mathematical computations, more

computer memory and is free from obtaining difficult integrals, polynomials and physi-

cal parameters. The future technique has many sturdy properties including a straightfor-

ward solution procedure, promising large convergence region, and is free from any as-

sumption, discretization and perturbation. The present method gives highly approximate

results with a few iterations. The advantage of this method is its capability of combin-

ing two powerful methods for obtaining exact and approximate analytical solutions for

nonlinear equations. It is worth revealing that the Laplace transform with semi-analytical
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techniques requires less C.P.U. time to evaluate solution for nonlinear complex models

and phenomena arising in science and technology. The q-HATM solution involves two

auxiliary parameters ℏ and n, which helps us adjust and control the convergence of the

solution, which quickly tends to the analytical solution in a small acceptable region. It is

worth to mention that the proposed scheme can decrease the computation time and work

as compared with other traditional techniques while maintaining great efficiency.

Recently, due to consistency and efficacy of q-HATM, it has been eminently used by

many researchers to analyse various kinds of nonlinear problem. For example, authors

in [34] analysed and found the approximated analytical solution for a fractional model

of vibration equation and elucidated the exactness of q-HATM. In [35] the solution for

fractional Drinfeld–Sokolov–Wilson equation was investigated with the aid of the pro-

posed scheme. The cancer chemotherapy effect model with fractional order was analysed

by the authors in [36]. Bulut and his co-authors analysed HIV infection of CD4+T lym-

phocyte cells of fractional model [37]. The efficiency of considered algorithm was pre-

sented while finding the solution for fractional telegraph equation in [38]. Authors in [39]

analysed the model of Lienard’s equation, and many others have studied and found the

solution for many complex problems arising in the related fields of science [40–45]. The

time-fractional derivative shows new characteristics in comparisonwith the standard time

derivative, we can study these types of properties with the aid of the proposed technique.

Also, the above literature survey shows that the future technique is highly systematic and

accurate and can be employed to study the nonlinearmathematical models of arbitrary or-

der, and the application of arbitrary order derivative gives very interesting and useful con-

sequences.Motivated by these investigations, we find the approximated analytical solution

for coupled nonlinear differential equations describing the shallow water waves through

distinct dispersion relation. Also, we try to capture the behaviour of coupled surface for

the obtained solution, and wemade an attempt to analyse the nature of q-HATM solution

for diverse values of fractional order.

2 Preliminaries

In this segment, we present basic definitions and notions which will be used in the present

framework.

Definition 1 Let f (t) ∈ Cμ (μ ≥ –1) be a function. Then the Riemann–Liouville fractional

integral of f (t) with order α > 0 is presented as

Jαf (t) =
1

Γ (α)

∫ t

0

(t – x)α–1f (ϑ)dx,

J0f (t) = f (t).

(2)

Definition 2 The Caputo fractional derivative of f ∈ Cn
–1 is defined as

Dα
t f (t) =

⎧

⎨

⎩

dnf (t)
dtn

, α = n ∈N,

1
Γ (n–α)

∫ t

0
(t – x)n–α–1f (n)(x)dx, n – 1 < α < n,n ∈N.

(3)
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Definition 3 The Laplace transform (LT) of a Caputo fractional derivative Dα
t f (t) is rep-

resented as

L
[

Dα
t f (t)

]

= sαF(s) –

n–1
∑

r=0

sα–r–1f (r)
(

0+
)

(n – 1 < α ≤ n), (4)

where F(s) represents the LT of f (t).

3 Basic idea of q-HATM

Consider the nonlinear differential equation of arbitrary order

Dα
t U (x, t) + RU (x, t) +NU (x, t) = f (x, t), n – 1 < α ≤ n, (5)

where R is the bounded linear differential operator in x and t (i.e. for a number ε > 0,

we have ‖RU‖ ≤ ε‖U‖), N specifies the nonlinear differential operator and is Lipschitz

continuous with μ > 0 satisfying |NU – NV| ≤ μ|U – V|, and f (x, t) denotes the source

term. On applying LT to Eq. (5), we have

sαL
[

U (x, t)
]

–

n–1
∑

k=0

sα–k–1U (k)(x, 0) + L
[

RU (x, t)
]

+ L
[

NU (x, t)
]

= L
[

f (x, t)
]

. (6)

On simplification, Eq. (6) reduces to

L
[

U (x, t)
]

–
1

sα

n–1
∑

k=0

sα–k–1U k(x, 0) +
1

sα

{

L
[

RU (x, t)
]

+ L
[

NU (x, t)
]

– L
[

f (x, t)
]}

= 0. (7)

According to the homotopy analysis method [27], the nonlinear operator is a real func-

tion ϕ(x, t;q) defined as

N
[

ϕ(x, t;q)
]

= L
[

ϕ(x, t;q)
]

–
1

sα

n–1
∑

k=0

sα–k–1ϕ(k)(x, t;q)
(

0+
)

+
1

sα

{

L
[

Rϕ(x, t;q)
]

+ L
[

Nϕ(x, t;q)
]

– L
[

f (x, t)
]}

, ∀q ∈

[

0,
1

n

]

. (8)

The homotopy constructed for H(x, t) is as shown below:

(1 – nq)L
[

ϕ(x, t;q) – U0(x, t)
]

= ℏqH(x, t)N
[

ϕ(x, t;q)
]

, (9)

where L symbolizes LT, ℏ �= 0 is an auxiliary parameter, U0(x, t) is the initial guess and

ϕ(x, t;q) is an unknown function. For q = 0 and q = 1
n
, the following results respectively

hold true:

ϕ(x, t; 0) = U0(x, t), ϕ

(

x, t;
1

n

)

= U (x, t). (10)

Thus, by increasing q from 0 to 1
n
, the solution ϕ(x, t;q) converges fromU0(x, t) toU (x, t).

Now, by applying the Taylor theorem [46], the function ϕ(x, t;q) is expanding in a series
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form near to q, we have

ϕ(x, t;q) = U0(x, t) +

∞
∑

m=1

Um(x, t)q
m, (11)

where

Um(x, t) =
1

m!

∂mϕ(x, t;q)

∂qm

∣

∣

∣

∣

q=0

. (12)

On choosing the initial guess U0(x, t), the auxiliary parameter n, the auxiliary linear op-

erator, ℏ and H(x, t), series (11) converges at q = 1
n
. Later, it provides solutions for Eq. (5)

which is of the form

U (x, t) = U0(x, t) +

∝
∑

m=1

Um(x, t)

(

1

n

)m

. (13)

Now, differentiating Eq. (9)m-times in terms of q, thenmultiplying by 1
m!

and then taking

q = 0, we have

L
[

Um(x, t) – kmUm–1(x, t)
]

= ℏH(x, t)Rm( 
Um–1), (14)

where


Um =
{

U0(x, t),U1(x, t), . . . ,Um(x, t)
}

. (15)

On employing inverse LT for Eq. (14), one can get

Um(x, t) = kmUm–1(x, t) + ℏL–1
[

H(x, t)Rm( 
Um–1)
]

, (16)

where

Rm( 
Um–1) = L
[

Um–1(x, t)
]

–

(

1 –
km

n

)

(

n–1
∑

k=0

sα–k–1U (k)(x, 0) +
1

sα
L
[

f (x, t)
]

)

+
1

sα
L[RUm–1 +Hm–1], (17)

and

km =

⎧

⎨

⎩

0, m ≤ 1,

n, m > 1.
(18)

In Eq. (17),Hm denotes homotopy polynomial defined as

Hm =
1

m!

[

∂mϕ(x, y, t;q)

∂qm

]

q=0

and ϕ(x, y, t;q) = ϕ0 + qϕ1 + q2ϕ2 + · · · . (19)
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By Eqs. (16) and (17), we have

Um(x, t) = (km + ℏ)Um–1(x, t) –

(

1 –
km

n

)

L–1

(

n–1
∑

k=0

sα–k–1U (k)(x, 0) +
1

sα
L
[

f (x, t)
]

)

+ ℏL–1
[

1

sα
L[RUm–1 +Hm–1]

]

. (20)

Lastly, on simplifying Eq. (20), we get the iterative terms of Um(x, t). The series solution

of q-HATM is presented by

U (x, t) =

∞
∑

m=0

Um(x, t). (21)

4 Convergence analysis of q-HATM solution

Theorem 1 (Uniqueness theorem) The solution for the nonlinear fractional differential

equation (5) obtained by q-HATM is unique for every β ∈ (0, 1), where β = (n + ℏ) +

ℏ(ε +μ)T .

Proof For Eq. (5), the solution is defined by

U (x, t) =

∞
∑

m=0

Um(x, t),

where

Um(x, t) = (km + ℏ)Um–1(x, t) –

(

1 –
km

n

)

L–1

(

n–1
∑

k=0

sα–k–1U (k)(x, 0)

+
1

sα
L
[

f (x, t)
]

)

+ ℏL–1
[

1

sα
L[RUm–1 +Hm–1]

]

. (22)

Suppose U and U� are the two solutions of Eq. (4), then it is sufficient to show U = U�

to prove the theorem. Now, by Eq. (21), we obtain

∣

∣U – U
�

∣

∣ =

∣

∣

∣

∣

(n + ℏ)
(

U – U
�

)

+ ℏL–1
(

1

sα
L
(

N
(

U – U
�

)

+ R
(

U – U
�

))

)
∣

∣

∣

∣

,

then by using the convolution theorem for LT , we have

∣

∣U – U
�

∣

∣ ≤ (n + ℏ)
∣

∣U – U
�

∣

∣ + ℏ

∫ t

0

(
∣

∣N
(

U – U
�

)
∣

∣ +
∣

∣R
(

U – U
�

)
∣

∣

) (t – ξ )α

Γ (α + 1)
dξ

≤ (n + ℏ)
∣

∣U – U
�

∣

∣ + ℏ

∫ t

0

(

ε
∣

∣

(

U – U
�

)
∣

∣ +μ
∣

∣

(

U – U
�

)
∣

∣

) (t – ξ )α

Γ (α + 1)
dξ .

With the aid of integral mean value theorem, the above equation reduces to

∣

∣U – U
�

∣

∣ ≤ (n + ℏ)
∣

∣U – U
�

∣

∣ + ℏ
(

ε
∣

∣

(

U – U
�

)
∣

∣ +μ
∣

∣

(

U – U
�

)
∣

∣

)

T .
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Here, β = (n + ℏ) + ℏ(ε +μ)T , thus

∣

∣U – U
�

∣

∣ ≤ β
∣

∣U – U
�

∣

∣ ⇒ (1 – β)
∣

∣U – U
�

∣

∣ ≤ 0.

Since 0 < β < 1, then U – U� = 0⇒ U = U�.

Hence, the solution for Eq. (5) is unique. �

Theorem 2 (Convergence theorem) Let X be a Banach space and F : X → X be a nonlin-

ear mapping. Assume that

∥

∥F(U ) – F(V)
∥

∥ ≤ β‖U – V‖, ∀a,b ∈ X,

then F has a fixed point in view of Banach’s fixed point theory [47]. Moreover, for the ar-

bitrary selection of a0,b0 ∈ X, the sequence generated by the q-HATM converges to a fixed

point of F and

‖Um – Un‖ ≤
βn

1 – β
‖U1 – U0‖, ∀a,b ∈ X.

Proof For all continuous functions, let us consider a Banach space (C[I], ‖ · ‖) on I with

norm given by ‖g(λ)‖ = maxλ∈I |g(λ)|. First, we prove that {Un} is a Cauchy sequence in X.

Now consider

‖Um – Un‖ = max
λ∈I

|Um – Un|

= max
λ∈I

∣

∣

∣

∣

(n + ℏ)(Um–1 – Un–1)

+ ℏL–1
(

1

sα
L
(

N(Um–1 – Un–1) + R(Um–1 – Un–1)
)

)
∣

∣

∣

∣

≤ max
λ∈I

[(n + ℏ)
∣

∣(Um–1 – Un–1)
∣

∣ + ℏL–1
(

1

sα
L
(

N |Um–1 – Un–1|

+ R
(

|Um–1 – Un–1|
))

)

. (23)

By the convolution theorem for LT , Eq. (22) becomes

‖Um – Un‖ ≤ max
λ∈I

[(n + ℏ)
∣

∣(Um–1 – Un–1)
∣

∣ℏ

∫ t

0

(
∣

∣N(Um–1 – Un–1)
∣

∣

+
∣

∣R(Um–1 – Un–1)
∣

∣

) (t – ξ )α

Γ (α + 1)
dξ

≤ max
λ∈I

[(n + ℏ)
∣

∣(Um–1 – Un–1)
∣

∣ + ℏ

∫ t

0

(
∣

∣N(Um–1 – Un–1)
∣

∣

+
∣

∣R(Um–1 – Un–1)
∣

∣

) (t – ξ )α

Γ (α + 1)
dξ . (24)
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With the aid of integral mean value theorem, the above inequality reduces to

‖Um – Un‖ ≤ max
λ∈I

[

(n + ℏ)
∣

∣(Um–1 – Un–1)
∣

∣ + ℏ
(

ε|Um–1 – Un–1| +μ|Um–1 – Un–1|
)

T
]

≤ β‖Um–1 – Un–1‖.

Form = n + 1, one can get

‖Un+1 – Un‖ ≤ β‖Un – Un–1‖ ≤ β2‖Un–1 – Un–2‖ ≤ β3‖Un–2 – Un–3‖ ≤ · · ·

≤ βn‖U1 – U0‖.

In view of the triangular inequality, we have

‖Um – Un‖ ≤ ‖Un+1 – Un‖ + ‖Un+2 – Un+1‖ + · · · + ‖Um – Um–1‖

≤
[

βn + βn+1 + · · · + βm–1
]

‖U1 – U0‖ = βn
[

1 + β + · · · + βm–n–1
]

‖U1 – U0‖

≤ βn

[

1 – βm–n–1

1 – β

]

‖U1 – U0‖.

Clearly, 1 – βm–n–1 < 1 (since 0 < β < 1). Therefore, the above inequality becomes

‖Um – Un‖ ≤
βn

1 – β
‖U1 – U0‖. (25)

But ‖U1 – U0‖ < ∞; consequently, asm → ∞, then ‖Um – Un‖ → 0.

It provides {Un} is a Cauchy sequence inC[I], and everyCauchy sequence is a convergent

sequence. Hence {Un} is a convergent sequence. �

5 Error analysis of the proposed algorithm

The error analysis of the proposed scheme obtainedwith the help of q-HATM is presented

in this segment.

Theorem 3 If we can obtain a real number 0 < ρ < 1 fulfilling ‖Um+1(x, t)‖ ≤ ρ‖Um(x, t)‖

for all m.Moreover, if the truncated series
∑i

m=0Um(x, t) is used as an approximate solution

of U (x, t), then the maximum absolute truncated error can be obtained by

∥

∥

∥

∥

∥

U (x, t) –

i
∑

m=0

Um(x, t)

∥

∥

∥

∥

∥

≤
ρ i+1

1 – ρ

∥

∥U0(x, t)
∥

∥.

Proof We have

∥

∥

∥

∥

∥

U (x, t) –

i
∑

m=0

Um(x, t)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∞
∑

m=i+1

Um(x, t)

∥

∥

∥

∥

∥

≤

∞
∑

m=l+1

∥

∥Um(x, t)
∥

∥

≤

∞
∑

m=i+1

ρm
∥

∥U0(x, t)
∥

∥
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≤ ρ i+1
[

1 + ρ1 + ρ2 + · · ·
]
∥

∥U0(x, t)
∥

∥

≤
ρ i+1

1 – ρ

∥

∥U0(x, t)
∥

∥,

which proves our required result. �

6 Illustrative examples

Here, we consider two coupled examples to present the efficiency and applicability q-

HATM.

Example 6.1 Consider the modified Boussinesq (MB) equations of fractional order [26,

28, 31]:

⎧

⎨

⎩

Dα
t u = –u ∂u

∂x
– ∂v

∂x
,

Dα
t v = –u ∂v

∂x
– v ∂u

∂x
– ∂3u

∂x3
,

0 < α ≤ 1, (26)

with the initial conditions

u(x, 0) = ω – 2ℓ coth
[

ℓ(x + c)
]

, v(x, 0) = –2ℓ2 csch
2
[

ℓ(x + c)
]

. (27)

The exact solution for classical order MB equations is

u(x, t) = ω – 2ℓ coth
[

ℓ(x + c –ωt)
]

, v(x, t) = –2ℓ2 csch
2
[

ℓ(x + c –ωt)
]

.

By performing LT on Eq. (26) and using Eq. (27), we have

L
[

u(x, t)
]

–
1

s

(

ω – 2ℓ coth
[

ℓ(x + c)
])

+
1

sα
L

{

u
∂u

∂x
+

∂v

∂x

}

= 0,

L
[

v(x, t)
]

–
1

s

(

–2ℓ2 csch
2
[

ℓ(x + c)
])

+
1

sβ
L

{

u
∂v

∂x
+ v

∂u

∂x
+

∂3u

∂x3

}

= 0.

(28)

Define the nonlinear operators as follows:

N1
[

ϕ1(x, t;q),ϕ2(x, t;q)
]

= L
[

ϕ1(x, t;q)
]

–
1

s

(

ω – 2ℓ coth
[

ℓ(x + c)
])

+
1

sα
L

{

ϕ1(x, t;q)
∂ϕ1(x, t;q)

∂x
+

∂ϕ2(x, t;q)

∂x

}

,

N2
[

ϕ1(x, t;q),ϕ2(x, t;q)
]

= L
[

ϕ2(x, t;q)
]

–
1

s

(

–2ℓ2 csch
2
[

ℓ(x + c)
])

+
1

sβ
L

{

ϕ1(x, t;q)
∂ϕ2(x, t;q)

∂x
+ ϕ2(x, t;q)

∂ϕ1(x, t;q)

∂x

+
∂3ϕ1(x, t;q)

∂x3

}

.

(29)
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By applying the proposed numerical scheme,mth order deformation equation forH(x, t) =

1 is given as

L
[

um(x, t) – kmum–1(x, t)
]

= hR1,m[
um–1, 
vm–1],

L
[

vm(x, t) – kmvm–1(x, t)
]

= hR2,m[
um–1, 
vm–1],
(30)

where

R1,m[
um–1, 
vm–1]

= L
[

um–1(x, t)
]

–

(

1 –
km

n

)

1

s

(

ω – 2ℓ coth
[

ℓ(x + c)
])

+
1

sα
L

{

m–1
∑

i=0

ui
∂um–1–i

∂x
+

∂vm–1

∂x

}

,

R2,m[
um–1, 
vm–1]

= L
[

vm–1(x, t)
]

–

(

1 –
km

n

)

1

s

(

–2ℓ2 csch
2
[

ℓ(x + c)
])

+
1

sβ
L

{

m–1
∑

i=0

ui
∂vm–1–i

∂x
+

m–1
∑

i=0

vi
∂um–1–i

∂x
+

∂3um–1

∂x3

}

.

(31)

By employing inverse LT on Eq. (30), we get

um(x, t) = kmum–1(x, t) + ℏL–1
{

R1,m[
um–1, 
vm–1]
}

,

vm(x, t) = kmvm–1(x, t) + ℏL–1
{

R2,m[
um–1, 
vm–1]
}

.
(32)

On solving the above equation, we have

u0(x, t) = ω – 2ℓ coth
[

ℓ(x + c)
]

,

v0(x, t) = –2ℓ2 csch
2
[

ℓ(x + c)
]

,

u1(x, t) =
2ℏℓ2ω csch

2[ℓ(x + c)]tα

Γ [α + 1]
,

v1(x, t) =
4ℏℓ3ω coth[ℓ(x + c)] csch

2[ℓ(x + c)]tα

Γ [α + 1]
,

u2(x, t) =
2(n + ℏ)ℏℓ2ω csch

2[ℓ(x + c)]tα

Γ [α + 1]

–
4ℏ2ℓ3ω2

coth[ℓ(x + c)] csch
2[ℓ(x + c)]t2α

Γ [2α + 1]
,

v2(x, t) =
4(n + ℏ)ℏℓ3ω coth[ℓ(x + c)] csch

2[ℓ(x + c)]tα

Γ [α + 1]

–
4ℏ2ℓ4ω2(2 + cosh[2ℓ(x + c)]) csch

4[ℓ(x + c)]t2α

Γ [2α + 1]
,
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u3(x, t) =
2(ℏ + n)2ℏℓ2ω csch

2[ℓ(x + c)]tα

Γ [1 + α]

–
8(ℏ + n)ℏ2ℓ3ω2

coth[ℓ(x + c)] csch
2[ℓ(x + c)]t2α

Γ [1 + 2α]

+
2ℏ3ℓ4ω2

csch
5[ℓ(x + c)]t3α

Γ [α + 1]2Γ [3α + 1]
(–4l cosh

[

ℓ(x + c)
]

Γ [1 + 2α]

+ Γ [1 + α]2
(

8ℓ cosh
[

ℓ(x + c)
]

+ω
((

3 sinh
[

ℓ(x + c)
]

+ sinh
[

3ℓ(x + c)
])))

,

v3(x, t) =
4(ℏ + n)2ℏℓ3ω coth[ℓ(x + c)] csch

2[ℓ(x + c)]tα

Γ [α + 1]

–
8(ℏ + n)ℏ2ℓ5ω(2 + cosh[2ℓ(x + c)]) csch

4[ℓ(x + c)]t2α

Γ [2α + 1]

+
2ℏ3ℓ5ω2

csch
6[ℓ(x + c)]t3α

Γ [α + 1]2Γ [3α + 1]
(–4l

(

3 + 2 cosh
[

2ℓ(x + c)
])

Γ [2α + 1]

+ Γ [α + 1]2(24ℓ + 16ℓ cosh
[

2ℓ(x + c)
]

+ 10ω sinh
[

2ℓ(x + c)
]

+ω sinh
[

4ℓ(x + c)
]

.

In this way, the remaining term can be obtained. Then, for system of Eq. (26), the q-HATM

series solution is presented as follows:

u(x, t) = u0(x, t) +

∞
∑

m=1

um(x, t)

(

1

n

)m

,

v(x, t) = v0(x, t) +

∞
∑

m=1

vm(x, t)

(

1

n

)m

.

(33)

Example 6.2 Consider the approximate long wave (ALW) equations with arbitrary order

[26, 28, 33]:

⎧

⎨

⎩

Dα
t u = –u ∂u

∂x
– ∂v

∂x
– 1

2
∂2v
∂x2

,

Dα
t v = –u ∂v

∂x
– v ∂u

∂x
+ 1

2
∂2v
∂x2

,
0 < α ≤ 1, (34)

with the initial conditions

u(x, 0) = ω – ℓ coth
[

ℓ(x + c)
]

,

v(x, 0) = –ℓ2 csch
2
[

ℓ(x + c)
]

.
(35)

The exact solution for classical order ALW equations is

u(x, t) = ω – ℓ coth
[

ℓ(x + c –ωt)
]

,

v(x, t) = –ℓ2 csch
2
[

ℓ(x + c –ωt)
]

.
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By performing LT on Eq. (34) and using Eq. (35), we have

L
[

u(x, t)
]

–
ω – ℓ coth[ℓ(x + c)]

s
+

1

sα
L

{

u
∂u

∂x
+

∂v

∂x
+
1

2

∂2u

∂x2

}

= 0,

L
[

v(x, t)
]

–
–ℓ2 csch

2[ℓ(x + c)]

s
+

1

sα
L

{

u
∂v

∂x
+ v

∂u

∂x
–
1

2

∂2v

∂x2

}

= 0.

(36)

Define the nonlinear operators as

N1
[

ϕ1(x, t;q),ϕ2(x, t;q)
]

= L
[

ϕ1(x, t;q)
]

–
ω – ℓ coth[ℓ(x + c)]

s

+
1

sα
L

{

ϕ1(x, t;q)
∂ϕ1(x, t;q)

∂x
+

∂ϕ2(x, t;q)

∂y
+
1

2

∂2ϕ1(x, t;q)

∂x2

}

,

N2
[

ϕ1(x, t;q),ϕ2(x, t;q)
]

= L
[

ϕ2(x, t;q)
]

–
–ℓ2 csch

2[ℓ(x + c)]

s

+
1

sα
L

{

ϕ1(x, t;q)
∂ϕ2(x, t;q)

∂x
+ ϕ2(x, t;q)

∂ϕ1(x, t;q)

∂x
–
1

2

∂2ϕ2(x, t;q)

∂x2

}

.

(37)

Now, for H(x, t) = 1, themth order deformation equation is presented as follows:

L
[

um(x, t) – kmum–1(x, t)
]

= hR1,m[
um–1, 
vm–1],

L
[

vm(x, t) – kmvm–1(x, t)
]

= hR2,m[
um–1, 
vm–1],
(38)

where

R1,m[
um–1, 
vm–1]

= L
[

um–1(x, t)
]

–

(

1 –
km

n

)

ω – ℓ coth[ℓ(x + c)]

s

+
1

sα
L

{

m–1
∑

i=0

ui
∂um–1–i

∂x
+

∂vm–1

∂x
+
1

2

∂2um–1

∂x2

}

,

R2,m[
um–1, 
vm–1]

= L
[

vm–1(x, t)
]

–

(

1 –
km

n

)

–ℓ2 csch
2[ℓ(x + c)]

s

+
1

sα
L

{

m–1
∑

i=0

ui
∂vm–1–i

∂x
+

m–1
∑

i=0

vi
∂um–1–i

∂x
–
1

2

∂2vm–1

∂x2

}

.

(39)

By employing inverse LT on Eq. (38), we obtain

um(x, t) = kmum–1(x, t) + ℏL–1
{

R1,m[
um–1, 
vm–1]
}

,

vm(x, t) = kmvm–1(x, t) + ℏL–1
{

R2,m[
um–1, 
vm–1]
}

.
(40)
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On simplification, we obtain

u0(x, t) = ω – ℓ coth
[

ℓ(x + c)
]

,

v0(x, t) = –ℓ2 csch
2
[

ℓ(x + c)
]

,

u1(x, t) =
ℏℓ2ω csch

2[ℓ(x + c)]tα

Γ [α + 1]
,

v1(x, t) =
2ℏℓ3ω coth[ℓ(x + c)] csch

2[ℓ(x + c)]tα

Γ [α + 1]
,

u2(x, t) =
(n + ℏ)ℏℓ2ω csch

2[ℓ(x + c)]tα

Γ [α + 1]

–
2ℏ2ℓ3ω2

coth[ℓ(x + c)] csch
2[ℓ(x + c)]t2α

Γ [2α + 1]
,

v2(x, t) =
2(n + ℏ)ℏℓ3ω coth[ℓ(x + c)] csch

2[ℓ(x + c)]tα

Γ [α + 1]

–
2ℏ2ℓ4ω2(2 + cosh[2ℓ(x + c)]) csch

4[ℓ(x + c)]t2α

Γ [2α + 1]
,

u3(x, t) =
(ℏ + n)2ℏℓ2ω csch

2[ℓ(x + c)]tα

Γ [1 + α]

–
4(ℏ + n)ℏ2ℓ3ω2

coth[ℓ(x + c)] csch
2[ℓ(x + c)]t2α

Γ [1 + 2α]

+
ℏ
3ℓ4t3αω2

csch
5[ℓ(x + c)]

Γ [α + 1]2Γ [3α + 1]
(–2k cosh

[

ℓ(x + c)
]

Γ [1 + 2α]

+ Γ [1 + α]2
(

4ℓ cosh
[

ℓ(x + c)
]

+ω
(

3 sinh
[

ℓ(x + c)
]

+ sinh
[

3ℓ(x + c)
]))

,

v3(x, t) =
2(ℏ + n)2ℏℓ3ω coth[ℓ(x + c)] csch

2[ℓ(x + c)]tα

Γ [α + 1]

–
4(ℏ + n)ℏ2ℓ5t2βω(2 + cosh[2ℓ(x + c)]) csch

4[ℓ(x + c)]

Γ [2α + 1]

+
ℏ
3ℓ5t3αω2

csch
6[ℓ(x + c)]

Γ [α + 1]2Γ [3α + 1]
(–2l

(

3 + 2 cosh
[

2ℓ(x + c)
])

Γ [2α + 1]

+ Γ [α + 1]2
(

12ℓ + 8ℓ cosh
[

2ℓ(x + c)
]

+ 10ω sinh
[

2ℓ(x + c)
]

+ω sinh
[

4ℓ(x + c)
])

.

...

Following the same procedure, the remaining terms can be obtained. Eventually, for

Eq. (34), the q-HATM solutions are presented as follows:

u(x, t) = u0(x, t) +

∞
∑

m=1

um(x, t)

(

1

n

)m

,

v(x, t) = v0(x, t) +

∞
∑

m=1

vm(x, t)

(

1

n

)m

.

(41)
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Table 1 Comparative study in terms of absolute error between ADM [28], VIM [29], CFRDTM [26] and

q-HATM for the approximate solution u(x, t) at ω = 0.005, ℓ = 0.1, c = 10, n = 1, ℏ = –1 and α = 1 for

Example 6.1

(x, t) |uExact – uADM| |uExact – uVIM| |uExact – uCRFDTM| |uExact – u
(3)
q-HATM|

(0.1, 0.1) 8.16297× 10–7 6.35269× 10–5 5.55112× 10–17 5.55112× 10–17

(0.1, 0.3) 7.64245× 10–7 1.90854× 10–4 5.55112× 10–17 5.55112× 10–17

(0.1, 0.5) 7.16083× 10–7 3.18549× 10–4 5.55112× 10–16 5.55112× 10–16

(0.2, 0.1) 3.26243× 10–6 6.18930× 10–5 5.55112× 10–16 5.55112× 10–16

(0.2, 0.3) 3.05458× 10–6 1.85945× 10–4 1.11022× 10–16 1.11022× 10–16

(0.2, 0.5) 2.86226× 10–6 3.10352× 10–4 7.77156× 10–16 7.77156× 10–16

(0.3, 0.1) 7.33445× 10–6 6.03095× 10–5 0 0

(0.3, 0.3) 6.86758× 10–6 1.81187× 10–4 1.66533× 10–16 1.66533× 10–16

(0.3, 0.5) 6.43557× 10–6 3.02408× 10–4 6.666134× 10–16 6.666134× 10–16

(0.4, 0.1) 1.30286× 10–5 5.87746× 10–5 5.55112× 10–17 5.55112× 10–17

(0.4, 0.3) 1.22000× 10–5 1.76574× 10–4 5.55112× 10–17 5.55112× 10–17

(0.4, 0.5) 1.14333× 10–5 2.94707× 10–4 5.55112× 10–16 5.55112× 10–16

(0.5, 0.1) 2.03415× 10–5 5.72867× 10–5 0 0

(0.5, 0.3) 1.90489× 10–5 1.72102× 10–4 1.11022× 10–16 1.11022× 10–16

(0.5, 0.5) 1.78528× 10–5 2.87241× 10–4 6.10623× 10–16 6.10623× 10–16

Table 2 Comparative study in terms of absolute error between ADM [28], VIM [29], CFRDTM [26] and

q-HATM for the approximate solution v(x, t) at ω = 0.005, ℓ = 0.1, c = 10, ℏ = –1, n = 1, ℏ = –1 and

α = 1 for Example 6.1

(x, t) |vExact – vADM| |vExact – vVIM| |vExact – vCRFDTM| |vExact – v
(3)
q-HATM|

(0.1, 0.1) 5.88676× 10–5 1.65942× 10–5 3.46945× 10–18 3.46945× 10–18

(0.1, 0.3) 5.56914× 10–5 4.98691× 10–5 5.55112× 10–17 5.55112× 10–17

(0.1, 0.5) 5.27169× 10–5 8.32598× 10–5 5.55112× 10–16 5.55112× 10–16

(0.2, 0.1) 1.18213× 10–4 1.06813× 10–5 6.93889× 10–18 6.93889× 10–18

(0.2, 0.3) 1.11833× 10–4 4.83269× 10–5 5.55112× 10–17 5.55112× 10–17

(0.2, 0.5) 1.05858× 10–4 8.06837× 10–5 5.55112× 10–16 5.55112× 10–16

(0.3, 0.1) 1.78041× 10–4 1.55880× 10–5 6.93889× 10–18 6.93889× 10–18

(0.3, 0.3) 1.68429× 10–4 4.68440× 10–5 5.55112× 10–17 5.55112× 10–17

(0.3, 0.5) 1.59428× 10–4 7.82068× 10–5 5.55112× 10–16 5.55112× 10–16

(0.4, 0.1) 2.38356× 10–4 1.51135× 10–5 5.20417× 10–18 5.20417× 10–18

(0.4, 0.3) 2.25483× 10–4 4.54174× 10–5 5.55112× 10–17 5.55112× 10–17

(0.4, 0.5) 2.13430× 10–4 7.58243× 10–5 5.55112× 10–16 5.55112× 10–16

(0.5, 0.1) 2.99162× 10–4 1.46569× 10–5 1.73472× 10–18 1.73472× 10–18

(0.5, 0.3) 2.83001× 10–4 4.40448× 10–5 5.55112× 10–17 5.55112× 10–17

(0.5, 0.5) 2.67868× 10–4 7.35317× 10–5 5.55112× 10–16 5.55112× 10–16

Table 3 Comparative study between ADM [28], VIM [29], LADM [30], CRFDTM [26] and q-HATM for

the approximate solution u(x, t) at ω = 0.005, ℓ = 0.1, c = 10, α = 1 and ℏ = –1 for Example 6.2

(x, t) |uExact – uADM| |uExact – uVIM| |uExact – uLADM| |uExact – uCRFDTM| |uExact – u
(3)
q-HATM|

(0.1, 0.1) 8.02989× 10–6 1.23033× 10–4 7.10000× 10–9 2.77556× 10–17 2.77556× 10–17

(0.1, 0.3) 7.38281× 10–6 3.69597× 10–4 6.50000× 10–9 2.77556× 10–17 2.77556× 10–17

(0.1, 0.5) 6.79923× 10–6 4.92780× 10–4 5.90000× 10–9 3.33067× 10–16 3.33067× 10–16

(0.2, 0.1) 3.23228× 10–5 1.69274× 10–5 2.82000× 10–8 2.77556× 10–17 2.77556× 10–17

(0.2, 0.3) 297172× 10–5 1.89210× 10–4 2.59000× 10–8 4.16334× 10–17 4.16334× 10–17

(0.2, 0.5) 2.73673× 10–5 1.55176× 10–4 2.41000× 10–8 3.60822× 10–17 3.60822× 10–17

(0.3, 0.1) 7.32051× 10–5 1.12345× 10–5 6.33670× 10–8 1.38778× 10–17 1.38778× 10–17

(0.3, 0.3) 6.73006× 10–5 6.55176× 10–5 5.85000× 10–8 2.77556× 10–17 2.77556× 10–17

(0.3, 0.5) 6.19760× 10–5 2.12346× 10–5 5.40000× 10–8 3.19189× 10–16 3.19189× 10–16

(0.4, 0.1) 1.31032× 10–4 7.36513× 10–5 1.12400× 10–7 1.38778× 10–17 1.38778× 10–17

(0.4, 0.3) 1.20455× 10–4 9.5016× 10–5 1.03900× 10–7 2.77556× 10–17 2.77556× 10–17

(0.4, 0.5) 1.10919× 10–4 8.23160× 10–4 9.61000× 10–8 3.19189× 10–16 3.19189× 10–16

(0.5, 0.1) 2.06186× 10–4 5.55176× 10–5 1.75500× 10–7 0 0

(0.5, 0.3) 1.89528× 10–4 3.21715× 10–6 1.62200× 10–7 5.55112× 10–17 5.55112× 10–17

(0.5, 0.5) 1.74510× 10–4 2.00176× 10–5 1.5010× 10–7 3.19189× 10–16 3.19189× 10–16
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7 Numerical results and discussion

Here, the numerical simulation has been conducted in order to prove that the future al-

gorithm leads to greater accuracy. We can see from the obtained results that the future

scheme gives remarkable exactness in comparison to the technique presented in the liter-

ature [26, 29, 30], which is cited for both the examples in Tables 1–4. Figs. 1 and 2 explore

Table 4 Comparative study between ADM [28], VIM [29], LADM [30], CRFDTM [26] and q-HATM for

the approximate solution v(x, t) at ω = 0.005, ℓ = 0.1, c = 10, α = 1 and ℏ = –1 for Example 6.2

(x, t) |vExact – vADM| |vExact – vVIM| |vExact – vLADM| |vExact – vCRFDTM| |vExact – v
(3)
q-HATM|

(0.1, 0.1) 4.81902× 10–4 1.23033× 10–4 9.5512× 10–10 1.73472× 10–18 1.73472× 10–18

(0.1, 0.3) 4.50818× 10–4 1.7600× 10–4 8.0600× 10–10 2.60209× 10–17 2.60209× 10–17

(0.1, 0.5) 4.22221× 10–4 2.69597× 10–4 6.7700× 10–10 1.80411× 10–16 1.80411× 10–16

(0.2, 0.1) 9.76644× 10–4 2.69597× 10–4 3.8210× 10–9 3.46945× 10–18 3.46945× 10–18

(0.2, 0.3) 9.13502× 10–4 2.69597× 10–4 3.224× 10–9 2.34188× 10–17 2.34188× 10–17

(0.2, 0.5) 8.55426× 10–4 2.69597× 10–4 2.7060× 10–9 1.73472× 10–16 1.73472× 10–16

(0.3, 0.1) 1.48482× 10–3 2.69597× 10–4 8.597× 10–9 3.46945× 10–18 3.46945× 10–18

(0.3, 0.3) 1.38858× 10–3 2.69597× 10–4 7.252× 10–9 1.99493× 10–17 1.99493× 10–17

(0.3, 0.5) 1.30009× 10–3 2.69597× 10–4 6.0910× 10–9 1.61329× 10–16 1.61329× 10–16

(0.4, 0.1) 2.00705× 10–3 2.69597× 10–4 1.5284× 10–8 2.60209× 10–18 2.60209× 10–18

(0.4, 0.3) 1.87661× 10–3 2.69597× 10–4 1.2893× 10–8 1.73472× 10–17 1.73472× 10–17

(0.4, 0.5) 1.75670× 10–3 2.69597× 10–4 1.0827× 10–8 1.52656× 10–16 1.52656× 10–16

(0.5, 0.1) 2.54396× 10–3 2.69597× 10–4 2.3880× 10–8 8.67362× 10–19 8.67362× 10–19

(0.5, 0.3) 2.37815× 10–3 2.69597× 10–4 2.0144× 10–8 2.08167× 10–17 2.08167× 10–17

(0.5, 0.5) 2.22578× 10–3 2.69597× 10–4 1.6916× 10–8 1.43982× 10–16 1.43982× 10–16

Figure 1 Behaviour of (a) Approximate solution (b) Exact solution (c) Absolute error = |uexa. – uapp.| for

Example 6.1 at ω = 0.005, ℓ = 0.1, c = 10, n = 1, α = 1 and ℏ = –1
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Figure 2 Behaviour of (a) Approximate solution (b) Exact solution (c) Absolute error = |vexa. – vapp.| for

Example 6.1 at ω = 0.005, ℓ = 0.1, c = 10, n = 1, α = 1 and ℏ = –1

Figure 3 Nature of u(x, t) with t for Example 6.1 at ω = 0.005, ℏ = –1, ℓ = 0.1, c = 10, x = 1 and n = 1 with

diverse α

the comparison of the obtained solutions with exact solutions and absolute error for Ex-

ample 6.1. Figures 3 and 4 are the response to the obtained solutions for FMB equation

with diverse Brownian motion and standard motion (α = 1). Figures 5 and 6 depict the

q-HATM solutions for distinct ℏ, which aids us to adjust and control the convergence re-

gion. Figures 7–8 present the importance of asymptotic parameter n with ℏ in q-HATM

solution.

Moreover, Figs. 10 and 11 show the nature of obtained solutions in comparison with ex-

act solutions for Example 6.2. In particular, Figs. 10(c) and 11(c) reveal the exactness of the

obtained solution in absolute error. Figures 12 and 13 explore the behaviour of obtained
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Figure 4 Nature v(x, t) with t for Example 6.1 at ω = 0.005, ℓ = 0.1, c = 10, ℏ = –1, x = 1 and n = 1 with

diverse α

Figure 5 Plot of u(x, t) with diverse ℏ when ω = 0.005, ℓ = 0.1, c = 10, n = 5, α = 1 and x = 1 for Example 6.1

Figure 6 Nature of v(x, t) with distinct ℏ at ω = 0.005, ℓ = 0.1, c = 10, n = 1, α = 1 and x = 1 for Example 6.1

solution for distinct α i.e. α = 1, 0.75 and 0.50. Figures 14 and 15 cite the nature of ob-

tained solutions for distinct ℏ, and these aid us to control the convergence region. Finally,

Figs. 16–17 signify the ℏ-curves and the horizontal line illustrates the region of conver-

gence for FALW equation. The coupled surface of theMB and ALW equations considered
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Figure 7 ℏ-curves drown for u(x, t) at n = 1 (left) and n = 2 (right) with different α when ω = 0.005, ℓ = 0.1,

c = 10, x = 1 and t = 0.01 for Example 6.1

Figure 8 ℏ-curve drown for v(x, t) at n = 1 (left) and n = 2 (right) with different α when ω = 0.005, ℓ = 0.1,

c = 10, x = 1 and t = 0.01 for Example 6.1

Figure 9 Coupled surface of u(x, t) and v(x, t) for Example 6.1 at ω = 0.005, ℓ = 0.1, c = 10, n = 1, α = 1 and

ℏ = –1

in Example 6.1 and Example 6.2 are respectively shown in Figs. 9 and 18, which helps us

understand the nature of coupled equations.

8 Conclusion

In the present work, the q-HATM is employed advantageously to find the solution for

coupled modified Boussinesq and approximate long wave equations of fractional order.



Veeresha et al. Advances in Difference Equations        ( 2019)  2019:253 Page 19 of 23

Figure 10 Behaviour of (a) Approximate solution (b) Exact solution (c) Absolute error = |uexa. – uapp.| at

ω = 0.005, ℓ = 0.1, c = 10, n = 1, α = 1 and ℏ = –1 for Example 6.2

Figure 11 Behaviour of (a) Approximate solution (b) Exact solution (c) Absolute error = |vexa. – vapp.| at

ω = 0.005, ℓ = 0.1, c = 10, n = 1, α = 1 and ℏ = –1 for Example 6.2
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Figure 12 Plot of u(x, t) with respect to t at diverse values of α when ω = 0.005, ℓ = 0.1, c = 10, n = 1, ℏ = –1

and x = 1 for Example 6.2

Figure 13 Response of v(x, t) with t at diverse α when ω = 0.005, ℓ = 0.1, c = 10, n = 1, ℏ = –1 and x = 1 for

Example 6.2

Figure 14 Nature of u(x, t) with distinct ℏ for Example 6.2 at ω = 0.005, ℓ = 0.1, c = 10, n = 5, α = 1 and x = 1

Two examples are considered in order to illustrate and validate the efficiency of the con-

sidered algorithm. The convergence and error analysis have been offered in the present

framework to show the consistency and applicability. The numerical simulation has been

conducted for both considered fractional coupled systems in terms of absolute error. From
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Figure 15 Nature of v(x, t) with distinct ℏ for Example 6.2 at ℓ = 0.1, c = 10, n = 3, α = 1 and x = 1

Figure 16 ℏ-curves drown for u(x, t) at n = 1 (left) and n = 2 (right) for Example 6.2 at ω = 0.005, ℓ = 0.1,

c = 10, x = 1 and t = 0.01 with diverse α

Figure 17 ℏ-curves drown for v(x, t) at n = 1 (left) and n = 2 (right) with different α for Example 6.1 when

ω = 0.005, ℓ = 0.1, c = 10, x = 1 and t = 0.01

the cited tables and plots, we can see that the proposed technique is effective and more

exact in comparison to other methods and contains the results of CFRDTM as a special

case (n = 1 and ℏ = –1). Moreover, the algorithm controls and manipulates the series so-

lution which quickly converges to the analytical solution in a small admissible domain.

Hence, we can conclude that the proposed algorithm is very powerful and well-organized

to study the coupled system arising in physical phenomena, both fractional and integer

order derivatives analytically and numerically describe the real world problems in a sys-

tematic and better manner.
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Figure 18 Nature of coupled q-HATM solutions u(x, t) and v(x, t) for Example 6.2 when at n = 1, α = 1, ℏ = –1,

ω = 0.005, ℓ = 0.1 and c = 10
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