A REMARK ON MINIMAL IMBEDDING OF SURFACES IN E^4

By Bang-Yen Chen

1¹⁾. In [1] Prof. T. Ōtsuki introduced some kinds of curvature and torsion form for surfaces in a higher dimensional Euclidean space and proved some interesting formulas and theorems, one of them is given as follows:

THEOREM. Let $x: M^2 \rightarrow E^4$ be an immersion of an oriented closed surface M^2 in 4-dimensional Euclidean space E^4 , then we have

$$(1) \qquad \int_{S_0^3} m_1(e) d\Sigma_3 = -\pi \int_{M_2} G(p) dV + 2 \int_{M_2} \left\{ -\left(\frac{\pi}{2} - \alpha\right) G + \sqrt{-\lambda \mu} \right\} dV,$$

and

$$(2) \qquad \int_{S_0^3} m_1(e) d\Sigma_3 = \pi \! \int_{\mathcal{M}_1} \! G(p) dV + 2 \! \int_{\mathcal{M}_-} \! \left\{ \alpha G(p) + \sqrt{-\lambda \mu} \right\} dV - 4 (1-g) \pi^2,$$

where g denotes the genus of M^2 , $M_1 = \{ p \in M^2, \mu(p) \ge 0 \}$ and $M_2 = \{ p \in M^2, \lambda(p) \le 0 \}$.

The aim of the present paper is to use the above results to prove the followings:

PROPOSITION. If $x: M^2 \rightarrow E^4$ is an immersion of an oriented closed surface of genus g in E^4 with $\lambda \mu \ge 0$, and G(p) denotes the Gaussian curvature of M^2 at p, then the following inequalities hold:

(3)
$$\int_{\Pi} G(p) dV \ge 4\pi,$$

and

$$\int_{V} G(p)dV \leq -4g\pi,$$

where $U = \{ p \in M^2, G(p) \ge 0 \}$, and $V = \{ p \in M^2, G(p) \le 0 \}$.

Theorem 1. Let $x: M^2 \rightarrow E^4$ be an immersion of an oriented closed surface of genus g in E^4 with $\lambda \mu \ge 0$, then $x: M^2 \rightarrow E^4$ is a minimal imbedding if and only if the equalities in (3) and (4) hold.

Received November 15, 1967.

¹⁾ We follow the notations in [1].

2. Proof of Proposition. Since by the assumption, $\lambda \mu \ge 0$, we have

(5)
$$M_{-}=\{p\in M^2, \lambda(p)\mu(p)<0\}=\phi, M_1=U \text{ and } M_2=V.$$

Therefore formulas (1) and (2) reduce to the following forms:

(6)
$$\int_{S_0^3} m_1(e) d\Sigma_3 = -\pi \int_V G(p) dV$$

and

(7)
$$\int_{S_0^3} m_1(e) d\Sigma_3 = \pi \int_U G(p) dV - 4(1-g)\pi^2.$$

Now, by virtue of the Morse's inequalities we have

$$m_0(e) \ge 1$$
, $m_1(e) - m_0(e) \ge 2g - 1$,

$$m_2(e)-m_1(e)+m_0(e)=2(1-g)=\chi(M^2)$$

for any $e \in S_0^3$, except a set of measure zero, so that we get

(9)
$$m_0(e) \ge 1$$
, $m_1(e) \ge 2g$ and $m_2(e) \ge 1$.

This gives us

(10)
$$\int_{S_0^3} m_1(e) d\Sigma_3 \ge 2gc_3 = 4g\pi^2.$$

Substitute (10) into (6) and (7), we get

$$4g\pi^2 \le \pi \int_U G(p) dV - 4(1-g)\pi^2$$
,

and

$$4g\pi^2\!\!\leq\!-\pi\!\!\int_V\!G(p)dV,$$

these imply the inequalities (3) and (4).

3. Proof of Theorem 1. Let $x: M^2 \rightarrow E^4$ be an immersion of an oriented closed surface of genus g in E^4 with $\lambda \mu \ge 0$, If $x: M^2 \rightarrow E^4$ is a minimal imbedding, then by the definition of minimal imbedding, we have

(11)
$$m_0(e) = m_2(e) = 1$$
 and $m_1(e) = 2g$

for any $e \in S_0^3$, except a set of measure zero. Now, substitute these equalities into (6) and (7), we can easily get

(12)
$$\int_{U} G(p)dV = 4\pi,$$

and

(13)
$$\int_{V} G(p)dV = -4g\pi.$$

Conversely, if the equalities (12) and (13) hold, then let us substitute (12) and (13) into (1) and (2), we get

$$\int_{S} m_1(e) = 4g\pi^2 = 2gc_3,$$

therefore

(14)
$$m_1(e) = 2g$$
 almost everywhere on S_0^3 ,

Substitute (14) into (8), we have

$$(15) m_0(e) + m_2(e) = 2$$

for any $e \in S_0^3$, except a set of measure zero. Therefore by the fundamental formula (16) in [1], we know $x: M^2 \rightarrow E^4$ is a minimal imbedding. This completes the proof of Theorem 1.

With use of the result in §1 due to Ōtsuki, we can easily prove that if M^2 is an oriented closed surface immersed in E^4 , then the set $\{p \in M^2; \lambda(p) > 0\}$ is a positive measure set. The further results of G(p) see [4].

REFERENCES

- [1] Ōtsuki, T., On the total curvature of surfaces in Euclidean spaces. Japanese Journ. of Math. 35 (1966), 61–71.
- [2] ŌTSUKI, T., Surfaces in the 4-dimensional Euclidean space isometric to a sphere. Kōdai Math. Sem. Rep. 18 (1966), 101-115.
- [3] Teng, T. H., and B. Y. Chen, On the compact orientable Riemannian manifolds immersed in Euclidean space. Formosan Sci. 20 No. 3 & 4 (1966), 48-55.
- [4] Chen, B. Y., Notes on the G-Gauss-Kronecker curvature. Nanta Math. 2 (1968), 47-53.

Institute of Mathematics, National Tsing Hua University, Department of Mathematics, Tamkang College of Arts & Sciences, Formosa, China.