A remark on the excess of Hadamard matrices and orthogonal designs

J Hammer
R Levingston
Jennifer Seberry
University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers
Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Hammer, J; Levingston, R; and Seberry, Jennifer: A remark on the excess of Hadamard matrices and orthogonal designs 1978.
https://ro.uow.edu.au/infopapers/984

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

A remark on the excess of Hadamard matrices and orthogonal designs

Abstract
Some improved upper and lower bounds are given for the excess of Hadamard matrices. The excess of orthogonal designs is defined and discussed.
\section*{Disciplines}
Physical Sciences and Mathematics
\section*{Publication Details}
Hammer, J, Levingston, R and Seberry, J, A remark on the excess of Hadamard matrices and orthogonal designs, Ars Combinatoria, 5, 1978, 237-254.

A REMARK ON THE EXCESS OF HADAWARD MATRICES

 AND ORTHOGONAL DESIGNSJ. Hammer, R. Levingston,

Jennifer Seberry

ABSTRACT. Some improved upper and lower bounds are
given for the excess of Hadamard matrices. The
excess of orthogonal designs is defined and discussed.

An orthogonal design $D=Y_{1} Y_{1}+Y_{2} Y_{2}+\ldots+y_{t} Y_{t}$ of order n and type $\left(s_{1}, \ldots, s_{t}\right)$ on the commuting variables y_{1}, \ldots, y_{t} is a square matrix satisfying

$$
\mathrm{DD}^{T}=\sum_{j=1}^{\mathrm{t}} \mathrm{~s}_{j} \mathrm{y}_{j}^{2}
$$

Each Y_{j} is a $(0,1,-1)$-matrix satisfying $Y_{j} Y_{j}{ }^{T}=s_{j} I_{n}$ and is called a weighing motrix of weight s_{j}. A weighing matrix of order n and weight n is called an Hadomard matrix.

We call the sum of the entries of an Hadamard matrix, H, the excess of H. we denote by $\sigma(n)$ the maximum possible sum of an Hadamard matrix of order n. We define the eraess of the orthogonal design D as

$$
\sigma(D)=\sigma\left(Y_{1}\right)+\ldots+\sigma\left(Y_{t}\right),
$$

where $\sigma\left(Y_{i}\right)$ is the sum of the entries of Y_{i}.

ARS COMBINATORIA, Vo1. 5 (1978), pp. 237-254.

Wallis [4] and Schuldt and Wang \{2] defined the weight of an Hadamardmatrix H, denoted $w(H)$, to be the number of ones in H, $W(n)$ is used for the maximum value of $w(H)$ for Hadamard matrices of order n. $W(n)=\frac{1}{2}\left(n^{2}+\sigma(n)\right)$. The excess was studied by Best [1].

Warig and Schmidt found

(1)
$\sigma(n) \leq 2\{1+n \sqrt{2 n+1}]-n$.

This was improved by Best who found

$$
\sigma(n) \leqslant n \sqrt{n}
$$

1. A construction.

Here are four slightly different ways to construct an orthogonal design of type (t, t, t, t) in order $4 t$ using 4 circulant ($0,1,-1$)-matrices $X_{1}, X_{2}, X_{3}, X_{4}$ which satisfy
(2)

$$
\left\{\begin{array}{l}
\text { (i) } \sum_{i=1}^{4} x_{1} x_{i}^{T}=t I_{t}, \\
\text { (ii) } x_{i}^{J}=x_{i}^{J}, \\
\text { (iii) } x_{i} * x_{j}=0,1 \neq j \\
\text { (iv) } \sum_{i=1}^{4} x_{i} \text { is a (I, -1)-matrix, } \\
\text { (v) } x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=t
\end{array}\right.
$$

$$
\mathrm{u}=\left[\begin{array}{cccc}
-y_{1} & y_{2} & y_{3} & y_{4} \\
y_{2} & y_{1} & y_{4} & -y_{3} \\
y_{3} & -y_{4} & y_{1} & y_{2} \\
y_{4} & y_{3} & -y_{2} & y_{1}
\end{array}\right]=\left(u_{i j}\right), \quad v=\left[\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{2} & -y_{1} & -y_{4} & y_{3} \\
y_{3} & y_{4} & -y_{1} & -y_{2} \\
y_{4} & -y_{3} & y_{2} & -y_{1}
\end{array}\right]=\left(v_{i j}\right) .
$$

Write

$$
G=\left[\begin{array}{cccc}
-A_{1} & A_{2} R & A_{3} R & A_{4} R \\
A_{2} R & A_{1} & A_{4}^{T} R & -A_{3}^{T} R \\
A_{3} R & -A_{4}^{T} R & A_{1} & A_{2}^{T} R \\
A_{4} R & A_{3}^{T} R & -A_{2}^{T} R & A_{1}
\end{array}\right], \quad H=\left[\begin{array}{cccc}
A_{1} & A_{2} R & A_{3} R & A_{4} R \\
-A_{2} R & A_{1} & A_{4}^{T} R & -A_{3}^{T} R \\
-A_{3} R & -A_{4}^{T} R & A_{2} & A_{2}^{T} R \\
-A_{4} R & A_{3}^{T} R & -A_{2}^{T} R & A_{1}
\end{array}\right]
$$

where R is the back diagonal matrix and $A_{1}, A_{2}, A_{3}, A_{4}$ are circulant matrices.

Now we can form A_{i} by either choosing
$A_{i}=\sum_{k=1}^{4} u_{i k} X_{k} \quad$ or $\quad A_{i}=\sum_{k=1}^{4} v_{i k} X_{k}, \quad i=1,2,3,4$.

The different orthogonal designs now arise by using G and H.

We further observe that if circulant $x_{1}, x_{2}, x_{3}, x_{4}$ of
order t. exist with first rows $a_{i 1}, a_{i 2}, \ldots, a_{i t}$ respectively, then the circulant matrices $\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}, \underline{x}_{4}$ of order $2 t$ with first rows

$$
\begin{aligned}
& \bar{a}_{21}{ }^{a_{1 t}} \bar{a}_{22}{ }^{\mathrm{a}} 1, t-1^{\bar{a}_{23}} \cdots{ }^{a_{12}} \overline{\mathrm{a}}_{2 t^{a_{11}}} .
\end{aligned}
$$

$$
\begin{aligned}
& \bar{a}_{41} a_{3 t} \bar{a}_{42}{ }_{3, t-1} \bar{a}_{43} \cdots a_{32} \bar{a}_{4 t} a_{31}, \\
& \text { where } \bar{a}_{i j} \text { denotes }-a_{i j} \text {, satisfy the similar equations } \\
& \text { (i) } \sum_{i=1}^{4} \underline{x}_{i} \underline{X}_{i}{ }^{T}=2 t I_{2 t} \text {, } \\
& \text { (ii) } \underline{x}_{1} J=\left(x_{1}+x_{2}\right) J, \quad x_{2} J=\left(x_{1}-x_{2}\right) J \text {. } \\
& \underline{x}_{3} J=\left(x_{3}+x_{4}\right) J, \quad \underline{x}_{4} J=\left(x_{3}-x_{4}\right) J, \\
& \text { (iii) } \underline{x}_{i} * \underline{x}_{j}=0, \quad 1 \neq j \text {, } \\
& \text { (iv) } \sum_{i=1}^{4} X_{i} \text { is a }(1,-1) \text {-matrix , } \\
& \text { (v) }\left(x_{1}+x_{2}\right)^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{3}+x_{4}\right)^{2}+\left(x_{3}-x_{4}\right)^{2}=2 t \text {. } \\
& \text { We consider the excess of the different orthogonal designs } \\
& D_{1}, D_{2}, D_{3}, D_{4} \text { and find for } D_{i}=Y_{1} Y_{1 i}+Y_{2} Y_{2 i}+Y_{3} Y_{3 i}+Y_{4} Y_{4 i} \\
& \sigma\left(\mathrm{D}_{\mathrm{i}}\right)=\sigma\left(\mathrm{y}_{1 i}\right)+\sigma\left(\mathrm{y}_{2 \mathrm{i}}\right)+\sigma\left(\mathrm{y}_{3 \mathrm{i}}\right)+\sigma\left(\mathrm{y}_{4 i}\right) . \quad . \\
& \text { Now } \sigma(G)=2 \sigma\left(A_{1}\right)+2 \sigma\left(A_{2}\right)+2 \sigma\left(A_{3}\right)+2 \sigma\left(A_{4}\right) \text { and } \sigma(H)=4 \sigma\left(A_{1}\right) \text {. }
\end{aligned}
$$

Using the two methods for forming A_{i} we obtain

$$
\begin{aligned}
& \sigma\left(D_{1}\right)=4 t\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \\
& \sigma\left(D_{2}\right)=8 t x_{1} \\
& \sigma\left(D_{3}\right)=8 t x_{1} \\
& \sigma\left(D_{4}\right)=4 t\left(x_{1}+x_{2}+x_{3}+x_{4}\right) .
\end{aligned}
$$

Hence we obtain
(3)

$$
\sigma(4 t) \quad 2 \quad 4 t \max \left(2 x_{1}, x_{1}+x_{2}+x_{3}+x_{4}\right)
$$

To see both are needed we consider
$t=5=2^{2}+1^{2}+0+0, \quad \sigma(20) \geq 20 \max (4,3)=80$.
$t=7=2^{2}+1^{2}+1^{2}+1^{2}, \quad \sigma(28) \quad 28 \max (4,5)=140$.

We note that for $t=s^{2}+0^{2}+0^{2}+0^{2}$
(4)

$$
\sigma\left(4 t^{2}\right) \geq 8 s^{3}
$$

and when the A_{i} are constructed using U and G or V and H we have

$$
\sigma\left(A_{1}\right)=\sigma\left(A_{2}\right)=\sigma\left(A_{3}\right)=\sigma\left(A_{4}\right)=2 \sigma\left(x_{1}\right) .
$$

Lemma 1. Suppose the matrices $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}$ deseribed above in (2) exist for order t with $t=x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}+x_{4}{ }^{2}$. Then there is an orthogonal deaign D of order $4 t$ and type (t, t, t, t) with $\sigma(4 t) \geq \sigma(D)=4 t \max \left(2 x_{1}, x_{1}+x_{2}+x_{3}+x_{4}\right)$, where $x_{1} \geq x_{2} \geq x_{3} \geq x_{4}$. Further if $t=s^{2}$ and $x_{1}=s, \quad \sigma(D)=8 s^{3}$ and $\sigma\left(Y_{i}\right)=2 \mathrm{~s}^{3}$. Also $\sigma(8 t) \geq 16 t\left(x_{1}+x_{2}\right)$.

A similar process, using 4 circulant ($1,-1$)-matrices
A, B, C, D of order t with row sume $x_{1}, x_{2}, x_{3}, x_{4}$ allows us to say:

LEMMA 2. Let $n=4 t=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \equiv 4(\bmod B)$ be the order of an Hadamard matrix, H , constructed using four circutant matrices with row sums $x_{1}, x_{2}, x_{3}, x_{4}$ respectively, $x_{1} \geq x_{2} \geq x_{3} \geq x_{4}$. Then $\sigma(H)=2 t\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad$ and $\sigma(2 H)=8 t\left(x_{2}+x_{2}\right)$, $\sigma\left(2^{2 x_{H}}\right)=2^{3 r-1} n\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad$ and

$$
\sigma\left(2^{2 r+1} a\right)=2^{3 r+1} n\left(x_{1}+x_{2}\right)
$$

Some suitable first rows to use in Lemmas 1 and 2 are given in Table 1 , others can be found in J. Wallis [3]. So we have $\sigma(12) \geq 36, \sigma(16) \geq 64, \quad \sigma(20) \geq 80$ and $\sigma(24) \geq 96$.

t	W (${ }^{\text {(}}$)	σ (H)	A	B	c	D
3	90	36	111	1--	1--	1--
4	160	64	-111	-111	-111	-111
5	240	80	1-11-	11--1	-1111	-1111
6	336	96	211-1-	1-1111	11----	1--1-1

Table 1

In particular, using $a_{1}=a_{2}=a_{3}=a_{4}=2$ and H of order $n=4$ we obtain
(5)

$$
\left\{\begin{aligned}
\sigma\left(2^{2 r}\right) & \geq 2^{3 r-1} \\
\sigma\left(2^{2 r+1}\right) & \geq 2^{3 r}
\end{aligned}\right.
$$

We also see
(6) $\left\{\begin{aligned} \sigma\left(2^{2 r} \cdot 3\right) & 22^{3 r-1} .9 \text {, } \\ \sigma\left(2^{2 r+1} \cdot 3\right) & \geq 2^{3 r+2} .9 .\end{aligned}\right.$
(7) $\begin{cases}\sigma\left(2^{2 \mathrm{r}} \cdot 5\right) & \geq 2^{3 \mathrm{r}+1} \cdot 5 \\ \sigma\left(2^{2 \mathrm{r}+1} \cdot 5\right) & \geq 2^{3 \mathrm{r}+1} \cdot 25 \text {. }\end{cases}$

If $p \equiv 1$ (mod 4) is a prime power, then $p=x^{2}+y^{2}$.
Moreover, a sujtable Hadamaxd matrix can be found $\{3, \mathrm{p}, 315\}$ of order $2(p+1)$ with row sums

$$
a_{1}=x+1, \quad a_{2}=x-1, \quad a_{3}=a_{4}=y
$$

Hence

```
        \sigma(2(p+1)) 2 2(p+1)(x+y),
which gives \sigma(12) \geq 36, \sigma(28) \geq 140, \sigma(52) \geq 364 and
```

$\sigma(60) \geq 420$.
2. An Upper Bound.

Let $a_{i} \geq 0$ be the column sum of the $i t h$ column of a reighing matrix, W, of order n and wefght k. Then $W W^{T}=k I_{n}$. Let e be the $1 x_{n}$ matrix of ones. Then

$$
\left.\begin{array}{rl}
\operatorname{ewn}^{T} e^{T} & =\mathrm{ekI}_{n} e^{T}=\mathrm{nk} \\
& =\left(a_{1} \ldots a_{n}\right.
\end{array}\right)\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]
$$

Now to find the maximum excess σ (W) we wish to maximize
$\sum_{i=1}^{n} a_{i}$ subject to $\sum_{i=1}^{n} a_{i}{ }^{2} * n k$. We use Schwarz' inequality
to see that the maximum is for

$$
a_{1}=a_{2}=\ldots=a_{n}=\sqrt{k}
$$

so the maximum excess is

$$
\sigma(N)=\sum_{i=1}^{n} a_{i}=n \sqrt{k}
$$

Since this is the maximum, we have for any weighing matrix and Hadamard matrix
(8) $\sigma(W) \leq n \sqrt{k} \quad$ and $\sigma(n) \leq n \sqrt{n}$.

This improves Schnidit and Wang's bound (1) and is that given by Best. In particulax, we have for Hadamard matrices of order $4 s^{2}$

$$
\sigma\left(48^{2}\right) \leq 8 s^{3}
$$

Compare this with (4).

Now one of us (Seberry) has show:

THEOREM 3. Given any natural number q >3 there existe a ragular symmetrie Hadamard matrix eith constant diagonal of order $2^{2 s_{q}}{ }^{2}$ for every $\mathrm{s} a\left[2 \log _{2}(\mathrm{q}-3)\right]$.

So we have, using a result of Best:

COROLLARY 4. Let $q>3$ be any natural number and $\mathrm{s} \geq 2\left[\log _{2}(\mathrm{q}-3)\right]$ be an integer. Then

$$
\sigma\left(2^{2 s} q^{2}\right)=2^{3 s} q^{4} .
$$

If \sqrt{k} is not an integer we use a lattice point nearest $\left(a_{1}, \ldots, a_{n}\right)=\sqrt{k}(1, \ldots, 1)$. For the next discussion we confine ourselves to $k=n$. Then, with x the greatest even integer $<\sqrt{n}$,
and

$$
a_{1}=a_{2}=\ldots=a_{i}=t
$$

$$
a_{i+1}=a_{i+2}=\cdots=a_{n}=t+4
$$

where $t=x$ if $\left|n-x^{2}\right|<\left|\langle x+2\rangle^{2}-n\right|$ and $t=x-2$ otherwise. Now

$$
a_{1}^{2}=a_{2}^{2}=\cdots=a_{i}^{2}=t^{2}<n
$$

and

$$
a_{i+1}^{2}=\ldots=a_{n}^{2}=(t+4)^{2}>n
$$

so

$$
\sum_{j=1}^{n} a_{j}^{2}=i t^{2}+(n-i)(t+4)^{2}=n^{2}
$$

that is

$$
i=\frac{n\left((t+4)^{2}-n\right)}{8(t+2)}
$$

This value of i may not be integral and must be an integer, so we
choose the integer part of $\frac{n\left((t+4\}^{2}-n\right)}{8\{t+2)}$ for i. We note we
increase $\sum a_{j}$ by choosing i smallex. Thus

$$
\begin{aligned}
\sigma(n)=\sum_{j=1}^{n} a_{j} & =t i+(t+4)(n-i), \\
& =n(t+4)-4\left[\frac{n\left((t+4)^{2}-n\right)}{8(t+2)}\right] .
\end{aligned}
$$

Hence

(9) $\quad H(n) \leq \sin (t+n+4)-2\left[\frac{n\left((t+4)^{2}-n\right)}{8(t+2)}\right]$, where x is the greatest integer $\equiv 0(\bmod 2)$ and $\leq \sqrt{n}$, $t=x$ if $\left|n-x^{2}\right|<\left|(x+2)^{2}-n\right|$ and $t * x-2$ otherwise.
3. A lower Bound.

An examination of Best's lower bound shows that we can exclude the rows of the Hadamard matrix of order n and so obtain

$$
\sigma(n)=\frac{n^{2}\left(\left[\begin{array}{c}
n \\
4 n
\end{array}\right)-2\right)}{2^{n}-2 n}
$$

While we were always able to improve on this bound constructively, it is, nevertheless, the best general lower bound available.

4. The Powers of 2.

Schmidt and Wang noted that if H and G are Hadamard matrices of orders h and g, respectively, and maximal weights, then
(10) W(hg) $\geq(H \times G)=h^{2} g^{2}+2 w(g) w(h)-h^{2} w(g)-g^{2} W(h)$.

THEOREM 5.

$$
\sigma\left(2^{2 r}\right)=\dot{2}^{3 x} \quad \text { i.e. } \quad \sim\left(2^{2 r}\right)=2^{2 x-1}\left(2^{2 x}+2^{r}\right)
$$

Proof. Let $X_{1}=\{I\}, X_{2}=X_{3}=X_{4}=\{0\}$ be circulant matrices of order 1. Then by repeated use of the doubling construction of section 1 we obtain four circulant matrices of order $t=2^{\mathbf{2 r - 2}}$ With row sums $2^{r-1}, 0,0$, 0 respectively and by (3) we have

$$
\sigma\left(2^{2 r}\right) \geq 2^{3 r}
$$

By equation (8) we have

$$
\sigma\left(2^{2 I}\right) \leq 2^{3 I}
$$

So we have the result.

Lemma 6.
$2^{3 x-1}+2^{4 x+1} \leq W\left(2^{2 x+1}\right)$
$s \quad 2^{2 x}\left(t+4+2^{2 x+1}\right)-2\left[\frac{2^{2 r-2}\left((t+4)^{2}-2^{2 r+1}\right)}{t+2^{2}}\right]$,
where $t=\left[2^{x} \sqrt{2}\right]$ or $\left[2^{x} \sqrt{2}\right]-3$ according as $\left[2^{x} \sqrt{2}\right]$ is even or odd.

Proof. The right-hand-side follows inmediately from (9). Also we have

$$
\begin{aligned}
W\left(2^{2 r+1}\right)= & 2 W\left(2^{a}\right)\left(W\left(2^{2 r+1-a}\right)-2^{4 r+1-2 a}\right) \\
& +2^{2 a}\left(2^{4 r+2-2 a}-W\left(2^{2 r+1-a}\right)\right)
\end{aligned}
$$

Since we know $w\left(2^{2 s}\right)$ exactly, we use $a=2 p \pm 1$ when $2 r+1=4 p \pm 1$ in (10) to obtain
(11) $\quad W\left(2^{2 I+1}\right) \geq 2^{3\left[\frac{1}{f(r+1)]}\right.} w\left(2^{2[r / 2]+1}\right)+2_{i}^{4 r+1}$ $-2^{4 x+1-[y(x+1)]}$.

Now we use (5) to obtain the quoted lower bound.

COROLLARY 7. Bounde on $W\left(2^{2 r+\lambda}\right)$ are given by the tabte

r	$x \leq W\left(2^{2 r+1}\right) \leq y$				
1	42	$=$	W (8)		
2	592	5	W(32)	5	600
3	8832	\leqslant	W(128)	\leq	8910
4	136192	\leq	W(512)	s	136854
5	2138112	5	W(2048)	s	2143466

Proof. The lower bounds for $W(32)$ and $W(128)$ are found using $W(B)$ and (11), while those for $W(512)$ and $W(2048)$ are found using $w(32)$ and (11).

5. The Encess of Orthogonal Designe.

From the discussion at the beginning of section 2 we see that a weighing matrix of order n with k non-zero entries per row has excess $n \sqrt{k}$.

Thus an orthogonal design $D=y_{1} Y_{1}+y_{2} Y_{2}+\ldots+y_{t} Y_{t}$ of type $\left(s_{1}, s_{2}, \ldots, s_{t}\right)$ would have maximal excess

$$
\sigma(D)=\sigma\left(Y_{1}\right)+\ldots+\sigma\left(Y_{t}\right) \leq n \sqrt{s_{1}}+n \sqrt{s_{2}}+\ldots+n \sqrt{s_{t}}
$$

while the orthogonal destgn $p=y\left(Y_{1}+\ldots+Y_{t}\right)$ obtained by equating all the variables has maximal excess

$$
\sigma(\underline{D})=n \sqrt{s_{1}+\ldots+s_{t}} .
$$

Clearly, in general,

$$
\sigma(D)=n \sqrt{s_{1}}+\cdots+s_{t} \leq n \sqrt{s_{1}}+\ldots+n \sqrt{s_{t}} .
$$

So the question arises:

QUESTION. Let $\mathrm{D}=\mathrm{Y}_{1} \mathrm{X}_{1}+\ldots+\mathrm{Y}_{\mathrm{t}} \mathrm{X}_{\mathrm{t}}$ be an orthogonat design of order n and type $\left(s_{1}, \ldots, s_{t}\right)$ on the commuting variables $y_{1}, \ldots . Y_{t}$. For what types and orders of orthogonal design is the excess the same as the excess of the weighing matrix of order n and weight $\mathrm{s}_{1}+\ldots+\mathrm{s}_{\mathrm{t}}$?

As a partial answer we see the following orthogonal

 designs of orders 4 and 8 and types (2,1,1,1) and $(1,1,1,1,1,1,1,1)$, respectively, have the same excess as the underlying Hadamard matrix:$\left[\begin{array}{cccc}-a & b & c & d \\ b & a & d & -c \\ c & -d & a & b \\ d & c & -b & a\end{array}\right] \quad$ and $\quad\left[\begin{array}{cccc|cccc}-a & b & c & d & e & f & g & h \\ b & a & d & -c & f & -e & h & -g \\ c & -d & a & b & -g & h & e & -f \\ d & c & -b & a & h & g & -f & -e \\ \hline e & -f & g & -h & a & b & -c & d \\ f & e & -h & -g & -b & a & d & c \\ g & -h & -e & f & c & -d & a & b \\ h & g & f & e & -d & -c & -b & a\end{array}\right]$

Replacing the vaxiables of this orthogonal design of order eight by circulant matrices with first rows 121 , for a and b and -11 for c, d, e, f, g, h gives an Hadamard matrix of order 24 with $0(24)=10 B$. Replacing the variables by the eitculant matrices with first rows 1111111 for a and $111-1-r$ for $b_{1} c_{\text {, }}$ d. e.f. f, h gives an Hadamard matrix of order 56 with $\sigma(56)=392)$. Also the orthogonal designs of order $4 t, t$ odd and square free, and type (t, t, t, t) constructed via Lemad 1 have the same excess as the underlying Hadardard matrix for $t=3,5,7$ and 13 and give the best known lower bound for $t=11$ and. 15 .

This suggests another possible conjecture:-

$$
\sigma(4 t)=4 t \max \left(2 x_{1}, x_{1}+x_{2}+x_{3}+x_{4}\right)
$$

where $t \neq x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}, x_{1} \geq x_{2} \geq x_{3} \geq x_{4}$, t odd and square-free.
6. Humerical Reswlts.

Previously Hallis had found $W(8)=42, \quad W(12)=90$ and H(20) 240. Theorem 5 of Wallis $\{2\}$ gave $W(16) \geq 154$. The results of Wallis 〔4] and Schmidt and Wang [2] gave
$334 \leq W(24) \leq 360$
$756 \leq W(36)$
$866 \leq W(40) \leq 960$.

Best found $W(24)=344$. We find

	Best's conjecture for			Calculated				
n	$\sigma(\mathrm{n})$	$W(n)$	$\sigma(\mathrm{n})$	$W(n)$				
4			2			3		
8	20		20			42		
12	36		36			90		
16	64		64			160		
20	80		80			240		
24	108	342	112			344		
28	140	462	140			462		
32	176	600		592	5	W132)	5	600
36	216	756	216			756		
40	240	920	240			920		
44	264	1100		1100	5	W(44)	5	1108
48	312	1308		1296	5	W(48)	\leq	1312
52	364	1534	364			1534		
56	392	1764	392	1764	\leq	W(56)	\leq	1774
60	420	2010		2010	\leq	$W(60)$	\leq	2030
64	512	2304	512.			2304		
					.			

Best conjectured

$$
\approx \quad 2_{2}\left(n^{2}+2 n[2 \sqrt{n}]\right), \quad n \equiv 0\{\bmod 8),
$$

$W(n)=\frac{L}{2}\left(n^{2}+\sigma(n)\right)$
$=4\left(n^{2}+n[\sqrt{n}]\right), \quad n \equiv 4(\bmod 8)$.

Comparison with the above results shows this is an excellent conjecture.

References

[1] M.R. Best, The exaess of a Hadamard matrix, Indag. Math., 39 (1977), 357-361.
[2] K.W. Schmidt and Edward T.H. Wang, The weights of Hadamara matrices, J. Combinatorial Theory, Ser. A (to appear).

〔3] Jennifer Seberry Wallis, Hadamard matrioes, Room squares, Sum-free sets, Hadamard matrices, by W.D. Wallis, Anne Penfold Street, Jennifer Seberry Wallis, in Lecture Notes in Mathematics, Vol. 292, Springer-Verlag, Berlin-HeidelbergNew York, 1972, p. 273-489.
[4] W.D. Wallis, On the weights of Hadamard matrices, Ars Combinatoria, 3 (1977), 287m292.

University of Sydney

