A remark on the local Lipschitz continuity of vector hysteresis operators

Pavel Krejčí ${ }^{1}$, Praha and Berlin

Abstract

It is known that the vector stop operator with a convex closed characteristic Z of class C^{1} is locally Lipschitz in the space of absolutely continuous functions if the unit outward normal mapping n is Lipschitz on the boundary ∂Z of Z. We prove that in the regular case, this condition is also necessary.

1991 Mathematics Subject Classification. 58E35, 47H30.
Keywords. Variational inequality, hysteresis operators.

1 Introduction

Mathematical models of multidimensional hysteresis phenomena in elastoplasticity or ferromagnetism are often based on the variational inequality (see e. g. [Al, Be, Bro, BK, DL, K1, NH, V])

$$
\left\{\begin{array}{l}
\langle\dot{u}(t)-\dot{x}(t), x(t)-\varphi\rangle \geq 0 \quad \forall \varphi \in Z \tag{1.1}\\
x(t) \in Z \quad \forall t \in[0, T] \\
x(0)=x^{0} \in Z
\end{array}\right.
$$

where $u \in W^{1,1}(0, T ; X)$ is a given function, X a Hilbert space endowed with a scalar product $\langle\cdot, \cdot\rangle, Z \subset X$ is a convex closed set, $t \in[0, T]$ is the time variable and the dot denotes the derivative with respect to t.

The existence of a unique solution $x \in W^{1,1}(0, T ; X)$ to problem (1.1) is a special case of classical results for evolution variational inequalities, cf. e. g. [Bre, DL].

In stochastics, inequality (1.1) is known as a special case of the Skorokhod problem ([DI, $\mathrm{DN}])$. In the theory of hysteresis operators, the solution mapping

$$
\begin{equation*}
\mathcal{S}: Z \times W^{1,1}(0, T ; X) \rightarrow W^{1,1}(0, T ; X):\left(x^{0}, u\right) \mapsto x \tag{1.2}
\end{equation*}
$$

is called the stop operator with characteristic Z and its properties have been systematically studied (see [KP, V, K1, K2]) together with its extension to the space $C([0, T] ; X)$ of continuous functions. The dynamics described by the operator \mathcal{S} is a special case of a sweeping process, see $[\mathrm{M}]$.

Analytical properties of the stop in the space $W^{1,1}(0, T ; X)$ endowed with the norm

$$
\begin{equation*}
|u|_{1,1}:=|u(0)|+\int_{0}^{T}|\dot{u}(t)| d t \tag{1.3}
\end{equation*}
$$

[^0]depend substantially on the geometry of the characteristic Z. The operator \mathcal{S} : $Z \times$ $W^{1,1}(0, T ; X) \rightarrow W^{1,1}(0, T ; X)$ is always continuous, see Theorem I.3.12 of [K1]. It was conjectured without proof in $[\mathrm{KP}]$ that this mapping is Lipschitz if Z is a polyhedron and locally Lipschitz if the boundary ∂Z of Z is smooth. These statements have been rigorously proved only recently in [DT] and [D], respectively. In [D], it was shown that the Lipschitz continuity of the mapping
\[

$$
\begin{equation*}
n: \partial Z \rightarrow \partial B_{1}(0) \tag{1.4}
\end{equation*}
$$

\]

(by $B_{r}(z)$ we denote the ball centered at $z \in X$ with radius $r>0$), which with each $x \in \partial Z$ associates the unit outward normal $n(x)$ to Z at the point x, is sufficient for the local Lipschitz continuity of the stop. Another proof which also yields an explicit upper bound for the Lipschitz coefficient (optimal if Z is a ball) can be found in [K2] as a generalization of the technique used in $[\mathrm{BK}]$ for the ball.
Example 3.2 of [D] shows that the stop is not necessarily locally Lipschitz if the mapping n is only $1 / 2$-Hölder continuous. The aim of this paper is to fill the gap and to prove that the local Lipschitz continuity cannot be expected if ∂Z is of class C^{1} and the ratio $|n(x)-n(y)| /|x-y|, x, y \in \partial Z$, is unbounded.
Let us note that this is not just an academic question. A precise upper bound for the Lipschitz coefficient of the stop has been substantially exploited in [BK] for proving the well-posedness of constitutive laws of elastoplasticity with nonlinear kinematic hardening.

2 Main result

We consider the simplest case $X=\mathbb{R}^{2}$ and fix a convex closed set $Z \subset X$ of class C^{1} in such a way that there exists a point $x^{*} \in \partial Z$ for which we have

$$
\begin{equation*}
\lim _{\substack{x \rightarrow x^{*} \\ x \in \partial Z}}\left|n(x)-n\left(x^{*}\right)\right| /\left|x-x^{*}\right|=+\infty \tag{2.1}
\end{equation*}
$$

By shifting and rotating the coordinate system we may assume that $x^{*}=0$ and that there exists $\varepsilon>0$ such that

$$
\begin{equation*}
Z \cap\left([-\varepsilon, \varepsilon]^{2}\right)=\left\{\binom{a}{b} \in[-\varepsilon, \varepsilon]^{2} ; b \geq G(a)\right\} \tag{2.2}
\end{equation*}
$$

where $G:[-\varepsilon, \varepsilon] \rightarrow \mathbb{R}^{+}$is a convex function, $G(0)=0$, and its derivative $g=G^{\prime}$ is continuous, increasing, $g(0)=0$ and $\lim _{a \rightarrow 0+} g(a) / a=+\infty$ (see Fig. 1).
We make the following simplifying assumptions.

Hypothesis 2.1

(i) $G:[-\varepsilon, \varepsilon] \rightarrow \mathbb{R}^{+}$is convex and even, $G(0)=0$,
(ii) $g=G^{\prime}$ is increasing and concave in $\left[0, \varepsilon\left[, g(0)=0, g^{\prime}(0+)=+\infty\right.\right.$.

The rest of this paper is devoted to the proof of the following result.
Theorem 2.2 Let $Z \subset \mathbb{R}^{2}$ be a convex closed set satisfying condition (2.2) and $H y$ pothesis 2.1. Then for every $R>0$ there exists a function $u \in W^{1,1}\left(0,1 ; \mathbb{R}^{2}\right)$ such that $|u|_{1,1} \leq 1$, and initial conditions $x^{0}, y^{0} \in Z$ such that the functions $x=\mathcal{S}\left(x^{0}, u\right)$, $y=\mathcal{S}\left(y^{0}, u\right)$, where \mathcal{S} is the stop operator (1.2), satisfy the inequality

$$
\begin{equation*}
\int_{0}^{1}|\dot{x}(t)-\dot{y}(t)| d t \geq R\left|x^{0}-y^{0}\right| . \tag{2.3}
\end{equation*}
$$

Figure 1: The convex characteristic Z

3 Proof of Theorem 2.2

We follow the construction from Example 3.2 of [D]. Taking a smaller $\varepsilon>0$ if necessary, we may assume that

$$
\begin{equation*}
\varepsilon<\frac{1}{2 \sqrt{2}}, \quad g(\varepsilon)<\frac{1}{\sqrt{2}} \tag{3.1}
\end{equation*}
$$

We fix some $\left.a_{0} \in\right] 0, \varepsilon\left[\right.$ (arbitrary, for the moment) and construct a sequence $\left\{a_{k} ; k \in\right.$ $\mathbb{N} \cup\{0\}\}$ by induction in the following way. Let $a_{0}>a_{1}>\ldots>a_{k}>0$ be already given and let us consider the differential equation

$$
\begin{equation*}
\dot{r}_{k}=\frac{1-g\left(a_{k}-t\right) g\left(r_{k}\right)}{1+g^{2}\left(r_{k}\right)}, \quad r_{k}(0)=0 \tag{3.2}
\end{equation*}
$$

in the domain $\left(t, r_{k}\right) \in \mathcal{D}_{k}:=\left[0, a_{k}\right] \times\left[0, a_{k}\right]$. The function

$$
F:\left(t, r_{k}\right) \mapsto \frac{1-g\left(a_{k}-t\right) g\left(r_{k}\right)}{1+g^{2}\left(r_{k}\right)}
$$

is continuous in \mathcal{D}_{k} and $0<F\left(t, r_{k}\right)<1$ whenever $\left(t, r_{k}\right) \in \mathcal{D}_{k}, r_{k}>0$. Moreover, the function $r_{k} \mapsto F\left(t, r_{k}\right)$ is decreasing in $\left[0, a_{k}\right]$ for every $t \in\left[0, a_{k}\right]$; problem (3.2) therefore admits in \mathcal{D}_{k} a unique maximal solution $r_{k}:\left[0, a_{k}\right] \rightarrow\left[0, a_{k}\right], 0<\dot{r}_{k}(t)<1$ for all $t \in] 0, a_{k}[$. Putting

$$
\begin{equation*}
a_{k+1}:=r_{k}\left(a_{k}\right) \tag{3.3}
\end{equation*}
$$

we thus have $0<a_{k+1}<a_{k}$ and the induction step is complete. By construction, we moreover have for every $k \in \mathbb{N} \cup\{0\}$

$$
\begin{equation*}
a_{k+1} \geq a_{k} \frac{1-g^{2}\left(a_{k}\right)}{1+g^{2}\left(a_{k}\right)} \geq a_{k}\left(1-2 g^{2}\left(a_{k}\right)\right) \tag{3.4}
\end{equation*}
$$

For $k \in \mathbb{N} \cup\{0\}$ put

$$
\begin{equation*}
t_{0}:=0, \quad t_{k+1}:=t_{k}+a_{k}, \quad T:=\sum_{k=0}^{\infty} a_{k} \leq \infty \tag{3.5}
\end{equation*}
$$

We choose two points $x^{0}, y^{0} \in Z$ in the form

$$
\begin{equation*}
x^{0}:=\binom{-a_{0}}{G\left(a_{0}\right)}, \quad y^{0}:=\binom{0}{0} \tag{3.6}
\end{equation*}
$$

and define functions $\bar{u}, \bar{x}, \bar{y}:\left[0, T\left[\rightarrow \mathbb{R}^{2}\right.\right.$ by the formulas

$$
\begin{align*}
& \bar{u}(0):=0, \quad \bar{x}(0):=x^{0}, \quad \bar{y}(0):=y^{0}, \tag{3.7}\\
& \bar{u}(t):=\left\{\begin{array}{cl}
\bar{u}\left(t_{j}\right)+\binom{t-t_{j}}{G\left(t_{j+1}-t\right)-G\left(a_{j}\right)} & \text { for } \left.t \in] t_{j}, t_{j+1}\right], \quad j \text { even, } \\
\left.\left.\bar{u}\left(t_{j}\right)+\binom{t_{j}-t}{G\left(t_{j+1}-t\right)-G\left(a_{j}\right)} \quad \text { for } t \in\right] t_{j}, t_{j+1}\right], \quad j \text { odd, }
\end{array}\right. \tag{3.8}\\
& \bar{x}(t):= \begin{cases}\bar{x}\left(t_{j}\right)+\bar{u}(t)-\bar{u}\left(t_{j}\right) & \text { for } \left.t \in] t_{j}, t_{j+1}\right], \\
\binom{-r_{j}\left(t-t_{j}\right)}{G\left(r_{j}\left(t-t_{j}\right)\right)} & \text { for } \left.t \in] t_{j}, t_{j+1}\right], \quad j \text { oden },\end{cases} \tag{3.9}
\end{align*}
$$

where $r_{j}:\left[0, a_{j}\right] \rightarrow\left[0, a_{j+1}\right]$ is the solution of equation (3.2) for $j \in \mathbb{N} \cup\{0\}$.
Let us check by induction that we have

$$
\begin{equation*}
\bar{x}=\mathcal{S}\left(x^{0}, \bar{u}\right), \quad \bar{y}=\mathcal{S}\left(y^{0}, \bar{u}\right) \quad \text { in } \quad[0, T[\tag{3.11}
\end{equation*}
$$

Assume that identities (3.11) hold for $t \in\left[0, t_{k}\right]$, and let for instance k be even, $k \geq 0$ (the case ' k odd' is analogous). For $k \geq 2$ we have

$$
\begin{align*}
\bar{x}\left(t_{k}\right) & =\binom{-r_{k-1}\left(t_{k}-t_{k-1}\right)}{G\left(r_{k-1}\left(t_{k}-t_{k-1}\right)\right)}=\binom{-a_{k}}{G\left(a_{k}\right)}, \tag{3.12}\\
\bar{y}\left(t_{k}\right) & =\bar{y}\left(t_{k-1}\right)+\bar{u}\left(t_{k}\right)-\bar{u}\left(t_{k-1}\right) \tag{3.13}\\
& =\binom{r_{k-2}\left(t_{k-1}-t_{k-2}\right)}{G\left(r_{k-2}\left(t_{k-1}-t_{k-2}\right)\right)}-\binom{a_{k-1}}{G\left(a_{k-1}\right)}=\binom{0}{0},
\end{align*}
$$

for $k=0$ the above identities hold by the choice (3.6), (3.7) of initial conditions. For $\left.t \in] t_{k}, t_{k+1}\right]$ we have by definition

$$
\bar{x}(t):=\bar{x}\left(t_{k}\right)+\bar{u}(t)-\bar{u}\left(t_{k}\right)=\binom{t-t_{k+1}}{G\left(t_{k+1}-t\right)}, \quad \bar{y}(t):=\binom{r_{k}\left(t-t_{k}\right)}{G\left(r_{k}\left(t-t_{k}\right)\right)}
$$

In particular, both \bar{x}, \bar{y} are absolutely continuous in $\left[0, t_{k+1}\right]$ and $\bar{x}(t), \bar{y}(t)$ belong to Z for all $t \in\left[t_{k}, t_{k+1}\right]$. Since $\dot{\bar{x}}(t)=\dot{\bar{u}}(t)$ for all $\left.t \in\right] t_{k}, t_{k+1}[$, the function \bar{x} is automatically a solution of problem (1.1) in $\left[0, t_{k+1}\right]$. The same argument applies to \bar{y} provided we check that the inequality

$$
\begin{equation*}
\langle\dot{\bar{u}}(t)-\dot{\bar{y}}(t), \bar{y}(t)-\varphi\rangle \geq 0 \quad \forall \varphi \in Z \tag{3.14}
\end{equation*}
$$

holds in $] t_{k}, t_{k+1}[$.
Equation (3.2) yields

$$
\begin{equation*}
\left.\dot{r}_{k}\left(t-t_{k}\right)=\frac{1-g\left(t_{k+1}-t\right) g\left(r_{k}\left(t-t_{k}\right)\right)}{1+g^{2}\left(r_{k}\left(t-t_{k}\right)\right)} \quad \text { for } t \in\right] t_{k}, t_{k+1}[\tag{3.15}
\end{equation*}
$$

hence

$$
\begin{equation*}
\dot{\bar{u}}(t)-\dot{\bar{y}}(t)=\frac{g\left(t_{k+1}-t\right)+g\left(r_{k}\left(t-t_{k}\right)\right)}{\sqrt{1+g^{2}\left(r_{k}\left(t-t_{k}\right)\right)}} n(\bar{y}(t)) \tag{3.16}
\end{equation*}
$$

where

$$
\begin{equation*}
n(\bar{y}(t)):=\frac{1}{\sqrt{1+g^{2}\left(r_{k}\left(t-t_{k}\right)\right)}}\binom{g\left(r_{k}\left(t-t_{k}\right)\right)}{-1} \tag{3.17}
\end{equation*}
$$

is the unit outward normal to Z at the point $\bar{y}(t)$ and inequality (3.14) follows from the convexity of Z. We have thus proved that identities (3.11) are fulfilled.
An elementary computation yields for all $j \in \mathbb{N} \cup\{0\}$

$$
\begin{align*}
\int_{t_{j}}^{t_{j+1}}|\dot{\bar{u}}(t)| d t & =\int_{t_{j}}^{t_{j+1}} \sqrt{1+g^{2}\left(t_{j+1}-t\right)} d t \tag{3.18}\\
& =\int_{0}^{a_{j}} \sqrt{1+g^{2}(s)} d s \leq \sqrt{2} a_{j} \\
\int_{t_{j}}^{t_{j+1}}|\dot{\bar{x}}(t)-\dot{\bar{y}}(t)| d t & =\int_{t_{j}}^{t_{j+1}} \frac{g\left(t_{j+1}-t\right)+g\left(r_{j}\left(t-t_{j}\right)\right)}{\sqrt{1+g^{2}\left(r_{j}\left(t-t_{j}\right)\right)}} d t \tag{3.19}\\
& \geq \frac{1}{\sqrt{2}} \int_{t_{j}}^{t_{j+1}} g\left(t_{j+1}-t\right) d t=\frac{1}{\sqrt{2}} G\left(a_{j}\right) .
\end{align*}
$$

The proof of Theorem 2.2 consists in choosing an appropriate value of a_{0} in the above construction and putting

$$
u(t):= \begin{cases}\bar{u}(t) & \text { for } t \in\left[0, t_{n}\right] \tag{3.20}\\ \bar{u}\left(t_{n}\right) & \text { for } \left.t \in] t_{n}, 1\right]\end{cases}
$$

with some n depending on a_{0} such that $t_{n}<1$. More precisely, we choose n to be the integer part of $1 /\left(\sqrt{2} a_{0}\right)$,

$$
\begin{equation*}
n:=\left[\frac{1}{\sqrt{2} a_{0}}\right] \tag{3.21}
\end{equation*}
$$

and, according to assumption (3.1), we have

$$
\begin{equation*}
\frac{1}{2 \sqrt{2}} \leq n a_{0} \leq \frac{1}{\sqrt{2}} \tag{3.22}
\end{equation*}
$$

Definition (3.5) yields

$$
t_{n}=\sum_{k=0}^{n-1} a_{k} \leq n a_{0} \leq \frac{1}{\sqrt{2}}<1
$$

hence formula (3.20) is meaningful. Inequality (3.18) yields

$$
\begin{equation*}
|u|_{1,1}=\int_{0}^{1}|\dot{u}(t)| d t=\sum_{k=0}^{n-1} \int_{t_{k}}^{t_{k+1}}|\dot{\bar{u}}(t)| d t \leq \sqrt{2} \sum_{k=0}^{n-1} a_{k} \leq 1 \tag{3.23}
\end{equation*}
$$

Let now $R>0$ be given. The proof will be complete if we check that inequality (2.3) holds for a suitable choice of a_{0}.
Let us first estimate the integral $\int_{0}^{1}|\dot{x}(t)-\dot{y}(t)| d t$ from below. We obviously have $x=\bar{x}$, $y=\bar{y}$ in $\left[0, t_{n}\right], \dot{x}=\dot{y}=0$ in $] t_{n}, 1[$, consequently

$$
\begin{equation*}
\int_{0}^{1}|\dot{x}(t)-\dot{y}(t)| d t=\sum_{k=0}^{n-1} \int_{t_{k}}^{t_{k+1}}|\dot{\bar{x}}(t)-\dot{\bar{y}}(t)| d t \geq \frac{1}{\sqrt{2}} \sum_{k=0}^{n-1} G\left(a_{k}\right) \tag{3.24}
\end{equation*}
$$

according to inequality (3.19).
We define auxiliary functions

$$
\begin{equation*}
\left.\left.\phi(s):=2 s g^{2}(s), \quad \Phi(s):=\int_{s}^{\varepsilon} \frac{d r}{\phi(r)} \quad \text { for } s \in\right] 0, \varepsilon\right] \tag{3.25}
\end{equation*}
$$

Then $\Phi^{\prime}=-1 / \phi, \Phi(\varepsilon)=0, \Phi(0+)=+\infty, \phi(0)=0$ and Hypothesis 2.1 (i) entails $\lim _{s \rightarrow 0+} \phi^{\prime}(s)=0$. Inequality (3.4) can be written in the form

$$
\begin{equation*}
a_{k+1} \geq a_{k}-\phi\left(a_{k}\right) \tag{3.26}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\Phi\left(a_{k+1}\right)-\Phi\left(a_{k}\right)=\int_{a_{k+1}}^{a_{k}} \frac{d r}{\phi(r)} \leq \frac{a_{k}-a_{k+1}}{\phi\left(a_{k+1}\right)} \leq \frac{\phi\left(a_{k}\right)}{\phi\left(a_{k}-\phi\left(a_{k}\right)\right)} \tag{3.27}
\end{equation*}
$$

for $k \in \mathbb{N} \cup\{0\}$. Note that

$$
\begin{equation*}
\lim _{s \rightarrow 0+} \frac{\phi(s)-\phi(s-\phi(s))}{\phi(s)}=\lim _{s \rightarrow 0+} \frac{1}{\phi(s)} \int_{s-\phi(s)}^{s} \phi^{\prime}(r) d r=0 \tag{3.28}
\end{equation*}
$$

hence

$$
\begin{equation*}
\lim _{s \rightarrow 0+} \frac{\phi(s)}{\phi(s-\phi(s))}=1 \tag{3.29}
\end{equation*}
$$

Consequently, we can put

$$
\begin{equation*}
\alpha:=\sup _{s \in] 0, \varepsilon]} \frac{\phi(s)}{\phi(s-\phi(s))}<\infty \tag{3.30}
\end{equation*}
$$

and from inequality (3.27) it follows that

$$
\begin{equation*}
\Phi\left(a_{k+1}\right)-\Phi\left(a_{k}\right) \leq \alpha \quad \forall k \in \mathbb{N} \cup\{0\} \tag{3.31}
\end{equation*}
$$

Let $\left.\left.\Phi^{-1}: \mathbb{R}^{+} \rightarrow\right] 0, \varepsilon\right]$ be the inverse function to Φ. Summing up the above inequalities over k, we obtain

$$
\begin{equation*}
a_{k} \geq \Phi^{-1}\left(\Phi\left(a_{0}\right)+\alpha k\right) \quad \forall k \in \mathbb{N} \cup\{0\} \tag{3.32}
\end{equation*}
$$

Combining relations (3.32) and (3.22), we have

$$
\begin{align*}
\sum_{k=0}^{n-1} G\left(a_{k}\right) & \geq \sum_{k=0}^{n-1} G\left(\Phi^{-1}\left(\Phi\left(a_{0}\right)+\alpha k\right)\right) \geq \int_{0}^{n} G\left(\Phi^{-1}\left(\Phi\left(a_{0}\right)+\alpha x\right)\right) d x \tag{3.33}\\
& \geq \int_{0}^{\frac{1}{2 \sqrt{2} a_{0}}} G\left(\Phi^{-1}\left(\Phi\left(a_{0}\right)+\alpha x\right)\right) d x
\end{align*}
$$

The estimates (3.33) and (3.24) together with the elementary inequality $\left|x^{0}-y^{0}\right|=$ $\sqrt{a_{0}^{2}+G^{2}\left(a_{0}\right)} \leq \sqrt{2} a_{0}$ show that Theorem 2.2 will be proved if

$$
\begin{equation*}
\limsup _{s \rightarrow 0+} \frac{1}{s} \int_{0}^{\frac{1}{2 \sqrt{2} s}} G\left(\Phi^{-1}(\Phi(s)+\alpha x)\right) d x=\infty \tag{3.34}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\limsup _{s \rightarrow 0+} \frac{1}{s} \int_{\Phi(s)}^{\Phi(s)+\frac{\beta}{s}} G\left(\Phi^{-1}(y)\right) d y=\infty \quad \text { with } \quad \beta=\frac{\alpha}{2 \sqrt{2}} \tag{3.35}
\end{equation*}
$$

By Hypothesis 2.1 (ii), we have $2 G(z) \geq z g(z)$ and $g(z) \leq g(s)$ for $0<z<s<\varepsilon$, hence

$$
\begin{align*}
\frac{1}{s} \int_{\Phi(s)}^{\Phi(s)+\frac{\beta}{s}} G\left(\Phi^{-1}(y)\right) d y & =\frac{1}{2 s} \int_{\Phi^{-1}\left(\Phi(s)+\frac{\beta}{s}\right)}^{s} \frac{G(z)}{z g^{2}(z)} d z \tag{3.36}\\
& \geq \frac{1}{4 g(s)}\left(1-\frac{1}{s} \Phi^{-1}\left(\Phi(s)+\frac{\beta}{s}\right)\right)
\end{align*}
$$

Let us define an auxiliary function $\psi(v):=1 / \Phi^{-1}(v)$ for $v>0$. Then $\psi(0)=1 / \varepsilon$, $\lim _{v \rightarrow+\infty} \psi(v)=+\infty, \psi$ is increasing in \mathbb{R}^{+}and satisfies the differential equation

$$
\begin{equation*}
\psi^{\prime}(v)=2 \psi(v) g^{2}\left(\frac{1}{\psi(v)}\right) . \tag{3.37}
\end{equation*}
$$

By the change of variables $s=1 / \psi(v)$ we obtain

$$
\begin{equation*}
\frac{1}{s} \Phi^{-1}\left(\Phi(s)+\frac{\beta}{s}\right)=\frac{\psi(v)}{\psi(v+\beta \psi(v))} . \tag{3.38}
\end{equation*}
$$

According to the Mean Value Theorem, for all $v>0$ we have

$$
\begin{equation*}
\frac{\psi(v+\beta \psi(v))}{\psi(v)}=1+\beta \psi^{\prime}(m(v)) \tag{3.39}
\end{equation*}
$$

for some $m(v) \in[v, v+\beta \psi(v)]$. Using Eq. (3.37) and the fact that the function $s \mapsto g(s) / s$ is decreasing, we obtain

$$
\begin{align*}
\frac{\psi(v+\beta \psi(v))}{\psi(v)} & =1+2 \beta \psi(m(v)) g^{2}\left(\frac{1}{\psi(m(v))}\right) \tag{3.40}\\
& \geq 1+2 \beta \frac{\psi^{2}(v) g^{2}\left(\frac{1}{\psi(v)}\right)}{\psi(m(v))} \\
& \geq 1+2 \beta \frac{\psi^{2}(v) g^{2}\left(\frac{1}{\psi(v)}\right)}{\psi(v+\beta \psi(v))}
\end{align*}
$$

hence

$$
\begin{equation*}
\frac{\psi(v+\beta \psi(v))}{\psi(v)} \geq \frac{1}{2}+\left(\frac{1}{4}+2 \beta \psi(v) g^{2}\left(\frac{1}{\psi(v)}\right)\right)^{1 / 2} \quad \forall v>0 \tag{3.41}
\end{equation*}
$$

In terms of $s=1 / \psi(v)$, the above inequality reads

$$
\begin{equation*}
\left.\left.\frac{1}{s} \Phi^{-1}\left(\Phi(s)+\frac{\beta}{s}\right) \leq\left(\frac{1}{2}+\left(\frac{1}{4}+2 \beta \frac{g^{2}(s)}{s}\right)^{1 / 2}\right)^{-1} \quad \forall s \in\right] 0, \varepsilon\right] \tag{3.42}
\end{equation*}
$$

and we conclude that for all $s \in] 0, \varepsilon]$ we have

$$
\begin{equation*}
\frac{1}{g(s)}\left(1-\frac{1}{s} \Phi^{-1}\left(\Phi(s)+\frac{\beta}{s}\right)\right) \geq 2 \beta \frac{g(s)}{s}\left(\frac{1}{2}+\left(\frac{1}{4}+2 \beta \frac{g^{2}(s)}{s}\right)^{1 / 2}\right)^{-2} \tag{3.43}
\end{equation*}
$$

Taking into account estimates (3.36) and (3.43), we see that relation (3.35) is fulfilled provided

$$
\begin{equation*}
\limsup _{s \rightarrow 0+} \frac{g(s)}{s}\left(\frac{1}{2}+\left(\frac{1}{4}+2 \beta \frac{g^{2}(s)}{s}\right)^{1 / 2}\right)^{-2}=+\infty \tag{3.44}
\end{equation*}
$$

We distinguish two cases.
A. $\exists \gamma>0: \limsup _{s \rightarrow 0+} g^{2}(s) / s \geq \gamma$.

The function $x \mapsto x\left(1 / 2+(1 / 4+x)^{1 / 2}\right)^{-2}$ is increasing for $x>0$, hence

$$
\limsup _{s \rightarrow 0+} \frac{g^{2}(s)}{s}\left(\frac{1}{2}+\left(\frac{1}{4}+2 \beta \frac{g^{2}(s)}{s}\right)^{1 / 2}\right)^{-2} \geq \gamma\left(\frac{1}{2}+\left(\frac{1}{4}+2 \beta \gamma\right)^{1 / 2}\right)^{-2}>0
$$

and $\lim _{s \rightarrow 0+} 1 / g(s)=+\infty$, which yields the assertion.
B. $\lim _{s \rightarrow 0+} g^{2}(s) / s=0$.

Then

$$
\lim _{s \rightarrow 0+}\left(\frac{1}{2}+\left(\frac{1}{4}+2 \beta \frac{g^{2}(s)}{s}\right)^{1 / 2}\right)^{-2}=1
$$

and $\lim _{s \rightarrow 0+} g(s) / s=+\infty$, with the same conclusion as above. Theorem 2.2 is proved.

References

[Al] H.-D. Alber: Materials with Memory. Lecture Notes in Mathematics, Vol. 1682, SpringerVerlag, Berlin - Heidelberg, 1998.
[Be] A. Bergquist: Magnetic vector hysteresis model with dry friction-like pinning. Physica B, 233(1997), 342-347.
[Bre] H. Brézis: Opérateurs Maximaux Monotones. North-Holland Math. Studies, Amsterdam, 1973.
[Bro] M. Brokate: Elastoplastic constitutive laws of nonlinear kinematic hardening type. In: Functional analysis with current applications in science, technology and industry (Aligarh, 1996). Pitman Res. Notes Math. Ser., 377, Longman, Harlow, 1998, 238-272.
[BK] M. Brokate, P. Krejči: Wellposedness of kinematic hardening models in elastoplasticity. Math. Model. Num. Anal. (M ${ }^{2}$ AN) 32 (1998), 177-209.
[D] W. Desch: Local Lipschitz continuity of the stop operator. Appl. Math. 43 (1998), 461-477.
[DT] W. Desch, J. Turi: The stop operator related to a convex polyhedron. J. Differential Equations 157 (1999), 329-347.
[DI] P. Dupuis, H. Ishii: On Lipschitz continuity of the solution mapping to the Skorokhod problem. Stochastics and Stochastic Reports 35 (1991), 31 - 62 .
[DN] P. Dupuis, A. Nagurney: Dynamical systems and variational inequalities. Ann. Oper. Res. 44 (1993), 9 - 42 .
[DL] G. Duvaut, J.-L. Lions: Inequalities in Mechanics and Physics. Springer-Verlag, Berlin 1976. French edition: Dunod, Paris 1972.
[KP] M. A. Krasnosel'skii, A. V. Pokrovskii: Systems with Hysteresis. Nauka, Moscow, 1983 (English edition Springer 1989).
[K1] P. Krejčí: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto Int. Ser. Math. Sci. Appl., Vol. 8, Gakkōtosho, Tokyo, 1996.
[K2] P. Krejčí: Evolution variational inequalities and multidimensional hysteresis operators. In: Nonlinear differential equations (P. Drábek, P. Krejčí, P. Takáč Eds.), Research Notes in Mathematics, Vol. 404, Chapman \& Hall/CRC, London, 1999, 47-110.
[M] J.-J. Moreau: Evolution problem associated with a moving convex set in a Hilbert space. J. Diff. Eq. 26 (1977), 347 - 374.
[NH] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elastico-Plastic Bodies: an Introduction. Elsevier, Amsterdam, 1981.
[V] A. Visintin: Differential Models of Hysteresis. Springer, Berlin - Heidelberg, 1994.

Author's address: Pavel Krejčí, Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstr. 39, D - 10117 Berlin, Germany.

On leave from:
Matematický ústav AV ČR, Žitná 25, CZ - 11567 Praha 1, Czech Republic.
E-mail: krejci@math.cas.cz, krejci@wias-berlin.de.

[^0]: ${ }^{1}$ Supported by the Deutsche Forschungsgemeinschaft (DFG).

