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Abstract: In this paper, fractional-order system gas dynamics equations are solved analytically using
an appealing novel method known as the Laplace residual power series technique, which is based on
the coupling of the residual power series approach with the Laplace transform operator to develop
analytical and approximate solutions in quick convergent series types by utilizing the idea of the
limit with less effort and time than the residual power series method. The given model is tested and
simulated to confirm the proposed technique’s simplicity, performance, and viability. The results
show that the above-mentioned technique is simple, reliable, and appropriate for investigating
nonlinear engineering and physical problems.
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1. Introduction

Fractional calculus (FC) is a quickly growing branch of mathematics that studies
the derivatives and integrals of any order of functions. Due to the outstanding findings
gained when some tools of this calculus were employed to mimic real-world processes,
it is gaining favour among scientists working in various disciplines. The idea of FC was
discussed in the seventeenth century. FC was started almost 324 years ago, and it has
been based on mathematical ideas ever since then. The fundamental and critical results of
fractional differential equation solutions are contained in [1–8]. The nonlocal fractionals
are derivatives, whereas the integer-order derivatives are local. We can use integer-order
derivatives to look at changes near a point, but we can use fractional-order derivatives
to look at changes across the whole interval [9]. Systems with an arbitrary order have
recently gotten a lot of attention and acceptance as a generalization of the classical order
system. Here, ref. [10] introduces a homotopy perturbation method for nonlinear transport
equations. The review paper [11] contains a comprehensive amount of various modern
fractional calculus applications. Papers [12–14] address the application of ADM to various
fractional transport models. Finally, works [15–20] reflect some developments and reviews
of various numerical approaches to transport problems.

Most complex phenomena are mathematically modelled by nonlinear fractional partial
differential equations (FPDEs). The dynamical processes of these nonlinear FPDEs are
very important for both production and scientific research and should be studied with a
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suitable method to handle the nonlinear problems. Numerical and analytical solutions of
the nonlinear FPDEs have fundamental importance. In recent decades, many researchers
have used different analytical and numerical techniques to study various nonlinear FPDEs.
Due to the complexity of the nonlinear equations, there is no united method to find
every solution to the nonlinear FPDEs. Some of the numerical and analytical methods
are the homotopy perturbation method (HPM) [21], Adomian decomposition method
(ADM) [22], variational iteration method (VIM) [23], Jacobi spectral collocation method [24],
G/G-expansion method [25], tau method [26], meshless method [27], the Haar wavelet
method [28], Bernstein polynomials [29], the Legendre base method [30], the Laplace
transform method [31], fractional complex transform method [32], Laplace variational
iteration method [33], spectral Legendre–Gauss–Lobatto collocation method [34], and
cylindrical-coordinate method [35] and so on [36–38].

Studies show that gases with many different properties are important to astrophysics
and cosmology. Gases with many different properties can act like dark energy [39]. The
set of equations forgas dynamics that describe the change in the flow of a perfect gas with
fractional order [40]:

Dσ
t u + uϕu + vuξ +

pϕ

ρ
= 0, 0 < σ ≤ 1,

Dσ
t v + vϕu + vvξ +

pξ

ρ
= 0,

Dσ
t ρ + ρϕu + vρξ + ρuϕ + ρvξ = 0,

Dσ
t p + pϕu + vpξ + τpuϕ + τpvξ = 0,

(1)

with initial conditions (IC’s)

u(ϕ, ξ, 0) = f0(ϕ, ξ),

v(ϕ, ξ, 0) = g0(ϕ, ξ),

ρ(ϕ, ξ, 0) = h0(ϕ, ξ),

p(ϕ, ξ, 0) = l0(ϕ, ξ),

(2)

where Dσ
t denotes the Caputo’s fractional derivative, u(ϕ, ξ, t) and u(ϕ, ξ, t) are the velocity

components in the ϕ and ξ directions, ρ(ϕ, ξ, t) is the density, p(ϕ, ξ, t) is the pressure, and
τ is the ratio of the specific heat, and it represents the adiabatic index. The solution for the
considered system of equations was studied using different analytical methods, such as the
q-homotopy analysis transform method (q-HATM) [40], variational iteration technique [41],
fractional natural decomposition scheme [42], and Adomian decomposition technique [43].

The Laplace Residual power series method (LRPSM) [44–46] is a combination of the
Laplace transform (LT) and RPSM [47–52]. In the LRPSM technique, the Laplace transform
(LT) is used to simplify the focused problem into new algebraic equations. The series
solution is then computed using the RPSM. Finally, to obtain the desired result, the inverse
LT is applied. The LRPSM needs minimal calculations to be completed in less time and
with greater accuracy.

The generalized LRPSM technique is described, and the LRPSM algorithm is applied
to Equation (1). The outcomes and accuracy of the suggested technique are shown in tables
and graphs. The fractional-order LRPSM solutions can be used to investigate the dynamics
of the problems. LRPSM has the highest degree of accuracy, according to the tables.

The following is a summary of the current paper. Some required definitions and
results were discussed from FC theory in Section 2. In Section 3, the basic methodology is
discussed, and the effectiveness of LRPSM is confirmed by some test models in Section 4.
In Section 5, results are discussed, and the conclusion is given in Section 6.
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2. Preliminaries

In this section, we will discuss several basic definitions and conclusions relating to the
Caputo fractional derivative, as well as the fractional Laplace transform.

Definition 1. The fractional derivative of a function u(ϕ, t) of order σ in Caputo sense is defined
as [45]

CDσ
t u(ϕ, t) = Jm−σ

t um(ϕ, t), m− 1 < σ ≤ m, t > 0. (3)

where m ∈ N and Jσ
t is the Riemann-Liouville (RL) fractional integral (FI) of u(ϕ, t) of fractional-

order σ is defined as

Jσ
t u(ϕ, t) =

1
Γ(σ)

∫ t

0
(t− τ)σ−1u(ϕ, τ)dτ (4)

assuming that the given integral exists.

Definition 2. The Laplace transform of a function u(ϕ, t) is defined as [45]

u(ϕ, s) = Lt[u(ϕ, t)] =
∫ ∞

0
e−stu(ϕ, t)dt, s > σ, (5)

where the inverse LT is given as

u(ϕ, t) = L−1
t [u(ϕ, s)] =

∫ l+i∞

l−i∞
estu(ϕ, s)ds, l = Re(s) > l0, (6)

where l0 is in the right half-plane of the Laplace integral’s absolute convergence.

Lemma 1. Assume that u(ϕ, t) is a continuous piecewise function and of exponential order ζ and
U(ϕ, s) = Lt[u(ϕ, t)], we have

1. Lt[Jσ
t u(ϕ, t)] = U(ϕ,s)

sσ , σ > 0.
2. Lt[Dσ

t u(ϕ, t)] = sσU(ϕ, s)−∑m−1
k=0 sσ−k−1uk(ϕ, 0), m− 1 < σ ≤ m.

3. Lt[Dnσ
t u(ϕ, t)] = snσU(ϕ, s)−∑n−1

k=0 s(n−k)σ−1Dkσ
t u(ϕ, 0), 0 < σ ≤ 1.

Proof. For proof, see Refs. [4–6,53].

Theorem 1. Let u(ϕ, t) be a piecewise continuous on I × [0, ∞) and of exponential order ζ.
Suppose that the function U(ϕ, s) = Lt[u(ϕ, t)] has the following fractional expansion:

U(ϕ, s) =
∞

∑
n=0

fn(ϕ)

s1+nσ
, 0 < σ ≤ 1, ϕ ∈ I, s > ζ. (7)

Then, fn(ϕ) = Dnσ
t u(ϕ, 0).

Proof. For proof, see Ref. [45].

Remark 1. The inverse LT of Equation (7) is represented as [45]:

u(ϕ, t) =
∞

∑
i=0

Dσ
t u(ϕ, 0)

Γ(1 + iσ)
ti(ζ), 0 < ζ ≤ 1, t ≥ 0. (8)

which is equivalent to the fractional Taylor’s formula shown in [54].
The convergence of the FPS in Theorem (1) is explained in the following theorem.

Theorem 2. Assume that u(ϕ, t) is continuous piecewise on I × [0, ∞) and of order ξ and as
shown in Theorem (1), u(ϕ, s) = Lt[u(ϕ, t)] can be written as the new form of fractional Taylor’s
formula. If

∣∣∣sLt[Diσ+1
t u(ϕ, t)]

∣∣∣ ≤ M(ϕ), on I × (ξ, γ] where 0 < σ ≤ 1, then Ri(ϕ, s) the
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remainder of the new form of fractional Taylor’s formula in Theorem (1) satisfies the following
inequality

|Ri(ϕ, s)| ≤ M(ϕ)

S1+(i+1)σ
, ϕ ∈ I, ξ < s ≤ γ. (9)

Proof. For proof, see Ref. [45].

3. LRPS Methodology

In this section, we will go through the LRPS methodology for the nonlinear system of
fractional order partial differential equations

Applying LT of Equation (1), we get

U(ϕ, ξ, s)− f0(ϕ, ξ)

s
+

1
sσ
Lt

[
L−1

t [Uϕ]L−1
t [U] + L−1

t [V]L−1
t [Uξ ] +

L−1
t [Pϕ]

L−1
t [W]

]
= 0,

V(ϕ, ξ, s)− g0(ϕ, ξ)

s
+

1
sσ
Lt

[
L−1

t [Vϕ]L−1
t [U] + L−1

t [V]L−1
t [Vξ ] +

L−1
t [Pξ ]

L−1
t [W]

]
= 0,

W(ϕ, ξ, s)− h0(ϕ, ξ)

s
+

1
sσ
Lt

[
L−1

t [Wϕ]L−1
t [U] + L−1

t [V]L−1
t [Wξ ] + L−1

t [W]L−1
t [Uϕ] + L−1

t [W]L−1
t [Vξ ]

]
= 0,

P(ϕ, ξ, s)− l0(ϕ, ξ)

s
+

1
sσ
Lt

[
L−1

t [Pϕ]L−1
t [U] + L−1

t [V]L−1
t [Pξ ] + τL−1

t [P]L−1
t [Uϕ] + τL−1

t [P]L−1
t [Vξ ]

]
= 0.

(10)

Assuming that the solution of Equation (10) has the following expansion

U(ϕ, ξ, s) =
∞

∑
n=0

fn(ϕ, ξ, s)
snσ+1 , V(ϕ, ξ, s) =

∞

∑
n=0

gn(ϕ, ξ, s)
snσ+1 ,

W(ϕ, ξ, s) =
∞

∑
n=0

hn(ϕ, ξ, s)
snσ+1 , P(ϕ, ξ, s) =

∞

∑
n=0

ln(ϕ, ξ, s)
snσ+1 .

(11)

The kth-truncated term series are

U(ϕ, ξ, s) =
f0(ϕ, ξ, s)

s
+

k

∑
n=1

fn(ϕ, ξ, s)
snσ+1 , V(ϕ, ξ, s) =

g0(ϕ, ξ, s)
s

+
k

∑
n=1

gn(ϕ, ξ, s)
snσ+1 ,

W(ϕ, ξ, s) =
h0(ϕ, ξ, s)

s
+

k

∑
n=1

hn(ϕ, ξ, s)
snσ+1 , P(ϕ, ξ, s) =

l0(ϕ, ξ, s)
s

+
k

∑
n=1

ln(ϕ, ξ, s)
snσ+1 . k = 1, 2, 3, 4 · · ·

(12)

Laplace residual functions (LRFs) [55] are

LtResu(ϕ, ξ, s) =U(ϕ, ξ, s)− f0(ϕ, ξ, s)
s

+
1
sσ
Lt

[
L−1

t [Uϕ]L−1
t [U] + L−1

t [V]L−1
t [Uξ ] +

L−1
t [Pϕ]

L−1
t [W]

]
,

LtResv(ϕ, ξ, s) =V(ϕ, ξ, s)− g0(ϕ, ξ, s)
s

+
1
sσ
Lt

[
L−1

t [Vϕ]L−1
t [U] + L−1

t [V]L−1
t [Vξ ] +

L−1
t [Pξ ]

L−1
t [W]

]
,

LtResρ(ϕ, ξ, s) =W(ϕ, ξ, s)− h0(ϕ, ξ, s)
s

+
1
sσ
Lt

[
L−1

t [Wϕ]L−1
t [U] + L−1

t [V]L−1
t [Wξ ] + L−1

t [W]L−1
t [Uϕ]

+ L−1
t [W]L−1

t [Vξ ]
]
,

LtResp(ϕ, ξ, s) =P(ϕ, ξ, s)− l0(ϕ, ξ, s)
s

+
1
sσ
Lt

[
L−1

t [Pϕ]L−1
t [U] + L−1

t [V]L−1
t [Pξ ] + τL−1

t [P]L−1
t [Uϕ]

+ τL−1
t [P]L−1

t [Vξ ]
]
.

(13)

Therefore, the kth-LRFs is:
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LtResu,k(ϕ, ξ, s) =Uk(ϕ, ξ, s)− f0(ϕ, ξ, s)
s

+
1
sσ
Lt

[
L−1

t [Uϕ,k]L−1
t [Uk] + L−1

t [Vk]L−1
t [Uξ,k] +

L−1
t [Pϕ,k]

L−1
t [Wk]

]
,

LtResv,k(ϕ, ξ, s) =Vk(ϕ, ξ, s)− g0(ϕ, ξ, s)
s

+
1
sσ
Lt

[
L−1

t [Vϕ,k]L−1
t [Uk] + L−1

t [Vk]L−1
t [Vξ,k] +

L−1
t [Pξ,k]

L−1
t [Wk]

]
,

LtResw,k(ϕ, ξ, s) =Wk(ϕ, ξ, s)− h0(ϕ, ξ, s)
s

+
1
sσ
Lt

[
L−1

t [Wϕ,k]L−1
t [Uk] + L−1

t [Vk]L−1
t [Wξ,k] + L−1

t [Wk]L−1
t [Uϕ,k]

+ L−1
t [ρk]L−1

t [Vξ,k]
]
,

LtResp,k(ϕ, ξ, s) =Pk(ϕ, ξ, s)− l0(ϕ, ξ, s)
s

+
1
sσ
Lt

[
L−1

t [Pϕ]L−1
t [Uk] + L−1

t [Vk]L−1
t [Pξ,k] + τL−1

t [Pk]L−1
t [Uϕ,k]

+ τL−1
t [Pk]L−1

t [Vξ,k]
]
.

(14)

Here are some properties that arise in the LRPSM [55]:

• LtRes(ϕ, ξ, s) = 0 and limj→∞ LtResu,k(ϕ, ξ, s) = LtResu(ϕ, ξ, s) for each s > 0.
• lims→∞ sLtResu(ϕ, ξ, s) = 0⇒ lims→∞ sLtResu,k(ϕ, ξ, s) = 0.
• lims→∞ skσ+1LtResu,k(ϕ, ξ, s) = lims→∞ skσ+1LtResu,k(ϕ, ξ, s) = 0, 0 < σ ≤ 1, k =

1, 2, 3, · · · .
To find the coefficients fn(ϕ, ξ, s), gn(ϕ, ξ, s), hn(ϕ, ξ, s), and ln(ϕ, ξ, s), we recursively solve
the following system

lim
s→∞

skσ+1LtResu,k(ϕ, ξ, s) = 0, k = 1, 2, · · · ,

lim
s→∞

skσ+1LtResv,k(ϕ, ξ, s) = 0, k = 1, 2, · · · ,

lim
s→∞

skσ+1LtResρ,k(ϕ, ξ, s) = 0, k = 1, 2, · · · ,

lim
s→∞

skσ+1LtResp,k(ϕ, ξ, s) = 0, k = 1, 2, · · · .

(15)

In the last one, we use inverse LT from Equation (12) to get the kth approximate solutions
of uk(ϕ, ξ, t), vk(ϕ, ξ, t), ρk(ϕ, ξ, t), and pk(ϕ, ξ, t)

4. Numerical Problem

In this section, we examine a system of fractional-order equations that models the
unsteady flow of a polytropic gas in order to validate the applicability and precision of the
suggested methodology.

Problem

Consider a system of equations of unsteady flow of a polytropic gas of fractional order
of the form as [40,41,43]:

Dσ
t u + uϕu + vuξ +

pϕ

ρ
= 0,

Dσ
t v + vϕu + vvξ +

pξ

ρ
= 0,

Dσ
t ρ + ρϕu + vρξ + ρuϕ + ρvξ = 0,

Dσ
t p + pϕu + vpξ + τpuϕ + τpvξ = 0.

(16)
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Consider Equation (16), with the following IC’s [47]:

u(ϕ, ξ, 0) = eϕ+ξ ,

v(ϕ, ξ, 0) = −1− eϕ+ξ ,

ρ(ϕ, ξ, 0) = eϕ+ξ ,

p(ϕ, ξ, 0) = η.

(17)

Applying LT to Equation (16) and making use of Equation (17), we get

U(ϕ, ξ, s)− eϕ+ξ

s
+

1
sσ
Lt

[
L−1

t [Uϕ]L−1
t [U] + L−1

t [V]L−1
t [Uξ ] +

L−1
t [Pϕ]

L−1
t [W]

]
= 0,

V(ϕ, ξ, s)− −1− eϕ+ξ

s
+

1
sσ
Lt

[
L−1

t [Vϕ]L−1
t [U] + L−1

t [V]L−1
t [Vξ ] +

L−1
t [Pξ ]

L−1
t [W]

]
= 0,

W(ϕ, ξ, s)− eϕ+ξ

s
+

1
sσ
Lt

[
L−1

t [Wϕ]L−1
t [U] + L−1

t [V]L−1
t [Wξ ] + L−1

t [W]L−1
t [Uϕ] + L−1

t [W]L−1
t [Vξ ]

]
= 0,

P(ϕ, ξ, s)− η

s
+

1
sσ
Lt

[
L−1

t [Pϕ]L−1
t [U] + L−1

t [V]L−1
t [Pξ ] + τL−1

t [P]L−1
t [Uϕ] + τL−1

t [P]L−1
t [Vξ ]

]
= 0,

(18)

and so the kth-truncated term series are

U(ϕ, ξ, s) =
eϕ+ξ

s
+

k

∑
n=1

fn(ϕ, ξ, s)
snσ+1 , V(ϕ, ξ, s) =

−1− eϕ+ξ

s
+

k

∑
n=1

gn(ϕ, ξ, s)
snσ+1 ,

W(ϕ, ξ, s) =
eϕ+ξ

s
+

k

∑
n=1

hn(ϕ, ξ, s)
snσ+1 , P(ϕ, ξ, s) =

η

s
+

k

∑
n=1

ln(ϕ, ξ, s)
snσ+1 , k = 1, 2, 3, 4 · · ·

(19)

and the kth-LRFs as:

LtResu,k(ϕ, ξ, s) =Uk(ϕ, ξ, s)− eϕ+ξ

s
+

1
sσ
Lt

[
L−1

t [Uϕ,k]L−1
t [Uk] + L−1

t [Vk]L−1
t [Uξ,k] +

L−1
t [Pϕ,k]

L−1
t [Wk]

]
,

LtResv,k(ϕ, ξ, s) =Vk(ϕ, ξ, s)− −1− eϕ+ξ

s
+

1
sσ
Lt

[
L−1

t [Vϕ,k]L−1
t [Uk] + L−1

t [Vk]L−1
t [Vξ,k] +

L−1
t [Pξ,k]

L−1
t [Wk]

]
,

LtResw,k(ϕ, ξ, s) =Wk(ϕ, ξ, s)− eϕ+ξ

s
+

1
sσ
Lt

[
L−1

t [Wϕ,k]L−1
t [Uk] + L−1

t [Vk]L−1
t [Wξ,k] + L−1

t [Wk]L−1
t [Uϕ,k]

+ L−1
t [Wk]L−1

t [Vξ,k]
]
,

LtResp,k(ϕ, ξ, s) =Pk(ϕ, ξ, s)− η

s
+

1
sσ
Lt

[
L−1

t [Pϕ]L−1
t [Uk] + L−1

t [Vk]L−1
t [Pξ,k] + τL−1

t [Pk]L−1
t [Uϕ,k]

+ τL−1
t [Pk]L−1

t [Vξ,k]
]
.

(20)

Now, to determine fk(ϕ, ξ, s), gk(ϕ, ξ, s), hk(ϕ, ξ, s), and lk(ϕ, ξ, s), k = 1, 2, 3, · · · , we
substitute the kth-truncated series Equation (19) into the kth-Laplace residual function Equa-
tion (20), multiply the resulting equation by skσ+1, and then recursively solve the relation-
ship lims→∞(skσ+1LtResu,k(ϕ, ξ, s)) = 0, lims→∞(skσ+1LtResv,k(ϕ, ξ, s)) = 0, lims→∞(skσ+1
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LtResw,k(ϕ, ξ, s)) = 0, and lims→∞(skσ+1LtResp,k(ϕ, ξ, s)) = 0, k = 1, 2, 3, · · · . Following
are the first few terms:

f1(ϕ, ξ, s) =eϕ+ξ , g1(ϕ, ξ, s) = eϕ+ξ , h1(ϕ, ξ, s) = eϕ+ξ , l1(ϕ, ξ, s) = 0

f2(ϕ, ξ, s) =eϕ+ξ , g2(ϕ, ξ, s) = eϕ+ξ , h2(ϕ, ξ, s) = eϕ+ξ , l2(ϕ, ξ, s) = 0

f3(ϕ, ξ, s) =eϕ+ξ , g3(ϕ, ξ, s) = eϕ+ξ , h3(ϕ, ξ, s) = eϕ+ξ , l3(ϕ, ξ, s) = 0

f4(ϕ, ξ, s) =eϕ+ξ , g4(ϕ, ξ, s) = eϕ+ξ , h4(ϕ, ξ, s) = eϕ+ξ , l4(ϕ, ξ, s) = 0

f5(ϕ, ξ, s) =eϕ+ξ , g5(ϕ, ξ, s) = eϕ+ξ , h5(ϕ, ξ, s) = eϕ+ξ , l5(ϕ, ξ, s) = 0

f6(ϕ, ξ, s) =eϕ+ξ , g6(ϕ, ξ, s) = eϕ+ξ , h6(ϕ, ξ, s) = eϕ+ξ , l6(ϕ, ξ, s) = 0.

(21)

and so on.
Putting the values of fk(ϕ, ξ, s), gk(ϕ, ξ, s), hk(ϕ, ξ, s), and lk(ϕ, ξ, s), k = 1, 2, 3, · · · , in

Equation (19), we get

U(ϕ, ξ, s) =
eϕ+ξ

s
+

eϕ+ξ

sσ+1 +
eϕ+ξ

s2σ+1 +
eϕ+ξ

s3σ+1 +
eϕ+ξ

s4σ+1 +
eϕ+ξ

s5σ+1 +
eϕ+ξ

s6σ+1 + · · · ,

V(ϕ, ξ, s) =
−1− eϕ+ξ

s
+

eϕ+ξ

sσ+1 +
eϕ+ξ

s2σ+1 +
eϕ+ξ

s3σ+1 +
eϕ+ξ

s4σ+1 +
eϕ+ξ

s5σ+1 +
eϕ+ξ

s6σ+1 + · · · ,

W(ϕ, ξ, s) =
eϕ+ξ

s
+

eϕ+ξ

sσ+1 +
eϕ+ξ

s2σ+1 +
eϕ+ξ

s3σ+1 +
eϕ+ξ

s4σ+1 +
eϕ+ξ

s5σ+1 +
eϕ+ξ

s6σ+1 + · · · ,

P(ϕ, ξ, s) =
η

s
.

(22)

Using inverse LT, we get

u(ϕ, ξ, t) = eϕ+ξ

(
1 +

tσ

Γ(σ + 1)
+

t2σ

Γ(2σ + 1)
+

t3σ

Γ(3σ + 1)
+

t4σ

Γ(4σ + 1)
+

t5σ

Γ(5σ + 1)
+ · · ·

)
,

v(ϕ, ξ, t) = −1− eϕ+ξ

(
1 +

tσ

Γ(σ + 1)
+

t2σ

Γ(2σ + 1)
+

t3σ

Γ(3σ + 1)
+

t4σ

Γ(4σ + 1)
+

t5σ

Γ(5σ + 1)
+ · · ·

)
,

ρ(ϕ, ξ, t) = eϕ+ξ

(
1 +

tσ

Γ(σ + 1)
+

t2σ

Γ(2σ + 1)
+

t3σ

Γ(3σ + 1)
+

t4σ

Γ(4σ + 1)
+

t5σ

Γ(5σ + 1)
+ · · ·

)
,

p(ϕ, ξ, t) = η.

Putting σ = 1

u(ϕ, ξ, t) = eϕ+ξ

(
1 + t +

t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+ · · ·

)
,

v(ϕ, ξ, t) = −1− eϕ+ξ

(
1 + t +

t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+ · · ·

)
,

ρ(ϕ, ξ, t) = eϕ+ξ

(
1 + t +

t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+ · · ·

)
,

p(ϕ, ξ, t) = η.

(23)

The exact solutions are

u(ϕ, ξ, t) = eϕ+ξ+t,

v(ϕ, ξ, t) = −1− eϕ+ξ+t,

ρ(ϕ, ξ, t) = eϕ+ξ+t,

p(ϕ, ξ, t) = η.

(24)
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5. Results and Disscusion

The numerical simulation of the obtained solution for four systems of differential
equations describing the unsteady flow of a polytropic gas of arbitrary order is presented in
this paper. The sixth-order LRPSM solutions are discovered in this study, which are given
in Table 1. The proposed method is more accurate, as shown in the table. For a variety of
parameter values, we present 2D and 3D plots to describe the behaviour of the LRPSM
solutions. The natures of the LRPSM solutions for u(ϕ, ξ, t) and v(ϕ, ξ, t) at different orders
are represented in Figure 1 as 2D plots, and Figures 2 and 3 represent surfaces of u(ϕ, ξ, t)
and v(ϕ, ξ, t) respectively, and LRPSM solutions for ρ(ϕ, ξ, t) and w(ϕ, ξ, t) at different
orders are represented in Figure 4 as 2D plots and in Figure 5 as 3D plots for w(ϕ, ξ, t). By
simulating and displaying the physical properties of nonlinear phenomena that arise in
technology and science, we can study and analyse their physical behaviour. In the analysis
of complex coupled fractional-order problems, the suggested technique is more appropriate
and efficient.

Table 1. Error analysis for the LRPSM solution for the proposed problem with various values of ϕ

and t when ξ = 1, σ = 1.

t ϕ
|uexact −
uLRPSM |

|vexact −
vLRPSM |

|ρexact −
ρLRPSM |

|pexact −
pLRPSM |

0.2 0.2 7.0 × 10−9 7.0 × 10−9 7.0 × 10−9 0
0.4 8.0 × 10−9 8.0 × 10−9 8.0 × 10−9 0
0.6 1.1 × 10−8 1.1 × 10−8 1.1 × 10−8 0
0.8 1.4 × 10−8 1.4 × 10−8 1.4 × 10−8 0
1 1.5 × 10−8 1.5 × 10−8 1.5 × 10−8 0

0.4 0.2 1.134 × 10−6 1.134 × 10−6 1.134 × 10−6 0
0.4 1.385 × 10−6 1.385 × 10−6 1.385 × 10−6 0
0.6 1.693 × 10−6 1.693 × 10−6 1.693 × 10−6 0
0.8 2.067 × 10−6 2.067 × 10−6 2.067 × 10−6 0
1 2.52 × 10−6 2.52 × 10−6 2.52 × 10−6 0

0.6 0.2 1.9921 × 10−5 1.9921 × 10−5 1.9921 × 10−5 0
0.4 2.4333 × 10−5 2.4333 × 10−5 2.4333 × 10−5 0
0.6 2.9720 × 10−5 2.9720 × 10−5 2.9720 × 10−5 0
0.8 3.630 × 10−5 3.630 × 10−5 3.630 × 10−5 0
1 4.434 × 10−5 4.434 × 10−5 4.434 × 10−5 0

Figure 1. Exact and LRPSM solutions for (a) u(ϕ, ξ, t) and (b) v(ϕ, ξ, t) at distinct values of σ at ξ and
t = 1.
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Figure 2. Three-dimensional plots of LRPSM solutions for u(ϕ, ξ, t) at distinct values of σ at ξ = 1.
(a) σ = 0.5 (b) σ = 0.75 (c) σ = 1 (d) Exact.
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Figure 3. Three-dimensional plots of LRPSM solutions for v(ϕ, ξ, t) at distinct values of σ at ξ = 1.
(a) σ = 0.5 (b) σ = 0.75 (c) σ = 1 (d) Exact.

Figure 4. Exact and LRPSM solutions for (a) ρ(ϕ, ξ, t) and (b) p(ϕ, ξ, t) at distinct values of σ at ξ and
t = 1.
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Figure 5. Three-dimensional plots of LRPSM solutions for ρ(ϕ, ξ, t) at distinct values of σ at ξ = 1.
(a) σ = 0.5 (b) σ = 0.75 (c) σ = 1 (d) Exact.

6. Conclusions

This article presents a combination of the residual power series and Laplace transform
to solve the gas dynamics model. The advantage of the new method is that it reduces
the amount of computational effort required to obtain a solution in a power series form
whose coefficients must be computed in successive algebraic steps. The suggested method
is employed to solve three distinct physical models, and its capacity to address fractional
nonlinear equations with high precision and simple computation steps has been demon-
strated. In future work, we intend to extend the Laplace-transform residual power series
technique to physical applications with higher dimensions.
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