A REMARK ON C_{σ} SPACES

SIMEON REICH

Abstract

We give a simple new proof of the following result, conjectured by Effros and proved by Fakhoury: Let E be a C_{σ} space and Z the set of extreme points of the unit ball of E^{*}. Then $Z \cup\{0\}=$ $\left\{p \in E^{*}:\langle f g h, p\rangle=\langle f, p\rangle\langle g, p\rangle\langle h, p\rangle\right.$ for all f, g, h in $\left.E\right\}$.

Let $C(X)$ be the Banach space of all continuous real valued functions on a compact Hausdorff space X, equipped with the supremum norm. If $\sigma: X \rightarrow X$ is an involutory homeomorphism, then $C_{\sigma}(X)$ is the subspace of $C(X)$ consisting of those f in $C(X)$ which satisfy $f(\sigma x)=-f(x)$ for all x in $X . e_{x}$ will stand for the point functional corresponding to a point x in X. If E is a Banach space, then we shall denote its unit ball by $B(E)$ and its conjugate space by E^{*}. The set of extreme points of a subset Q of E will be denoted by ext Q.

The following result was conjectured by Effros [2, Remark 8.4] and proved by Fakhoury [4, Theorem 15].

Theorem. If E is a C_{σ} space, then ext $B\left(E^{*}\right) \cup\{0\}=\left\{p \in E^{*}:\langle f g h, p\rangle=\right.$ $\langle f, p\rangle\langle g, p\rangle\langle h, p\rangle$ for all f, g, h in $E\}$.

Fakhoury's proof is measure-theoretic in nature. Since this theorem appears to be useful (see, for instance, [4, Theorem 25] and [3, Theorem 11]), a simple different proof might perhaps be of some interest. The purpose of this note is to present such a proof. We shall need a few auxiliary propositions.

Lemma 1 [1, p. 89]. If $E=C_{\sigma}(X)$, then ext $B\left(E^{*}\right)=\left\{e_{x}: x \in X\right.$ and $x \neq \sigma x\}$.

Lemma 2 [5, Proposition 3.5]. Let E be a Banach space and J* the adjoint of the canonical map $J: E \rightarrow E^{* *}$. If $y \in \operatorname{ext} B\left(E^{* * *}\right)$, then $J^{*} y$ belongs to the weak star closure of ext $B\left(E^{*}\right)$.

Since the dual of a C_{σ} space is isometric to an L space, its second dual is isometric to $C(Y)$ for some (extremally disconnected) compact Hausdorff space Y.

Received by the editors November 9, 1972.
AMS (MOS) subject classifications (1970). Primary 46E15.
Key words and phrases. C_{σ} space, extreme point.

Lemma 3. Let $E=C_{\sigma}(X)$ and $E^{* *}=C(Y)$. Then $J(f g h)=J(f) J(g) J(h)$ for all f, g, h in E.

Proof. Let y belong to Y. The previous lemmas imply that $J^{*} e_{\nu}$ belongs to $\left\{e_{x}: x \in X\right.$ and $\left.x \neq \sigma x\right\} \cup\{0\}$. Therefore $J(f g h)(y)=\left\langle J(f g h), e_{y}\right\rangle=$ $\left\langle f g h, J^{*} e_{y}\right\rangle=\left\langle f, J^{*} e_{y}\right\rangle\left\langle g, J^{*} e_{y}\right\rangle\left\langle h, J^{*} e_{y}\right\rangle=J(f)(y) J(g)(y) J(h)(y)$.

Lemma 4. If $E=C(X)$, then the Theorem is true.
Proof. If $p \neq 0$, then the equality $\langle f, p\rangle=\langle f, p\rangle\langle 1, p\rangle^{2}$, valid for each f in E, implies that either $\langle 1, p\rangle=1$, or $\langle 1, p\rangle=-1$. Clearly we may assume that the former possibility holds. Then p is multiplicative on $C(X)$, hence an extreme point of the positive face of $B\left(E^{*}\right)$.

Proof of the Theorem. By Lemma 3, $\langle p, J(f) J(g) J(h)\rangle=\langle p, J(f g h)\rangle=$ $\langle f g h, p\rangle=\langle f, p\rangle\langle g, p\rangle\langle h, p\rangle=\langle p, J(f)\rangle\langle p, J(g)\rangle\langle p, J(h)\rangle$ for all f, g, h in E. Let $K: E^{*} \rightarrow E^{* * *}$ be the canonical map. For each r in $E^{* *}=C(Y)$, the operator defined on $C(Y)$ by $s \rightarrow r s$ is weak star continuous. Therefore $\langle p, r s t\rangle=\langle p, r\rangle\langle p, s\rangle\langle p, t\rangle$ for all r, s, t in $C(Y)$. By Lemma 4, $K p$ belongs to ext $B\left(C(Y)^{*}\right) \cup\{0\}$. Since $p=J^{*} K p$, an appeal to Lemmas 1 and 2 concludes the proof.

Acknowledgement. I wish to thank my friend, Micha Sharir, for his valuable help.

References

1. M. M. Day, Normed linear spaces, 2nd rev. ed., Academic Press, New York; Springer-Verlag, Berlin, 1962. MR 26 \#2847.
2. E. G. Effros, On a class of real Banach spaces, Israel J. Math. 9 (1971), 430-458.
3. H. Fakhoury, Préduaux de L-espaces et éléments extrémaux, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A1703-A1706. MR 43 \#6700.
4. -_, Préduaux de L-espaces: notion de centre, J. Functional Analysis 9 (1972), 189-207.
5. M. Sharir, Extremal structure in operator spaces (to appear).

Department of Mathematics, The Technion-Israel Institute of Technology, Haifa, Israel

Department of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

