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Abstract. By means of a suitable change of variables we obtain, by application of a
general result by Dafermos and Hsiao, cf. [2], an existence theorem in L™ N BV, of a
weak solution of the system corresponding to the quasilinear hyperbolic equation

bt — D' (9z) Paz + Gt + F(¢) =0  in R x [0, +o0[ ,

for small initial data in BV. This theorem is a partial extension of Dafermos’s result for
the case with F(¢) = 0, proved in [1].

1. The auxiliary system. Let us consider the following Cauchy problem:
b — D' (by) yw + 0+ F(®) =0, (2,t) € R x [0, +00[, (1.1)
&(x,0) = ¢o(x), ¢4(2,0) =7p(x), TR, (1.2)

where p is a given smooth function such that p’(§) > 0,Vé € R,and F : R — Ris a
smooth function verifying F(0) = 0. We assume, to simplify, the condition p’(0) = 1.
Putting u = ¢, v = ¢¢ we can write (1.1), (1.2) as a Cauchy problem for a hyperbolic

system: _
¢ =7

U = Vg (z,t) € Rx [0,400[, (1.3)
Ty —p' (W) Uy + T+ F(¢) =0
&(x,0) = ¢o(x), u(z,0)=1up(z) = ¢o.(x), V(x,0)=7p(z), z€R. (1.4)

For technical reasons, if we choose k > 1, we can, by putting u(z,t) = u(kx, kt), v(z,t) =

v(kz, kt), ¢(z,t) = § d(kz, kt), replace (1.3), (1.4) by
¢y =
Up = Vg (x,t) € R x [0, +00[ , (1.3")
vy —p(Wu, +kv+ F(¢)=0
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where F(¢) = k F(ko),
1-—

#(2.0) = 60(2) = 1 o(k2) .

u(z,0) = uo(z) = Ug(kz) = ¢o(z) , (14"

v(z,0) = vo(z) =vo(kz), zxz€R.
For m € [1, +o0], let us introduce

a=a, = (m2—2m—|—2)_1/2 ,
b=bpn=(m?+2m+2)""?%,
a

=2 (3 LS

( m—1) +bm+1))

fn=c2, [2(% + %) (atm = 1)+ b(m + 1))] -

(notice that ¢; > 0 and k; > 1) and assume

IF'(0)] < f1 - (1.5)
We fix m > 1 such that [F (0)| < fin, ¢m > 0, and kp, > 1 and we put k = ky,. We
obtain
(2— (5+ )/2) < ! 2ib> \F/(0)] = a(m — 1) — b(m + 1)
:cmkm—<1 le) 2 |F(0))—a(m—1)—b(m+1) >0. (1.6)

Now, we consider the following nonsingular linear transformation (¢, u,v) — (¢, u, w),
where w = v+ mu + k¢, m and k as above. The Cauchy problem (1.3'), (1.4’) takes the

form
pr=w—mu—ko
U+ koy+mug, —wy, =0 (z,t) € R x [0,+00], (1.3")

wi +mkdy + (Mm% —p'(u))uz — mw, + F(¢) =0

¢(‘T’O) = ¢0(x) b
u(z,0) = upg(z) = o () , (1.4")
w(z,0) = wo(z) = vo(z) + muo(z) + kgo(z), z€R.
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Now we introduce the following auxiliary Cauchy problem in (¢, u, w),

dr+mao,—w+kep=0
U +Mmug —wy +ku=0 in R x[0,+o00[, (1.3")

wy + (m? — p'(u)) uy — mw, + mku+ F(¢) =0

with the initial data (1.4").
If (¢, u,w) is a C* solution of (1.3"), (1.4”") we easily derive, for ¢ € C°(R x [0, +00]),

—/ /¢<pztdxdt—/¢osoz(-,0)dx—m/ /wmdxdt
R.JR R R4JR
—/ /wcpzdxdt+k/ /(bgoxdwdt =0
R4/R R,JR

and

—/ /ugotdxdt—/uocp(-,O)dx—m/ /ucpxda:dt
R.JR R R.JR
+/ /wcpxda:dtﬁ-k/ /ucpda:dt =0,

and so, by addition, we obtain

//¢[<Pt+m80x—k90] dmdt+/ /u[90t+mcpx—kgo]dxdt=0.
R.JR z RJR

Now, given ¢ € D(R x ]0,+00[), it is easy to find ¢ € CX(R x [0,400[) such that
Gr+m g —k @ = first, with ¢, = e %t 1), p; = e %% o, we reduce to p1:+m P15, = V1.
We put

t
¢1(mt+c,t)=/0 ’(/}1(mT+C,T)dT“(El(C) )

where
400

61(0)= wl(mt—l—c,t)dt, VceR.
0

Hence,
//¢¢zdxdt+/ /u¢d:cdt=0, Vi € D(R x ]0,+00[) .

We derive u = ¢,. It is now easy to prove

PROPOSITION 1.1. For given initial data (dg,u0 = @oz,wo) in CH(R) N WL (R) the
systems (1.3"”) and (1.3") have the same (local in time) C* solutions.
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Given (¢o, up, wo) in L=(R), we say, as usually, that (¢, u,w) € (L (R x [0, +o0]))?

loc

is a weak (global) solution of the Cauchy problem (1.3"), (1.4”) if we have

//¢cptdzdt+/¢otp(',0)dx+/ /(w—mu—kq&)npdmdt
R.JR JR R.JR
+/ /uzj)tdxdt+/u0¢(-,0)d:c+/ /(ka&—i—mu—w)wzd:ﬂdt
R.JR R R,JR

+/ /'w()tdmdt+/w()0(-,0)dm

R JR R

+/ /[mQu—p(u)—mw] dea:dt—/ /F(d))()d:vdt =0,
R JR R JR

V,9,0 € C(R x [0, +00]) , (1.7)

and a similar definition for the Cauchy problem (1.3"), (1.4”).
We can repeat the calculations made to prove Proposition 1.1 for a (¢,u,w) €
(LS. (R x [0,+00[))® weak solution of (1.3”), (1.4”) and we obtain ¢, = u in

D'(R x ]0,+00[). We derive ¢ € WL(R x [0, +00]) and it is now easy to prove that

loc
(¢, u, w) is a weak solution of (1.3”), (1.4"). The converse is also true, by similar consid-

erations. Hence, we have

PROPOSITION 1.2. For a given initial data (¢g,ug = ¢oz, wo) in L=°(R), the systems
(1.3") and (1.3"") have the same weak solutions.
Now let (77, ¢) be a pair of smooth convex entropy/entropy flux for the system (1.3")

(cf. [4]).

( Example: (¢, u,w) = %(bQ +/ p(&)d€ + % (w—mu—ke¢)?,
0

g (g, u,w) = —(w—mu—k¢)p(u) ) .

A weak solution (¢, u,w) of (1.3"), (1.4”) is called an entropy weak solution if, in
D'(R x ]0, +00[),

(P, u, w) + q(@, u, w), + Vn - (—w +mu-+ko,0, F(d))) <0 (1.8)
for all pairs (), q), n convex.

The system (1.3"”’) admits the entropy/entropy flux pair (71,¢1), 71 strictly convex,
defined by

~ 1 u 1
m(o,u,w) = §¢2 +/O p(€) d€ + i(w—mu)2 )

G (o, u,w) = %m o (w—mu)pu) .

If (¢,u,w) € (L. N BVioe)? is a weak solution of (1.3”), (1.4”) with initial data

loc
in BV(R), we can prove (with some tedious computations, taking in mind that ¢, =
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u, cf. Proposition 1.2, and applying the theorem in section 13.2 of [5] concerning the
differentiation of the composition) that we have, in D’(R x ]0, +00[),

771(¢7U~,w)t +Ejl(¢auaw)$ +VT71 . (_w+k¢7 kua mku+F(¢)>

=m (¢, u,w)t + q1 (P, u,w), + Vny - <—w +mu+kao,O0, F(¢>)) .

Hence, by Proposition 1.2, we conclude

THEOREM 1.3. Assume that (¢o,up= ¢oz,wo) € BV(R)? and let (¢,u,w) € (LL, N

loc

BVioe(R x [0,4+00[))® be an entropy weak solution of (1.3""), (1.4"). Then, (¢, u,w) is
also a weak solution of (1.3”), (1.4") verifying (1.8) for the pair (ny,q;) defined above.

2. Application of Theorem 2 in [2]. Now, in order to apply to the Cauchy
problem (1.3""), (1.4") Theorem 2 in [2], we give initial data (g, uo = ¢os,wo) in BV (R).
The system (1.3""") can be written as follows (recall that p’(0) =1 and m > 1):

6 é
0
§<u> + AWw) 5 (u) +g(¢ru,w) =0,
w w

m 0 0 —w+ko
Au) = (O m —1) ,  g(p,u,w) = ( ku ) .
0 m?2-p(u) -m mku+ F(¢)

The eigenvalues of A(u) are (m, /p’(u), —1/p’(u)). The matrix of the corresponding
(independent) normalized right eigenvectors for u = 0 is

1 0 0 k 0 -1
B=10 a b and Vg(0,0,0) = 0 k 0 ,
0 am-1) b(m+1) F'(0) mk 0

where a = (m? — 2m +2)7/2 and b = (m? + 2m + 2)7*/2.
Hence, R = {r;;} = B"1Vg(0,0,0) B is given by

where

k a(-m+1) b(—m—1)
1, k bk
R=| 370 3 a2
1, ak k
IO 33 2

and verifies
a b 1 1 ,
Sori=Ylrl=(2-(5+7)/2) k- (5 + 5 ) IFO
i i#]
—alm—-1)—b(m+1) >0 by (1.6)

and so R is diagonal dominant.
By applying Theorem 2 in [2] we derive
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THEOREM 2.1. Let us assume (1.5). Then, there exist two positive constants ag, by > 0
such that, if
(¢0, w0 = oz, wo) € (BV(R))?

and
| (¢0, uo, wo)ll Loy < a0,  TVz(do,uo, wo) < bo

then there exists a weak entropy solution (¢,u,w) € (L= N BWoc(R x [0,+00[))® of
(1.3"), (1.4"). Moreover (¢(-,t),u(-,t),w(-,t)) € (BV(R))3 for each t > 0, with a
uniformly bounded (in t) total variation T'V,.

Hence, by Theorem 1.3, we can derive a similar result for the Cauchy problem (1.3),
(1.4) if we replace the general entropy condition (1.8) by the following particular one:

7(¢, %, 0); + §(¢,%,7) + V7 - (—5, 0,7+ F(¢)) <0 in D'(Rx]0,+o[),

where —
_ 1 “ 1 o _
ma)= (57 + [ ped+ 37 ~vpim)
See [1] for the case with F = 0 and [3] for related results.
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