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Throughout this paper any matrix is square and of order q unless otherwise
specified. / and / will represent an identity matrix and a square matrix with every
element +1 respectively; if necessary, the size will be indicated by a subscript.
The Kronecker product of matrices A = (a^) and B is the block matrix whose
(/,y )-th block is ay B, and is written AxB.

Balanced incomplete block designs, (v, k, ^-configurations and mutually
orthogonal Latin squares are defined, for example, in [2]. The following result
is Lemma 6 of [3]:

LEMMA 1. Suppose k and q are positive integers with k < q, such that a
(q, k, X)-configuration exists and such that there is a (0, 1) matrix Q of dimension
kqxq2 satisfying

(QQT = g

0) JkqQ = U*

Jq* = qJ*

where J* is the matrix of size kqxq2 with every element + 1 . Then there is a balanced
incomplete block design with parameters

(2) b = q(k2+X), v = qk, r = k2+l, k, X.

We shall show that the existence of (at least) k — 2 mutually orthogonal Latin
squares of order q is equivalent to the existence of Q; this proves

THEOREM 2. If there exist k — 2 mutually orthogonal squares of order q and a
(q, k, k)-configuration, then there is a block design with parameters (2).

Theorem 2 of [3] is essentially our Theorem in the particular case when q
is a prime power.

The author is indebted to his referee, who pointed out the equivalences in
Section 2 and suggested other improvements which have shortened and strength-
ened the paper.
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Suppose Q is a (0, 1) matrix of order kqxq2. We will show that the first line
of condition (1) implies the other two parts. Partition Q into k blocks, Bx, • • •, Bk

of size q x q2. The first part of (1) then becomes

(a) B;BT = ql i = 1,2, • • -,k

(b) BtBj = J 1 ^ i < j = k.

We show that (a) and (b) are together equivalent to conditions (3), (4) and (5):

(3) each row of Q contains exactly q elements 1;

(4) each column of any Bv (i = 1, 2, • • •, k) contains exactly one element 1;

(5) given any two rows from different blocks, there is one and only one column
of Q containing an entry 1 in each of the rows.

It is clear that (b) and (5) are equivalent; obviously (a) implies (3) — consider
the diagonal elements of BtBj. If (a) is true then each Bt contains exactly q2

elements 1, using (3); if two of them are in the same column, in rows x and y of
Bi say, then the (x, y) element of B{Bj will be non-zero, contradicting (a); so (4)
follows. Conversely, (3) and (4) together immediately imply (a).

Now (3) is just the last line of (1), and (4) implies the second part of (1).
So condition (1) is equivalent to its first line, which is in turn equivalent to (3),
(4) and (5).

The existence of a set of k — 2 mutually orthogonal Latin squares of order q
is equivalent [2, p. 82] to the existence of a k x q2 array A = (au), whose elements
ai} are chosen from the symbols 1,2, • • •, q and are arranged in such a way that
the columns of any 2xq2 subarray are the q2 ordered pairs obtainable from
{1,2, • • - , « } .

Suppose A exists. Corresponding to the /-th row of A form a (0, 1) matrix
2?,- of size qxq2 such that the (r, t) element of Bt is 1 if and only if ait = r. Then
choose Q to be the column 2?l9 B2, • • •, Bk. Since r occurs q times in each column
of A, this Q satisfies (3); as ait has a unique value, we have (4). Row r of Bt and
row s of Bj will both have 1 in column t if and only if (ait, aJt) = (r, s), and by the
definition of A there is exactly one such t for given / and j ; so Q satisfies (5).

Conversely, suppose there is a matrix Q satisfying (3), (4) and (5). Define
ait = r where the (r, t) element of Bt is 1. By (4) r is uniquely defined; (3) and (5)
show that A satisfies the conditions at the beginning of this section.

We have proven the remark which preceded Theorem 2; the Theorem follows.
Suppose there exists a balanced incomplete block design with 2 = 1 and k

the parameter of a projective plane. In this case E. T. Parker proved [1, Theorem
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1] that there exists a set of A; —2 mutually orthogonal Latin squares of order v. A
little arithmetic shows that we can use this together with our Theorem 2 only
when the block design in Parker's Theorem is symmetric and has the same param-
eters as the configuration required in Theorem 2; we then have the following result.

COROLLARY. If there exist projective planes of parameters k and k — \, then

there is a balanced incomplete block design with parameters.

(6) b = (k2-k+l)(k2 + l), v = k(k2-k+\), r = k2 + l , k , l .

For example, designs (6) exist for k = 5 and 8.
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