A REMARK ON MINIMAL IMBEDDING OF SURFACES IN \boldsymbol{E}^{4}

By Bang-Yen Chen

$\mathbf{1}^{11}$. In [1] Prof. T. Ōtsuki introduced some kinds of curvature and torsion form for surfaces in a higher dimensional Euclidean space and proved some interesting formulas and theorems, one of them is given as follows:

Theorem. Let $x: M^{2} \rightarrow E^{4}$ be an immersion of an oriented closed surface M^{2} in 4-dimensional Euclidean space E^{4}, then we have

$$
\begin{equation*}
\int_{S_{0}^{3}} m_{1}(e) d \Sigma_{3}=-\pi \int_{M_{2}} G(p) d V+2 \int_{M-}\left\{-\left(\frac{\pi}{2}-\alpha\right) G+\sqrt{-\lambda \mu}\right\} d V, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{s_{0}^{3}} m_{1}(e) d \Sigma_{3}=\pi \int_{M_{1}} G(p) d V+2 \int_{M_{-}}\{\alpha G(p)+\sqrt{-\lambda \mu}\} d V-4(1-g) \pi^{2}, \tag{2}
\end{equation*}
$$

where g denotes the genus of $M^{2}, M_{1}=\left\{p \in M^{2}, \mu(p) \geqq 0\right\}$ and $M_{2}=\left\{p \in M^{2}, \lambda(p) \leqq 0\right\}$.
The aim of the present paper is to use the above results to prove the followings:
Proposition. If $x: M^{2} \rightarrow E^{4}$ is an immersion of an oriented closed surface of genus g in E^{4} with $\lambda \mu \geqq 0$, and $G(p)$ denotes the Gaussian curvature of M^{2} at p, then the following inequalities hold:

$$
\begin{equation*}
\int_{U} G(p) d V \geqq 4 \pi \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{V} G(p) d V \leqq-4 g \pi, \tag{4}
\end{equation*}
$$

where $U=\left\{p \in M^{2}, G(p) \geqq 0\right\}$, and $V=\left\{p \in M^{2}, G(p) \leqq 0\right\}$.
Theorem 1. Let $x: M^{2} \rightarrow E^{4}$ be an immersion of an oriented closed surface of genus g in E^{4} with $\lambda \mu \geqq 0$, then $x: M^{2} \rightarrow E^{4}$ is a minimal imbedding if and only if the equalities in (3) and (4) hold.

Received November 15, 1967.

1) We follow the notations in [1].
2. Proof of Proposition. Since by the assumption, $\lambda \mu \geqq 0$, we have

$$
\begin{equation*}
M_{-}=\left\{p \in M^{2}, \lambda(p) \mu(p)<0\right\}=\phi, M_{1}=U \text { and } M_{2}=V \tag{5}
\end{equation*}
$$

Therefore formulas (1) and (2) reduce to the following forms:

$$
\begin{equation*}
\int_{S_{0}^{3}} m_{1}(e) d \Sigma_{3}=-\pi \int_{V} G(p) d V \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{S_{0}^{3}} m_{1}(e) d \Sigma_{3}=\pi \int_{U} G(p) d V-4(1-g) \pi^{2} \tag{7}
\end{equation*}
$$

Now, by virtue of the Morse's inequalities we have

$$
m_{0}(e) \geqq 1, \quad m_{1}(e)-m_{0}(e) \geqq 2 g-1,
$$

(8)

$$
m_{2}(e)-m_{1}(e)+m_{0}(e)=2(1-g)=\chi\left(M^{2}\right)
$$

for any $e \in S_{0}^{3}$, except a set of measure zero, so that we get

$$
\begin{equation*}
m_{0}(e) \geqq 1, \quad m_{1}(e) \geqq 2 g \quad \text { and } \quad m_{2}(e) \geqq 1 . \tag{9}
\end{equation*}
$$

This gives us

$$
\begin{equation*}
\int_{s_{0}^{3}} m_{1}(e) d \Sigma_{3} \geqq 2 g c_{3}=4 g \pi^{2} . \tag{10}
\end{equation*}
$$

Substitute (10) into (6) and (7), we get

$$
4 g \pi^{2} \leqq \pi \int_{U} G(p) d V-4(1-g) \pi^{2}
$$

and

$$
4 g \pi^{2} \leqq-\pi \int_{V} G(p) d V
$$

these imply the inequalities (3) and (4).
3. Proof of Theorem 1. Let $x: M^{2} \rightarrow E^{4}$ be an immersion of an oriented closed surface of genus g in E^{4} with $\lambda \mu \geqq 0$, If $x: M^{2} \rightarrow E^{4}$ is a minimal imbedding, then by the definition of minimal imbedding, we have

$$
\begin{equation*}
m_{0}(e)=m_{2}(e)=1 \quad \text { and } \quad m_{1}(e)=2 g \tag{11}
\end{equation*}
$$

for any $e \in S_{0}^{3}$, except a set of measure zero. Now, substitute these equalities into (6) and (7), we can easily get

$$
\begin{equation*}
\int_{U} G(p) d V=4 \pi \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{V} G(p) d V=-4 g \pi . \tag{13}
\end{equation*}
$$

Conversely, if the equalities (12) and (13) hold, then let us substitute (12) and (13) into (1) and (2), we get

$$
\int_{S} m_{1}(e)=4 g \pi^{2}=2 g c_{3},
$$

therefore

$$
\begin{equation*}
m_{1}(e)=2 g \quad \text { almost everywhere on } S_{0}^{3}, \tag{14}
\end{equation*}
$$

Substitute (14) into (8), we have

$$
\begin{equation*}
m_{0}(e)+m_{2}(e)=2 \tag{15}
\end{equation*}
$$

for any $e \in S_{0}^{3}$, except a set of measure zero. Therefore by the fundamental formula (16) in [1], we know $x: M^{2} \rightarrow E^{4}$ is a minimal imbedding. This completes the proof of Theorem 1.

With use of the result in $\S 1$ due to O tsuki, we can easily prove that if M^{2} is an oriented closed surface immersed in E^{4}, then the set $\left\{p \in M^{2} ; \lambda(p)>0\right\}$ is a positive measure set. The further results of $G(p)$ see [4].

References

[1] Ōtsuki, T., On the total curvature of surfaces in Euclidean spaces. Japanese Journ. of Math. 35 (1966), 61-71.
[2] Ötsuki, T., Surfaces in the 4 -dimensional Euclidean space isometric to a sphere. Kōdaı Math. Sem. Rep. 18 (1966), 101-115.
[3] Teng, T. H., and B. Y. Chen, On the compact orientable Riemannian manıfolds immersed in Euclidean space. Formosan Scı. 20 No. 3 \& 4 (1966), 48-55.
[4] Chen, B. Y., Notes on the G-Gauss-Kronecker curvature. Nanta Math. 2 (1968), 47-53.

Institute of Mathematics, National Tsing Hua University, Department of Mathematics, Tamkang College of Arts \& Sciences, Formosa, China.

