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A REMARK ON MINIMAL FOLIATIONS
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1. Introduction. A foliation j ^ ~ of a closed manifold Λf is said to
be geometrically taut if there is a Riemannian metric g on Λf for which
the leaves become minimal submanifolds (see [4]). We call the triple
(Λf, ^ 7 g) a minimal foliation. Recently, Sullivan [4] gave a necessary
and sufficient condition for a foliation to be geometrically taut. In par-
ticular, a codimension-one foliation is geometrically taut if every compact
leaf is cut out by a closed transversal. Thus we have many examples
of minimal foliations. In this paper, we shall study the converse with
restricted Riemannian metrics, that is, if (Λf, J^, g) is an oriented minimal
codimension-one foliation on an oriented closed Riemannian manifold with
non-negative Ricci tensor, then the unit vector field on Λf perpendicular
to J^ is parallel. Consequently, ^~ can be defined by a closed 1-form.

The author wishes to thank Professors H. Sato and T. Nishimori for
helpful comments during the preparation of this paper.

2. Preliminaries and statement of result. We shall consider only
codimension-one foliations and work in C°°-category.

Let J^~ be an oriented codimension-one foliation on a closed oriented
Riemannian manifold (Λf, g). Then we can choose a unit vector field N
on Λf perpendicular to J^~ so that the orientation of Λf coincides with
the one given by J^~ and N. Define the second fundamental form A of
(Λf, JT g) by

Ap: TPJ^-^TP^, AP(V) = DVN for Ve TPJT,

where D means the Riemannian connection of (Λf, g) (see [2]). Note that
g(A(V), W) = g(V, A(W)) for V, We Tp^. Hereafter, we always assume
these situations.

DEFINITION. A triple (Λf, ^ 7 g) is said to be a minimal foliation if
Trace(Ap) = 0 for all p e M. A triple (Λf, ^ g) is said to be a totally
geodesic foliation if Ap = 0 for all pe M.

Let X be a vector field on (Λf, g). Define a (1, l)-tensor Ax by AX(V) =
DVX for Ve TPM. Also define a smooth function dX by δX = -divX,
where div means the divergence. Then we have δX = — Trace(A )̂ (see
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[2]). The following theorem is well-known (cf. [2]).

THEOREM (Green's theorem). Let X be a vector field on a closed
oriented Riemannίan manifold M. Then

\ Ric(X, X)dM + f Trace(AS:)dΛf - ( (δXfdM = 0 ,

where Ric(X, X) means the Ricci curvature of X.

Now we state our theorem.

THEOREM. Let (M9 ̂  g9 N) be an oriented minimal codimensίon-one
foliation on a closed Riemannian manifold with nonnegative Ricci
curvature. Then N is a parallel vector field. Hence, in particular,

can be defined by a closed 1-form.

3. Proof of Theorem. Let dim(Λf) = n + 1 and let {Eu ••-, En, N}
be a local oriented orthonormal basis of TM. Then {Elf , En} is a
local oriented orthonormal basis of TJ^. Throughout this section we
shall use this basis.

LEMMA 1. // J^~ is a minimal foliation, then δN — 0.

PROOF. Define an %-form X^ on Mn+1 by

where (X, Y) means g(X, Y). By Rummler's calculation [3], ^ is
minimal if and only if dl^- = 0. Define a 1-form ω by (ύ(X) = {X, N).
Then l^r A ω = dM. Thus we have δN = δω = δ*Z^ = ±*dXJΓ = 0, where
* is Hodge's star operator and δω is the co-differential of ω.

LEMMA 2. Trace(A2) = Trace(A^).

PROOF. We have only to show that (A2

N(N), N) = 0. This follows
from the fact that 2(DVN, N) = V{N, N) = V(l) = 0.

LEMMA 3. Define 1-forms ω and θ by ω(X) = (N, X) and Θ(X) =
(DNN, X). Then dω = ω A θ.

PROOF. We have to show dω(Ei9 E5) = (α)ΛΘ)(EU Eβ) and dω(Ei9 N) =
(ft> Λ θ)(Ei9 N), but these are clear by the definitions of d and the exterior
product.

LEMMA 4. (DXDNN, Y) = (DYDNN9 X) for X9 YeΓ(T^).

PROOF. By Lemma 3, we have dθ = ω A V f ° r some 1-form η. By
the definition of d and the fact that [X9 Y] = Dx Y — DYX, we see that
(ft> Λ y)(X, Y) = 0 and dθ(X, Y) = {DXDNN9 Y) - (DYDNN, X) for X, Ye
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Γ(TJ^).

PROOF OF THEOREM. First we show that ^ is totally geodesic, that
is, A = 0. By Green's theorem and Lemmas 1 and 2, we have

(3.1) ( Ric(iV, N)dM+ [ Trace(A2)dilf = 0 .
JM JM

Since A is symmetric with respect to g, it follows that Trace(A2) =
Σ?-i <A\E%), Eά = Σ?=i <A(Et\ A(J0«)> ^ 0. Thus, combining the above
with the hypothesis that Ric(ΛΓ, N) ^ 0, we have Trace(A2) = 0 by (3.1).
This implies A — 0. Note that we also have Ric(JV, N) = 0.

Next we show that δ(DNN) = 0. By the definition of the Ricci curva-
ture we have Ric(ΛΓ, N) = ΣΓ=i K(N, Et), where K(N, Et) is the sectional
curvature of the 2-plane spanned by N and Et. We have

K(N, E<) = (R(Eif N)N, E<} = (DEiDNN - DNDEίN - D[Ei,NlN, E,}

= <DEiDNN, E,} + <DDNEiN, Ety

= <DEiDNN, Et) + (DNEif N)(DNN, Et}

- (DEiDNN, Et) - (DNN, Ety .

Thus we have Ric (N, N) = Σ?=i <DE.DNN, E,) - Σ?=
Σ?=! (DE.DNN, E>> - (DNN, DNN) = Ίτa.ce(ADlίN). We have already pointed
out that Ric(iV, N) = 0 and δφ^ΛΓ) = -Tτ*ce(ADNir). Hence δφ^iV) = 0.

Finally we show that N is parallel. As J^ is totally geodesic, it is
sufficient to show that DNN = 0. By Green's theorem and δ(DNN) = 0
we have

(3.2) f Ric (DNN, DNN)dM + f Trace(A|,^)dM = 0 .
J M J M

n

= Σ <DDEiDNNDNN, E{} + (DDNDNNDNN, N)

^Ί^ΦEPXN, E}}φEpNN, Ety + ΦAN,

+ 2 Σ <DEpNN, N}φNDNN, Et)

= \ Σ ΦEPNN, Ei)φEpifN, E,} + φNDNN,

because φEpNN, N) = EtφNN, iV> - φNN, DEiNy = 0. Thus by Lemma
4 we have
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Trace(A^) = ± {DEiDNN, E,y + (DNDNN, N)2 ^ 0 .

As Ric(DNN, DNN) ^ 0, we have Trace(A2^) = 0 by (3.2). Hence 0 =
<DNDNN, N) = -(DNN, DNN), that is, DNN = 0.

By Lemma 3, it is clear that J^ can be defined by a closed 1-form.
This completes the proof.

4. Concluding remarks. Cheeger-Gromoll [1] proved the following
theorem.

THEOREM [1]. Let M be a compact manifold of nonnegative Ricci
curvature. Then the universal covering M of M splits isometrically as
M x Rk, where M is compact and Rk has its standard flat metric.

Using this, we have the following.

COROLLARY. Let (M = M x Rk, J^, g, N) be the canonical lifting of
(M, J^ g, N) to the universal covering M of M. Then N is perpen-
dicular to M x {x}, x 6 Rk. Consequently, β^ = M x (Rk, J^'), where
(Rk, S^f) is a totally geodesic foliation by flat planes.

PROOF. Let p: M = M x Rk -> M (resp. q: M -> Rk) be the canonical
projection onto the first factor (resp. the second factor) of M. Then
TM= p*(TM)®q*(TRk). Thus the vector field N has the unique ex-
pression N= X + Y, where XeΓ(p*(TM)) and Ye Γ(g*(Γ/?fe)). As N is a
parallel vector field, DVN= DVX+DVY= 0. We also have 0VX, DVY) =
-<Γ, DyDyX) - 0 for FeΓ(p*(TM)). Thus X | i x { x } is a parallel vector
field on M x {x}, x e Rk. If N is not perpendicular to M x {x} at
(m, x) e M x {x}, then M x {x} has a nonvanishing parallel vector field.
As M is simply connected, de Rham's decomposition theorem (see [2])
implies that M splits isometrically as M' x R, which contradicts the
compactness of M.

The same argument as in the proof of Theorem also gives the proof
of the following (see also Tanno [5]).

PROPOSITION. Let (M, ̂ ] g, N) be a totally geodesic foliation on a
closed Riemannian manifold with nonpositive sectional curvature. Then
N is a parallel vector field.

PROOF. We have DVDNN = (DNN, V) DNN for VeTJ^ by the
assumptions. Using this formula, we can show directly that δ(DNN) =
0 and Ric(DNN, DNN) = 0. Thus (3.2) gives the desired conclusion.
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