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A REMARK ON  Ca SPACES

SIMEON  REICH

Abstract. We give a simple new proof of the following result,

conjectured by Effros and proved by Fakhoury: Let E be a Cff space

and Z the set of extreme points of the unit ball of E*. ThenZu{0} =

{pEE*: (fgh,p) = (f,p)(g,p){h,p) for z\\f,g, h in E}.

Let C(X) be the Banach space of all continuous real valued functions on

a compact Hausdorff space X, equipped with the supremum norm. If

a: X—>X is an involutory homeomorphism, then C„(X) is the subspace of

C(X) consisting of those/in C(X) which satisfy f (ox) =—f(x) for all x in

X. ex will stand for the point functional corresponding to a point x in X.

If £ is a Banach space, then we shall denote its unit ball by B(E) and its

conjugate space by £*. The set of extreme points of a subset Q of £ will be

denoted by ext Q.

The following result was conjectured by Effros [2, Remark 8.4] and

proved by Fakhoury [4, Theorem 15].

Theorem. If Eis a C„ space, then ext Z?(£*)U{0} = {/? e E*:(fgh,p) =

(f<pXg,p)(h,p)f°r allfi g, h in £}.

Fakhoury's proof is measure-theoretic in nature. Since this theorem

appears to be useful (see, for instance, [4, Theorem 25] and [3, Theorem

11]), a simple different proof might perhaps be of some interest. The

purpose of this note is to present such a proof. We shall need a few

auxiliary propositions.

Lemma  1   [1, p. 89].   If E=C„(X), then ext B(E*) = {ex:x e X and

X9¿0X}.

Lemma 2 [5, Proposition 3.5]. Let E be a Banach space and J* the

adjoint of the canonical map J: E^-E* *. If y e ext B(E* * *), then J*y belongs

to the weak star closure of ext B(E*).

Since the dual of a Ca space is isometric to an L space, its second dual is

isometric to C( Y) for some (extremally disconnected) compact Hausdorff

space Y.
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Lemma 3. Let E=CX(X) and E** = C( Y). Then J(fgh)=J(f)J(g)J(h)
for all f, g, h in E.

Proof. Let y belong to Y. The previous lemmas imply that J*ey

belongs to {ex:x e A'and .v^crx}u{0}. Therefore J(fgh)(y) = (J(fgh), ey) =

(fgh, /%)=(/, J*e„)(g, J*ey){h, J*e,j)=J(f)(y)J(g)(y)J(h)(y).

Lemma 4.    If E=CiX), then the Theorem is true.

Proof. If p^O, then the equality {f,p) = (f,p){l,p)2, valid for each/

in E, implies that either (l,p)=l, or (l,p) = — 1. Clearly we may assume

that the former possibility holds. Then p is multiplicative on CiX), hence

an extreme point of the positive face of BiE*).

Proof of the Theorem. By Lemma 3, {p, J(f)J(g)J(h))=(p, J(fgh))=

(fgh,p) = (f,p)(g,p)(h,p) = (p,J(f))(p,J(g)){p,J(h)) for all/, g, A in E.
Let K:E*-*E*** be the canonical map. For each r in E** = C(Y), the

operator defined on C( Y) by s—>rs is weak star continuous. Therefore

(p, rst) = (p, r)(p, s)(p, t) for all r, s, t in C(Y). By Lemma 4, Â"/? belongs to

ext 2?(C(F)*)U{0}. Sincep=J*Kp, an appeal to Lemmas 1 and 2 concludes

the proof.
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