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Чехословацкий математический журнал, т. 8 (83) 1958, Прага 

A REMARK ON APPROXIMATION OF CONTINUOUS 
FUNCTIONS 

VLASTIMIL PTÄK, Praha 

(Received September 16, 1957) 

The author gives a direct geometrical proof of Haar 's theorem on 
approximation of continuous functions and of the Cebysev characte
rization of the polynomial of best approximation. 

In his beautiful paper [2] on the application of Minkowskian geometry to 
the theory of approximation, A. H A A R has given a necessary and sufficient 
condition tha t the best approximation of any continuous function by means 
of linear combinations of n given continuous functions be unique. His proof is 
based on the following idea. Suppose we have n linearly independent conti
nuous functions x19 . . . , xn defined on <0, 1>. In En we consider the set К of 
all vectors [|l3 . . . , fn] which fulfil the inequality 

max | 1 л ( 0 + . . . + (nxn(t)\ fg 1 . 

I t is easy to see tha t К is a convex body in En in the sense of M I N K O W S K I . 
The discussion of the best approximation by linear combinations of 
is then reduced to the study of properties of the Minkowskian geometry 
defined by K. The proof, though simple and clear enough, is by no means a 
short one. I t is especially the sufficiency of Haar 's condition which requires 
more subtle considerations. Even modern proofs (see, e. g. [1]) devote to the 
sufficiency more than three pages. 

I t is the purpose of the present remark to give a simple proof of Haar ' s 
theorem using only the simplest geometrical notions. 

Theorem 1. Let T be a compact Hausdorff space and let us denote by C(T) the 
space of all continuous functions on T with the usual norm. Let E be a given 
n-dimensional subspace of C(T). The best approximation of every x e C(T) by 
means of elements of E is unique if and only if there does not exist an e e E, 
e Ф 0, such that the equation e(t) — 0 has at least n distinct solutions. 
We begin with a simple 
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Lemma. Let L be a p-dimensional subspace of C(T). Let f be a linear functional 
on L of norm one. Then there exist p distinct points tt e T and numbers )H suck 

p P 

that / = 2 №i an(t 2 W == *• ^ e eauati°n f — 2 ^ * г'^ °f course> taken to mean 
г = 1 г = 1 

(x, /> = 2^г^(^г) for every x € L. 
To prove this lemma, we note first that , with every point t e T, we may 

associate a linear functional cp(t) on L defined by the relation (xy (p(t)} = x(£) 
for every ж € Z/. Clearly cp is a continuous mapping of У into I/'. At the same 
time, the norm of <p(t) is at most one for every t e T and it is easy to see tha t 
the unit sphere of U coincides with the closed symmetrical convex envelope 
of the set <p(T). Indeed, suppose we have an x' e L\ \x'\ ^ 1 such that x' does 
not belong to the closed symmetrical convex envelope of cp{T). I t follows1) 
tha t there exists a point x e L such tha t sup \(x, <p{T)}\ < (x, x'}. This is, 
however, a contradiction, since |a;'| 5^ 1 and sup \(x, cp(T)}\ — \x\. The 
mapping cp being continuous, <p(T) is compact and it follows from a result of 
CAJRATHÉODOBY2) tha t every point / of the unit sphere of U may be expressed in 

P 

the form 2 ^(h) with 21^* I = *• ^ ^ n e n o r m of / is o n e ; 2 W < ^ *s impossible 
г = 1 

which concludes the proof. 
Before going into the proof it is convenient to state Haar 's condition in 

another equivalent form. We have the following equivalence. There exists in 
г) If W is a closed convex subset of a finite-dimensional vector space and w a point 

outside W, there exists, according to a well-known theorem, a hyperplane separating 
W and w. Since x' does not belong to the closed symmetrical convex envelope of <p{T), 
it does not belong to the closed convex envelope of the union of q>(T) and — (p(T). 
Acording to the separation theorem there exists a linear functional g on L' such tha t 
sup \g((p(T))\ < g(x'). The space L' being finite dimensional, linear functionals on I/ 
may be identified with elements of L. 

2) The result of Carathéodory referred to is the following: Let E be a p-dimensional 
vector space and let M be a compact subset of E. The closed convex envelope К 

p+i P+i 

of M consists of all vectors of the form V ^ т г > where mi e M, Xt ^ 0 and 2 ^i = !• 
i=l i=X 

v 
If h is a point of the boundary of K, it may be expressed in the form к = V Л^т; 

г = 1 
P 

where mi eM, ) ч >̂ 0 and V ^i — l- Now suppose we have a compact set В and 
г = 1 

â point x of its closed symmetrical convex envelope S. There exists a number ô g* l 
such tha t ôx belong to the boundary of S. Since S clearly coincides with the closed 

P 

convex envelope of the union of В and —B, we may express ôx in the form ôx = 2 œiefii> 
г = 1 

P P 

where Ьг с В, ei = ± 1, о>г- 2£ 0 and 2 е0* = ** ^ w e P u t г̂ — ~т^ > w e have x = 2 А̂* 
г = 1 г = 1 

г> 
and 2 P-/I â 1* For a simple proof of these results, using the definition of convexity 

only, see a recent paper of the author 's [3]. 
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E a nonzero element e with at least n distinct zero points t1} . . . , tn if and only 
n 

if there exists a nonzero linear combination / = 2 ^ * w n i c n vanishes on J57. 

Indeed, if е ъ . . . , en is a basis of Ey both conditions express the fact tha t 
det eSj) = 0. 

P r o o f of H a a r ' s t h e o r e m . Suppose first that the best approximation is 
not always unique. Then there exist points x0 e C(T), e0 e E and a nonzero 
e e E such that , for every s small enough in absolute value, the point e0 + se 
is the best approximation of x0. 

Let us denote by L the linear span of E and x0, so tha t L has n + 1 dimen
sions. If we put w0 = #0 -— e0, it follows tha t there exists a linear functional 
/ of norm one on L vanishing on E and assuming the value \w0\ on w0. I t follows 

n + 1 

from our lemma tha t / may be expressed in the form 2 ^^г where t.t e Î7 and 
n + 1 г = 1 

2 W = i. 
г = 1 

We shall distinguish two cases: 
1° We have Аг- Ф 0 for every i. Since 

n + 1 n + 1 

W = <Щ, /> = 2 ^ о ( ^ г ) and 2 W = * * 
г = 1 г = 1 

we have |w0(^-)| = |w0| for every г. Since \w0 + ee| = \w0\ for small £, it follows 
tha t e(ti) = 0 for every г. 

2° We have Яг- = 0 for some i. We may clearly suppose tha t Aw+1 — 0. In 
n 

this case, 2 ^A *s a nonzero linear combination of n points vanishing on E. 
г = 1 

The sufficiency of Haar 's condition is thus proved. On the other hand, 
suppose tha t Haar 's condition is not fulfilled. Then there exists a nonzero 
point e0 e E, |e0| 5Ï 1 which vanishes in n distinct points t{ e T and a nonzero 

n 

linear combination / = 2 ^Л which vanishes on ÜJ. We may clearly suppose 

n 

t ha t 2 |A»| = 1. Now choose an arbitrary a e C(T) such tha t \a\ fg 1 and a(t{) = 

= sign Xt whenever Xt Ф 0. Let us define the function x0 by the relation #0(£) = 
= a(t)(l — |e0(£)|). We have clearly x0(ti) = a(tt) = sign A* for A< + 0, |#0j = 1 
and \x0(t)\ + \e0(t)\ fg 1 for every t e T. I t follows tha t \x0 ~ e0j :g 
^ max (\x0(t)\ + |e0(£)|) ^ 1. We have, however, \xQ — e| ^ 1 for every e e E. 

Indeed, if \x0 — e| < 1 for some e, it would follow 

1 = <#o, /> = Oo — в, /> ^ |ж0 — e| l/l < 1 , 

which is a contradiction. I t follows tha t both points 0 and t0 are best appro
ximations of x0. 
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We conclude this remark with a few words concerning the characterization 
of the polynomial of best approximation. First of all, let us have a compact 
Hausdorff space T and an тг-dimensional subspace E с С(Т) fulfilling Haar 's 
condition. Let x e C(T), x non e E be given; the best approximation e € E of 
x is thus uniquely determined. We assert now tha t the equation \x(t) — e(t) \ = 
= \x — e\ is fulfilled for al least n + 1 distinct points t. In fact, we know tha t 
there exist n + 1 points tl9 . . . , tn+l and real numbers A1? ...,. Aw+1 with 
n + 1 n + 1 

2 |Яг-| = 1 such that , for / = 2 ^ * w e n a v e (x — e, Ù = \x ~~ e\ a n d <^> /> === 

= 0. From the first equation it follows tha t |#(£г.) — e(t{)\ = |o? — e| whenever 
l j Ф 0. We have, however, Яг =f= 0 for every i since, in the contrary case, 
E would not fulfil Haar 's condition (see the section 2° of the preceding proof). 

A more precise result is hardly to be expected in the general case. I t may 
be shown on examples tha t there may be exactly n -\- I points t{ where 
\x(t{) — e(t{)\ = \x — e| and x{t{) — e(t{) = \x — e\ for every i. 

Let us consider now the case where T is a compact interval (a, b}. In this 
case the above method yields a particularly simple proof of the classical theo
rem of СЕВYSEV. We intend to show tha t the theorem of Öebysev as well as 
the related result of DE LA VALLÉE-POUSSIN are both immediate consequences 
of the following l e m m a : 

Let T — (a, b} and let E an n-dimensional subspace of C(T) fulfilling Haar's 
condition. If tx < t2 < . . . < tn+1 are given points of Ty there exists exactly one 

n + l 
{apart from a scalar factor) nonzero linear combination / = 2 ^ * vanishing on E, 

All numbers Аг- are different from zero and they alternate in sign. 
Proof . The space E being тг-dimensional, the n + l functionals tt are linear-

n + 1 

ly dependent on E. There exists a nonzero linear combination / = 2 ^A s u c h 

tha t <i?, /> = 0. The assumption tha t Яг = 0 for some i would lead to a contra
diction with our assumption concerning E. First of all, let n — 1 and let e be 
a nonzero element of E. I t follows from Haar 's condition tha t e(t) is different 
from zero on the whole of T. Suppose now tha t Я1е(^1) + A2e(£2) = 0. We have 
sign e(^) = sign e(t2) so tha t Xx and A2 cannot be of the same sign. Suppose now 
tha t n > 1 and tha t there is an index p such tha t XP and Àp+1 are of the same 
sign. I t follows tha t there exists an i such tha t at least one of the numbers 
Яг_! or Xi+1 is of the same sign as Яг. Clearly we may suppose tha t Яг- > О. 
Choose now two positive numbers ос^г and oci+1 such tha t 

Now there exists.an ее E such tha t е(^г_1) = ос{_ъ e(ti+1) = (xi+l and e(^) = 0 
for every j different from i — 1, i, i + 1. Since <ß, /> = 0, we have, in par
ticular, <e, /> = 0, 
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This reduces to 

I t follows tha t e(^) < 0. Since в(^г_1) and e(ti+1) are positive, there exist points 
£г_! e (£г__ъ t{) and si+1 € (tiy ti+1) with e{si_1) = e(^+1) = 0. This is a contra
diction with Haar 's condition. 

Theorem 2. Let T = <Ъ, b) and let E be an n-dimensional subspace of C(T) 
fulfilling Haar's condition. Let x e C(T) be given. The following condition is suffi
cient and necessary for a point e e E to be the best approximation of x: 

There exist n + 1 points tx < t2 < . . . < tn+1 of T and a number e with 
je| = 1 such that x(ti) — e(^) = ( — 1)* e\x — e|. 

P roof . Let e be the best approximation of x. We have then a functional 
n + 1 n + 1 

/ = 2 ^ * w ^ n 2 1̂*1 = * vanishing on E and such tha t (x — e, fy = [ж — e|. 
г = 1 г = 1 

Hence #(^) — е(£г) = \x — e| sign Ai whenever Яг- Ф 0. If the ^ are arranged 
in increasing order, it follows from the preceding lemma tha t the Яг are dif
ferent from zero and alternate in sign. The rest is easy. 

The second par t of the theorem is a consequence of the following result 
of de la Vallée-Poussin. 

Let T — (a, b} and let E be an n-dimensional subspace of C(T) fulfilling 
Haar's condition. Let x0 e C(T) and e0e E be given. Suppose there exist n + 1 
points tx < t2 < . . . < tn+1, positive numbers гг- and a number s with Je | ===== X 
such that 

x0(ti) - e0(ti) = {-lyesi. 

We have then 

min \x0 — e| I> min ег- . 
eeE l&i£n + l 

Proof . According to the preceding lemma there exist positive numbers 
П-f 1 

K> -J K+1 with 2 h-, = 1 such tha t 

/="i(-i)'e^i 
i = l 

vanishes on E. For every e e E, we have 
и + 1 

l̂ o — el == <̂ o ~ «, /> = <A — eo, /> = 2 V* = m i n £* 

which concludes the proof. 
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Р е з ю м е 

ЗАМЕТКА ОБ АППРОКСИМАЦИИ Н Е П Р Е Р Ы В Н Ы Х 
ФУНКЦИЙ 

ВЛАСТИМИЛ ПТАК (Vlastimil P tak) , Прага 

(Поступило в редакцию 16/1X 1957 г.) 

В статье дается прямое геометрическое доказательство теоремы Хаара 
о приближении непрерывных функций. 

Теорема. Пусть Т — компактное хаусдорфово пространство; обозначим 
через С(Т) пространство всех непрерывных функций на Т с обычной нор
мой. Пусть Е — данное n-мерное подпространство пространства С(Т). 
Наилучшее приближение каждого х е С.(Т) при помощи элементов про
странства Е будет однозначно определенным тогда и только тогда, если 
не будет существовать ненулевой элемент е е Е, имеющий не менее чем 
п различных нулей. 
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