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A Remark on the Existence of Steady Navier-Stokes Flows
in a Certain Two-Dimensional Infinite Channel

Hiroko MORIMOTO and Hiroshi FUJITA

Meiji University and Tokai University

Abstract. We consider the steady Navier-Stokes equations{
(u · ∇)u = ν�u − ∇p in Ω ,

div u = 0 in Ω ,

in a 2-dimensional unbounded multiply-connected domain Ω contained in an infinite straight channel R × (−1, 1),
under general outflow condition. We look for a solution which tends to a Poiseuille flow at infinity.

In this note, we shall show the existence of solution to this problem under the assumption of symmetry with
respect to the axis for the domain and the boundary value, and for small Poiseuille flow. We do not assume that the
boundary value is small. The regularity and the asymptotic behavior of the solution are also discussed.

1. Introduction.

The problem of existence of solutions to the stationary Navier-Stokes equations in chan-
nels which are cylindrical outside some compact set was suggested in the nineteen fifties by
J. Leray when he visited Leningrad (Ladyzhenskaya [13], Ladyzhenskaya-Solonnikov [14]).
The solvability of Leray’s problem was shown firstly by Amick [3] and also by Ladyzhenskaya-
Solonnikov [14]. However in their case, the domain was simply connected. We consider
2-dimensional multiply-connected unbounded domain. Namely, let Ω be a 2-dimensional
domain as follows.

Ω = T \
N⋃
i=1

Oi

where T is a straight channel

T = R × (−1, 1) = {x = (x1, x2) ∈ R2 | − ∞ < x1 < +∞,−1 < x2 < 1} ,
and Oi’s are simply connected bounded domains mutually disjoint, closure of which are con-
tained in T . We denote the boundary by

∂Ω =
N⋃
i=0

Γi ,
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where Γ0 is the boundary of T and Γi is that of Oi (1 ≤ i ≤ N,N ≥ 2). Let Γ +
0 (resp. Γ −

0 )
be the upper part (resp. the lower part) of Γ0. We consider the boundary value problem of the
Navier-Stokes equations

(NS)

{
(u · ∇)u = ν�u − ∇p in Ω ,

div u = 0 in Ω ,

with the boundary condition

(BC)

{
u = β on ∂Ω ,

u → µU as |x1| → ∞ in Ω

where u is the velocity, p is the pressure, ν is the kinematic viscosity (positive constant), β is
a given function on ∂Ω = ⋃N

i=0 Γi compactly supported, U the Poiseuille flow in T with flux
1:

(U) U = 3

4
(1 − x2

2 , 0)

and µ a constant. For the boundary value β, we suppose only the general outflow condition

(GOC)
∫
∂Ω

β · ndσ =
N∑
i=0

∫
Γi

β · ndσ = 0 ,

n being the unit outward normal vector to ∂Ω . We note that under a more stringent outflow
condition

(SOC)
∫
Γi

β · ndσ = 0 (1 ≤ i ≤ N) ,

∫
Γ +

0

β · ndσ =
∫
Γ −

0

β · ndσ = 0 ,

the existence of solution is known for small |µ|.
Suppose that the domains Oi’s are symmetric with respect to the x1-axis, every Γi(1 ≤

i ≤ N) intersects the x1-axis and the boundary value β is also symmetric. Then we can show
the existence of solution to (NS) (BC) for small |µ| without the stringent outflow condition nor
smallness assumption on β. Here the vector field ϕ(x) = (ϕ1(x1, x2), ϕ2(x1, x2)) is called
symmetric with respect to the x1-axis if

ϕ1(x1, x2) = ϕ1(x1,−x2) , ϕ2(x1, x2) = −ϕ2(x1,−x2)

holds.
As for the regularity of the solution, Amick [4] proved it together with the exponential

decay of the solution at the infinity under his setting. We also study these properties of the
solution. Lemma 5 below plays a key roll in our proof of the exponential decay of the solution.

In Section 2, we state the notation and results concerning the extension of the boundary
value (Lemma 1), the existence of solution (Theorem 1), the regularity of the solution obtained
(Theorem 2) and the asymptotic behavior of the solution (Theorem 3). The proof of Theorem
1 and Theorem 2 is found in Section 4, the proof of Theorem 3 in Section 5.
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For the bounded symmetric domain in R2 with symmetric data, Amick [2] obtained
the existence result by contradiction argument. The second author showed the similar re-
sult constructively by the virtual drain method, i.e., by constructing explicitly an appropriate
solenoidal extension of the boundary value [9]. We make use of this result.

2. Notation and results.

Let C∞
0 (Ω) be the set of all smooth vector valued functions with compact support in

Ω . Let L2(Ω) be the set of all vector valued square integrable functions in Ω with the
inner product (·, ·)Ω and the norm ‖ · ‖Ω . If there is no confusion, we denote the inner
product and the norm by (·, ·) and ‖ · ‖. Lp(Ω) is the set of all vector valued functions u
such that |u|p is integrable in Ω . The norm is denoted by ‖u‖Lp(Ω) or simply by ‖u‖p.
Wm,p(Ω) is the standard Sobolev spaces; Wm,p

0 (Ω) is the closure of C∞
0 (Ω) in Wm,p(Ω).

Hm(Ω) = Wm,2(Ω). Hm
0 (Ω) = W

m,2
0 (Ω).

Let C∞
0,σ (Ω) be the set of all smooth solenoidal (i.e. divergence free) vector valued

functions with compact support in Ω . Hσ = Hσ (Ω) is the closure of C∞
0,σ (Ω) in L2(Ω).

V = V (Ω) is the completion of C∞
0,σ (Ω) in the Dirichlet norm ‖∇ · ‖, which is equivalent to

the H 1(Ω)-norm by virtue of the Poincaré inequality (Lemma 3). Let C∞,S
0,σ (Ω) be the set of

functions in C∞
0,σ (Ω) symmetric with respect to the x1-axis. V S = V S(Ω) is the completion

of C∞,S
0,σ (Ω) in the Dirichlet norm ‖∇ · ‖.
By definition, u is called a weak solution to (NS), (BC) if u is expressible of the form

u = w + b + µU ,

where w ∈ V , b ∈ H 1(Ω) is a solenoidal extension of the boundary value

b = β − µU on ∂Ω ,

and satisfies the weak form of the Navier-Stokes equations:

(1) ν(∇u,∇v)+ ((u · ∇)u, v) = 0 (∀v ∈ C∞
0,σ (Ω)) .

Next lemma is crucial for the existence proof.

LEMMA 1. Suppose that ∂Ω is smooth and symmetric with respect to the x1-axis, that
every Γi (1 ≤ i ≤ N) intersects the x1-axis and that the boundary value β0 ∈ H 1/2(∂Ω) is
symmetric with respect to the x1-axis, vanishes on Γ0 and satisfies (GOC). Then for every
ε > 0 there exists a symmetric solenoidal extension bε of β0 such that

|((v · ∇)v,bε)| ≤ ε‖∇v‖2 (∀v ∈ V S(Ω)) .
The proof of Lemma 1 is similar to [9] and is omitted.

REMARK 1. As is noted in [9], the support of bε is contained in the union of narrow
collar neighbourhood of the boundary Γ1, · · · , ΓN and a narrow neighbourhood of segments
on the x1-axis joining Γ1 and Γ2, · · · , ΓN−1 and ΓN .
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THEOREM 1. Suppose that the boundary ∂Ω is smooth and symmetric with respect to
the x1-axis, that every Γi (1 ≤ i ≤ N) intersects the x1-axis and that the boundary value β is
a smooth function on ∂Ω, symmetric with respect to the x1-axis, vanishes on Γ0 and satisfies
(GOC). If |µ| is sufficiently small, then there exists a symmetric weak solution to (NS), (BC).

REMARK 2. The boundary value β is not necessarily small.

REMARK 3. It is well known ( e.g. Ladyzhenskaya [12],Galdi [10]) that for the weak
solution u to (NS) ( BC), there exists a scalar function p ∈ L2

loc(Ω) such that

ν(∇u,∇v)+ ((u · ∇u), v) = (p, div v) (∀v ∈ C∞
0 (Ω)) .

p is called an associated pressure of u. We call {u, p} solution pair to (NS) (BC).

THEOREM 2. The solution pair {u, p} to (NS), (BC) obtained in Theorem 1 is smooth
in Ω̄ .

Before stating a slight generalization of Theorems 1 and 2, we introduce the following
notation. For t < s, we put

Ωt,s = {(x1, x2) ∈ Ω | t < x1 < s} .
Let R be a positive number such that

(2) ΩR,∞ ∩ T = {x ∈ T | x1 > R} , Ω−∞,−R ∩ T = {x ∈ T | x1 < −R} .
REMARK 4. Theorems 1 and 2 hold true if the set Ω \ {Ω−∞,−R ∪ ΩR,∞} is not

contained in the channel T , and if the boundary value β does not vanish identically on Γ0,

but is of a bounded support and satisfies the following condition.∫
Γ +

0

β · ndx1 =
∫
Γ −

0

β · ndx1 = 0 .

Let P = − 3
2νx1 be an associated pressure of U. Let α = (α1, α2) be a multi-index and

Dα = D
α1
1 D

α2
2 , Di = ∂/∂xi (i = 1, 2).

THEOREM 3. Let R be a sufficiently large positive number mentioned in (2). The so-
lution pair {u, p} to (NS), (BC) obtained in Theorem 1 tends to the Poiseuille flow {µU, µP }
exponentially, as |x1| → ∞, that is, there exist positive constants σ and Cα such that

(3) |Dα{u(x)− µU(x)}| ≤ Cαe
−σ |x1| (|x1| > R)

(4) |Dα{∇p(x)− µ∇P(x)}| ≤ Cαe
−σ |x1| (|x1| > R)

for every multi-index α.

3. Preliminaries.

We begin with some lemmas which are necessary later. The straightforward calculation
yields
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LEMMA 2. Let U be the Poiseuille flow (U). Then

|((w · ∇)U,w)| ≤ ‖w‖2 (∀w ∈ V (Ω))
holds.

Since the Poincaré inequality holds for a domain bounded in one direction, we obtain

LEMMA 3. The following inequalities hold with some domain constants κ0, κ1.

(5) ‖w‖L2(T ) ≤ κ0‖∇w‖L2(T ) (∀w ∈ H 1
0 (T ))

(6) ‖w‖L4(T ) ≤ κ1‖∇w‖L2(T ) (∀w ∈ H 1
0 (T )) .

We need the following result for divergence operator which is due to Bogovskii [6]. See
also Galdi [10], Babuska-Aziz [5].

LEMMA 4. Let Q be a bounded domain, star-like with respect to every point of a ball
B(x0, a) ⊂ Q. Suppose f (x) ∈ Lp(Q) satisfying∫

Q

f (x)dx = 0 .

Then there exists v ∈ W 1,p
0 (Q) such that

(7)

{
div v = f in Q

v = 0 on ∂Q

satisfying

‖v‖W 1,p(Q) ≤ c‖f ‖Lp(Q)
where c is a constant dependent only on the diameter of Q and a.

In order to prove the exponential decay of the solution to the Poiseuille flow, we need
next lemma proved originally by Horgan-Wheeler [11]. For the completeness, we give a proof
following Galdi [10, Lemma VI. 2.2].

LEMMA 5. Suppose y(t) ∈ C1[R,∞), y(t) ≥ 0 (t ≥ R), and for some ξ > 0, η ∈ R,
y(t) satisfies the differential inequality

(8) y ′(t)+ ξ

∫ ∞

t

y(s)ds ≤ ηy(t) (∀t ≥ R) .

Then there exist positive constants λ and σ such that

y(t) ≤ λe−σ(t−R) (t ≥ R)

holds true.

PROOF. Let α be the positive root of the equation α2 − ηα − ξ = 0, i.e.,

α = (

√
η2 + 4ξ + η)/2 .
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Note that α > η. Put

F(t) = e−η(t−R)
{
y(t)+ α

∫ ∞

t

y(s)ds

}
.

Differentiating with respect to t , we have

F ′(t)+ αF(t) =
{
y ′(t)− ηy(t)+ (α2 − ηα)

∫ ∞

t

y(s)ds

}
e−η(t−R) .

By the differential inequality (8),

F ′(t)+ αF(t) ≤ (α2 − ηα − ξ)

∫ ∞

t

y(s)dse−η(t−R)

holds true. Since α2 − ηα− ξ = 0, F ′(t)+ αF(t) ≤ 0. Integrating the differential inequality
(eαtF (t))′ ≤ 0 from R to t , and using the definiton of F(t), we get

y(t)+ α

∫ ∞

t

y(s)ds ≤ F(R)e−(α−η)(t−R) .

Therefore, we have

− d

dt

{
e−α(t−R)

∫ ∞

t

y(s)ds

}
≤ F(R)e−(2α−η)(t−R) .

Since 2α − η > 0 and e−α(t−R)
∫ ∞
t
y(s)ds → 0 (t → ∞), we integrate the both sides and

obtain ∫ ∞

R

y(s)ds ≤ F(R)

2α − η
.

Using the definition of F and this estimate, we have

F(R) ≤ 2α − η

α − η
y(R) .

Therefore

y(t) ≤ F(R)e−(α−η)(t−R) ≤ 2α − η

α − η
y(R)e−(α−η)(t−R) .

We can choose σ and λ as follows.

σ ≡ α − η = (

√
η2 + 4ξ − η)/2 , λ =

√
η2 + 4ξ

σ
y(R)

and the lemma is proved. Q.E.D.

4. Existence and regularity of solution.

First, we give a proof of Theorem 1. The pressure corresponding to the Poiseuille flow
U = 3

4 ((1 − x2
2), 0) is given by P = − 3

2νx1. That is, U and P satisfy the Navier-Stokes
equations. ⎧⎪⎨

⎪⎩
−ν�U + (U · ∇)U + ∇P = 0 in T

div U = 0 in T

U = 0 on Γ0 .
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Remark that µU and µP also satisfy the above equations. Assume that |µ| is so small that
the inequality ν − κ2

0 |µ| > 0 holds, where κ0 is the constant introduced in Lemma 3. Let us
choose ε > 0 such that ν − κ2

0 |µ| − ε > 0 holds. Since β − µU satisfies the hypothesis of
Lemma 1, there exists its solenoidal symmetric extension b satisfying

|((w · ∇)b,w)| ≤ ε‖∇w‖2 (∀w ∈ V S(Ω)) .
Note that b is of compact support. Furthermore, since ∂Ω and β are smooth, b is also smooth.

We look for the solution {u, p} to (NS) (BC) in the following form.

(9)

{
u = w + µU + b
p = q + µP .

The function w ∈ V (Ω) satisfies the following equation.

ν(∇w,∇ϕ)+ ((w · ∇)w,ϕ)+ µ((w · ∇)U,ϕ)+ µ((U · ∇)w,ϕ)(10)

+ ((w · ∇)b,ϕ)+ ((b · ∇)w,ϕ)
= (F,ϕ)− ν(∇b,∇ϕ) (∀ϕ ∈ C∞

0,σ (Ω))

where
F = −(b · ∇)b − µ(U · ∇)b − µ(b · ∇)U .

Let Ωn, n = 1, 2, · · · , be an expanding sequence of bounded symmetric domain with
smooth boundary such that

Ωn ⊂ Ωn+1 → Ω , ∂Ωn ∩ ∂Ω → ∂Ω as n → ∞ .

We suppose that Γ1, Γ2, · · · , ΓN are the inner boundary of ∂Ω1, and the support of b is
contained in Ω1. We consider the stationary Navier-Stokes equations in Ωn.

(NS)n

{
(u · ∇)u = ν�u − ∇p in Ωn ,

div u = 0 in Ωn ,

with the boundary condition

(BC)n

{
u = β on ∂Ω ∩ ∂Ωn ,

u = µU on ∂Ωn \ ∂Ω .

A function u is called a weak solution to (NS)n (BC)n, if u ∈ H 1(Ωn), div u = 0,

ν(∇u,∇v)+ ((u · ∇)u, v) = 0 (∀v ∈ V (Ωn)) ,

and u satisfies the boundary condition (BC)n in the trace sense.
It was established by Fujita [9] that there exists un = wn + b + µU, satisfying

(11) ν(∇un,∇v)+ ((un · ∇)un, v) = 0 (∀v ∈ V (Ωn)) ,

where wn ∈ V S(Ωn). Substituting v = wn in (11), we have

ν‖∇wn‖2 = −µ((wn · ∇)U,wn)− ((wn · ∇)b,wn)− ν(∇b,∇wn)+ (F,wn) .

Since wn ∈ V S(Ωn) ⊂ V S(Ω),

|((wn · ∇)b,wn)| ≤ ε‖∇wn‖2 (∀n) .
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According to Lemma 2 and Lemma 3,

|((wn · ∇)U,wn)| ≤ (κ0‖∇wn‖)2 (∀n) .
Therefore,

ν‖∇wn‖2 ≤ (|µ|κ2
0 + ε)‖∇wn‖2 + ν|(∇b,∇wn)| + |(F,wn)| .

Since ν − κ2
0 |µ| − ε > 0 holds and F and b are independent of n, we obtain an estimate for

wn, i.e., there exists a constantM > 0 independent of n such that ‖∇wn‖ ≤ M holds true. We
remark that the norm ‖u‖H 1(Ω) is equivalent to ‖∇u‖L2(Ω). By the standard argument, we
can show the existence of the weak solution u to (NS) (BC). Since wn,b,U are symmetric,
u is also symmetric. We obtain the solution pair of the form (9), with w ∈ V S(Ω) and
q ∈ L2

loc(Ω) and Theorem 1 has been proved. Q.E.D.

Now we study the regularity of the solution to (NS) (BC) obtained in Theorem 1. Let
{u, p} be the solution pair having the form (9). Then w ∈ V S(Ω) and q ∈ L2

loc(Ω) satisfy
the following equation.

ν(∇w,∇v)− (q, div v)+ ((w · ∇)w, v)+ µ((w · ∇)U + (U · ∇)w, v)(12)

+ ((w · ∇)b + (b · ∇)w, v) = (F + ν�b, v) (∀v ∈ C∞
0 (Ω)) .

Since b is smooth in Ω and of compact support, it is easy to see that w and ∇q are smooth
in the closure of Ω . See, e.g., Galdi [10]. However, for the sake of completeness, we give a
proof in Appendix, which is based on the regularity theorem for the Stokes equations.

5. Asymptotic behavior of the solution.

5.1. Uniform convergence of the solution. Let us study the asymptotic behavior of
the solution to (NS) (BC) obtained in Theorem 1. First, we prove the uniform convergence of
the solution to the Poiseuille flow.

LEMMA 6. The solution pair {u, p} to (NS), (BC) obtained in Theorem 1 behaves
asymptotically as follows:

(13) sup
Ωt,∞

|Dα{u(x)− µU(x)}| → 0 (t → ∞) ,

(14) sup
Ωt,∞

|Dα{∇p(x)− µ∇P(x)}| → 0 (t → ∞)

for every multi-index α. Similar result holds for t → −∞.

Let us prove the lemma when t → +∞. The case t → −∞ can be proved similarly.
Since w and ∇q are smooth in ΩR,∞ (Theorem 2), and b ≡ 0 in ΩR,∞, we see that

(15)

{
−ν�w + (w · ∇)w + µ(w · ∇)U + µ(U · ∇)w + ∇q = 0 in ΩR,∞

div w = 0 in ΩR,∞

hold. Let
Q0 = {(x1, x2) | − 5/8 < x1 < 5/8,−1 < x2 < 1} ,
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Q1 = {(x1, x2) | − 1 < x1 < 1,−1 < x2 < 1} .
Let ω0 andΩ0 be bounded symmetric domains with smooth boundary satisfying

Q0 ⊂ ω0 ⊂ Ω0 ⊂ Q1 ,

such that the right (resp. left) component of ∂ω0 \ ∂Ω is congruent with the right (resp. left)
component of ∂Ω0 \ ∂Ω . Let t0 ≥ R and put

Ω(k) = {(x1, x2) | (x1 − k, x2) ∈ Ω0} , k = t0 + 1, t0 + 2, · · · ,
ω(k) = {(x1, x2) | (x1 − k, x2) ∈ ω0} , k = t0 + 1, t0 + 2, · · · .

Ω(k)’s (resp. ω(k)’s) are congruent figures.
Let ψ(x) be a scalar function in C∞(T̄ ), ψ(x1,−x2) = ψ(x1, x2), 0 ≤ ψ(x) ≤ 1,

ψ(x) ≡ 1 (x ∈ ω0); ≡ 0 (x ∈ T̄ \Ω0), and put

ψk(x1, x2) ≡ ψ(x1 − k, x2) .

Let mk be the mean value of q overΩ(k), i.e., mk = (1/|Ω(k)|) ∫∫ Ω(k) q(x)dx, where |Ω(k)|
is the measure of Ω(k). Since the pressure q is free by additive constant, we take q − mk

instead of q in (15). Put {
W(k) = ψkw

π(k) = ψk(q −mk) .

Using the equation (15), we can write

(16) ν�W(k) − ∇π(k) = ψkG0 + Gk

(17) div W(k) = w · ∇ψk in Ω(k) , W(k) = 0 on ∂Ω(k) ,

with

G0 = G0(w,U) = (w · ∇)w + µ(U · ∇)w + µ(w · ∇)U
Gk = Gk(w, q) = 2ν∇w∇ψk + ν(�ψk)w − (∇ψk)(q −mk) .

Since div w = 0 in Ω(k), and w = 0 on ∂Ω ∩ ∂Ω(k), we have

div(ψkw) = (∇ψk) · w ∈ H 1
0 (Ω

(k)) ,

∫
Ω(k)

div(ψkw)dx =
∫
∂Ω(k)

(ψkw) · ndσ = 0 .

Let us show G0,Gk ∈ L4/3(Ω(k)). By the inequality (6), we obtain

(18) ‖(w · ∇)w‖L4/3(Ω(k)) ≤ ‖∇w‖‖w‖L4(Ω(k)) ≤ κ1‖∇w‖2 .

On the other hand,

‖(U · ∇)w + (w · ∇)U‖L4/3(Ω(k)) ≤ a‖(U · ∇)w + (w · ∇)U‖Ω(k) ≤ a(1 + 2κ0)‖∇w‖Ω(k) ,

where κ0 is the constant in (5) and a = |Ω(k)|1/4. Note that κ0 and a are constants independent
of k. Therefore

‖ψkG0‖L4/3(Ω(k)) ≤ ‖G0‖L4/3(Ω(k))(19)

≤ κ1‖∇w‖2
Ω(k) + a(1 + 2κ0)|µ|‖∇w‖Ω(k) ≤ C1‖∇w‖Ω(k)



316 HIROKO MORIMOTO AND HIROSHI FUJITA

where C1 = κ1β + a(1 + 2κ0)|µ| and β = ‖∇w‖Ω . Since q ∈ L2
loc(Ω), we have

(20) ‖Gk‖L4/3(Ω(k)) ≤ a‖Gk‖Ω(k) ≤ C2{ν‖∇w‖Ω(k) + ‖q −mk‖Ω(k)}
where C2 = a(2 sup |∇ψ| + κ0 sup |�ψ|). Therefore, ψkG0 + Gk is in L4/3(Ω(k)). Accord-
ing to the well known estimate for solutions to the Stokes inhomogeneous boundary value
problem (16), (17) (Cattabriga [7]), we have

W(k) ∈ W 2,4/3(Ω(k)) , ∇π(k) ∈ L4/3(Ω(k)) .

Furthermore

ν‖W(k)‖W 2,4/3(Ω(k)) + ‖∇π(k)‖L4/3(Ω(k))(21)

≤ C3{‖ψkG0 + Gk‖L4/3(Ω(k)) + ‖w · ∇ψk‖W 1,4/3(Ω(k))}
≤ C4{‖∇w‖Ω(k) + ‖q −mk‖Ω(k)}

where the constants C3 and C4 do not depend on k. Now we proceed to the estimation for the
pressure q .

LEMMA 7. There is a constant C5 independent of k such that the estimate

(22) ‖q −mk‖Ω(k) ≤ C5‖∇w‖Ω(k)

holds.

PROOF. From (15) we have

−ν�w + ∇q = −(w · ∇)w − µ(w · ∇)U − µ(U · ∇)w = −G0(w,U) .

Multiplying this equation by v ∈ H 1
0 (Ω

(k)), integrating overΩ(k), and also noting

(const., div v)Ω(k) = 0 ,

we obtain

(23) ν(∇w,∇v)Ω(k) − (q −mk, div v)Ω(k) = −(G0(w,U), v)Ω(k) .

We look for a function v satisfying the following equation.

(24)

{
div v = q −mk in Ω(k)

v = 0 on ∂Ω(k) .

Since q −mk ∈ L2(Ω(k)) and the integral
∫∫

Ω(k) (q −mk)dx vanishes, we can apply Lemma
4 and find the solution v ∈ H 1

0 (Ω
(k)) to (24) such that the estimate

‖v‖H 1
0 (Ω

(k)) ≤ C0‖q −mk‖Ω(k)

holds true where C0 is a constant independent of k. Substituting this v into (23), we obtain

ν(∇w,∇v)Ω(k) − ‖q −mk‖2
Ω(k) = −(G0(w,U), v)Ω(k) .
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Therefore

‖q −mk‖2
Ω(k) = ν(∇w,∇v)Ω(k) + (G0(w,U), v)Ω(k)

≤ ν‖∇w‖Ω(k)‖∇v‖Ω(k) + ‖G0‖L4/3(Ω(k))‖v‖L4(Ω(k))

≤ ν‖∇w‖Ω(k)‖∇v‖Ω(k) + κ1‖G0‖L4/3(Ω(k))‖∇v‖Ω(k)

≤ C0‖q −mk‖Ω(k) (ν‖∇w‖Ω(k) + κ1‖G0‖L4/3(Ω(k))) .

According to the estimate (19) for G0, we obtain

‖q −mk‖L2(Ω(k)) ≤ C5‖∇w‖Ω(k)

where C5 = C0(ν + κ1C1). The constant C5 does not depend on k. Q.E.D.

We continue the proof of Lemma 6. Substituting (22) into (21), we obtain

(25) ν‖W(k)‖W 2.4/3(Ω(k)) + ‖∇π(k)‖L4/3(Ω(k)) ≤ C6‖∇w‖Ω(k)

where C6 = C4(1 + C5). Since ψk ≡ 1 on the set ω(k),

w = W(k) and q = π(k) +mk in ω(k) .

Therefore
w ∈ W 2,4/3(ω(k)) , ∇q ∈ L4/3(ω(k))

and

(26) ν‖w‖W 2,4/3(ω(k)) + ‖∇q‖L4/3(ω(k)) ≤ C6‖∇w‖Ω(k) .

According to the Sobolev imbedding theorem, the inclusion

W 2,4/3(ω(k)) ⊂ C(ω(k))

holds. Therefore w is bounded and continuous in ω(k) and

‖w‖
C(ω(k))

≤ C‖w‖W 2,4/3(ω(k)) ≤ C7‖∇w‖Ω(k)

where the constants C and C7 = CC6 do not depend on k. Since

(27) Ω(k) ⊂ Ωk−1,k+1 ⊂ ω(k−1) ∪ ω(k) ∪ ω(k+1) ,

it holds that

‖w‖C(Ω(k)) ≤ sup
k−1≤j≤k+1

‖w‖C(ω(j)) ≤ sup
k−1≤j≤k+1

C7‖∇w‖Ω(j)(28)

≤ C7β (∀k ≥ R + 1)

where β = ‖∇w‖Ω . Furthermore, by (28), we see G0 ∈ L2(Ω(k)) and

‖G0‖Ω(k) ≤ ‖w‖C(Ω(k))‖∇w‖Ω(k) + |µ|(1 + 2κ0)‖∇w‖Ω(k) ≤ C‖∇w‖Ω(k)

where C = C7β + |µ|(1 + 2κ0) is a constant independent of k. As for Gk , using (20) and
(22), we obtain

‖Gk‖Ω(k) ≤ C‖∇w‖Ω(k)

where C = C2(ν + C5)/a is a constant independent of k.
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Here and after C denotes various positive constant independent of k. Repeating the
preceding procedure, we conclude that W(k) ∈ H 2(Ω(k)) and ∇π(k) ∈ L2(Ω(k))

ν‖W(k)‖H 2(Ω(k)) + ‖∇π(k)‖L2(Ω(k)) ≤ C‖∇w‖Ω(k)

therefore, w ∈ H 2(ω(k)), ∇q ∈ L2(ω(k)). Thanks to the inclusion (27), we have

(29) ν‖w‖H 2(Ω(k)) + ‖∇q‖L2(Ω(k)) ≤ C

k+1∑
j=k−1

‖∇w‖Ω(j) ,

for a constant C independent of k. This estimate assures that w ∈ H 2(Ωk,∞) and ∇q ∈
L2(Ωk,∞).

Now we can show easily div(ψkw) ∈ H 2(Ω(k)) ∩ H 1
0 (Ω

(k)) and that ∇G0,∇Gk ∈
L2(Ω(k)), that is, G0, Gk ∈ H 1(Ω(k)). We apply the argument as before and obtain

W ∈ H 3(Ω(k)) , ∇π ∈ H 1(Ω(k)) .

This means that

w ∈ H 3(ω(k)) , ∇q ∈ H 1(ω(k)) .

As before we can show easily

(30) ν‖w‖H 3(Ω(k)) + ‖∇q‖H 1(Ω(k)) ≤ C

k+2∑
j=k−2

‖∇w‖Ω(j) .

Similarly,

(31) ν‖w‖H 2+�(Ω(k)) + ‖∇q‖H�(Ω(k)) ≤ C

k+1+�∑
j=k−1−�

‖∇w‖Ω(j) ,

for � = 2, 3, · · · .
Now we estimate w in Ωk,∞. Using (29) and the inclusion

ω(j) ⊂ Ω(j) , Ωk,∞ ⊂
⋃
j≥k

ω(j) ⊂ Ωk−1,∞ ,

we obtain

‖w‖
C(Ωk,∞) ≤ sup

j≥k
‖w‖

C(ω(j))
≤ sup
j≥k

‖w‖
C(Ω(j))

(32)

≤ C sup
j≥k

‖w‖H 2(Ω(j)) ≤ C sup
j≥k

j+1∑
j−1

‖∇w‖Ω(i) ≤ 3C‖∇w‖Ωk−2,∞ .

The right hand side tends to 0 as k → ∞, because the constant C does not depend on k and
∇w ∈ L2(Ω). Therefore (13) for |α| = 0 is proved. Repeating the above argument, we have
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the estimate for |α| > 0:

‖Dαw‖
C(Ωk,∞) ≤ sup

j≥k
‖Dαw‖

C(ω(j))
≤ sup
j≥k

‖Dαw‖
C(Ω(j))

≤ C sup
j≥k

‖w‖H |α|+2(Ω(j))(33)

≤ C sup
j≥k

j+1+|α|∑
j−1−|α|

‖∇w‖Ω(i) ≤ (2|α| + 3)C‖∇w‖Ωk−2−|α|,∞ .

∇q can be similarly estimated by (30) and (31).
This completes the proof of Lemma 6. Q.E.D.

5.2. Exponential decay of the solution. Now we state the outline of the proof of
Theorem 3. For R < t < s, we set

Ωt,s = {(x1, x2) ∈ Ω | t < x1 < s} , Σ(t) = {(t, x2) ∈ Ω | − 1 < x2 < 1} .
Put H(t) ≡ ∫∫

Ωt,∞ |∇w|2dx. Then, differentiating with respect to t , we obtain

H′(t) = −
∫
Σ(t)

|(∇w)(t, x2)|2dx2 .

The similar argument to [10] yields

(34) νH′(t)+ 2(ν − |µ|κ2
0 )

∫ ∞

t

H(x1)dx1 ≤ CH(t) (t ≥ R) ,

where C is a constant. If |µ| is so small that ν−|µ|κ2
0 > 0, we can apply Lemma 5 to (34) and

obtain the exponential decay of the Dirichlet norm of w, that is, there exist positive constants
σ and λ such that

H(t) ≤ λ2e−2σ(t−R) (t ≥ R) .

Consequently, using the estimate (33), we obtain

‖Dαw‖
C(Ωt,∞) ≤ (2|α| + 3)C‖∇w‖L2(Ωt−2−|α|,∞) ≤ (2|α| + 3)CH(t − 2 − |α|)1/2(35)

≤ (2|α| + 3)Cλe−σ(t−2−|α|−R)

and the estimate (3) is proved. The estimate for ∇q can be shown similarly and Theorem 3 is
proved. Q.E.D.

REMARK 5. In the forthcoming paper [16], the first author studies several symmetric
flows in symmetric channels involving general outflow condition and shows the existence and
asymptotic behavior of the solution in the criterion of Amick [3], [4].

Appendix. PROOF OF THEOREM 2.
Let w ∈ V (Ω) and q ∈ L2

loc(Ω) satisfy the following equation.

ν(∇w,∇v)− (q, div v)+ ((w · ∇)w, v)+ µ((w · ∇)U + (U · ∇)w, v)

+ ((w · ∇)b + (b · ∇)w, v) = (F′, v) (∀v ∈ C∞
0 (Ω)) ,

where F′ ≡ F+ν�b is a smooth function of compact support. Let us show that w, q ∈ C∞(ω̄)
for any bounded domain ω containing Ω−R,R and contained in Ω . Let a′′ < a′ < −R <

R < b′ < b′′, ω′ = Ω ∩ {a′ < x1 < b′}, ω′′ = Ω ∩ {a′′ < x1 < b′′} and Q be a bounded
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domain with smooth boundary such that ω ⊂ ω′ ⊂ ω′′ ⊂ Q ⊂ Ω . Let ψ(x) be a smooth
function defined in the closure of Ω such that

ψ(x) ≡ 1 (x ∈ ω̄) , ψ(x) ≡ 0 (x ∈ Ω̄ \ Q̄) .
Put

W ≡ ψw , π ≡ ψq .

Then, it is easy to see that W ∈ H 1
0 (Q), π ∈ L2(Q) and they satisfy

ν(∇W,∇v)− (π, div v) = −(ψG0 + G1, v) (∀v ∈ C∞
0 (Ω))(36)

div W = div(ψw) = ∇ψ · w , W|∂Q = 0

where

G0 = (w · ∇)w + µ(w · ∇)U + µ(U · ∇)w + (w · ∇)b + (b · ∇)w − F′ ,
G1 = 2ν∇ψ∇w + ν(�ψ)w − (∇ψ)q .

Note div W = div(ψw) = ∇ψ · w + ψdiv w = ∇ψ · w ∈ H 1
0 (Q). According to Hölder’s

inequality and the Sobolev imbedding theorem, we have

‖(w · ∇)w‖L4/3(Q) ≤ ‖w‖L4(Q)‖∇w‖L2(Q) ≤ C‖w‖H 1(Q)‖∇w‖L2(Q)

and it is easy to show G0 ∈ L4/3(Q). On the other hand, we can easily check G1 ∈ L2(Q).
ThereforeψG0 +G1 ∈ L4/3(Q). Using the well known result of Cattabriga [7] for the Stokes
boundary value problem, we have W ∈ W 2,4/3(Q), ∇π ∈ L4/3(Q). Since

w = W in ω and q = π in ω ,

it holds that
w ∈ W 2,4/3(ω) ⊂ C(ω̄) , ∇q ∈ L4/3(ω) .

According to the above estimate, it is easy to check G0 ∈ L2(ω). Repeating the previous
argument, we see that

w ∈ H 2(ω) , ∇q ∈ L2(ω) .

Now, let us show further regularity of the solution w, q . Let ω andQ be as before. It is easy to
check that ∇G0, ∇G1 ∈ L2(Q), that is, G0, G1 ∈ H 1(Q). We apply the argument as before
and obtain

W ∈ H 3(Q) , ∇π ∈ H 1(Q) .

This means that
w ∈ H 3(ω) , ∇q ∈ H 1(ω) .

We continue in this fashion to show that

w ∈ Hm(ω) , ∇q ∈ Hm−2(ω) , m = 2, 3, · · · .
And we see

w ∈ C∞(ω̄) , ∇q ∈ C∞(ω̄) .
This completes the proof of Theorem 2. Q.E.D.
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