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A REMARK ON HOLMGREN'S UNIQUENESS THEOREM

LARS HORMANDER

In a recent note Bony [1] has given a remarkable improvement of Holmgren's
uniqueness theorem. The result is as follows. Let P(x, D) be a differential op-
erator with analytic coefficients in a neighborhood X of a point x0 e Rn, and
denote the principal symbol by Pm(x, ξ) where xeX and ξ e Rn. Let u e &(X)
be a solution of the equation P(x,D)u = 0 vanishing when <p(x) > φ(x0),
xeX, where φ e C\X) and A ^ g r a d φ(x0)φ0. Holmgren's uniqueness theorem
then states that u must vanish in a neighborhood of xQ if Pm(x0, No) Φ 0.
(Schapira [4] has proved that this remains true for hyperfunction solutions.)
Bony [1] introduced the smallest ideal I(P) in C°°(X X (Rn\0), R) such that

(i) Q e I(P) if Q(x, ξ) is positively homogeneous with respect to ξ and
vanishes for all (JC, f ) e J f χ (Rn\0) with PTO(JC, f) = 0,

(ϋ) β i , β 2

{ft, β2} = Σ (βQJdξj dQ2/3xj - dQJdxj dQ2/dξj)

is the Poisson bracket of Qλ and Q2.
Bony's result is that u — 0 in a neighborhood of xQ unless all Q € /(P) vanish

at (x0, iV0). The idea of the proof is that if the boundary of supp u is smooth,
then the functions satisfying condition (i) must vanish on the normal bundle by
Holmgren's uniqueness theorem, so the classical integration theory for first order
equations shows that the repeated Poisson brackets of such functions must
vanish too. The surprising point in the argument of Bony is that although the
support of u may be an arbitrary closed set a priori, one can find sufficiently
good parametrizations of large parts of a generalized normal bundle in order
to carry through this argument. Although very ingenious the proof seems slight-
ly artificial in that it forces one to introduce highly irregular objects into con-
sideration. We shall here give an alternative more elementary proof based on
deformations of smooth surfaces passing through the point xQ such that repeated
use of Holmgren's uniqueness theorem gives the desired result. This is analo-
gous to the proof of Theorem 5.3.2 in Hormander [2], which gives another
variant of Holmgren's uniqueness theorem for the case where Pm is real, φ 6 C2,
Pm(jc0, No) = 0 but the second order derivative of φ along the bicharacteristic
curve with initial data (JC0, No) is positive. Indeed our proof here will also give
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uniqueness when Q(x0, No) = 0 for all Q e /(P) provided that the second order
derivative of φ along the bicharacteristic corresponding to Q is positive for some

Following Treves [5] and Zachmanoglou [6] we could also give a stronger
result for the case where the bicharacteristics are tangents of higher order, but
it is not clear how to combine the idea of Bony with the more far reaching
refinement of [2, Theorem 5.3.2], which was recently given by Hδrmander [3].
(For the first order case see Zachmanoglou [7].) However, as in [3] we shall
state our uniqueness theorems not for solutions of a differential equation but
for distributions with non-analytic wave front set WFA(u) contained in a given
set. When Pu = 0 this set can be taken as the set of zeros of Pm [3, Theorem
5.1]. Thus let F b e a closed conic set in T*(X)\0 where X is an open set in
Rn (or a manifold of dimension n). We assume that F is symmetric so that
(x, ξ) e F implies (x, — ξ) e F. The uniqueness theorems will concern distribu-
tions in

&F(X) = {u <= 3'iX) WFA(μ) C F) .

Definition 1. By U(F) we shall denote the set of all real valued continuous
positively homogeneous functions p on T*(X)\0 such that if ue@'F(X) and
u = 0 in an open set Xo c X with dX0 € C2 at x0 e X Π dX0, then u = 0 in a
neighborhood of x0 in X provided that p(x09 No) Φ 0 for a normal iV0 of 3X0

a t * 0 .

With this terminology, [3, Theorem 4.3] means that p e U(F) if p = 0 on F.
Also note that a well known argument (see the proof of [2, Theorem 5.3.1])
shows that when p e U(F) the conclusion required by the definition when ψ e C2

remains valid if ψ is just differentiate at JC0. Moreover, u = 0 in a neighbor-
hood of xQ which does not depend on u.

The following two lemmas replace respectively the arguments of Bony [1]
and the proof of [2, Theorem 5.3.2].

Lemma 2. Ifp,qe U(F) Π C\ then {p, q) e U(F).
Lemma 3. Let p e U(F) Π C1 and u e &F(X). Assume that there is a func-

tion ψ e C2(X) with No = grad ψ(x0) Φ 0 such that u = 0 in a neighborhood of
xQ when <p{x) > φ(x0). Then u — 0 in a full neighborhood of x0 (which is in-
dependent of u) if (p(x0, No) = 0 and)

where p(j\x, ξ) = dp{x, ξ)/dξj and pU)(x, ξ) = dp(x, ξ)/dxj .
As explained in [2, p. 127] the condition (1) means that the bicharacteristic

curve defined by the Hamiltonian p with initial data (JC0, NQ) is neither a tangent
of higher order nor contained in the set where φ(x) < φ(x0) in a neighborhood
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of x0. Both lemmas will be proved at the same time below, but first we discuss
their consequences.

Modifying a definition used above we now denote by I(F) the ideal in
C°°(Γ*(X)\0, R) generated by the smallest subset which contains all C°°
homogeneous functions vanishing on F and is closed under Poisson brackets.
In view of the identity

{ap, q} = a{p, q] + p{a9 q) ,

this set is itself closed under formation of Poisson brackets. Hence I(F) is the
smallest ideal in C°°(Γ*(X)\O) which is closed under Poisson brackets and
contains the homogeneous functions vanishing on F. By Lemma 2 and [3,
Theorem 4.3] we have I(F) C U(F), so we obtain the following theorem by
using Lemma 3 for the second part.

Theorem 4. Let u e &r

F{x) and assume that u vanishes in an open set
Xo C X with a boundary point xoeX where dX0 is differentiate with normal
NQ. Then u' = 0 in a neighborhood of xQ (independent of u) if either

a) p(x0, No) Φ 0 for some p € I(F)
or

b) a) is not fulfilled, 3X0 e C2 at x09 and (1) is valid for some homogeneous
p € /(F) here Xo = {x e X, φ(x) > φ(xo)}9 NQ = grad φ(x0) Φθandφ<= C\

Again we remark that (1) is the second order derivative at (xQ, No) of the lift-
ing φγ of φ to T*(X) along the Hamilton field Hp = dp/dξ d/dx — dp/dx d/dξ
of p. If a) does not hold, then the first order derivative of ψx along Hp vanishes
at (JC0, Λ̂ o) for all p e I(F). Since the Hamilton field of {pl9 p2} is the commutator
of HPl and HPa, it follows that HPlHvjpx = HvfiVxψx at (x0, No) if p19 p2 e I(F).
Hence

HPlHP2ψl(x0,N0) = B(HPl(xQ9N^9HpJix09Nύ) ,

where B is a symmetric bilinear form on the vector space V C T(^0>Λ,0)(Γ*(^))
of Hamilton vectors Hp at (xo,No) when peI(F). These occur already for
homogeneous p since Hap — aHp when p = 0. Thus condition b) means that
the quadratic form t —> B{t, t) is not negative semi-definite on V. Note that if
Pj, j ζ J, are homogeneous functions in C°°(Γ*(Z)\0) vanishing on F which gen-
erate an ideal containing all such functions, then V is spanned by all commuta-
tors of the vector fields HPj at (JC0, No).

Proof of Lemmas 2 and 3. We may assume that xQ = 0 and that No =
(0, , 0, — 1), so that the function φ in Lemma 3 is of the form

φ(x) = φ(0) -xn + A(x') + o(xn) + o(\x'f) ,

where xf — (x19 , xn_x)9 and A is a quadratic form. In the proof of Lemma 2
we may also assume that the set Xo occurring in Definition 1 is defined by
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φ(x) > φ(0) when \x\ <C 2δ say. Our purpose is to deform the surface φ(x) =
>̂(0) slightly so that a surface is obtained for which uniqueness is known by

hypothesis. Before doing so we make a change of scale where we consider xn/ε2

and x'/ε = y instead of x near 0, e being a small positive number.
More precisely, let ψt, 0 < t < 1, be a continuous function from [0,1] to

C\Rn~ι), and assume that for some open bounded neighborhood V of 0 in Rn~ι

( 2 ) ψoGO < A(y),yeV; ψt(y) < A(y),yζdV, 0 < t < 1 .

Assuming as we may that dφ/dxn < 0 when |JC| < δ, we set

X\ = {(*', xn) ;xn<ε2 ψt(x'/e), x'\ε e V, \x\ < δ} .

If x <ε X\ and ψtix'/ε) < Aix'/ε) — c for some c > 0, we obtain

φ(x) - φ(x0) > c£ - o(ε2) > Cε2/2

for sufficiently small ε. In view of (2) it follows for small ε that Xε

Q C XQ and
that for 0 < t < 1 we have

χn = ε2ψt(x'/ε), x'\ε e V, ψ ^ ' / e ) > ^(jc'/ε) - c on ^ Z o Π aZε, .

Thus the normal is (εψ't(y), —1) where y = ^ 7 ε H

( 3 ) p(ey, ε2ψt(y), εψt{y), -1) Φ 0 for 0 < t < 1, y e V, ψt(y) > A{y) - c ,

when ε is small while c remains a fixed positive number, and if p e U(F), we
may conclude that any u£&F(X) vanishing in Xo and in X\ vanishes in a
neighborhood of the closure of X\. Since [0, 1] is connected and X% C Xo, it
follows that u = 0 in a neighborhood of X\. If ^i(O) > 0, this contains the
desired conclusion that u = 0 in a neighborhood of 0.

We can now prove Lemma 3. Taking the Taylor expansion in (3) we find
that the inequality is valid for small ε provided that

( 4 ) a(y) + b(d/dy)ψt φ θ if 0 < ί < 1 , y ε V , ψt(y) > A(y) -c .

Here we have introduced the notations

( 5 ) a(y) — 2 yjPa)(Q>N0) , b{rj) = 2 7]jP(j)(O,N0) ,
1 1

and used the assumption that p(0,NQ) = 0 which implies pίn)(0,N0) = 0 be-
cause of the homogeneity. With these notations the condition (1) is therefore

( 1 ) ' b(d/dy)2A + b(d/dy)a(y) > 0 .

Since a(y) + b(d/dy)ψt = a(y) + b{djdy)A + b{djdy){ψt - A) and b(djdy)2A



HOLMGREN'S UNIQUENESS THEOREM 133

+ b(dfdy)a — b(d/dy)(a + b(d/dy)A), we can reduce ourselves to the case
A — 0 by considering ψ ί — A instead of ψt. Assuming therefore that A = 0
we now set, with γ = b(d/dy)a(y) > 0 and a constant cx > 0,

Ψt(y) = Φ - 1) + a(y) - a(yY/2γ + χ(y) ,

where χ(0) = 0, χ < 0 and χ—» — oo at infinity so slowly that b(d/dy)χ + γ > 0
everywhere. Since a(y) + b(d/dy)ψt = b{djdy)χ + γ and ψt tends uniformly to
— oo when y—> oo if 0 < ί < 1, the conditions (2) and (4) are fulfilled for some
V and cx. Since ψχ(O) = 0, we have proved Lemma 3.

So far the argument is essentially a repetition of the proof of [2, Theorem
5.3.2]. However, we shall now also consider the case where (1)' does not hold.
Again we may assume that 4̂ = 0. We have

bid/dyXγ^iy) + a(yf/2) = γ(b(d / dy)^(y) + a(y)) ,

and if γ < 0 it follows from (2) and (4) that γψfy) + a(yf\2 > 0 at dV and
points in V where the right hand side vanishes. It is therefore clear that
γ\fr1 + a2 > 0 in V if (2) and (4) are valid. When [ = 0 w e obtain similarly
that ψ1 < 0 when a = 0. Summing up the conclusions and stating them for a
general A, we have found that if γ = b(d/dy)2A + b(d/dy)a < 0, it follows from
(2) and (4) for y e V that for some a

( 6) Uy) <A + a{a(y) + b(d/dy)Ay/2 , 1 + γa > 0 .

On the other hand, we claim that (6) is the only restriction on ψλ implied by
(2) and (4). To prove this we assume again that A = 0 and set

ψt(y) = -c + f(a(yy/2) + χOO ,

where c > 0 is a constant. Then we have

a(y) + Hd/dy)ψt(y) = a(y)(l + r f (αGOTO + b(d/dy)χ(y) .

We take for / any function on R+, which is 0 near 0, increases so that
1 + γfit) > 0 up to some point T after which / decreases to — oo. Then the
modulus of the first term is at least a positive multiple of \a(y)\, so we can
choose χ < 0 equal to 0 on a large compact set and converging to — oo at oo
so slowly that a(y) + b(d/dy)ψt(y) Φ 0 where f(a(y)2/2) > 0. This proves that,
by means of a family satisfying (2) and (4), we can reach with ψfy) any value
satisfying (6).

Assume now that as in Lemma 2 we have two or any finite number of func-
tions pj e U(F) Π C1, j = 1, , /, all vanishing at (JC0, NO). TO each of them
we define linear forms a^y) and bfy) as in (5). Since J] SjPj e U(F) for arbi-
trary real Sj, we have already proved uniqueness if for some s
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γ(s) = (Σ sjbj(d/dy))2A(y) + Σ Sjbj(d/dy) Σ skak(y)

is positive. If on the other hand γ(s) < 0 for all s, we can still use deformations
satisfying (2) and (4) with respect to Σ SJPJ t 0 reach any value of ψ(y) with

ψ(y) <A + a(Σ sjaj(y) + Σ Sjbj(d/dy)A)2/2 , aγ(s) + 1 > 0 .

We can now repeat the first argument with A replaced by the right hand side
and s replaced by some other value σ. Writing

B(σ,s) = Σ σjsk(bj(d/dy)bk(d/dy)A + bj(d/dy)ak(y)) ,

which implies γ(s) — B(s, s), we obtain uniqueness if for some σ

B(σ, a) + aB(σ, s)2 > 0 , aγ(s) + 1 > 0 .

Thus the only case where uniqueness does not follow now is when for all σ, s
and a

( 7 ) B(s, s) < 0 and B(σ, σ) + aB(σ, s)2 < 0 if aB(s, s) + 1 > 0 .

If B(s, s) vanishes identically, it follows that B(σ, s) — 0 identically. Otherwise
we obtain when B(s, s) Φ 0 that B(σ, σ)B(s, s) — B(σ, s)2 > 0. Replacing a by
s + δσ and dividing by δ we obtain when δ —> ± 0 that B(σ, s) + B(s, σ) —
2B(σ, s) = 0, so B is symmetric. But the symmetry of B means that

0 = bj(dldy)ak(y) - bk{dldy)aj{y) = {ppPk}(0,N0) .

If some Poisson bracket does not vanish, we have therefore proved that every
u e Q)f

F(X) vanishing when ψ{x) > ^(0) vanishes near 0. This completes the
proof of Lemma 2 and therefore of Theorem 4.
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