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Abstract. By means of a suitable change of variables we obtain, by application of a
general result by Dafermos and Hsiao, cf. [2], an existence theorem in L°° fl BV\oc of a
weak solution of the system corresponding to the quasilinear hyperbolic equation

0tt - p'{<t>x) <t>xx + <t>t + F((f>) = 0 in I x [0, +oo[ ,

for small initial data in BV. This theorem is a partial extension of Dafermos's result for
the case with = 0, proved in [1],

1. The auxiliary system. Let us consider the following Cauchy problem:

-p'(<i>x)4>xx +4>t + F(j>) = o , (x,t)e Rx[o,+oo[, (l.i)

~4>{x,Q) = 4>q{x), Mx,0) = v0(x) , xeR, (1.2)

where p is a given smooth function such that p'(£) > 0, V( e R, and F : R —> K is a
smooth function verifying F(0) = 0. We assume, to simplify, the condition p'(0) = 1.
Putting u = (f>x, v = <j>t we can write (1.1), (1.2) as a Cauchy problem for a hyperbolic
system:

<pt=v

ut = vx (x, t) e Rx [0, +oo[ , (1-3)

vt - p' (u) ux + v + F{4>) = 0

<j>{x, 0) = (j>0(x), u(x, 0) = uq(x) = (j>0x(x), v(x, 0) = vo(x) , (1.4)

For technical reasons, if we choose k > 1, we can, by putting u(x, t) = u(kx, kt), v(x, t) =
v(kx,kt), <j>(x,t) = \ (f)(kx, kt), replace (1.3), (1.4) by

( <t>t=v

ut=vx (i,t)elx[0,+oo[, (1-3')

, vt — p'(u)ux + kv + F(<fi) = 0
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where F(<j>) = kF(k<f>),

0) = <t>o{x) = - ~4>0{kx) ,

u(x,0) = u0(x) = uo(kx) = <f>0x(x) , (1.4')

v(x, 0) = vo(x) = vo(kx) , x G R .

For to € [1, +oo[, let us introduce

a — am = (to2 — 2to + 2)-1/2 ,

b = bm = (to2 + 2m + 2)-1/2 ,

cm=2 - (- + -)/2 ,

1c — C ^~ * ^rn

fm=c2m 2 Q + ^ (a(m - 1) + b(m + 1)

(notice that c\ > 0 and k\ > 1) and assume

|f'(0)| < h . (1.5)

We fix to > 1 such that |F (0)| < fm, cm > 0, and km > 1 and we put k = km. We
obtain

(2 " (? + i) /2) k ~ (t + k) |f'(0)l ~ a[m - 1)-6(m + 1)

= cmkm- ^ ^ J k2m |F'(0)| - a(m - 1) - b(m + 1) > 0 . (1.6)

Now, we consider the following nonsingular linear transformation (qi, u, v) —> (0, u, w),
where w = v + mu + k<j>, m and k as above. The Cauchy problem (1.3'), (1.4') takes the
form

4>t = w — mu — k(f>

ut + k(j)x + mux — wx — 0 (x, t) e R x [0, +oo[ , (1-3")

Wt + to k <f>x + (to2 — p'(u)) ux — mwx + F(4>) = 0

4>{xi 0) = 4>o(x) ,

u(x, 0) = u0{x) = <pQx{x) , (1.4")

w(x, 0) = wq(x) = vo(x) + mu0(x) + k 4>o(x) , x € R .
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Now we introduce the following auxiliary Cauchy problem in (<j>,u,w),

4>t+m4>x—w + k(f> = 0

ut + mux — wx + ku = 0 in R x [0, +oo[ , (1.3"')

wt + (to2 — p'(u)) ux — mwx + mku + F{(j>) = 0

with the initial data (1.4").
If (<p, u, w) is a C1 solution of (1.3'"), (1.4") we easily derive, for <p € C£°(IR x [0, +oo[),

- / (j)(pxt dxdt — / <f>oipx(-,ti)dx - m / / 4>yxxdxdt
Jr+Jr J r Jr+Jr

— / / unpx dx dt + k / / <p(pxdx dt = 0
Jr+Jr J r+J r

and

u(pt dxdt — / uo y(-, 0) — to / / uif x dxdt
J r Jr+Jr

+ / / w <px dx dt + k / / utpdx dt = 0 ,
*/R+«/R VR.jR

and so, by addition, we obtain

/ 4> <pt + m ipx — k tp dxdt + u ipt + ~ k ip
Ju+Jr L J1 VR+JR L

dxdt = 0 .

Now, given ip e X>(R x ]0,+oo[), it is easy to find </? € C£°(R x [0,+oo[) such that
<^t+m ipx — ktp = ip: first, with = e_fct ?/>, </>i = e_fc¥3 y, we reduce to = -0i.
We put

<^i(mt + c, i) = / ipi(rriT + c,t) dr — ipi(c) ,
Jo

where
/»+oor-too

&i{c) = / ipi(mt + c,t) dt , V
Jo

c €

Hence,

/ / (f>ipxdxdt+ / / uij)dxdt = 0, Vt/> 6 X>(R x ]0, +oo[) .
J R^.J R JR+JR

We derive u = <j>x. It is now easy to prove

Proposition 1.1. For given initial data (4>o,uo = 4>ox,wo) in C1(M) n W1,00(R) the
systems (1.3") and (1.3'") have the same (local in time) C1 solutions.
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Given (<fio,uo,wo) in L°°(R), we say, as usually, that (<p,u,w) G x [0,+oo[))3
is a weak (global) solution of the Cauchy problem (1.3"), (1.4") if we have

/ / <J)iptdxdt+ / <po </?( •, 0) dx + / / (w — mu — k (j>) <p dx dt
il-i-il J1R

+ / / uil>tdxdt+ / Uq ip(-, 0) dx + / / (k cf> + mu — w) i/jx dx dt
Jr+Jr J R JR+JR

+ / / wOtdxdt + / u>o #(■, 0) <ix
Jm+Jr ./R

+ / / m2u — p(u) — mw 9xdxdt — / F((j>)0dxdt = 0,
Jr+Jr L J Jr+Jm.

V<p,ipi6 e Cc°°(R X [0,+ooD , (1.7)

and a similar definition for the Cauchy problem (1.3"'), (1.4").
We can repeat the calculations made to prove Proposition 1.1 for a (<p,u,w) €E

(LfJc(R x [0,+oo[))3 weak solution of (1.3"'), (1.4") and we obtain 4>x = u in
X>'(R x ]0, +oo[). We derive </> £ (R x [0,+oo[) and it is now easy to prove that
(<p,u,w) is a weak solution of (1.3"), (1-4"). The converse is also true, by similar consid-
erations. Hence, we have

Proposition 1.2. For a given initial data (0o,uo = <j>ox,wo) in L°°(R), the systems
(1.3") and (1.3'") have the same weak solutions.

Now let (77,(7) be a pair of smooth convex entropy/entropy flux for the system (1.3")
(cf. [4]).

( ] /'" 1 9I Example: rj\ (cf), u, w) = — <fr + / p(£.) d£ + — (w — mu — k <j))2 ,

qi(4>,u,w) = —(w — mu — k(f>)p(u)

A weak solution ((f>,u,w) of (1.3"), (1-4") is called an entropy weak solution if, in
£>'(R x ]0, +oo[),

77(0, u,w)t + q(4>, U, w)x + Vt] ■ (—w + mu + k<j>, 0, F(<f>)^ <0 (1.8)

for all pairs (r],q), ?7 convex.
The system (1.3'") admits the entropy/entropy flux pair (771,91), rji strictly convex,

defined by

1 fu 1
rj\{<t>,u,w) = -4? + J p(£)d£+ ~(w - m u)2 ,

qx ((f), u, w) = - m (j)2 — (to — m u) p(u) .

If (<fi,u,iv) £ {Lfoc fl BVioc)3 is a weak solution of (1.3"), (1-4") with initial data
in we can prove (with some tedious computations, taking in mind that 4>x =
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u, cf. Proposition 1.2, and applying the theorem in section 13.2 of [5] concerning the
differentiation of the composition) that we have, in P'(R x ]0, +oo[),

rji((j),u,w)t + <ji(4>,u,w)x + V?7i • w + k<j>, ku, mku + F(cp)^j

= r]i (<p, u, w)t + qi {<j>, u, w)x + Vr?i ■ (^-w + mu + k(f>, 0, F(<j>) j .

Hence, by Proposition 1.2, we conclude

Theorem 1.3. Assume that ((j>o,uo= (fiox,'wo) G BV(K)3 and let € (L^c fl
BVloc(R x [0,+oo[))3 be an entropy weak solution of (1.3"'), (1.4"). Then, (<j>,u,w) is
also a weak solution of (1.3"), (1.4") verifying (1.8) for the pair (r]i,qi) defined above.

2. Application of Theorem 2 in [2]. Now, in order to apply to the Cauchy
problem (1.3'"), (1.4") Theorem 2 in [2], we give initial data {4>q,Uq = 4>qx,Wo) in BV(K).
The system (1.3'") can be written as follows (recall that p'(0) = 1 and m > 1):

| I « I + A{u) 7^ I u I + g(0, u, w) = 0 ,dt
. w.

where

/to 0 0 \ / —w + k<p
A(u) = 0 m —1 I , g((j>,u,w) = I ku

\0 m2—p'(u) —m / \mku + F((f>)

The eigenvalues of A(u) are (rn, y/p'(u), —\Jp'(u)). The matrix of the corresponding
(independent) normalized right eigenvectors for u — 0 is

/10 ° \ / k 0
B = | 0 a b J and Vg(0,0,0) = J 0 k

\0 a(m — 1) b(m + 1) / \F'(0) mk 0

where a = (to2 — 2m + 2)-1/2 and b = (m2 + 2m + 2)-1/2.
Hence, R = {r.ij} = B"1 Vg(0,0,0) B is given by

( k a(—to+1) b(—to — 1) \

1 k b k
R= _2a 2 a 2

1 F'tn) ak k
\2bF{0) b 2 2 )

and verifies

i±i v / \ /

- a(m - 1) - b(m + 1) > 0 by (1.6)

and so R is diagonal dominant.
By applying Theorem 2 in [2] we derive
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Theorem 2.1. Let us assume (1.5). Then, there exist two positive constants ao,&o > 0
such that, if

(0o, uo = 4>0x, wo) S (BV(R))3

and
II(00) u0; wo)IIl~(K) < a0 , TVx((j)o,Uo,Wo) < bo ,

then there exists a weak entropy solution (0, u, to) € (L°° fl BV50c(® x [0, +oo[))3 of
(1.3"'), (1.4"). Moreover (<p(-,t),u(-,t),w(-,t)) € (BV(K))3 for each t > 0, with a
uniformly bounded (in t) total variation TVX.

Hence, by Theorem 1.3, we can derive a similar result for the Cauchy problem (1.3),
(1.4) if we replace the general entropy condition (1.8) by the following particular one:

77(0, u,v)t +<7(0, u,v)x + Vfj ■ (^-v, 0, v + F((j>)j < 0 in T>'(R x ]0, +00[) ,

where
/1 ^ ru ^

{%Q) = (^0 + -vp(u)

See [1] for the case with F = 0 and [3] for related results.
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