A remark on embedding theorems for Banach spaces of distributions

Hans Triebel
Universität Jena, Jena, DDR

1. Introduction and results

This note is more or less an appendix to the paper [9]. We use the notions of [9] and recall some of them. R_{n} is the n-dimensional Euclidean space: $x=\left(x_{1}, \ldots, x_{n}\right) \in R_{n} . S\left(R_{n}\right)$ is the Schwartz space of rapidly decreasing (complex) infinitely differentiable functions, $S^{\prime}\left(R_{n}\right)$ is the dual space of tempered distributions (with the strong topology). F is the Fouriertransformation in $S^{\prime}\left(R_{n}\right), F^{-1}$ the inverse Fouriertransformation. We use special systems of functions $\left\{\varphi_{k}\right\}_{k=0}^{\infty}$ (see [9], 4.2.1) with

1. $\varphi_{k}(x) \in S\left(R_{n}\right), \quad F \varphi_{k}(x) \geqq 0 ; k=0,1,2, \ldots$
2. ㄱ $N ; N=1,2, \ldots$; with $\operatorname{supp} F \varphi_{k} \subset\left\{\xi\left|2^{k-N} \leqq|\xi| \leqq 2^{k+N}\right\}\right.$ for $k=1,2, \ldots$; $\operatorname{supp} F \varphi_{0} \subset\left\{\xi \||\xi| \leqq 2^{N}\right\} ;$ (supp denotes the support of a function).
3. 组 $c_{1}>0$ with $c_{1} \leqq\left(\sum_{j=0}^{\infty} F \varphi_{j}\right)(\xi)$;
4. 正 $c_{2}>0$ with $\left|\left(D^{\alpha} F \varphi_{k}\right)(\xi)\right| \leqq c_{2}|\xi|^{-|\alpha|}$ for $0 \leqq|\alpha| \leqq[n / 2]+1 ; k=1,2, \ldots$ The most important system of functions of this type is the following. We consider a function $\varphi(x) \in S\left(R_{n}\right) ;(F \varphi)(x) \geqq 0$;

$$
\begin{equation*}
\operatorname{supp} F \varphi \subset\left\{\xi\left|2^{-N} \leqq|\xi| \leqq 2^{N}\right\} ; \quad(F \varphi)(\xi)>0 \text { for } 1 / \sqrt{2} \leqq|\xi| \leqq \sqrt{2}\right. \tag{1}
\end{equation*}
$$

It is not difficult to see that the functions $\varphi_{k}(x)$ with

$$
\begin{equation*}
\left(F \varphi_{k}\right)(\xi)=(F \varphi)\left(2^{-k} \xi\right) ; \quad k=1,2, \ldots ; \tag{2}
\end{equation*}
$$

by suitable choice of $\varphi_{0}(x)$ are a system of the described type.
Now we define the spaces $F_{p, q}^{s}=F_{p, q}^{s}\left(R_{n}\right)$ and $B_{p, q}^{s}=B_{p, q}^{s}\left(R_{n}\right)$. Let $-\infty<s<\infty ; 1<p<\infty ; 1<q<\infty ;\left\{\varphi_{k}\right\}_{k=0}^{\infty}$ is a system of the described type. We set
$F_{p, q}^{s}=\left\{f \mid f \in S^{\prime}\left(R_{n}\right),\left\|\left\{f * \varphi_{k}\right\}\right\|_{L_{p}\left(l_{q}^{s}\right)}=\left[\int_{R_{n}}\left(\sum_{k=0}^{\infty} 2^{s q k}\left|\left(f * \varphi_{k}\right)(x)\right|^{\frac{p}{q}}\right)^{\frac{p}{q}} d x\right]^{\frac{1}{p}}<\infty\right\}$.
$f * \varphi_{k}=(2 \pi)^{n / 2} F^{-1}\left(F \varphi_{k} F f\right)$ is the convolution of f and φ_{k}. In the same way we define for $-\infty<s<\infty ; 1<p<\infty ; 1 \leqq q \leqq \infty$;

$$
\begin{equation*}
B_{p, q}^{s}=\left\{f \mid f \in \mathbb{S}^{\prime}\left(R_{n}\right), \|\left\{f *{\left.\varphi_{k}\right\} \|_{l^{s}\left(L_{p}\right)}}=\left(\sum_{k=0}^{\infty} 2^{s q k} \mid f * \varphi_{k} \|_{L_{p}}\right)^{\frac{1}{q}}<\infty\right\}\right. \tag{4}
\end{equation*}
$$

(with the usual modification for $q=\infty$). $L_{p}=L_{p}\left(R_{n}\right)$ is the usual space of Lebesgue-measurable complex functions with $|f|^{p}$ integrable. In [9], theorem 4.2.2, it is shown that the spaces $F_{p, q}^{s}$ (and $B_{p, q}^{s}$) with the norms $\left\|\left\{f * \varphi_{k}\right\}\right\|_{L_{p}\left({ }_{q}^{s}\right)}$ (and $\left.\left\|\left\{f * \varphi_{k}\right\}\right\|_{l_{q}\left(L_{p}\right)}\right)$ are Banach spaces, and independent of the choice of the system $\left\{\varphi_{k}\right\}$. At least for $s>0$ the spaces $B_{p, q}^{s}$ are the usual Besov spaces introduced by Besov [1], see also Nikol'skij [5] and Taibleson [8]. The equivalence of the usual definitions and the definition (4) is proved in [9], see also [10]. The idea of using definitions of type (4) is due to Nikol'skij [5] and Peetre [6, 7]. The spaces $F_{p, q}^{s}$ are introduced by the author in [9]. Special cases are the well-known Lebesgue spaces

$$
\begin{equation*}
F_{p, 2}^{s}=H_{p}^{s}=\left\{f \mid f \in S^{\prime}\left(R_{n}\right), \quad F^{-1}\left(1+|\xi|^{2}\right)^{\frac{s}{2}} F f \in L_{p}\left(R_{n}\right)\right\} \tag{5}
\end{equation*}
$$

(See [9], theorem 4.2.6). Further we define the spaces $C^{t}=C^{t}\left(R_{n}\right) ; t \geqq 0 . C=C^{\circ}$ is the set of all complex continuous functions $f(x)$ in R_{n} with $f(x) \rightarrow 0$ for $|x| \rightarrow \infty$. Let t be an integer. Then is

$$
C^{t}=\left\{f \mid D^{\alpha} f \in C \text { for }|\alpha| \leqq t\right\}
$$

(We use the usual notation

$$
\left.D^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{n}^{\alpha_{n}}} ; \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) ;|\alpha|=\sum_{j=1}^{n} \alpha_{j} ; \alpha_{j} \text { integers } \geqq 0\right)
$$

C^{t} with the norm

$$
\|f\|_{C^{t}}=\sum_{|\alpha| \leqq t} \max _{x \in R_{n}}\left|D^{\alpha} f(x)\right|
$$

becomes a Banach space. Let be $t \neq$ integer. We set

$$
t=[t]+\{t\} ; \quad[t] \text { integer } ; \quad 0<\{t\}<1
$$

and define

$$
C^{t}=\left\{f \mid f \in C^{[t]}, \sup _{\substack{x \neq y \\ x, y \in R_{n}}} \frac{\left|D^{\alpha} f(x)-D^{\alpha} f(y)\right|}{|x-y|^{[t]}}<\infty \text { for all } \alpha \text { with }|\alpha|=[t]\right\}
$$

C^{t} with the norm

$$
\|f\|_{c^{t}}=\|f\|_{c^{[t]}}+\sum_{|\alpha|=[t]} \sup _{\substack{x \neq y \\ x, y \in R_{n}}} \frac{\left|D^{\alpha} f(x)-D^{\alpha} f(y)\right|}{|x-y|^{[t]}}
$$

becomes a Banach space.
The aim of this paper is the proof of the following theorem.
Theorem. (a) Let $\quad \infty>q \geqq p>1 ; 1 \leqq r \leqq \infty ;-\infty<t \leqq s<\infty ; \quad$ and

$$
\begin{equation*}
s-n / p=t-n / q \tag{6}
\end{equation*}
$$

Then holds

$$
\begin{equation*}
B_{p, r}^{s} \subset B_{q, r}^{s} \tag{7}
\end{equation*}
$$

(b) Let $\quad \infty>q \geqq p>1 ; 1<r<\infty ;-\infty<t \leqq s<\infty$; and

$$
s-n / p=t-n / q
$$

Then holds

$$
\begin{equation*}
F_{p, r}^{s} \subset F_{q, r}^{t} \tag{8}
\end{equation*}
$$

(c) Let $1<p<\infty ; t \geqq 0 ; 1 \leqq r \leqq \infty$. Then holds

$$
\begin{equation*}
B_{p, 1}^{\frac{n}{p}+t} \subset C^{t} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{p, r}^{\frac{n}{p}+t} \subset C^{t} \text { for } t \neq \text { integer } \tag{10}
\end{equation*}
$$

(d) Let $1<p<\infty ; 1<r<\infty ; 1<t \neq$ integer. Then holds

$$
\begin{equation*}
F_{p, r}^{\frac{n}{p}+t} \subset C^{t} \tag{11}
\end{equation*}
$$

The first part is well known, see for instance [5]. We give two independent proofs of (7). The first proof is very short and uses the definition (4). A similar proof is given by Peetre [6]. The second proof is inspired by a paper of Yoshikawa [11]. Perhaps it will be interesting from the methodical point of view. A special case of theorem (b) is (see (5))

$$
H_{p}^{s} \subset H_{q}^{t} ; \quad 1<p \leqq q<\infty ; s-n / p=t-n / q
$$

This relation is also known [5]. The embedding theorems (9) and (10) are also known. A special case of (11) is

$$
H_{P}^{\frac{n}{p}+t} \subset C^{t} ; \quad 1<p<\infty ; 0<t \neq \text { integer }
$$

2. First proof of theorem (a)

We choose two systems of functions $\left\{\varphi_{k}(x)\right\}_{k=0}^{\infty}$ and $\left\{\varrho_{k}(x)\right\}_{k=0}^{\infty}$ of type (1), (2) with

$$
(F \varrho)(\xi)=1 \text { for } \xi \in \operatorname{supp} F \varphi
$$

Let be $f \in B_{p, r}^{s}$. With

$$
\begin{equation*}
1 / \sigma=1-1 / p+1 / q \tag{12}
\end{equation*}
$$

follows from Young's inequality for convolutions that

$$
\begin{equation*}
\left\|f * \varphi_{k}\right\|_{\Sigma_{q}}=\left\|f_{k} * \varphi * \varrho_{k}\right\|_{L_{q}} \leqq\left\|\varrho_{k}\right\|_{L_{\nabla}}\left\|f * \varphi_{k}\right\|_{L_{p}} \tag{13}
\end{equation*}
$$

We have

$$
\varrho_{k}(x)=2^{k n} \varrho\left(2^{k} x\right) ; \quad k=1,2, \ldots ;
$$

and

$$
\left\|\varrho_{k}\right\|_{L_{\sigma}}=2^{k n\left(1-\frac{1}{\sigma}\right)}\|\varrho\|_{L_{\sigma}} ; \quad k=1,2, \ldots
$$

We obtain from (12), (13) and the definition (4)

$$
\|f\|_{B_{q, r}^{t}} \leqq c_{1}\left\|\left\{f * \varphi_{k}\right\}\right\|_{t_{r}^{t}\left(L_{q}\right)} \leqq c_{2}\left\|\left\{f * \varphi_{k}\right\}\right\|_{t_{r}^{t+n}\left(\frac{1}{p}-\frac{1}{q}\right)_{\left(L_{p}\right)}} \leqq c_{3}\|f\|_{B_{p, r}^{s}}
$$

This proves theorem (a).

3. Proof of theorem (b)

Let $\left\{\varphi_{k}(x)\right\}_{k=0}^{\infty}$ and $\left\{\varrho_{k}(x)\right\}_{k=0}^{\infty}$ be the same systems of functions as in Section 2. We consider the matrix $\left\{K_{k, j}(x)\right\}_{-\infty<k, j<\infty}$ with

$$
\left(F K_{k, k}\right)(x)=|x|^{t} 2^{-k t}\left(F \varrho_{k}\right)(x) ; \quad k=1,2, \ldots ; \quad K_{k, j}(x)=0 \quad \text { otherwise }
$$

It is not difficult to see that the assumptions of the multiplier theorem 3.5 (b) of [9] hold. This shows

$$
\begin{gathered}
\left.\left.\|\left[\sum_{k=1}^{\infty} \mid F^{-1}\left[|x|^{t} F\left(f * \varphi_{k}\right)\right]\right]^{r}\right]^{\frac{1}{r}}\left\|_{L_{q}}=\right\|\left[\sum_{k=1}^{\infty} \mid F^{-1}\left[|x|^{t} 2^{-k t} F \varrho_{k} 2^{k t} F\left(f * \varphi_{k}\right)\right]\right]^{r}\right]^{\frac{1}{r}} \|_{L_{q}} \\
\leqq c\left\|\left[\sum_{k=1}^{\infty}\left(2^{k t}\left|f * \varphi_{k}\right|\right)^{r}\right]^{\frac{1}{r}}\right\|_{L_{q}}
\end{gathered}
$$

For the minverse» multiplier $\left\{\tilde{K}_{k, j}(x)\right\}_{-\infty<k, j<\infty}$

$$
F \tilde{K}_{k, k}(x)=|x|^{-t} 2^{k t}\left(F \varrho_{k}\right)(x) ; \quad k=1,2, \ldots ; \quad \tilde{K}_{k, j}(x)=0 \quad \text { otherwise; }
$$

the assumptions of theorem 3.5 (b) of [9] are also true. So we can prove the opposite direction of the last inequality. It follows

$$
\begin{equation*}
\|f\|_{F_{q, r}^{t}} \sim\left\|f * \varphi_{0}\right\|_{L_{q}}+\left\|\left[\sum_{k=1}^{i \infty}\left|F^{-1}\left[|x|^{t} F\left(f * \varphi_{k}\right)\right]\right|^{r}\right]^{\frac{1}{r}}\right\|_{L_{q}} \tag{14}
\end{equation*}
$$

With the aid of this equivalent norm in $\vec{F}_{q, r}^{t}$ it is not difficult to prove theorem (b). It is known that

$$
F^{-1}|x|^{-\frac{n}{x}}=c_{x}|x|^{-\frac{n}{x^{\prime}}} ; \quad 1<x<\infty ; \quad \frac{1}{x}+\frac{1}{x^{\prime}}=1 ;
$$

see [3]. Let be $f \in S\left(R_{n}\right)$ and $q>p$. The last relation and (6) show

$$
\begin{gathered}
F^{-1}\left[|x|^{t} F\left(f * \varphi_{k}\right)\right](x)=c \int_{R_{n}}\left(F^{-1}|\xi|^{-(s-t)}\right)(x-y) \cdot F^{-1}\left[|\xi|^{s} F\left(f * \varphi_{k}\right)\right](y) d y \\
=c^{\prime} \int_{R_{n}}|x-y|^{-n\left(1-\frac{1}{p}+\frac{1}{q}\right)} F^{-1}\left[|\xi|^{s} F\left(f * \varphi_{k}\right)\right](y) d y
\end{gathered}
$$

With the aid of the generalized triangle inequality we find

$$
\begin{aligned}
& \left(\sum_{k=1}^{\infty}\left|F^{-1}\left[|x|^{t} F\left(f * \varphi_{k}\right)\right](x)\right|^{r}\right)^{\frac{1}{r}} \\
& \leqq c \int_{R n}|x-y|^{-n\left(1-\frac{1}{p}+\frac{1}{q}\right)}\left(\sum_{k=1}^{\infty}\left|F^{-1}\left[|\xi|^{s} F\left(f * \varphi_{k}\right)\right](y)\right|^{r}\right)^{\frac{1}{r}} d y
\end{aligned}
$$

With the aid of the Hardy-Littlewood-Sobolev inequality, see [3], follows

$$
\left\|\left(\sum_{k=1}^{\infty}\left|F^{-1}\left[|x|^{t} F\left(f * \varphi_{k}\right)\right]\right|^{r}\right)^{\frac{1}{r}}\right\|_{L_{q}} \leqq c\left\|\left(\sum_{k=1}^{\infty^{\prime}}\left|F^{-1}\left[|x|^{s} F\left(f * \varphi_{k}\right)\right]\right|^{r}\right)^{\frac{1}{r}}\right\|_{L_{p}}
$$

Together with (14) this shows

$$
\|f\|_{F_{q, r}^{t}} \leqq c\|f\|_{F_{p, r}^{s}}, f \in S\left(R_{n}\right)
$$

$S\left(R_{n}\right)$ is dense in $f_{p, r}^{s}$, [9]. This proves theorem (b).

4. Proof of theorem (c), (d)

First we prove (9). Let m be an integer; $m \geqq 0$. Let. $f \in B_{p, 1}^{\frac{n}{p}+m}$. We choose a system $\left\{\varphi_{k}\right)_{k=0}^{\infty}$ of type (1), (2) with

$$
\sum_{k=0}^{\infty}\left(F \varphi_{k}\right)(\xi)=(2 \pi)^{-n / 2} ; \quad \xi \in R_{n}
$$

$\varrho_{k}(x)$ has the same meaning as in Section 2 . Then holds for $|\alpha| \leqq m$

$$
D^{\alpha} f \overline{\overline{S^{\prime}}} \sum_{k=0}^{\infty} D^{\alpha} f * \varphi_{k} \overline{\overline{S^{\prime}}} \sum_{k=0}^{\infty} f * \varphi_{k} * D^{\alpha} \varrho_{k} .
$$

($\overline{\overline{S^{\prime}}}$: convergence in S^{\prime}, see [9]). We have

$$
\left(D^{\alpha} \varrho_{k}\right)(x)=2^{k n+|\alpha| k}\left(D^{\alpha} \varrho\right)\left(2^{k} x\right)
$$

With the aid of Young's inequality follows in the same way as in the second section, $\left(1 / p+1 / p^{\prime}=1\right)$,

$$
\sum_{k=0}^{\infty}\left\|D^{\alpha} f * \varphi_{k}\right\|\left\|_{\infty_{\infty}} \leqq \sum_{k=0}^{\infty}\right\| D^{\alpha} \varrho_{k}\left\|_{L_{p}}\right\| f * \varphi_{k}\left\|_{L_{p}} \leqq c \sum_{k=0}^{\infty} 2^{k n-\frac{k n}{p^{\prime}}+|\alpha| k_{0}}\right\| f * \varphi_{k}\left\|L_{L_{p}} \leqq c^{\prime}\right\| f \|_{\substack{B \\ p, 1}} \frac{n}{p}+m
$$

The last estimate shows the convergence of $\sum_{k=0}^{\infty} D^{\alpha} f * \varphi_{k}$ in $L_{\infty}\left(R_{n}\right)$. On the other hand the sum converges in $S^{\prime}\left(R_{n}\right)$ to $D^{\alpha} f$. So we obtain

$$
\sum_{|\alpha| \leqq m} \sup _{x \in R_{n}}\left|D^{\alpha} f(x)\right| \leqq c\|f\|_{\substack{B \\ \boldsymbol{B}, 1}} \frac{n}{p}+m
$$

(9) with $t=m$ follows now from the fact that $C_{0}^{\infty}\left(R_{n}\right)$ (the set of all complex infinitely differentiable functions with compact support in R_{n}) is dense in $B_{p, 1}^{\frac{n}{p}+m}$, [9].

Next we prove (10). Let be $0<t \neq$ integer. We choose an integer m with $t<m$. Then holds

$$
\begin{equation*}
C^{t}=\left(C, C^{m}\right)_{\frac{t}{m}, \infty} \tag{15}
\end{equation*}
$$

$(\cdot, \cdot)_{\theta, r}$ denotes the interpolation spaces in the sense of Lions-Peetre [4], see also [2]. We sketch a short proof of the last relation. The operator

$$
A_{j} f=\frac{\partial f}{\partial x_{j}}
$$

with the domain of definition

$$
D\left(A_{j}\right)=\left\{f \mid f \in C, \frac{\partial f}{\partial x_{j}} \in C\right\}
$$

is the infinitesimal generator of the semigroup in C

$$
G_{j}(\tau) f=f\left(x_{1}, \ldots, x_{j-1}, x_{j}+\tau, x_{j+1}, \ldots, x_{n}\right) ; j=1, \ldots, n .
$$

(15) follows now from the interpolation theory for commutative semigroups [2, 4] and the theory of equivalent norms in these spaces, [10]. (10) follows now from (9), (15), and the general interpolation theory [4, 9],

$$
B_{p, r}^{\frac{n}{p}+t}=\left(B_{p, 1}^{\frac{n}{p}}, B_{p, 1}^{\frac{n}{p}+m}\right)_{\frac{t}{m}, r} \subset\left(C, C^{m}\right)_{\frac{i}{m}, r} \subset\left(C, C^{m}\right)_{\frac{i}{m}, \infty}=C^{t}
$$

We obtain (11) from (10) and the inclusion property, [9], theorem 5.2.3,

$$
F_{p, r}^{\frac{n}{p}+t} \subset B_{p, \max (p, r)}^{\frac{n}{p+t}}
$$

5. Second proof of theorem (a)

5.1. A special semigroup of operators

We consider the homogeneous polynomial of degree $2 m$ with real coefficients

$$
a(x)=\sum_{|\alpha|=2 m} a_{\alpha} x^{\alpha} ; x=\left(x_{1}, \ldots, x_{n}\right) \in R_{n} ;
$$

$\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ multiindex; $x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$.
Let for a suitable number $c>0$

$$
\begin{equation*}
(-1)^{m} \sum_{|\alpha|=2 m} a_{\alpha} x^{\alpha} \geqq c|x|^{2 m}, \quad x \in R_{n} . \tag{16}
\end{equation*}
$$

It is easy to see that $G(\tau) ; \tau \geqq 0$;

$$
(G(\tau) f)(x)=e^{(-1)^{(m+1)} \tau a(x)} f(x) ; \quad f \in L_{p}\left(R_{n}\right) ;
$$

is a strong continuous semigroup of operators in $L_{p}\left(R_{n}\right) ; 1<p<\infty$; with the infinitesimal generator A,

$$
(A f)(x)=(-1)^{m+1} a(x) f ; \quad D(A)=\left\{f \mid(1+|a(x)|) f \in L_{p}\right\}
$$

$(D(A)$ denotes the domain of definition of the operator $A)$. We define $\hat{G}(\tau)$ by

$$
\begin{equation*}
\hat{G}(\tau) f=F^{-1} G(\tau) F f ; \quad 0 \leqq \tau<\infty ; f \in S\left(R_{n}\right) . \tag{17}
\end{equation*}
$$

We set

$$
\begin{equation*}
h(\xi)=\left(F^{-1} e^{\left.(-1)^{m+1} 1_{a(x)}\right)}(\xi) \in S\left(R_{n}\right)\right. \tag{18}
\end{equation*}
$$

Then holds

$$
\begin{equation*}
h_{\tau}(\xi)=F^{-1}\left(e^{(-1)^{m+1} \tau a(x)}\right)(\xi)=\tau^{-\frac{n}{2 m}} h\left(\tau^{-\frac{1}{2 m}} \xi\right) \in S\left(R_{n}\right) . \tag{19}
\end{equation*}
$$

We used $\tau a(x)=a\left(\tau^{\frac{1}{2 m}} x\right.$) and a well known (and easily proved) transformation formula for the Fourier transformation. (17) and (19) show

$$
\begin{equation*}
(\hat{G}(\tau) f)(x)=(2 \pi)^{-n / 2} \int_{R_{n}} h_{\tau}(x-y) f(y) d y=(2 \pi)^{-n / 2} \int_{R_{n}} h(y) f\left(x-y \tau^{\frac{1}{2 m}}\right) d y \tag{20}
\end{equation*}
$$

The last formula is also meaningful for $f \in L_{p}\left(R_{n}\right) . \hat{G}(\tau)$ is a continuous semigroup of operators in $L_{p}\left(R_{n}\right) ; 1<p<\infty$: That the operators $\widehat{G}(\tau)$ are linear and bounded follows from (20). The semigroup property follows from (17). The continuity of the semigroup follows from (20),

$$
(2 \pi)^{-n / 2} \int_{R_{n}} h(y) d y=(F h)(0)=e^{0}=1,
$$

and the usual estimation technique. We want to show that \hat{A},

$$
\begin{equation*}
(\hat{A} f)(x)=-\sum_{|\alpha|=2 m} a_{\alpha} D^{\alpha} f, \quad D(\hat{A})=W_{p}^{2 m}\left(R_{n}\right) \tag{21}
\end{equation*}
$$

is the infinitesimal generator of $\dot{G}(\tau) .\left(W_{p}^{2 m}\right.$ is the usual Sobolev space). Let $f \in S\left(R_{n}\right)$ and $b(x)=1+|x|^{2 j}$, where j is a sufficiently large positive integer. Δ denotes the Laplacian, E is the identity. Then we have

$$
\begin{aligned}
& \left\|\frac{\hat{G}(\tau)-E}{\tau} f-\hat{A} f\right\|_{L_{p}}=\left\|F^{-1}\left[\left(\frac{G(\tau)-E}{\tau}-A\right) F f\right]\right\|_{L_{p}} \\
& =(2 \pi)^{-n / 2}\left\|F^{-1}\left[\frac{1}{b(x)}\left(\frac{e^{(-1)^{m+1} 1_{z a(x)}-1}}{\tau}+(-1)^{m} a(x)\right)\right] * F^{-1}(b(x) F f)\right\|_{L_{p}} \\
& \leqq c\left\|F^{-1}\left[\frac{1}{b(x)}\left(\frac{e^{(-1)^{m+1} 1_{r a(x)}}-1}{\tau}+(-1)^{m} a(x)\right)\right]\right\| \|_{L_{1}} \\
& \leqq c^{\prime} \| F^{-1}\left\{\left(1+(-1)^{n}{\left.U^{n}\right)}\left[\frac{1}{b(x)}\left(\frac{e^{(-1)^{m+1} \tau a(x)}-1}{\tau}+(-1)^{m} a(x)\right)\right]\right\} \|_{L_{\infty}}\right. \\
& \leqq c^{\prime \prime}\left\|\left(1+(-1)^{n} \Delta^{n}\right)\left[\frac{1}{b(x)}\left(\frac{e^{(-1)^{m+1} 1_{z a(x)}}-1}{\tau}+(-1)^{m} a(x)\right)\right]\right\| \|_{L_{1}} \\
& \rightarrow 0 \text { for } \tau \downarrow 0 .
\end{aligned}
$$

We used Young's inequality for convolutions and known estimates for Fouriertransformations. That \hat{A} is the infinitesimal generator of $\hat{G}(\tau)$ follows now from: (a) the last estimate, (b) $S\left(R_{n}\right)$ is dense in $W_{p}^{2 m}\left(R_{n}\right)$, (c) A is closed operator with non empty resolvent set.

We notice an interesting special case. Let be $a(x)=-|x|^{2} / 2$. In this case holds

$$
h(\xi)=c e^{-\frac{|\xi|^{2}}{2}}
$$

$h_{\tau}(\xi)$ are the Gauss-Weierstrass kernels.
For the further considerations we need an estimate for the operators $\hat{G}(\tau)$. Let

$$
\begin{equation*}
\infty \geqq q \geqq p>1 ; \quad \frac{1}{x}=1-\frac{1}{p}+\frac{1}{q} . \tag{22}
\end{equation*}
$$

Young's inequality for convolutions and (19), (20) show

$$
\begin{equation*}
\|\hat{G}(\tau) f\|_{L_{q}} \leqq\left\|h_{\tau}\right\|_{L_{\chi}}\|f\|_{L_{p}}=c \tau^{-\frac{n}{2 m}\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{L_{p}} ; f \in L_{p}\left(R_{n}\right) . \tag{23}
\end{equation*}
$$

\boldsymbol{c} is independent of $\boldsymbol{\tau}$. From the theory of semigroups of operators follows

$$
(\hat{A}-\tau E)^{-1} f=\int_{0}^{\infty} e^{-\tau \sigma} \hat{G}(\sigma) f d \sigma ; \quad \tau \geqq \tau_{0}
$$

see [12]. We obtain with theaid of (23) for sufficiently large m

$$
\left\|(\hat{A}-\tau E)^{-1} f\right\|_{L_{q}} \leqq c \int_{0}^{\infty} e^{-\tau \sigma} \sigma^{-\frac{n}{2 m}\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{L_{p}} d \sigma=c^{\prime}\|f\|_{L_{p}} \tau^{\frac{n}{2 m}\left(\frac{1}{p}-\frac{1}{q}\right)-1}
$$

and

$$
\begin{equation*}
\left\|(E-\tau \hat{A})^{-1} f\right\|_{L_{q}} \leqq c\|f\|_{L_{p}} \tau^{-\frac{n}{2 m}\left(\frac{1}{p}-\frac{1}{q}\right)} ; \quad 0<\tau \leqq \tau_{1} ; f \in L_{p}\left(R_{n}\right) . \tag{24}
\end{equation*}
$$

The idea of using inequalities of such type for the proof of embedding theorems is due to Yoshikawa [11].

5.2 Proof of theorem (a).

The last estimate gives the possibility of a new proof of theorem (a). s, t, p, q, r have the same meaning as in the theorem. We choose an integer m with

$$
\begin{equation*}
2 m>s-t \tag{25}
\end{equation*}
$$

Without loss of generality we may assume $t>2 m$. Otherwise we would use the lifting property of the spaces $B_{q, r}^{t}$ and $B_{p, r}^{s}$, see [9]. Finally we choose an integer k with

$$
\begin{equation*}
2 k m>s \geqq t>2 m . \tag{26}
\end{equation*}
$$

From the interpolation theory of the spaces $B_{p, r}^{s}$, [9], and the known fact $D\left(\hat{A}^{k}\right)=W_{p}^{2 k m}\left(R_{n}\right)$ follows

$$
\begin{equation*}
B_{p . r}^{s}=\left(L_{p}, D\left(\hat{A^{k}}\right)\right)_{\frac{s}{2 k m}, r}=\left(D(\hat{A}), D\left(\hat{A}^{k}\right)\right)_{\frac{s-2 m}{2 m(k-1)}, r} \tag{27}
\end{equation*}
$$

and a similar formula for $B_{q, r}^{t}$. The interpolation theory for semigroups of operators, [4], shows

$$
\begin{equation*}
\|f\|_{B_{q, r}^{t}} \sim\left(\int_{0}^{\delta} \tau^{-\frac{\tau}{2 m} r} \|\left.(\hat{G}(\tau)-E)^{k} f\right|_{L_{q}} ^{r} \frac{d \tau}{\tau}\right)^{\frac{1}{r}}+\|f\|_{L_{q}} \tag{28}
\end{equation*}
$$

(with the usual modification for $r=\infty$). $\delta>0$ is a suitable number. Using (24) we find for $f \in B_{p, r}^{s} \subset D(\hat{A})$

$$
\begin{gathered}
\left\|(\hat{G}(\tau)-E)^{k} f\right\|_{L_{q}} \leqq\left\|(E-\tau \hat{A})^{-1}(\hat{G}(\tau)-E)^{k} f\right\|_{L_{q}}+\tau\left\|(E-\tau \hat{A})^{-1}(\hat{G}(\tau)-E)^{k} \hat{A f}\right\|_{L_{q}} \\
\leqq c \tau^{-\frac{n}{2 m}\left(\frac{1}{p}-\frac{1}{q}\right)}\left(\left\|(\hat{G}(\tau)-E)^{k} f\right\|_{L_{p}}+\tau\left\|(\hat{G}(\tau)-E)^{k} \hat{A} f\right\|_{L_{p}}\right)
\end{gathered}
$$

and

$$
\|f\|_{L_{q}} \leqq\left\|(E-\hat{A})^{-1} f\right\|_{L_{q}}+\left\|(E-\hat{A})^{-1} \hat{A} f\right\|_{L_{q}} \leqq c\left(\|f\|_{L_{p}}+\|\hat{A} f\|_{L_{p}}\right) \leqq c^{\prime}\|f\|_{S_{p, r}^{s}}
$$

The last two relations together with (27), (28), and (6) show

$$
\left[\|f\|_{B_{q, r}} \leqq c\left(\|f\|_{S_{p, r}^{s}}+\|\hat{A} f\|_{B_{p, r}}^{s-2 m}\right) \leqq c^{\prime}\|f\|_{X_{p, r}^{s}}\right.
$$

This proves theorem (a).

References

1. Besov, O. V., Investigation of a family of functional spaces, theorems of embedding and extension. Trudy Mat. Inst. Steklov. 60 (1961), 42-81. (Russian.)
2. Grisvard, P., Commutativité de deux foncteurs d'interpolation et applications. J. Math. Pures Appl. 45 (1966), 143-290.
3. Hörmander, L., Estimates for translation invariant operators in L_{p} spaces. Acta Math. 104 (1960), 93-140.
4. Lions, J. L. and Peetre, J., Sur une classe d'éspaces d'interpolation. Inst. Hautes Etudes Sci. Publ. Math. 19 (1964), 5-68.
5. Nikol'skid, S. M., Approximation of functions of several variables and embedding theorems. Nauka, Moskva, 1969. (Russian.)
6. Peetre, J., Funderingar om Besov-rum. Unpublished lecture notes, Lund, 1966.
7. -»- Sur les espaces de Besov. C. R. Acad. Sci. Paris 264 (1967), 281-283.
8. Taibleson, M. H., On the theory of Lipschitz spaces of distributions on Euclidean n-space I. J. Math. Mech. 13 (1964), 407-479.
9. Triebel, H., Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation. Ark. Mat. (next issue).
10. -"- Interpolation theory for function spaces of Besov type defined in domains. I. Math. Nachr. (to appear).
11. Yoshtrawa, A., Remarks on the theory of interpolation spaces. Journ. Fac. Sci. Univ. Tokyo, 15 (1968), 209-251.
12. Yosida, K., Functional analysis. Springer, Berlin, 1965.

Received FBebruary 2, 1972.

Hans Triebel
Sektion Mathematik der Universität 69 Jena
Helmholtzweg 1
DDR

