
Progress of Theoretical Physics, Vol. G4, No. 3, September 19:::>0 

A Remark on Machida-Namiki Theory of Measurement 

Huzihiro ARAKI 

Research Institute for J\fathematical Sciences 

Kyoto University, Kyoto 606 

(Received April 11, 1980) 

719 

An essential feature of Machida-Namiki theory of measurement 1s mathematically 
formulated in terms of continuous supcrsclection rules. A general theory of probabilistic 
description of states is presented as its background. 

§ l. Introduction 

Recently Machida and Namiki'' proposed a theory of measurement in quantum 
mechanics, in which a continuous superselection rule plays an important role for 
the reduction of wave packets. The purpose of this paper is to provide an abstract 
background for such a theory. We do not mean by this to develop the most 
general framework. Rather we try to abstract an essential feature of Machida­
Namiki argument and at the same time provide a brief explanation about some 
aspects of continuous superselection rules for physicists who might not be familiar 
with some of mathematical background. 

For physicists, a pure state in quantum mechanics usually means a (unit) 
vector in a Hilbert space and a mixture state means a density matrix, i.e., a (trace­
class) positive operator of trace 1. However, this corresponds to the simplest case 
in the mathematical sense -where all bounded linear operators on the Hi! bert space 
under consideration are somehow related to observables. A more general situation 
anses if we restrict observables to operators belonging to a smaller algebra ~( (the 
simplest case being ~{=the set of all bounded linear operators). 

In this paper, we consider still a rather limited case, the only generalization 
being the presence of the center of the algebra of observables, which represents 
something like classical observables (corresponding to superselection rules). Such 
a framework will be explained in § 2. A simple mechanism for the reduction of 
wave packets will be explained in § 3 in terms of abstract examples. We believe 
that these examples represent mathematically an essential feature of Machida-Namiki 
argument. 

The superselection rules in the above model could be considered corresponding 
to classical observables of the measurement apparatus rather than something of 
fundamental nature. In the Appendix we shall briefly describe a general frame­
work which sheds some light on the notion of classical observables. 
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720 I I. /irah 

§ 2. Continuous superselection rules 

Let L be a direct integral of Hilbert space L, with respect to an absolutely 

continuous measure dp (A), namely a vector f in L is a function of a real variable 

}. with its value f(A) belonging to L, and the inner product of two vectors f~ and 

f, is given by 

(2 ·1) 

where ( , ) , denotes the inner product in L,. Such a vector will be denoted as 

f= Jf (A) d;t(A) 0 

The purpose of introducing such a structure 1s to restrict operators A which 

are to represent observables to those having the following form: 

(Af) (A) =A U)fU), (2 · 2) 

where AU) for each X 1s a linear operator on L 1• Such "'il ts denoted by 

A= JA(l)d;t(l). (2·3) 

In mathematics, a state is formulated as an (expectation) functional giving to 

each observable operator ""1 a number p (A) called its expectation value in such 

a way that this functional is linear and positive for any positive operator (i.e., 

p ("l * "1) :2;0). If we restrict A as above to operator of the form (2 · 3), then 

p(Ll) = Jtr(p(lc)A(l))d!tU) (2 ° 4) 

1s a bona-fide state if p (A) for each A is a density matrix m the usual sense, up 

t0 a multiplicative factor and Jtr p (A) d!i (X) = 1. It should be noted that such a 

state cannot necessarily be described by a density matrix p on the total space L 

in the usual form p (A) = tr (pA) if we allow all bounded operators A of the form 

(2·3) and if d;1(A) is an absolutely continuous measure. (This is implicitly implied 

by the example of the next section, which produces a phenomena forbidden for 

states given by a density matrix due to Wigner 's argument''· 3'.) 

§ 3. Reduction of wave packets 

Example 1 The Hilbert space K for the measured system 1s assumed to be of 

n dimension (n< co) with an orthonormal vectors Uj (j = 1, .. ·, n) which we want 

to separate by a measurement. Let L described in the preceding section be the 

Hilbert space for the measuring apparatus. An arbitrary initial pure state of the 

measured system is represented by 

E((/J) = i (3 ·1) 
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rl Remarh on 111achida-Nami/.:i Theor~v of J11easurement 721 

Let an initial state of the measuring apparatus be (J given by (2 · 4). The com­
bined system is represented in the tensor product Kr'g;L. Let the Hamiltonian 11 
of the combined system be such that 

(3. 2) 

(namely, operator 1!1 on the space K and the multiplication of A on the space L) 
with 111u; = AJZlj and all },j distinct. The state a, of the combined system at time t 
is then 

(3. 3) 

where Ll (X) is now an operator on Kr'g;L,. By (3 · 2), vve have 

(3. 4) 

as t-HXJ. The last assertion about the limit is clue to the Riemann-Lebesgue 
Lemma, which says 

(3· 5) 

for any djl-integrable function F and absolutely continuous d;1 ().). 
This shows that a wave packet «J of the measured system tends to a mixture 

Lilcii 2E(uJ) as t-HXJ through a contact with the measuring apparatus. 
Example 2 In the above example, the measuring apparatus is not affected by the 
interaction. (Namely it works as a separation apparatus but not as a measuring 
apparatus.) By a slight modification, we can obtain a change of the measunng 
apparatus, \vhich reflects the state of the measured system. 

Instead of L, we consider Lr'g;L' as the Hilbert space for the measunng 
apparatus, where L is as before and L' is of finite dimension for simplicity. To 
the previous Il we add 

H' =I: E (uj) r'g}lr'g}Hj, (::3. 6) 
.i 

where 1-Ii is some selfadjoint operator on L' depending on j. If the initial state 
of the combined system is 

ao (A) = J tr ( (E (¢) ®P (l) ()9cr) A (X)) d/f. (/.) (3 ·7) 

for some density matrix 6 on I I', then 
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722 H. llraki 

a, (A) = ao (ei<H-i-II')t A c -i<H-t-W)t) 

= H c ick * s cu Cik-AJ)t tr { (I u i>< u k 10P (A) l)<)c-iHJt(} ciHkt) A (A) }d /IU) 

r-JL.;Icjl 2 tr{(E(uj)Q9p(A)(g)crj(t))"1(A)}d;1(A) (3·8) 
j 

as t---HXJ where ~ denotes vanishing of the difference of two sides 1n the limit 

and 

(3. 9) 

reflects the state of the measured system. The proof 1s the same as before if vve 

rewrite the trace using complete sets of eigenvectors of IIi and H, as follows: 

2.:: tr { (I Uj ><uk IQ9p (A) lv~>< w, I) Ll (A)} cit<h,-hn,') ( V[, crw,), (3 ·10) 
l, rn 

Appendix 

--Classical Obscrvablcs--

In the situation described in § 2, an operator ll for which A(}.) 1s a multiple 

of the identity operator is classical observables in the sense described below m 

a more general setting of probabilistic description not necessarily restricted to 

quantum mechanics. 

A. I. 

In any measurement, there are the measuring apparatus by which the measure­

ment is done and the measured object on which the measurement is clone. These 

two will interact with each other during a certain time interval and then the 

apparatus will show the result of the measurement. In order to distinguish differ­

ent results of measurement, we usually label them by real numbers, called the 

measured values. 

The measured object is initially prepared by a certain definite procedure and 

if the preparing procedure is different, the measured object so prepared will in 

general be in a different condition. \Ve use the letters a~> a,, etc. to distinguish 

various conditions of the measured object. On the other hand, different measuring 

apparatus will in general measure different property of the measured object and 

the letters Q~> Q2 , etc. will be used to distinguish various properties measured. 

The set of all possible a will be denoted by 1: and the set of all possible Q will 

be denoted by (). From an operational point of view, a in 1: is specified by the 

exact instruction of the procedure by which the measured object is prepared and 

Q in () is specified by the exact instruction as to the design and operation of the 

measuring apparatus. 
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ii Remark on J;Jachida-Namiki Theory of N!easurement 723 

From experiments on microscopic objects, one learns that the result of a 

measurement, when repeated, fluctuates between various values in general, even 

if a ancl Q are fixed, and that a simple physical law can be formulated only in 

the statistical sense. Thus a meaningful quantity which can be obtained from 

experiments is the probability WaQ(q) of obtaining the measured value q when the 

measurement of Q is done on a. To obtain Wa Q (q), one repeats the measurement 

of Q on many samples in the same condition a (namely, samples prepared by a 

fixed procedure) and, if the measured value q is obtained n times out of 1V runs 

of such a measurement, n/ 1V is the experimental value for Wa Q (q). The physical 

law is then some rule which correlates wa Q (q) for various a, Q and q. 

Because of the statistical nature just described, the terminology ensemble will 

be used for each a. It is also called a state. Each Q will be called an obser­

vable. Thus w,/1 (q) is the probability of obtaining the measured value q when 

the observable Q is measured on the ensemble a. In order that w"Q (q) is a 

probability, vve have the requirement 

w} (q) ::20, (A·1) 

Exam.ple Consider a measurement of a proton by a Geiger counter. The mea-

sured object is the proton and the measuring apparatus is the Geiger counter. 

If the proton comes from an accelerator, the exact structure of the accelerator 

as well as its position and the time of operation will specify a. The structure of 

the Geiger counter as well as its position and the time of operation will specify 

Q. In a simple case, the Geiger counter will measure whether the proton passes 

a certain space region B where the Geiger counter is placed, during the time 

interval r= (t~> t,) when it is being operated. The result of the measurement may 

be distinguished by one of the two real numbers 1 and 0 according as the 

counter clicks or not. Then w"Q (1) will be the probability that the proton is in 

the region B during the time interval r. On the other hand, w"Q (0) will be the 

probability that the proton is not in the region B during the time interval r and 

we have WaQ(O) +waQ(l) =1. The WaQ(q) for q=/=0 or 1, is taken to be 0. 

vVe may measure w"Q (1) for various Q corresponding to various regions and 

time intervals. The totality of such information will give a good picture of the 

proton under consideration. (Needless to say, all our examples of experiments 

will be vastly simplified and idealized compared to actual ones.) 

A.2. 

At this point, vve might have the following question: w"Q (q) 1s a probability 

which can be measured only if the measurement of the same observable 0 is 

repeated on many samples of a fixed ensemble a. However the specification of 

the preparing apparatus of the ensemble includes its position and time of operation 

and hence there is only one sample available for each ensemble. How can one 

measure the probability 'WaQ (q) with only one sample? 

The well-known remedy for this is to use a large number of equivalent 
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724 H. Aral:i 

measurements. Namely one prepares a proton by operating exactly the same ac­

celerator at many different times t, t+.dh t+.::J,, etc. and makes the measurement 

by operating exactly the same Geiger counter at correspondingly displaced time 

intervals r=(tht,), r+.::11=(t1+Jht,+JJ, r+.d,=(t1+.::1,,t,+.d2), etc. (In prac­

tice, the position and direction of the w hoi e experimental set-up is also displaced 

due to the movement of the earth.) One assumes that these experiments at differ­

ent times (and at different places) are all equivalent and one uses them to obtain 

the 1neasured value of zv" Q (q). (This is the assumption of the in variance of the 

theory under the time and space displacement.) 

It should be noted that the Geiger counter operated at -r +.:.! defines an ob­

servable Q' which is different from the observable Q corresponding to the same 

Geiger counter operated at -r. Similarly the ensemble a' prepared by the accelera­

tor operated at t + .::1 is different from the original a corresponding to the accelerator 

operated at the time t. The invariance assumption may be formulated as 

for all q . (A·2) 

Hence, in practice, we measure this probability by performing one run of experiment 

for each pair (a, Q), (a', Q'), etc. 

If one vvants to measure two different observables Q1 and Q, on the same 

ensemble a, one may first perform the measurement of Q 1 using a set of equivalent 

meaeurements for pairs (a, Q 1), (a', Q/), etc., and then perform the measurement 

of Q, using a new set of equivalent measurements for pairs (a", Q,"), (a'", Q,'"), 

etc. This, then, enables one to obtain the probabilities w"Q 1 (q) and w"Q, (q) for 

the same a even if the measurements of Q1 and Q, on a interfere with each 

other. 

A.3. 

In some ideal case, it may happen that two seemingly different measuring 

apparatuses measure exactly the same property of the measured object. In such 

a case we will find two distinct measuring apparatuses Q1 and Q, satisfying 

(A·3) 

for all ensembles a and for all values q. If (A· 3) holds, we identify Q1 and 

Q,: 

(A·4) 

Mathematically, vve will consider the equivalence class 111 0 defined by (A· 4). 

In a similar manner, if 

(A·5) 

1s satisfied for all Q and q, we define 

(A·6) 
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A Remark mz l'daclzida-Namil?i Theory of Afeasurement 725 

A.4. 

The set of all real numbers q such that 'Wa Q (q) =FO for some ensemble a is 

called the spectrum of Q and denoted by sp Q. In other words, the spectrum of 

Q is the set of all possible measured values of Q. 

If the sp Q has a bound (i.e., if any qEsp Q satisfy lqi<A for some A), 

the observable Q is called bounded. (We are restricting ourselves to observa­

bles with discrete spectrum.) 

A.5. 

In the previous example, we have assigned the measured value 1 or 0 ac­

cording to whether the counter clicks or not. The description of the measuring 

instrument together with this specific assignment of real numbers to each possible 

result of the measurement defines the observable Q. We may assign some other 

values, say 6 and 5, instead of 1 and 0. In that case, we have another observable 

Q', although the measuring instrument for Q' is the same as that for Q. The 

probability functions for Q and Q' are related to each other by w"Q' (q+5) 

= w" Q (q) and we say that Q' = Q + 5. In general, if f(x) is a function of the 

real variable x (f (x) should be defined for all x in sp Q but need not be 

defined for other x), then the function Q' = f(Q) of the observable Q is defined as 

an observable Q' satisfying 

(A·7) 

Here f- 1 (q') is the set of all q such that q' = f(q). There may be many such 

q and the summation is taken over all such q. If there is no such q, re•" Q' (q') 

1s defined to be 0. 

If q' =f(q) has at most one solution (namely, if f- 1 is singlevalued on the 

spectrum of Q) , Q may be considered as a function of f (Q) and both Q and 

f(Q) are equally good for the description of the results of the measurement under 

consideration. In other words, with a given measuring apparatus, one may as­

sociate an infinite number of observables which are functions of each other. 

In many cases, some specific structure of the theory (or the physical law of 

the system) enables one to single out a specific Q as a canonical choice. For 

example, it is most convenient to consider the electric charge Q of a particle 

instead of, say, its cubic power Q\ because Q satisfies an "additive conservation 

law", while Q 3 does not. 

A.6. 

An expectation value (or an average) of an observable Q m an ensemble a 

is defined, as in any probability theory, by 

Exp (Q/ a) =I:: qw" Q (q). (A·8) 
q 

If Q is bounded, the sum always converges. If we are allowed to use functions, 

then we can compute back the probability w from the expectation values. Namely, 
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usmg the characteristic function 

we have 

II. .1lraki 

if .X= q' 

if .x=/=q' 

w"Q(q) =Exp(xq(Q)/a). 

(A·9) 

(A ·10) 

An observable, whose spectrum consists of at most two points 0 and 1 like 

j(q (Q), is called a question. In particular j(q (Q) is called a spectral question of Q. 

A.7. 

We now want to introduce the notion of a mixture and a pure state. Suppose 

one makes various measurements on a fixed ensemble of a positively charged par­

ticle coming from a fixed accelerator. Suppose that the charged particle in question 

happens to be a proton 7 times out of 10 and a g' -meson 3 times out of 10, on 

the average. If we may use a detector which tells us whether the particle is a 

proton or a n+ -meson without disturbing the various measurements in question, 

we can select either only protons or only n+ -mesons. Let aP and a" denote the 

ensembles of a charged particle so prepared with the combination of an accelerator 

and a selector. We then expect the following equality for all Q and q: 

(A ·11) 

In general, if ensembles a, a 1 and a 2 satisfy 

(A·12) 

for all Q E (J and q and for a fixed real number A between 0 and 1, we call a 
a mixture of a 1 and a, with the weights A and 1-A and denote 

a= Aal ffi (1- A) a, . (A·13) 

For this definition, we do not care whether the preparmg processes for three 

ensembles a, a 1 and a2 are somehow related, as in the above example, or are 

totally unrelated to each other. If A=f=O, a 1 is called a subensemble of a. 

For given two ensembles a 1 and a,, the mixture ensemble Aa1ffi(1-A)a2 

represents their statistical average and can always be prepared (rather artificially) 

by some mechanism (maybe the experimentalist himself) which chooses one out 

of the two preparing apparatuses for a 1 and a,, in a random fashion with the 

weights A and (1- A). Therefore we assume that if a 1 and a, are in X, then 

},a1ffi (1-A) a, is also in I for any A betzveen 0 and 1. 

On the other hand, the converse procedure (called the purifying procedure) 

is not so trivial. An ensemble a is called a mixture if there exists some a 1 and 

a, in I, =f=a and a A between 0 and 1 satisfying (1·12). Otherwise, a is called 

a Pure state. The set of all pure states vvill be denoted by IP' 
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A Remark on A1achida-Namiki Theory of Measurement 727 

The statistical description in terms of the probabilities w"Q (q) is not restricted 

to quantum physics but can be applied to classical physics. The distinctive feature 

of the classical physics is that the measurement of any observable Q on a pure 

state a always yields a definite answer and hence the probability function Wa Q (q) 

is 0 for all but one values of q, if a is a pure state. Namely, any statistical 

feature in classical physics is represented by a mixture and if one restricts one's 

attention to pure states, one has a deterministic physical law for classical physics. 

Thus the notion of a mixture and a pure state is important for a distinction of 

the statistical feature already existent in classical physics and the statistical feature 

intrinsic in non-classical physics. 

A.8. 

It sometimes happens that some observable Q may behave classically even 

in quantum theory, namely WaQ (q) will be 0 for all but one values of q if a is a 

pure state. Such an observable Q will be called a classical observable. 

For a given observable Q, there may exist an ensemble a for which waQ (q) 

is 0 for all q except for q = q 0• In other words, the measurement of an observable 

Q on a particular ensemble a may always give a definite measured value q 0• 

Such a is called an eigenstate (or eigenensemble) of Q belonging to the eigen­

value q0• 

If Q is a classical observable, every pure state a is an eigenstate of Q. 

A.9. 

The above definition of classical observables is meaningful only if there exist 

sufficiently many pure states. The following argument justifies such an assumption. 

(The argument in the C*-algebra context is due to Haag and Kastler.•>) 

In actual measurement, we can obtain only a finite number of data. This 

means that (i) we can distinguish only a finite number of distinctive results of 

measurements (and hence we can measure only those observables with a discrete 

spectrum such as questions), (ii) we can obtain information about only a finite 

number of observables and (iii) the measured value has a finite error (statistical 

or other errors). Thus information about a state a given by an actual measure­

ment is expressed by 

lwaQi(qJ) -wJI<cJ, 

or equivalently (see § A. 6) by 

(j= 1, ···, N) 

(j= 1, ···, N) 

(A·14) 

(A·15) 

where wi is the measured probability and cp1 is the measured expectation value. 

In principle, we are supposed to be able to choose (Qh q1) and make c1 as small 

as possible (at least in the following argument). 

We may view the set of numbers Wa Q (q) with Q and q varying over all 

possibilities as coordinates of the state a. Then a state can be represented by a 

point in the (direct) product of the compact interval [0, 1] indexed by (Q, q). 
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728 I f. .~lra !? i 

The mixture of states is then a convex combination of points. The information 

about the state ct given by (A ·14) is that a finite number of its coordinates are 

in open intervals (·w.i---2h ·w.i+s.i). Such a "cylinder" set generates the direct 

product topology (in some context. called vveak topology) and the direct product 

of [0, 1] is compact with respect to such a topology [Tihonov theorem]. 

A theory (or a model) is supposed to express states and observables by 

mathematical objects, for which rules for computing w} (q) (or Exp (Q/ a)) are 

given. More specifically, at the present level of generality, a convex subset of 

the direct product IT of [0, 1] (indexed by (Q. q)) is a model for the set of states 

of the system under consideration. For a description- of observed states (and its 

time development, for example), it is enough to find at least one point in the 

given model corresponding to the information about the stale a given by (A -14), 

i.e., a point whose (Qh q.i) -coordinate is in the open interval - c.i• W_; + s.i) for 

j=l, ···, N. On the other hand, we might want to exclude all those points which 

are irrelevant for the description of states of a given system. 

From this point of view, two convex subsets of II with the same closure have 

the equivalent capacity for description of states because if an open set given by 

(A·14) has at least one point x in one convex set, then it has at least one point 

in common with another (because a sufficiently small neighbourhood of .r is com­

pletely in the open set given by (A ·14) and must have a non-empty intersection 

vvith another convex set). On the other hand, if a point y is outside the closure 

of a convex set S, then there exist a finite number of (Q.io q.i) (j = 1, · · ·, N) such 

that (Q.io q;) -coordinates separate y from S by a non-zero distance d. By choosing 

s.i sufficiently small, we should be able to distinguish in principle (up to a restric­

tion of a finiteness of the number of states which can be tested) two cases (i) 

y 1s not relevant in the description of any of the states under consideration or 

(ii) S is insuf-ficient for the description of the totality of states under consideration. 

Therefore two convex subsets of II with different closures describe different sets 

of states in principle. In this sense, we call two subsets of [[physically equi·ualent 

if and only if they have the same closure. The choice between two physically 

equivalent models for the description of a given system can be made purely from 

mathematical convenience. 

In particular, for any con\'ex subset of II, its closure in [{ is a compact 

convex set clue to the compactness of II and is physically equivalent to the original 

convex subset. Therefore we may always take a con\'eX compact subset of II as 

a model of the set of states of a given system. By Krein-Milman theorem, a 

compact convex set (in a Hausdorff locally convex topological vector space II) 

has pure states (mathematically called extremal points) whose mixtures are dense 

in itself. Therefore our discussion on classical observablcs is meaningful for such 

a choice of model. 

A.lO. 

We shall now discuss classical observables 111 the context of operator algebra 
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approach. 

Let g ( = R'') be a phase space of classical mechanics. Vve may take as ob­

servables the set ~( ( = C 0 (g)) of all continuous functions on g vanishing at oo. 

It is a (C*-) algebra with respect to pointwise sum and multiplication. An arbitrary 

st<1te (P of ~( (mathematically defined as a positive linear functional on ~( with 

norm 1) can be described in terms of a probability measure /1,, on g by 

(A·16) 

(In our general frame\vork, t,-' (f) is the expectation value of f in the state ~; 

and a function F(f) off is the function F(f(:x:)) in the usual sense.) An in·bit­

rary pure state X is given by a Dirac measure 11 = r'Ja at some point a of g: 

xU> =fCa). (A ·17) 

The time translation is usually described m terms of an orbit x (t; a) for any 

given initial condition :x: (0; a)= a. This induces the time translation automor­

phisms of observables fc=g: 

f, (y)- f(:x; (t; y)). (i\·18) 

The time translation of a st;1tc Cr' is described by 

f, (f) = cp (f,). (A ·19) 

For example, the pure state X given by (A ·17) (concentrated at a pJint a) 

moves to Xt concentrated at x (t; a). Therefore the time translation a utomorphisms 

f---'>f1 of observables contains the information about the motion a- >x (t; a) of a 

point in the phase space. 

The algebra ~( considered above is an a bel ian C* -algebra. Actually any a be !i­

an C*-algebra ~( has the same type of description. Namely the set g of all 

pure states of n is a locally compact Hausdorff space (with respect to weak-*topo­

logy), ~( can be identified with the algebra C 0 (g) of all continuous functions on 

g (Gelfand isomorphism) vanishing at oo and states on n can be identified with 

probability measures on g (so-called Radon measures). The time translation can 

be described either by a one-parameter group of automorphisms of ~( or continuous 

orbits on g, just as in the above example of g = Rx. 

In the above situation, all observables /E ~( takes a sharp value f(a) on any 

pure state aEg, so that all observables are classical observables, i.e., the com­

mutative C*-algebras describes classical physics. (If we insist on observables vvilh 

discrete spectrum, then we have to use the elements of the von Neumann algebra 

n**.) 
In the more general situation where ~.( is not commutative, then the central 

elements of ~.( are classical observables. In the case of algebras of operators of 

the form (2 · 3), the center of algebra consists of the operators ~1 of the form (2 · 3) 
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730 H. Araki 

where each A_ (A) 1s a multiple of the identity operator. Thus the direct integral 

with A-variables in § 2 corresponds to the diagonalization of classical observables of 

the system. In this example, pure states are not given by vectors or density 

matrices of the Hilbert space L. If we restrict observables to those A of the 

form (2 · 3) where A (A) is continuous in A, vectors of L, give pure states, which 

can be approximated by states obtained by vectors of L in the weak sense described 

earlier. Our definition of classical observables applies to this example if we include 

all these pure states into our consideration. By using the continuous classical 

observables, we then attain the reduction of wave packets as described in § 3. 
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