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A REMARK ON THE BLOWING-UP OF SOLUTIONS 
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ABSTRACT. We consider solutions to iut = t.u + lulp-1u, u(O} = uo, where 
x belongs to a smooth domain !1 C RN, and we prove that under suitable con-
ditions on p, Nand uo E H2(!1} n HJ(!1}, IIVu(t}IIL2 blows up in finite time. 
The range of p's for which blowing-up occurs depends on whether !1 is star-
shaped or not. Examples of blowing-up under Neuman or periodic boundary 
conditions are given. 

RESUME. On considere des solutions de iUt = t.u+ lulp-1u, u(O} = uo, ou 
la variable d'espace x appartient it. un domaine regulier !1 C RN, et on prouve 
que sous des conditions adequates sur p, N et Uo E H2(!1}nHJ(!1}, IIVu(t}IIL2 
explose en temps fini. Les valeurs de p pour lesquelles I'explosion a lieu depend 
de la forme de I'ouvert !1 (en fait !1 etoile ou non). On donne egalement des 
exemples d'explosion sous des conditions de Neuman ou periodiques au bordo 

1. Introduction and main results. Let 0 C RN (with N 2 1) be a smooth 
domain and consider for p > 1 the nonlinear Schrodinger equation (NLS), 

(1.1) 

and 

{ iUt = ~u + [u[P-1u on 0, 
u(O, x) = uo(x) 

{ iUt = ~u - [u[P-1u 
u(O, x) = uo(x). 

on 0, 

When 0 = R N, it is well known that, under appropriate conditions on the 
smoothness of the initial data uo, there exists a local solution (in time) to (1.1) and 
(1.1)_. For (N - 2)p < N + 2 and Uo E Hl(RN), the corresponding solution of 
(1.1)- is unique and exists globally in time. For 1 < p < 1+4/N and Uo E Hl(RN) 
the solution of (1.1) is global. (See e.g. Th. Cazenave [1], J. Ginibre and G. Velo 
[2], and references of these papers.) For p 2 1 + 4/N and initial data Uo E S(RN) 
such that the energy 

E(uo) = -21 r [V'uO[2 dx - ~1 r [UO[P+l dx :::; 0, iRN p+ iRN 
R. T. Glassey [3] proves that there exists a finite time T* > 0 such that 

lim [[V'U(t)[[£2 = 00. 
tiT. 
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194 o. KAVIAN 

When 0 = R N, other examples of initial data for which the solution u( t) blows 
up in finite time are known. H. Berestycki and Th. Cazenave [4] prove that if 
R > ° is a minimum-action solution (= ground state) of -b.R + wR = RP on 
RN (p 2': 1 + 4/N) for some w > 0, then the solution u(t) of (1.1) with initial 
data uo(x) = )..N/2 R()"x) ().. > 1) blows up in finite time (note that e- iwt R(x) is a 
solitary wave solution of (NLS), and that E(uo) 2': 0). 

When p = 1 + 4/ Nand 0 = R N, Michael Wienstein has observed that if R 
satisfies - b.R + R = RP on R N , then for (a, b, c, d) E R 4 , ad - be = 1, the function 

.;.( ).= ( b )-N/2R (_x_) . (.blxI2 + c + dt) 
0/ t, x. a + t b exp z b ' a+ t a+ t 

is a solution of (NLS) which blows up in finite time (cf. M. Weinstein [5]). 
When 0 i:c R N , N:::; 2 and p < 1 + 4/N, H. Brezis and Th. Gallouet [6] prove 

that, for Uo E HJ(O), there exists a unique global solution to (1.1). But for N 2': 3, 
due to the fact that when 0 i:c RN the behavior of eite:,. is not well known, much less 
can be said about the global existence or the blowing-up of solutions in finite time. 
However for p = 1 + 4/ N, N = 1 or 2 and 0 being a ball, numerical computations 
made by A. Patera, C. Sulem, and P. 1. Sulem [7, 8] suggest that there are solutions 
which blow up in finite time. In this paper we prove that depending on the shape of 
the domain 0 and the value of p there are solutions of (1.1) which blow up in finite 
time. (We do not study local existence and uniqueness of the Cauchy problem (1.1). 
We suppose that a local solution is given and we prove that it blows up in finite 
time-or rather it cannot exist globally in some appropriate space-, whenever the 
initial data satisfies a certain set of conditions.) 

The main results are the following. 

(1.2) PROPOSITION. Let 0 be a smooth starshaped domain in RN and p 2 
1 + 4/ N. Let T > ° and consider a solution u( t) of (1.1) (with u(o) = uo) such that 

(1.3) u E C 1 ([0, TJ, L2(0)) n C([O, TJ, H2 n H6 n p+1(0)). 

Then if Io IxI2Iuo(x)12 dx < 00 and Uo satisfies either of the following conditions 
(1.4) or (1.5), then there exists T* (depending on uo) such that T < T* (i.e. the 
solution blows up in finite time). 

(1.4) E(uo) := -21 r lV'uol2 dx - _1_ r luol p+1 dx < 0, io p+ 1 io 

(1.5) { 
E(uo) 2': 0, 1m Io(x, V'uo)uo(x) dx > ° and 

11m L (x· V'uo)uo(x) dxl2 2 E(uo) . L Ixuo(x)12 dx. 

For a domain 0 which is not starshaped Proposition (1.6) holds (N 2 2): 

( 1.6) PROPOSITION. Let w be a smooth domain in R N, starshaped with respect 
to some point Xo E wand let r > ° such that B(xo, r) C w. Then if 0 := w n 
B(xo,r/, p 25 and Uo is such that Io Ixl2luo(x)l2dx < 00 and satisfies either of 
conditions (1.4) or (1.5 bis), then the solution of the (NLS) (1.1) satisfying (1.3), 
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CAUCHY PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS 195 

blows up in finite time. 

(1.5 bis) { 
E( UO) ~ 0, 1m J(Y''P . Y'uo}uo(x) dx > 0 and 

11m / (Y''P' Y'uo)uo(x) dxI2 ~ 4N E(uo) / 'P(x)luo(xW dx 

where 
1 rN 

'P(x) := 2"lx - xol 2 + (N _ 2)lx _ xol N - 2 when N ~ 3 

and 
122 'P(x) := 2"lx - xol - r log Ix - xol when N = 2. 

If one is interested in the blowing-up of solutions which satisfy other boundary 
value conditions than Dirichlet (i.e. HJ(O)) such as Neuman or periodic conditions, 
one can construct such solutions using (1.2) (cf. Remark 4.9 below). Note that the 
condition In IxI 2Iuo(x)12 dx < 00 is satisfied when 0 is bounded and Uo E HJ(O); 
actually this condition seems technical when 0 is unbounded and one can give the 
following variant of Proposition (1.2). 

( 1.7) PROPOSITION. Let 0 be a smooth domain in RN such that there exists 
k~1, a E RN and 1 ~ j1 < J2 < ... < jk ~ N such that ifii(x) is the outer normal 
to the boundary ao one has 

\;IxEaO (XJl -aJ,)nJ1 (x)+ .. · + (Xjk -aJk)njk(x) ~O. 

Then if uo E H J (0) satisfies 

(1.8) In (IXjl1 2 + ... + IXjk 12)luo(x )1 2 dx < 00 

and either of conditions (1.4) or (1.9), the solution u of (1.1) satisfying (1.3) blows 
up in finite time if p ~ 1 + 4/k. 

{ 
E( uo) ~ 0, 1m J(Y''P . Y'uo)uo(x) dx > 0 and 

(1.9) 11m In (Y''P' Y'uo)uo(x) dxl2 ~ 2E(uo) / 'Pluo(xW dx 

where 
'P(x) = ~(IXjl - ajl1 2 + ... + IXjk - ajk 12). 

In particular if 0 is bounded in k directions and p ~ 1 + 4/k the condition (1.8) 
is fulfilled and the only condition for the blowing-up is (1.4) (or (1.9)). 

It is clear that the condition p ~ 1 + 4/ k in (1. 7) is not optimal in the sense that 
p < 1 + 4/ k does not imply global existence. In §4.7 we prove that the condition 
p ~ 5 in (1.6) is optimal in the sense that there are global solutions for p < 5 
and any value of E(uo); at the same time there are solutions which blow up when 
1 + 4/N ~ p < 5 (and E(uo) ~ 0). 

The proof of these results is a slight modification of the one given by R. T. 
Glassey [3J (see below). 

The author wishes to thank Alain Haraux who brought his attention to this 
question. 
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196 O. KAVIAN 

2. Preliminary results. In what follows, we consider a sufficiently smooth 
solution of (1.1) for which the following hold for some T > 0: 

(1.1) iUt = ~u + luI P - 1u. 
(2.1) u(O, x) = uo(x) '1= O. 
(2.2) u(t) E HJ(O) for 0 ::s; It I ::s; T (Dirichlet boundary condition). 

(2.3) L lu(t, x)12 dx = L luo(x)12 dx for 0 ::s; It I ::s; T. 

(2.4) ~ L l\7u(t, xW dx - p ~ 1 L lu(t, x)IP+1 dx =: E(u(t)) = E( uo) 

for 0 ::s; I t I ::s; T. 
For instance any classical solution of (1.1) satisfies (2.3) and (2.4). (To obtain 

(2.3) multiply the equation (1.1) by u, integrate over 0 and take the imaginary 
part; to obtain (2.4) multiply (1.1) by Ut, take the real part and integrate over 0.) 

Following R. T. Glassey we consider the "variance" of u (in fact that of lul2) but 
we modify this variance according to the shape of O. MQre precisely let 'P satisfy 

(2.5) 

and define for t E [-T, T] 

(2.6) V(t) := ~ L 'P(x)lu(t, xW dx. 

Define also the Hessian of 'P by 

(2.7) H('P)(x) := (i)~J'P(X)h~k,J~N 

and for ~ E eN 
(2.8) 

l~k,J~N 

To prove the results about the blowing-up of solutions we prove first the following 
lemma and in the next sections we choose the function 'P according to O. 

(2.9) LEMMA. Let u E C 1([0, T], L2(0)) n C([O, T], H2 n HJ n p+1(0)) be a 
solution of (1.1) with u(O, x) = uo(x), 'P satisfying (2.5) with compact support and 
V defined as in (2.6). Then V E C 2 ([0, T]) and for each t one has 

V'(t) = 1m L 'P(x)u(t, x)~u(t, x) dx 

V" (t) = 2 L (H( 'P )\7ul\7u)(t, x) dx 

+ (_2 __ 1) r ~'P' lul p +1 (t, x) dx 
p+ 1 Jo. 

- ~ L ~2'P' luI2(t, x) dx 

- r l\7u(t, x) . n(x)12\7'P(x) . n(x) dx Jao. 
where n(x) is the outer normal at x E ao (0 is supposed to be smooth). 
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PROOF. The fact that V E C 2 is straightforward, but for the sake of complete-
ness we sketch here the proof. As cp E C:(RN) and u E C 1([-T, T], L2(0)) it is 
clear that V E C 1([-T, T]) and 

but by (1.1) Ut 
H- 1 ,HJ): 

V'(t) = Re In cpu(t,x)ut(t,x)dx 

-i~u - ilulp-l U and hence (denoting by (.,.) the duality 

V'(t) = Im(~u(t), cpu(t)) 
Now, for hER, h -I- 0, we have 

(2.1O) V'(t + h) - V'(t) = Im(~u(t + h), cp[u(t + h) - u(t)]) 
+ Im(~(u(t + h) - u(t)), cp. u(t)) 

or, equivalently, 

(2.11) V'(t + h) - V'(t) = Im(~(u(t + h) - u(t)), cp[u(t + h) - u(t)]) 

+ 21m In 'Vcp. 'Vu(t) [u(t + h) - u(t)] dx 

+ 1m In ~cp. u(t)[u(t + h) - u{t)] dx. 

The first term in (2.11) can be written as 

(2.12) Im(~(u(t + h) - u(t)), cp[u(t + h) - u(t)]) 

= - 1m In [u(t + h) - u(t)]'Vcp· 'V(u(t + h) - u(t)) dx, 

and using the fact that u E C 1([-T,T],£2(0)) and u E C([-T,T]'HJ(O)), one 
sees that by (2.11), (2.12) limh-->o *[V'{t + h) - V'(t)] exists and 

(2.13) V" (t) = 21m In 'Vcp. 'Vu(t) . Ut(t) dx + 1m In ~cp . u(t)Ut(t) dx. 

This identity proves that V E C2([-T, TJ). 
In the sequel, for the sake of simplicity we drop the subscript 0, the variable t 

and set 

(2.14) 

(2.15) 

Al := 1m f 'Vcp. 'Vu· Ut dx, 

A2 := 1m f ~cp. u . Ut dx 

(so V" = 2Al + A2). By (1.1) one has Ut = -i~u - ilul p- 1u, and we can study 
A 1 ,A2 · 

For A 2 : an integration by parts give 

A2 = - Re f ~cp ·lulp+1 dx + Re f ~cp ·1'VuI 2 dx + Re f u'Vu· 'V(~cp) dx. 

But Reu'Vu = ~ 'V(luI 2) and hence 

(2.16) A2 = - Re f ~cpluIP+l dX + Re f ~cp. l'Vu)2 dx - ~ f ~2cp ·lul2 dx. 
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198 O. KAVIAN 

For AI: using (1.1) we have by integration by parts 

(2.17) 

Al = - Re / Cil ip . \1u)6.u dX - Re / \1 ip . \1u . luIP~! U dx, 

Al = - Re /(\1ip . \1u)6.u dx - _1_ / \1ip . \1(luIP+!) dx, 
p+1 

Al = - Re/(\1ip' \1u)6.udx + _1_ / 6.ip ·Iul p+ l dx. 
p+1 

On the other hand 

where 

(2.18) 

(2.19) 

BI := - Re r (\1ip' \1u)(\1u· ii) dx, Jan 
B2 := Re L 1 akip(\1u· ak \1u) dx, 

15,k5,N n 

B3 := Re L 1 aku(\1u· ak \1ip) dx. 
15,k5,N n 

First note that by (2.8), B3 can be written 

(2.20) 

We remark also that Re \1u· ak \1u = ~akl\1uI2 and hence 

(2.21) 
B 2 = L \1ip.\1(~I\1uI2) dx, 

B2 =! r (\1ip.ii)l\1uI 2dx-! r 6.ipl\1uI2dx. 
2 Jan 2 Jn 

Concerning B I , note that ulan = 0 and hence on an \1u = (\1u· ii)ii: this yields 

Finally using this and (2.21), (2.20) we get 

Al = -! r (\1ip' ii)l\1uI 2 dx -! r 6.ipl\1uI2 dx 
2 Jan 2 Jn 

+ r (H(ip)\1ul\1u) dx + _1_ r 6.iplul p +1 dx Jn p + 1 Jn 

and this, together with (2.16), gives the lemma. D 
Now for the proof of the propositions of §1, we have to choose an appropriate 

function ip. 
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3. Proof of Proposition (1.2) and (1.7). Without loss of generality we may 
assume that 0 is starshaped with respect to 0 E 0, i.e. 

(3.1) 'Ix E ao, x·ii(x) 2:0. 

First let 1jJ E C,:x' (R) be such that 

1jJ( -y) = 1jJ(y) VYER, 
1jJ(y) = 1 for Iyl :s; 1, 

1jJ(y) = 0 for Iyl 2: 2, 
1jJ' (y) :s; 0 

and define fm(x) := 1jJ(lxl/m) for x E RN and m 2: 1. Next, for a solution u such 
as in Proposition (1.2), define 

and 

1 r 2 2 Vm(t) := 4 Jo Ixl fm(x)lu(t, x)1 dx. 

By Lemma 2.9 we know that 

V~(t) = 2 In (H(ipm)V'ulV'u)(t, x) dx 

+ (_2 __ 1) r ~ipmluIP+1(t, x) dx 
p+ 1 Jo 

- ~ In ~2ipmluI2(t, x) dx 

- r lV'u(t, x)1 2V'ipm(x) . n(x) dx Jao 

where 

and by the above hypotheses on ipm and u one sees easily that (V~)m converges in 
L 1 ([ - T, T]) to 

(3.2) W(t) := 2 r lV'uI2(t, x) dx + (_2_ -1) N r luI P+1(t, x) dx Jo P + 1 Jo 
- r lV'u(t, xWx· ii(x) dx 

Jao 
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(here we use the fact that if rp(x) := -!lxI2, (H(rp)V'ulV'u) = lV'ul 2 and 6.rp = N). 
On the other hand Vm(t) r V(t) as m ---+ 00 and 

V~Jt) = 1m In rpmu(t, x)6.u(t, x) dx 

= 1m In u(t, x)V'rpm(x) . V'u(t, x) dx. 

(3.3) Vm(t) = Vm(O) + V~(O) . t + fat (t - s)V~(s) ds, 

V~(O) ---+ - 1m In uo(x)x, V'uo(x) dx, 

Vet) = V(O) - (1m In uo(x)x, V'uo(x) dX) t + fat (t - s)W(s) ds. 

But by (2.4) and (3.1) we have 

W(t) ::; 4E(uo) + (2N + 4 _ N) r lu(t, X)IP+l 
p+ 1 in 

::; 4E(uo) ::; 0 if p ;:::: 1 + 4/N 

and hence 

(3.4) 0 < V(t) ::; V(O) - (1m In uox· V'uo(x) dX) t + 2E(uo) . t 2 . 

Now it is clear that if Uo satisfies (1.4) or (1.5) the solution u( t) cannot exist globally 
(notice that if E( uo) < 0, the blow-up occurs for some T* > 0 and also for some 
T** < 0). This proves Proposition (1.2). 

The proof of Proposition (1.7) is the same as above by choosing (we may suppose 
a = 0) 

rp(x) := -!(lxj,1 2 + ... + IXjk 12) 
and then 6.rp = k, 6.2rp = 0 

(H(rp)V'ulV'u) = la)l ul 2 + ... + lajk ul 2 ::; lV'uI 2, 

V'rp. n = Xj, . nj, (x) + ... + Xjk . njk(x) ;:::: 0, 

Wet) ::; 4E(uo) + (2k + 4 _ k) r lu(t, X)IP+l dx 
p+ 1 in 

(W is defined in 3.2). Now if p ;:::: 1 + 4/k one has Wet) ::; 4E(uo) and hence one 
observes that (3.4) holds and the proof of Proposition l. 7 is over. 

4. Proof of Proposition (1.6). Without loss of generality one can assume 
that Xo = 0 and r = l. Thus 

ao = {x ERN; Ixl = I} U aw 
(note that aw n {x; Ixl = 1} = 0), and denoting by n(x) the outward normal at 
x E ao on has 

( 4.1) { if Ixl = 1 n(x) = -x, 
ifxEaw n(x)·x;::::O. 
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Now define for x En 
(4.2) {rp(x) := ~lxl2 + (N _ 2~lxIN-2 if N:? 3, 

rp(x) := 21xl2 -log Ixl if N = 2, 

(the case N = 1 is already contained in Proposition (1.2)), and 

(4.3) V(t) := ~ In rp(x)lu(t, xW dx. 

As in §3, consider fm(x) := "p(lxl/m) where "p E Cg"(R) and 

Vm(t) := ~ In rp(x)fm(x)lu(t, xW dx. 

In the same fashion, one can check easily that (V~)m converges in L1([-T, T]) to 

W(t) := 2 In (H(rp)V'ulV'u)(t, x) dx 

(4.4) + (p! 1 -1) N f lul p+1(t,x)dx 

- r lV'u(t, x) . ii(xWV'rp· ii(x) dx Jao 
(here we use the fact that ~rp = N). 

But V'rp = (1 - Ixl-N)X and 
if x E ao Ixl = 1 then V'rp. ii(x) = OJ 
if x E aw then V'rp(x) . ii(x) :? O. 

This means that 

( 4.5) 'Vx E ao V'rp(x) . ii(x) :? O. 

On the other hand 

and 
(4.6) (H(rp)V'ulV'u) ::; lV'ul2 + (N - 1)lxl-NIV'uI2 

::; NIV'uI2 since Ixl ~ 1. 
Hence (4.5) and (4.6) yield 

So we get 

W(t)::; N (2 In lV'ul2 + (p! 1 -1) f luIP+1) 
::; N (4E(Uo) + (p! 1 -1) f luIP+1), 

W(t) ::; 4NE(uo) (since p:? 5). 

0< V(t) ::; V(O) + V'(O)t + 2NE(uo)t2 

and again this proves Proposition (1.6), noting that (when E(uo) :? 0) 

V'(O) = 1m f rpuo~uo = - 1m In (V'rp. V'uo)uo(x) dx. 0 
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(4.7) REMARK. When 0 is starshaped and N ::; 2, p < 1 + 4/N the solution of 
(1.1) satisfying (1.3) is global in time, no matter what the sign of E(uo) is. When 
o is not starshaped and 1 + 4/N ::; p < 5 the situation is somewhat complicated. 

Consider for instance 0 = B(O, l)C where B(O, 1) = {x ERN, Ixl ::; I}, N?: 2. 
If Uo is spherically symmetric with respect to the origin 0, it is clear that the 

solution u(t) is spherically symmetric for each t. On the other hand if'P E G1(0) 
is spherically symmetric, then for any U E RN with lui = 1 

1'P(m)12 = -2100 'P(zu)u, V7'P(zu)dx 

::; 2 (/00 z-(N-l)l'P(zuW dZ) 1/2 (/00 zN- 11V7'P(zuW dZ) 1/2 

and this yields 

(4.8) 

Now if u(t) is a spherically symmetric solution of (1.1) 

IIV7u(t)112 ::; 2E(uo) + p! 1 J IU(t)IP+1 

::; 2E(uo) + Gllu(t)lltt,11Iu(t)1112. 

But Ilu(t)llp = IIuollL2 = Gte and hence by (4.8) we get 

IIV7u(t)1112 ::; G + GIIV7u(t)llr2-1)/2. 

So if p < 5 then IIV7u(t)llp ::; Gte and using again (4.8) we get a uniform estimate 
for Ilu(t)llu)O and this proves that the spherically symmetric solutions of (1.1) are 
global in time, whatever E(uo) can be. 

Consider now, for the sake of simplicity, the case where N = 2, 0 = B(O,1)c 
and 1 + 4/ N ::; p < 5. We are going to construct a solution of (1.1) which blows up 
in finite time. 

Let 0+:= {(x,y) E R2, x > 0, y > 0, x2 +y2 > I}. 
It is clear that 0+ is starshaped with respect to the point (1,1). Now let Vo E 

G8"(O+) be such that E(vo) < 0. By Proposition (1.2) the solution v(t) of (1.1) 
with v(t) E HJ(O+) and v(O) = Vo blows up in finite time. If one considers u(t) 
defined as 

{ 
v(t, x, y) if x?: 0, y?: 0, 

(t ) _ - v( t, x, y) if x ?: 0, y::; 0, 
u ,X,y - v(t,-x,-y) ifx::;O, y::;O, 

- v(t, -x, y) if x::; 0, y?: 0, 
then u(t) is a solution of (1.1) u(t) E HJ(O) and blows up in finite time. 

(4.9) REMARK. If one considers other boundary conditions than Dirichlet (that 
is other than u(t) E HJ(O)), using (1.2) one can construct solutions of (1.1) which 
blow up in finite time. Indeed consider, for example, the case where N = 1, and 
the periodic boundary condition on 0 =J - 1, + 1[, i.e. 

u(t, -1) = u(t, +1), ux(t, -1) = ux(t, +1). 
If one takes an initial data Uo such that 

uo(-x) = -uo(x) I:/x E [-1,+1]' Uo E Hci(] - 1, +1[) 
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then the solution of (1.1) with u(O, X) = uo(x) satisfies 

u(t, -x) = -u(t, x) \:Ix E [-1, +1], 
u(t, -1) = u(t, +1) = 0, ux(t, -1) = ux(t, 1). 

So if p ~ 5 and 

~ 1+1luoxl2 - _1_1+1 luol p+1 < 0, 
2 -1 P + 1 -1 

the periodic solution u(t) blows up in finite time (because it does so in HJ([-l, +1]) 
by Proposition (1.2)). 

For the Neuman boundary condition (i.e. for instance 11 =]0,2[ and ux(t, O) 
ux (t,2) = 0) consider an initial data Vo E HJ( -1, +1) such that 

\:Ix E [-1,+1] vo(x) = vo(-x) 

P ~ 5 and 111 1 11 -2 Ivox l 2 dx - -- Ivol p+1 dx < O. 
o P + 1 0 

Then the solution v(t) E HJ(] - 1, +1[) with v(O) = Vo blows up in finite time and 
satisfies 

v(t, x) = v(t, -x) \:Ix E [-1, +1]. 
Hence vx(t, 0) = 0, and if u(t) is defined as 

{ v(t,x) 
u(t,x)= -v(t,2-x) 

for 0 ::; x ::; 1, 
for 1 ::; x ::; 2, 

u(t) is a solution of (1.1) with u(t) E H1(]0, 2[), ux(t,O) = ux(t, 2) = 0, and u(t) 
blows up in finite time. 
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