A Remark on Bound States in Potential-Scattering Theory.

D. Ruelle (*)
University of California - Irvine
(ricevuto il 25 Novembre 1968)

Abstract

Summary. - Let $\mathscr{H}=\mathscr{H}_{B}+\mathscr{H}_{C}$ be the Hilbert space of an n-particle quantum system, where \mathscr{H}_{B} is spanned by the bound states and \mathscr{H}_{C} corresponds to the continuous spectrum of the Hamiltonian. It is shown that the wave functions which are in some sense localized in space and energy form a compact set in \mathscr{H}. This is used to prove that a wave packet ψ remains localized at finite distance for all time if $\psi \in \mathscr{H}_{B}$, and that it disappears at infinity if $\psi \in \mathscr{H}_{\epsilon}$.

1. - Introduction and statement of results.

Let H be the Hamiltonian describing an n-particle system in potential-scattering theory, H acts on a Hilbert space $\mathscr{H}=L^{2}\left(R^{N}\right)$. We write $\mathscr{H}=\mathscr{H}_{B}+\mathscr{H}_{\theta}$ where \mathscr{H}_{B} is spanned by the bound states (eigenfunctions of H) and \mathscr{H}_{c} is the orthogonal complement of \mathscr{H}_{B}. One expects that if $\psi \in \mathscr{H}_{B}$, the wave function

$$
\begin{equation*}
\psi_{t}=\exp [-i H t] \psi \tag{1}
\end{equation*}
$$

will remain at all times concentrated mostly in some bounded region of R^{N}. On the other hand if $\psi \in \mathscr{H}_{c}$, one expects that the probability of finding the system in any fixed bounded region of R^{N} will vanish for large times. The aim of this note is to give a precise statement and proof of these facts. Remarkably, the proof depends very little on the detailed structure of the interaction; it is in particular valid for the case of potentials which are bounded below,

[^0]whether or not these potentials vanish at infinity. What is used is the fact (") that wave functions which are in some sense localized in a bounded region of R^{N} form a compact set in $\mathscr{H}=L^{2}\left(R^{N}\right)$ (see Proposition 1 and its corollary in Sect. 3).

We postpone to Sect. 2 the description of conditions on the interaction, and state immediately our main result.

Theorem. Let H be defined according to A) or B) of Sect. 2. Let $\psi \in \mathscr{H}$.
a) $\psi \in \mathscr{H}_{B}$ if and only if for each $\varepsilon>0$ there exists an $R>0$ such that
(2)

$$
\sup _{t} \int_{|x| \geqslant a} \mathrm{~d} x\left|\psi_{t}\right|^{2}<\varepsilon
$$

b) $\psi \in \mathscr{H}_{0}$ if and only if, for each $R>\mathbf{0}$,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \mathrm{~d} t \int_{|x| \leqslant R} \mathrm{~d} x\left|\psi_{t}(x)\right|^{2}=0 \tag{3}
\end{equation*}
$$

2. - Definition of the Hamiltonian.

The Hamiltonian is formally defined by

$$
\begin{equation*}
H=-\Delta+V \tag{4}
\end{equation*}
$$

acting on $\mathscr{H}=L^{2}\left(R^{N}\right)$. Here Δ is the Laplace operator and V is a multiplicative potential. We think of H as describing the system after elimination of the motion of the centre of mass; thus, for n particles in v dimensions, $N=(n-1) v$. We describe two situations where H can be defined naturally as a self-adjoint operator.
A) Let the (real) function V be bounded below. Assume also that there exists a set $S \subset R^{N}$ such that
a) the complement of S in R^{N} has Lebesgue measure zero.
$b)$ if $x \in S, V$ is square integrable in some neighbourhood of x.
(*) The importance of such a property in relativistic quantum mechanics has been emphasized by HaAG and Swieca (${ }^{1}$). I was encouraged by HaAG to publish the present. results, obtained mostly at the end of 1966.
${ }^{(1)}$ R. Hafg and J. A. Swieca: Comm. Math. Phys., 1, 308 (1965).

Let D be the space of functions φ which are twice differentiable, have compact support and satisfy $V \varphi \in L^{2}\left(R^{N}\right)$. By our assumptions H is naturally defined on D, and D is dense in \mathscr{H}. Furthermore, H is bounded below on D and can thus be extended to a self-adjoint operator by the method of Friedrichs (*).
B) Let $v \leqslant 3$ and V be a sum of pair potentials $\Phi_{i j}\left(x_{j}-x_{i}\right)$ such that $\Phi_{i j} \in L^{2}\left(R^{v}\right)+L^{\infty}\left(R^{v}\right)$. In that case a theorem of Kato $\left(^{* *}\right)$ asserts that if φ belongs to the domain D of the Laplace operator, then $V_{\varphi} \in L^{2}\left(R^{V}\right)$, and that (4) defines H as a self-adjoint operator on D. Furthermore, if $a>0$, there exists $b>0$ such that for all $\varphi \in D$.

$$
\begin{equation*}
\left\|V_{\varphi}\right\| \leqslant a\|\Delta \varphi\|+b\|q\| . \tag{ॅ}
\end{equation*}
$$

3. - Proofs.

In all the propositions below, it is assumed that H is defined according to $A)$ or B) of Sect. 2. Let $E(\lambda)$ be the spectral projection of H corresponding to the interval $(-\infty, \lambda]$; we denote again by $E(\lambda)$ the range of $E(\lambda)$.

Lemma. Given $\varepsilon>0, R>0$ and λ_{0} there exists a finite-dimensional subspace F of \mathscr{H} such that, for all $\psi \in E\left(\lambda_{0}\right)$,

$$
\begin{equation*}
\left|\psi_{P}\right|>\left[\int_{|x|<R} d x|\psi(x)|^{2}\right]^{\frac{1}{2}}-\varepsilon\|\psi\|, \tag{6}
\end{equation*}
$$

where ψ_{F} is the component of ψ along F.
Let first H be defined according to A); since V is bounded below, there exists $\bar{\lambda}$ such that, for all $\psi \in E\left(\lambda_{0}\right)$,

$$
\begin{equation*}
(\psi,-\Delta \psi) \leqslant \bar{\lambda}\|\psi\|^{2} . \tag{7}
\end{equation*}
$$

If H is defined according to (B) we have, using (5)

$$
\|\Delta w\| \leqslant\|H \psi\|+\|V \psi\| \leqslant\|H \psi\|+a\|\Delta \psi\|+b\|\psi\| .
$$

(*) See Riesz and Nagy (${ }^{2}$) Sect. 124.
${ }^{(2)}$ F. Riesz and B. Sz.-Nagy : Legons d'Analyse Fonctionelle, Académie des Sciences de Hongrie, 1955.
(*) For this and extensions to k-body potentials and $\nu>3$, see Kato $\left.{ }^{(3.4}\right)$ and Nelson (5).
$\left(^{3}\right)$ T. Kato: Trans. Am. Math. Soc., 70, 195 (1951).
$\left({ }^{4}\right)$ T. Kato: Perturbation Theary of Linear Operators (Berlin, 1966).
$\left.{ }^{(5}\right)$ E. Nelson : Journ. Math. Phys., 5, 332 (1964).

Hence, taking $a<1$,

$$
(\psi,-\Delta \psi) \leqslant\|\psi\|\|\Delta \psi\| \leqslant\|\psi\|(1-a)^{-1}[\|H \psi\|+b\|\psi\|]
$$

and (7) holds again.
Let χ be the characteristic function of the set $\left\{x \in R^{N}: \sum_{i=1}^{N}\left|x^{i}\right|^{2}<R^{2}\right\}$, then

$$
\begin{equation*}
(\psi, \chi \psi)=\int_{|x|<\pi} \mathrm{d} x|\psi(x)|^{2} \tag{8}
\end{equation*}
$$

Consider now the Hamiltonian

$$
\begin{equation*}
\tilde{H}=-\Delta-\lambda \chi \tag{9}
\end{equation*}
$$

with $\lambda \geqslant 2 \varepsilon^{-2} \bar{\lambda}$; we have by (7) and (8)

$$
\begin{equation*}
(\psi, \tilde{H} \psi) \leqslant \frac{1}{2} \lambda \varepsilon^{2}\|\psi\|^{2}-\lambda \int_{|x|<R} \mathrm{~d} x|\psi(x)|^{2} \tag{10}
\end{equation*}
$$

The part of the spectrum of \widetilde{H} below $-\frac{1}{2} \lambda \varepsilon^{2}$ consists of a finite number of eigenvalues (*); let F be the space spanned by the corresponding eigenfunctions, then

$$
\begin{equation*}
(\psi, \tilde{H} \psi) \geqslant-\frac{1}{2} \lambda \varepsilon^{2}\|\psi\|^{2}-\lambda\left\|\psi_{F}\right\|^{2} \tag{11}
\end{equation*}
$$

Comparison of (10) and (11) yields

$$
\begin{equation*}
\left\|\psi_{F}\right\|^{2} \geqslant \int_{|x|<R} \mathrm{~d} x|\psi(x)|^{2}-\varepsilon^{2}\|\psi\|^{2}, \tag{12}
\end{equation*}
$$

from which (6) follows.
Proposition 1. Let the real function δ on R tend to zero ut $+\infty$ and

$$
\begin{equation*}
S=\{\psi \in \mathscr{H}:\|\psi-E(\lambda) \psi\| \leqslant \delta(\lambda)\|\psi\| \text { for all } \lambda\} \tag{13}
\end{equation*}
$$

Given $\varepsilon>0$ and $R>0$ there exists a finite-dimensional subspace F of \mathscr{H} such

[^1]that, for all $\psi \in S$,
\[

$$
\begin{equation*}
\left\|\psi_{F}\right\| \geqslant\left[\int_{|x|<R} \mathrm{~d} x|\psi(x)|^{2}\right]^{\frac{1}{2}}-\varepsilon\|\psi\| \tag{14}
\end{equation*}
$$

\]

We choose λ_{0} such that $\delta\left(\lambda_{0}\right) \leqslant \frac{1}{3} \varepsilon$. According to the lemma there exists a finite-dimensional subspace F of \mathscr{H} such that, for all $\psi \in \mathscr{H}$,

$$
\begin{align*}
\left\|\left(E\left(\lambda_{0}\right) \psi\right)_{F}\right\| \geqslant\left[\int_{|x|<R} \mathrm{~d} x\left|\left(E\left(\lambda_{0}\right) \psi\right)(x)\right|^{2}\right]^{\frac{1}{2}} & -\frac{1}{3} \varepsilon\left\|E\left(\lambda_{0}\right) \psi\right\| \geqslant \tag{15}\\
& \geqslant\left[\int_{|x|<R} \mathrm{~d} x\left|\left(E\left(\lambda_{0}\right) \psi\right)(x)\right|^{2}\right]^{\frac{1}{2}}-\frac{1}{3} \varepsilon\|\psi\|
\end{align*}
$$

For $\psi \in S$, we have

$$
\begin{gathered}
\left\|\left(E\left(\lambda_{0}\right) \psi\right)_{F}\right\|-\left\|\psi_{F}\right\| \leqslant\left\|\left(\psi-E\left(\lambda_{0}\right) \psi\right)_{F}\right\| \leqslant\left\|\psi-E\left(\lambda_{0}\right) \psi\right\| \leqslant \frac{1}{3} \varepsilon\|\psi\| \\
{\left[\int_{|x|<R} \mathrm{~d} x\left|\left(E\left(\lambda_{0}\right) \psi\right)(x)\right|^{2}\right]^{\frac{1}{2}}-\left[\int_{|x|<R} \mathrm{~d} x|\psi(x)|^{2}\right]^{\frac{1}{2}} \geqslant} \\
\geqslant-\left[\int_{|x|<R} \mathrm{~d} x\left|\psi(x)-\left(E\left(\lambda_{0}\right) \psi\right)(x)\right|^{2}\right]^{\frac{1}{2}} \geqslant-\left\|\psi-E\left(\lambda_{0}\right) \psi\right\| \geqslant-\frac{1}{3} \varepsilon\|\psi\| .
\end{gathered}
$$

Inserting these inequalities into (15) yields (14).
Corollary. Let S be given by (14) and

$$
\begin{equation*}
T=\left\{\psi \in \mathscr{H}:\left[\int_{|x|>B} \mathrm{~d} x|\psi(x)|^{2}\right]^{\frac{1}{2}} \leqslant \eta(R) \text { for all } R \geqslant 0\right\} \tag{16}
\end{equation*}
$$

where the real function η tends to zero at $+\infty$. The set $S \cap T$ has compact closure in \mathscr{H}.

Notice first that $\psi \in T$ implies $\|\psi\| \leqslant \eta(0)$, therefore $S \cap T$ is bounded, the compactness follows from (14) and (16).

Proposition 2. Let $\varepsilon>0$ and $\psi \in \mathscr{H}$; let ψ_{t} be defined by (1).
a) Given $R>0$ there exists a finite-dimensional subspace \vec{F} of \mathscr{H} such that for all t

$$
\begin{equation*}
\left\|\psi_{t F}\right\| \geqslant\left[\int_{|x|<R} \mathrm{~d} x\left|\psi_{t}(x)\right|^{2}\right]^{\frac{1}{2}}-\varepsilon \tag{17}
\end{equation*}
$$

b) Given a finite-dimensional subspace F of \mathscr{H} there exists $R>0$ such that for all t

$$
\begin{equation*}
\left[\int_{|x|<R} \mathrm{~d} x\left|\psi_{t}(x)\right|^{2}\right]^{\frac{1}{2}} \geqslant\left\|\psi_{t p}\right\|-\varepsilon . \tag{18}
\end{equation*}
$$

a) We may assume $\|\psi\|=1$. If $\delta(\lambda)=\|\psi-E(\lambda) \psi\|$, the set $\left\{\psi_{t}: t \in R\right\}$ is contained in the set S defined by (13), and (17) follows from Proposition 1.
b) Let $\left(\psi^{\alpha}\right)_{1 \leqslant \alpha \leqslant m}$ be an orthonormal basis of F. We choose an orthonormal system $\left(\tilde{\psi}^{\alpha}\right)_{1 \leqslant \alpha \leqslant m}$ in $L^{2}\left(R^{N}\right)$ formed by functions with compact support such that $\left\|\psi^{\alpha}-\widetilde{\psi}^{\alpha}\right\| \leqslant\left[m\|\psi\|^{2}\right]^{-1} \varepsilon^{2}$. Taking R such that the supports of the $\tilde{\psi}^{\alpha}$ are contained in $\{x:|x|<R\}$, we have

$$
\begin{aligned}
&\left\|\psi_{t F}\right\|^{2}-\varepsilon^{2}=\sum_{\alpha}\left|\left(\psi^{\alpha}, \psi_{t}\right)\right|^{2}-\varepsilon^{2} \leqslant \sum_{\alpha}\left|\left(\tilde{\psi}^{\alpha}, \psi_{t}\right)\right|^{2}= \\
&=\left.\sum_{\alpha} \int_{|x|<R} \mathrm{~d} x \tilde{\psi}^{\alpha}(x)^{*} \psi_{t}(x)\right|^{2} \leqslant \int_{|x|<R} \mathrm{~d} x\left|\psi_{t}(x)\right|^{2},
\end{aligned}
$$

which proves (18).
Proposition 3. Let $\psi \in \mathscr{H}$.
a) $\psi \in \mathscr{H}_{B}$ if and only if the set $\left\{\psi_{t}: t \in R\right\}$ has compact closure in \mathscr{H}.
b) $\psi \in \mathscr{H}_{c}$ if and only if for every $\varphi \in \mathscr{H}$

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \mathrm{~d} t\left|\left(\varphi, \psi_{t}\right)\right|^{2}=0 \tag{19}
\end{equation*}
$$

For a proof of these statements see Jacobs (${ }^{7}$) Sect. 8.
We come now to the proof of the theorem stated in Sect. 1. According to Proposition $3 a$), $\psi \in \mathscr{H}_{B}$ if and only if, for all $\varepsilon>0$, there is a finite-dimensional subspace F of \mathscr{H} such that, for all t,

$$
\begin{equation*}
\left\|\psi_{t F}\right\| \geqslant\left\|\psi_{t}\right\|-\varepsilon \tag{20}
\end{equation*}
$$

By Proposition 2, this holds if and only if, for all $\varepsilon>0$, there exists $R>0$ such that, for all t,

$$
\left[\int_{|x|<\boldsymbol{R}} \mathrm{d} x\left|\psi_{t}(x)\right|^{2}\right]^{\frac{1}{2}} \geqslant\left\|\psi_{t}\right\|-\varepsilon,
$$

or equivalently

$$
\begin{equation*}
\int_{|x|<a} \mathrm{~d} x\left|\psi_{t}(x)\right|^{2} \geqslant\left\|\psi_{t}\right\|^{2}-\varepsilon . \tag{21}
\end{equation*}
$$

This proves part a) of the theorem.
According to Proposition $3 b), \psi \in \mathscr{H}_{c}$ if and only if, for every finite-

[^2]dimensional subspace F of \mathscr{H},
\[

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \mathrm{~d} t\left\|\psi_{t F}\right\|^{2}=0 \tag{22}
\end{equation*}
$$

\]

By Proposition 2, this holds if and only if (3) holds for every $R>0$, proving part b) of the theorem.

Appendix (by O. Lanford)

Proposition 1. Let H_{0} be a positive self-adjoint operator, V a symmetric operator; suppose that, for some $\lambda_{0}>0, V\left(\lambda_{0}+H_{0}\right)^{-1}$ is an (everywhere defined) compact operator with norm strictly less than one. Then $H_{\mathbf{0}}+V$ is self-adjoint and its negative part is compact.

It suffices to show that, for all $\lambda \geqslant \lambda_{0},\left(\lambda+H_{0}+V\right)^{-1}$ is everywhere defined and bounded, and that the negative part of $1 / \lambda-\left(\lambda+H_{0}+V\right)^{-1}$ is compact. For this, it suffices to show that

$$
\left(\lambda+H_{0}+V\right)^{-1}=\left(\lambda+H_{0}\right)^{-1}+T,
$$

where T is compact. (Suppose $\Phi_{1}, \Phi_{2}, \ldots$ is an infinite sequence of mutually orthogonal normalized vectors; then
$\limsup _{n}\left(\left(\lambda+H_{0}+V\right)^{-1} \Phi_{n}, \Phi_{n}\right) \leqslant \lim _{n} \sup \left(\left(\lambda+H_{0}\right)^{-1} \Phi_{n}, \Phi_{n}\right)+\limsup _{n}\left\|T \Phi_{n}\right\| \leqslant 1 / \lambda$, since $\left\|T \Phi_{n}\right\| \rightarrow 0$.)

Now

$$
\begin{aligned}
\left(\lambda+H_{0}+V\right)^{-1}=(\lambda+ & \left.H_{0}\right)^{-1}\left(1+V\left(\lambda+H_{0}\right)^{-1}\right)^{-1}= \\
& =\left(\lambda+H_{0}\right)^{-1}-\left(\lambda+H_{0}\right)^{-1} \sum_{n=0}^{\infty}\left(-V\left(\lambda+H_{0}\right)^{-1}\right)^{n} V\left(\lambda+H_{0}\right)^{-1} .
\end{aligned}
$$

By hypothesis, $V\left(\lambda_{0}+H_{0}\right)^{-1}$ is a compact operator of norm strictly less than one; the same is true of $V\left(\lambda+H_{0}\right)^{-1}$ because

$$
V\left(\lambda+H_{0}\right)^{-1}=V\left(\lambda_{0}+H_{0}\right)^{-1}\left(\lambda_{0}+H_{0}\right)\left(\lambda+H_{0}\right)^{-1}
$$

and

$$
\left\|\left(\lambda_{0}+H_{0}\right)\left(\lambda+H_{0}\right)^{-1}\right\| \leqslant 1 .
$$

Hence, $\left(\lambda+H_{0}+V\right)^{-1}-\left(\lambda+H_{0}\right)^{-1}$ is compact, and the proposition is proved.
Proposition 2. Let \dagger be a bounded real-valued square-integrable function on R^{*}; then the operator $-\Delta+f$ on $L^{2}\left(R^{N}\right)$ has compact negative part.

By Proposition 1, it will suffice to find $\lambda>0$ such that $f(\lambda-\Delta)^{-1}$ is a. compact operator of norm strictly less than one. Since $\left\|f \cdot(\lambda-\Delta)^{-1}\right\| \leqslant\|f\|_{\infty} \cdot 1 / \lambda$, it suffices to show that

$$
f \cdot(\lambda-\Delta)^{-1}
$$

is compact for all $\lambda>0$. Since

$$
f \cdot(\lambda-\Delta)^{-1}
$$

is a norm limit of operators of the form

$$
f \cdot(\lambda-\Delta)^{-1} \boldsymbol{P}_{E}
$$

where $\boldsymbol{P}_{\boldsymbol{F}}$ is the spectral projection for Δ onto a compact interval K, it suffices to prove that $f \cdot(\lambda-\Delta)^{-1} \boldsymbol{P}_{K}$ is compact. If χ_{K} is the characteristic function of the interval K, then $f \cdot(\lambda-\Delta)^{-1} \boldsymbol{P}_{E}$ may be realized as an integral operator R^{N} with kernel

$$
\tilde{f}\left(k^{\prime}-k\right) \frac{1}{\lambda+k^{2}} \chi_{E}\left(-k^{2}\right)
$$

The kernel is square-integrable; therefore, $f \cdot(\lambda-\Delta)^{-1} \boldsymbol{P}_{R}$ is a Hilbert-Schmidt operator and so in particular is compact.

Remark. For $N=1,2,3$ the operator $f \cdot(\lambda-\Delta)^{-1}$ is already Hilbert-Schmidt, and its Hilbert-Schmidt norm goes to zero as $\lambda \rightarrow \infty$; therefore the condition that f be bounded is superfluous.

RIASSUNTO (*)

Sia $\mathscr{H}=\mathscr{H}_{B}+\mathscr{H}_{C}$ lo spazio hilbertiano di un sistema quantistico di n particelle, in cui \mathscr{H}_{B} è coperto dagli stati legati e \mathscr{H}_{c} corrisponde allo spettro continuo dell'hamiltoniana. Si dimostra che le funzioni d'onda che sono in un certo senso localizzate nello spazio e nell'energia formano un insieme compatto in \mathscr{H}. Da ciò si dimostra che un pacchetto d'onde ψ rimane localizzato ad una distanza finita in tutti gli istanti se $\psi \in \mathscr{H}_{B}$, e che scompare all'infinito se $\psi \in \mathscr{H}_{c}$.
(*) Traduzione a cura della Redazione.

Замечания о связанных состояниях в потенциальной теории рассеяния.

Резюме автором не представлено.

[^0]: (*) Permanent address: IHES, 91, Bures-sur-Yvette.

[^1]: (•) A proof of this fact could be obtained by direct computation; another proof, due to Lanford, is presented in the Appendix (Proposition 2). An extension to multiparticle Hamiltonian has been obtained by Hunziker (${ }^{6}$).
 ${ }^{(6)}$ W. Hunziker: Helv. Phys. Acta, 39, 451 (1966).

[^2]: ${ }^{7}$) K. Jacobs: Lecture Notes on Ergodic Theory, Aarhus Universitet, Aarhus, 1963.

