icm

A remark on characters of locally compact
Abelian groups

by
E. Hewitt* (Seattle, Wash.)

1. Introduction. Let & be an Abelian group, and let O, and O,
be two topologies (*) on & such that O, 2 O, and @ is a locally compact
topological group (%) under both O, and O,. Z. Semadeni has asked if
there is necessarily a character of G that is continuous in the topology 04
and discontinuous in the topology O,. In the present note we answer
this question affirmatively (Theorem (3.3)), finding that there are always
at least 2% O, - continuous characters that are O,-discontinuous. We also
discuss some topological questions suggested by our construction.

(1.1) Notation. The letters &, H, 4, F,J,.. will henceforth be
used to denote groups with topologies. If @ is a topological group, the
symbol @, will denote the group having the discrete topology and having
the same algebraic structure as G. The symbol B denotes the additive
group of real numbers with the usual topology. The symbol @ denotes
the additive group of rational numbers with the usual topology as a sub-
space of R. The symbol Z denotes the additive group of all integers with
the diserete topology. The symbol T denotes the circle group, here regarded
as the multiplicative group of all complex numbers of absolute value 1,
with the usual topology. For a cardinal number m > 1 and a topological
group G, the symbol @™ denotes the full direct produet of m replicas of @,
with the Cartesian product topology. The symbol ¢ denotes the cardinal
number of the continuum.

For the reader’s convenience, we now recite some known facts.

(1.2) THEOREM. Let G be a locally compact Abelian group, with con-
nected component of the identity C. There exist a nonnegative integer a and
a topological isomorphism o of R® into G such that C is equal to o(RY- B,
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(1) Here and throughout this note, we define topologies by families of open sets.

(2) We always suppose T, (and hence Hausdorff) separation for topological groups.
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where B is a compact connected subgroup of G. The number o is the largest
of all monmegative integers n such that G contains a topological isomorpl,
of B". The group G dself is equal to o(R*)- A, where A is a closed subgroup
of G containing a compact subgroup F that is open in the relative topology
of A. The subgroup A contains all @ € G such that {&": n ¢ Z} is compact.
The velation o(R") ~ A = {¢} obtains, and G is topologically isomorphic
with the direct product R®x A.

A proof of Theorem (1.2) appears in [1], Theorem (24.29).

(1.3) TaEOREM. Let G be a o-compact, locally compact growp, and
let f beNa continuous homomorphism of @ onto a locally countably compact
group G. Then f is an open mapping.

Proofs of Theorem (1.3) are found in [1], Theorem (5.29) and in [3),
Theorem 12, p. 123. '

(1.4) THEOREM. Let G be a compact, infinite, Abelian group with
character group (3) X; write m for the cardinal number of X. Then the
cardinal number of G is 2™, and @ admits 2°™ discontinuous characters.

Proof. The first statement is a theorem of S. Kakutani [2]; a de-
tailed proof appears in [1], Example (24.47). To prove the second state-
ment, consider the discrete group ;. By Kakutani’s theorem, the (com-
pact) character group ¥ of G4 has cardinal number 2°". Since only m
of the elements of ¥ belong to X, there are 22™ characters of @ that are
discontinuous.

(1.5) THEOREM. The group R admits 2° discontinuous characlers.

. This is an elementary fact. It is perhaps most easily seen by notic-
ing that Ry is isomorphic with the weak direct product of ¢ copies of the
additive rationals Q: Ry is isomorphic with [{(Q2)*)s, where the asterisk
means that in each element of the direct product, we allow only a finite
nu}nber of nonzero entries. The character group of @z is a certain sole-
pmdal group 8 of cardinal number c. Thus the character group of Ry
is topologically isomorphic with & and has cardinal number 2°. Since

B adr?ntvs only ¢ continuous characters, there are 2° characters of B that
are discontinuous.

2. Locally compact topologies on R". Semadeni’s question
may be paraphrased as follows. Given a locally compact Abelian group,
lf one strengthens its topology, does one necessarily introduce new con-
tinuous characters? The group R and its powers R, B3, ... arve very im-
portant locally compact Abelian groups, and it is natural to begin with

. 1(3). By character group of G we mean the group of continuous characters of the
opological group &. However, we will have oceasion to write discontinuous character.
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a discussion of these groups. Since R” is o-compact, it is obvious from (1.3)
that there are no topologies on R® weaker than the usual one under which.
R? is a locally compact Abelian group. The locally compact group top-
ologies on R* stronger than the usual topology are completely deseribed.
as follows. For an integer ¢ > 1 and b = 0,1, 2, ..., a—1, the topological
group R x (Rg)* " plainly has a locally compact group topology strictly
stronger than the usual topology for R”. Up to topological isomorphisms,
these are the only possibilities, as we will now prove.

(2.1) LEMMA. Let Rs denote the group R with a locally compact group-
topology that is strictly stronger than the wusual topology of R. Then Rs is
the discrete group Ry.

Proof. By (1.2), Rs is topologically iscmorphic with R®x .4, where’
a is a nonnegative integer and A is a locally compact Abelian group
containing a compact open subgroup F. With the customary abuse of
notation, we suppose that R, A4, and F are subgroups of R®xA4. Let
7 be a topological isomorphism carrying R®*x 4 onto R,. The identity
mapping of 7(F) into R is continuous, and, since F is compaet, this
identity mapping is a homeomorphism. The only compact subgroup
of R is {0}, and therefore F is a 1-element group. Therefore A is discrete,
and if Ry is nondiscrete, the integer @ must be positive. If 7(R*) = R;,
Theorem (1.3) shows that R, has the topology of R% so that ¢ =1 and
Rs = R. This contradicts our hypothesis. Hence R, contains a proper
open subgroup B topologically isomorphie with R® Regarded as a subset

" of the topological space s, B is connected. Regarded as a subset of the.

topological space R, B iz a continuous image of B as a subset of Ry,
and so B is connected in its relative topology as a subset of R. Since
B is also a subgroup of R, it must be equal to R or to {0}. Thus if R; is
nondiscrete, we have a contradietion.

*(2.2) THEOREM. Let a be an integer greater than 1, and let R denote
the group R® with a locally compact group topology strictly stronger than
the usual.topology for R®. Then there emist an integer b e{0,1,..,a—1}
and a topological isomorphism o carrying RZ onto R® x (Ry)* "

Proof. By (1.2), R; contains an open subgroup D such that there
is a topological isomorphism ¢ carrying R’ » F onto D, where b is a non-
negative integer and # is a compact Abelian group. As in the proof
of (2.1), we see that 7(¥F) = {0}, and so F is & 1-element group. If b = 0,
then R; contains a 1-element open subgroup and so is topologically
isomorphic with (Rg)". Excluding this special case, we say suppose that
b is positive; so we have a topological isomorphism v earrying B® into R%.

We will now show that

1) T{ax) = ar(x)
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for all a e B and x e R”, i.e. 7 is linear for R® and R{ regarded as linear
spaces over the field R (*). The relation (1) is trivial for £ = 0. For x = 0,
consider the subgroup Iy = {ar(x): a ¢ R} of Rf. Being closed in R,
I, is closed in R} and is therefore a locally compact group algebraically
isomorphic with R and having a topology at least as strong as the usual
topology of R. Since v is a topological isomorphism and since 7(rx) = »7(x)
for all r € @, L, does not have the discrete topology: the subspace {rz(x):
r e Q} of L, has the topology of @ as a subspace of BE. By (2.1), the top-
ology of L, is either discrete or the usual topology of R. We have thus
proved that the topology of L, is the usual topology of R. For a real
number a, let {rp)n=: be a sequence of rational numbers such that
lim 7, = . Then we have lim 7% = ax in R”,‘ and since 7 is a topological

N0 N0

isomorphism, we also have

lim 7 (rpx) = im rpz(x) = 7(ax) .

n—>00 n—>00

Since L, has the usual topology of R, it follows that lim #,7(x) = av(x),
n—o0

and so (1) is proved.

Relation (1) implies that 7(R’) is a linear subspace of R and con-
sequently we have b < a. If b = a, then r(Rb) = R% so that R§ has the
topology of R% a contradiction to our hypothesis. Therefore we have
0<b<a, and v(R’) is a proper linear subspace of R%. The quotient
group Rir(R®) can be identified algebraically with the linear space R0,
Sinee 7(R®) is an open subgroup of Rg, this quotient group is discrete.
Since (R is a divisible group, the group R{ is topologically isomorphic
with 7(B®) x [R=(R")], the second factor having the discrete topology.
{This is proved in [1], Example (6.22).) Since (R“™); can be identified
with (Rz)*™%, the proof is complete.

3. The main theorem.

(3.1) LmMmA. «Let G be any topological group and let H be any open
subgroup of G. Then the topology of @ is completely determined by the top-
?Zogy of H as a subspace of G and the group structure of G: a subset ¥ of @
s open if and only if ¥ ~ (zH) is open in the relative topology of xH for
all ze@.

Proof. Since translation is a homeomorphism of & onto itself, all
cosets. #H of H are open, and so ¥ ~ (#H) is open for all z e @ if ¥ is
f)pen in . I ¥ ~ (zH) is relatively open in zH for all z e @, then Y ~ (zH)
15 open in @ for all » € &, since «H is open in @. Since ¥ = UY ~ (zH),

xe@

it follows that ¥ is open in @ it every set Y ~ (xH) is open in xzH.

. oo o s
s é ) It is trivial that = is linear for R® and Ry regarded as linear spaces over the
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(3.2) Notation. Throughout the remainder of Section 3, let &
and G, denote a single Abelian group having two loeally compact group
topologies for which the topology of Gy is strictly stronger than the
topology of G,. Let ¢ denote the identity mapping of G; onto G,; thus
¢ is a continuous (but not open) isomorphism of G; onto G,.

(3.3) THEOREM. There are at least 2% comtinuous characters of the
group Gy that are discontinuous for the group G, (5).

Proof. By (1.2), the group @, contains an open subgroup topo-
logically isomorphic with R®xF, where F is compact and « is a non-
negative integer. With no loss of generality, we may suppose that R% F,
and R®x F are subgroups of G,. Now consider the subgroup ¢ *(R*x F)
= ¢ (R x ¢ (F) of the topological group G;. Plainly this subgroup
is open in Gy. If ¢ *(R%) is homeomorphic to B* and ¢ '(¥F) is homeo-
morphic to F, then ¢ '(R®x F) is topologically isomorphic to R*x F:
this is a known property of direct products ([1], Theorem (6.12)). In this
case, Lemma (3.1) implies that G, and G, are homeomorphic. Conse-
quently:

(1) a s positive and ¢ (R*) has a locally compact group topology strictly
stronger than the usual fopology of R%,
or

(2) @ H(F) has a locally compact group topology strictly stronger than the
topology of F as a subspace of G,.

Suppose first that (1) holds. The group ¢ *(R") is closed in Gy since
R% is closed in G,, and so ¢~ '(R®) has a locally compact group topology
as a subspace of @, By Theorem (2.2), p(R%) is topologically isomorphic
with R° x (Rg)*" for an integer be{0,1,...,a—1}. Changing our nota-
tion for brevity’s sake, we may write that G, contains an open subgroup
of the form M = R’ x (Ra)* " X ¢ *(F), where b < a and ¢~ (F) is a closed
subgroup of @,. Elements of M can be written as triples (x, y, 2). Let
 be a character of (R2)®™® that is discontinuous in the usual topology
of R®®. As noted in (1.5), there are 2° such characters. Let y' be the
character of I such that y'(x,y,2) = x(y), and let x” be any character
of @, that is equal to x* on M. Such a x"' always exists: see [1], Lemma
{24.4). Since ;' is continuous on the open subgroup M of &, y' is con-
tinuous on &. It is obvious that y/ is discontinuous on G,. Since there
are 2° possible choices for y, the present theorem is true if (1) holds.

(%) 'We conjecture that the number 2% can be replaced in this theorem by 2¢ without
recourse to the continuum hypothesis. Our methods do not yield this result, however,
and to obtain it would apparently require some quite delicate facts about the structure
of compact Abelian groups having dense subgroups that are continuous isomorphic
images of R%
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We now suppose that (2) holds. Then ¢~X#) is not compact, but:
is clearly locally compact since it is a closed subgroup of &;. By Theo-
rem (1.2), ¢~*F) is topologically isomorphic with R‘x A, where 4 ig
a closed subgroup of ¢~YF) containing a compact subgroup J that is.
open in 4.

Suppose that ¢ = 0. Then J is an open subgroup of ¢—*(F), and since.
the topology of @~YF) is strictly stronger than the topology of &,
Lemma (3.1) implies that p(J) is not open in F. Since J is compact,
p(J) is compact and therefore closed in F. Consequently the group Fjep(J ¥
is a nondiscrete compact Hausdorff group and has cardinal number
1 2> c (see Theorem (1.4)). There are 2" discontinuous characters of Ffp(J),
again by Theorem (1.4). Let v be the natural mapping of F' onto Flo(J).
If 7 is a discontinuous character of Flp(J), it is easy to see that zoy
is a discontinuous character of . Bvery extension of « o to a character
of @, is discontinuous. However, J being an open subgroup of @~1(F),
every character of @~%(¥) that is identically 1 on J is continuous on
¢~}(F) and admits an extension over @, that is a continuous character
of @ ([1], Theorem (24.12)). We infer that &, admits at least 2" con-
tinuous characters that are discontinuous on @,.

Suppose finally that (2) holds and that ¢ > 0. Let ¢ be a topological
isomorphism carrying R° into ¢ M(F): thus o(R%)C ¢ YF). Then the
subgroup ¢ o ¢(R") of F is a one-to-one continuous image of R°. Clearly
¢ o a(R°) cannot be closed in ¥, since then oo (R would be locally
compact, the mapping ¢ o ¢ would be a topological isomorphism, and #
would contain a noncompact closed subgroup. Let H denote the closure.
of g o o(R’) in ', and consider the subgroup p=Y(H) of p—1(F). Obviously
¢~(H) is closed in ¢~(F). Now let ¢ be the connected component of
the identity in ¢~(H). By (1.2), ¢ has the form 0(R°)-F, where § is
2 topological isomorphism and F is a compact connected subgroup of
¢7Y(H). Since o(E°) is a closed connected subgroup of ¢~YH), we see.
that o(R°) CS(E)-F (%). We also have ¢ '(H) = 6(R%)-A, as in Theo-
rem (1.2). Thus A is a closed subgroup of ¢~%(H) that contains all com-
Pact subgroups of p=1(H): in particular, we have B C 4. Also A contains.
& compact open subgroup, say D. We write D.E = N ; then N is also
& compact open subgroup of 4. Finally, 9~} H) is topologically isomor-
phic with 6(E°) x 4. Now consider the group 4. If A were ¢-compact,
then p~Y(H) would also be o-compact, and 5o by Theorem (1.3) p would
be an open mapping and hence a homeomorphism of @-1(H) onto H:

.(5) It need not be the case that o (R°) = 3(R"). Consider the group R x T, para-
metrized as {(w,exp(2m‘y)): zeR, yel0, 1[}. For 0 <« < 1, the subgroup oa(R)
= {(m, exp (2.n'iaao)): x sR} is a topological isomorph of R, and 0ay(R) N 0ay(R) is & dis-
crete group isomorphic with Z for a5 0y

° ©
Im Characters of locally compact Abelian groups 61

‘this is a violation of (2). Consequently the group A/N is an uncountable
discrete Abelian group. It has at least 2% characters. Let % be any
-character of 4/N different from the identity. An element of @~ Y(H) can
‘be written uniquely as 6(x)-y, where x ¢ B° and y ¢ A. Define 2(o(x)-y)
a8 x(yN). It is clear that y' is a continuous character of ¢~ }(H) and that
%'(o(x)) =1 for all x e R°. Now extend 4 in any fashion to a continuous
«character y'* of Gy: this can be done because ¢~1(H) is closed in ~HE)
and @~Y(F) is closed in &;. Look at y* as a character of G,. We have
2@ o o(R%) = {1}, and so if 4 were continuous on @,, we would have
2'(H) = {1}. As this is not the case, y” is discontinuous on @,. Since
we have at least 2% choices for y, the proof is complete.

4. Examples and remarks.

(4.1) Let & be any topological group whatever and let H be 2 non-
open normal subgroup of G. Let U be a complete family of neighbor-
hoods of the identity for the given topology of G. The family of sets
{U~H: UecU} can be taken as a complete family of neighborhoods
of the identity. Under the topology so defined, & is again a topological
group in which H is an open subgroup, and in which the topology is
strictly stronger than the original topology. If H is locally compact in
its original topology, then the new topology for G makes @ locally
compact.

(4.2) Theorem (2.2) shows that the topology of R” can be strengthened
to a locally compact group topology only by the device of (4.1). It is
tempting to conjecture that something similar is true for torus groups I™,
where m is a cardinal number >1. However, much more complicated
possibilities arise with torus groups, as we will now point out.

(4.3) TemOREM. Let Ts denote the circle group with a locally compact
group topology that is strictly stronger than the usual topology for T. Then
this topology is discrete.

Proof. By Theorem (1.2), T, is topologically isomorphic with R* XA,
where @ is a nonnegative integer and 4 is a locally compact Abelian
group containing a compaet open subgroup F. Let @ be a continuous
isomorphism of R* x4 onto 7. If a = 0, then p(F) is a proper compact
subgroup of T and so is finite. Thus 4 is discrete and so 7, is discrete
also. If a is positive and A4 is a 1-element group, Theorem (1.3) implies
that R® is topologically isomorphic with 7', which is trivially impossible.
If o is positive and A4 is not a 1-element group, then @(R% is an
infinite proper connected subgroup of T: and of course no such sub-
group exigts.

(4.4) Now consider T2 and the possible ways of producing a locally
compact group topology T that is strietly stronger than the usual top-
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ology of T°. Plainly T: is noncompact. By Theorem (1.2), 1% is topo-
logically isomorphic with a group

(1) B x4,

where a4 is a nonnegative integer and 4 contains a compact open sub-
group F. Let ¢ be a one-to-one continuous isomorphism of R* x 4 onto 7=,
Suppose first that ¢ — 0. Then if T% is nondiscrete, ¥ is an infinite
compact subgroup of 4, and ¢ restricted to F is a topological isomor-
phism carrying F onto a proper compact infinite subgroup of 72 The
character group of @(F) is a quotient group of Z* and hence has 1 or 2
generators. In the first case, () is topologically isomorphic with 7.
In the second case, @(¥) is topologically isomorphic with 7' x B, where
B is a finite cyclic group. (This is because I% contains no proper sub-
group topologically isomorphic with 7%) In the second case, therefore,
F is topologically isomorphic with the product of T and a finite group,
and so 4 contains once again a compact open subgroup topologically
isomorphic with T. It is a routine matter to prove that the only topo-
logical isomorphisms carrying 7' into 7% have the form

(2) (@) (zeT),

where m and n are integers and the following possibilities exist: m = 41,
n=0;m=0n= 41;m+#0, n #0, and m and n are relatively prime.
From all this, we infer that if @ = 0 in (1), then the topology of 7?2 is
that in which one of the groups appearing in (2) is pronounced to be
open and retains its relative topology as a subgroup of 72 Since F is
& divisible group, it is algebraically a direct factor of 7%, and being open
in 7%, it is topologically a direct factor of 72. Thus 7% has the form
F x (T5/F), where the second factor is discrete and F is one of the groups
in (2). The exact structure of T:/F can of course be computed from (2).

Suppose now that the integer a in (1) is positive. It is a routine
maitter to show that the only continuous isomorphs of R in 7% are the
dense subgroups

(3) {(exp (2riw), exp(2riar)): » e R},

where a is an irrational number. This implies at once that there is no
one-to-one continuous isomorphism of K2 into T?, and so we have a = 1
in (1). Now if the subgroup 4 of (1) were nondiserete, the group F
would be infinite and (F) would be an infinite compact subgroup of 7%
interseeting the group of (3) only at the identity (1, 1). Since ¢ (F) would
contain a group of the form (2), it is easy to see that no such p(F) can
exist. Therefore T5 is topologically isomorphic with B x4, where 4 is
discrete. Since B is a divisible group, it is algebraically a direct factor
of T2 and it follows that 4 is isomorphic with 7%p(R), where ¢ (R) is
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a subgroup of T* of the form (3). Again, the exact structure of 4 can
be readily computed. This completes the description of all possible topo.
logical groups 7%.

(4.5) Additional but inessential complications arise in classifying
the topological groups T5, T%, ... The topological isomorphs of 7* in T™
(I=1,2,..,m—1) can all be identified explicitly. A useful tool in doing
this is the fact that every continuous automorphism of 7° onto itself
has the form

(F1y oy 2) > (27225 w2, L., 201 o 2BY)

where ((Jny'k)’kﬂﬁ.‘=1 is an integer-valued matrix with determinant 1.
(See [1], Example (26.18.h).) The group T™ contains continuous iso-
morphic images of R* for k¥ =1,2,..., m—1 and for no larger values
of k. The isomorphisms ¢ that map R into 7™ can be computed ex-
plicitly, and the topological isomorphs of 7% in 7™ that are disjoint
from @(R*) ean also be identified completely. With these data, all of the
groups Tg can be exhibited. The computations become very lengthy
for large m, and we shall not reproduce them here.

(4.6) Now consider an infinite cardinal number m. The possibilities
for groups T are vastly increased over the finite-dimensional case. For
every positive integer I, T™ contains a continuous isomorphic image
o(RY of R. Furthermore, given a compact Abelian group F with basis
for open sets of cardinal number not exceeding m, it is easy to see that
@ can be constructed in such wise that 7™ contains a topological iso-
morph of ¥ disjoint from @ (R’). Consider then a group 7% topologically
isomorphic with B'x 4, where 4 is a closed subgroup of 7™ containing
a compact open subgroup F. The nonnegative integer ! is arbitrary,
and so is the compact subgroup F of A (subject only to the stated re-
striction on the cardinal namber of an open basis for F). For a given g,
one can compute the group A explicitly, since R is divisible.

(£.7) Let Gy, G5, and ¢ be as in (3.2), and let X; be the char-
acter group of @; (j =1,2). Let ¢~ be the adjoint mapping carrying
X, into X,, defined as usual by ¢~ 7,(®) = pop(z) for all y, e X, and
zeG. Since @; and @, are identical as sets, we have (po xo)(2) = xo()
for all we G,. Theorem (3.2) states that ¢~(X,) is always a proper sub-
group of X,. It is clear that ¢™ is a continuous isomorphism. The Pontrya-
gin-van Kampen duality theorem shows that ¢~(X,) is dense in X,.
Note that the duality theorem does not yield a trivial proof of Theo-
rem (3.2). If Theorem (3.2) were to fail for some @, and G,, so that ¢~
was 2 continuous isomorphism carrying X, onto X;, then ¢~ = ¢ would
still be a continuous isomorphism of G; onto @,, and no contradiction
would need to ensue.
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(4.8) After this paper was written, we became aware of the paper
Uniform boundedness for groups by Irving Glicksberg [Canadian J. Math.
14 (1962), pp- 269-276]. In this paper, Glicksberg has proved that @,
has at least one continuous character that is G,-discontinuous.
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On compactifications allowing extensions of mappings
by
R. Engelking (Warszawa) and E. G. Sklyarenko (Moscow)

In this paper we shall deal with compactifications of a space X
which allow extensions of some mappings of X into itself. By a topo-
logical space we always mean a completely regular topological space,
by a mapping we mean a continuous function. We shall say that a com-
pact space Y is a compactification of a topological space X if ¥ contains
a dense subspace X' homeomorphic to X. Compactifications of the space X
will be denoted by aX, a; X, ete. The letter o will also denote the homeo-
morphism of X onto X'. Hence we have a: X—aX and « is a homeo-
morphism of X onto a(X). We can define a partial order & in the class
of all compactifications of X. Namely, we put o; XS, X if there exists
a mapping f: ; X —a, X such that fo; = a,. In that case we shall write
f: 0, X >0, X. The Cech-Stone compactification AX is the maximal element
in the partially ordered class. By the weight of a space X we shall mean
the smallest cardinality of bases of X. The weight of X will be denoted
by w(X). Let us notice the well-known result that 0 X>a, X implies
w(a; X) > w(a,X).

Let @ = {ps}ses be a family of mappings of X into itself, i.e. ps:
XX for every sef8. A compactification «X of the space X will be
called a P-compactification if, for every s eS8, there exists a mapping
#s: X —>aoX such that §|X = ¢ (more exactly $;a = aps). The notion
of @-compactification was introduced in [7]. The paper contains some
theorems on the existence of @-compactifications for metric spaces. Other
results are in [3], [4], [12] and [19]. Of course, AX is a @- compactification
for every family @. However, it is known that the weight of X is much
greater than the weight of X and one can set the following problem:
Determine the minimal weight of @-compactifications for a given space X
and a family @. The paper contains some results concerning this subject.

The paper is divided into two parts. In the first part we consider
@ - compactifications of X preserving the dimension of X. The second
part is devoted to investigations of @-compactifications of X, where
X is a peripherically compact space.
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