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12Observatoire Astronomique de l’Université de Genéve, 51 Chemin des Maillettes, 1290 Versoix, Switzerland
13Institute for Computational Science, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland

14Departamento de F́ısica e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
15Vanderbilt University, Department of Physics & Astronomy, 6301 Stevenson Center Ln., Nashville, TN 37235, USA

16Fisk University, Department of Physics, 1000 18th Ave. N., Nashville, TN 37208, USA
17Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4, Canada

18School of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK
19Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
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ABSTRACT

The interiors of giant planets remain poorly understood. Even for the planets in the Solar System,

difficulties in observation lead to major uncertainties in the properties of planetary cores. Exoplanets
that have undergone rare evolutionary pathways provide a new route to understanding planetary

interiors. We present the discovery of TOI-849b, the remnant core of a giant planet, with a radius

smaller than Neptune but an anomalously high mass Mp =40.8+2.4
−2.5 M⊕ and density of 5.5±0.8 gcm−3

, similar to the Earth. Interior structure models suggest that any gaseous envelope of pure hydrogen

and helium consists of no more than 3.9+0.8
−0.9% of the total mass of the planet. TOI-849b transits a late

G type star (Tmag = 11.5) with an orbital period of 18.4 hours, leading to an equilibrium temperature

of 1800K. The planet’s mass is larger than the theoretical threshold mass for runaway gas accretion.
As such, the planet could have been a gas giant before undergoing extreme mass loss via thermal

self-disruption or giant planet collisions, or it avoided substantial gas accretion, perhaps through gap
opening or late formation. Photoevaporation rates cannot provide the mass loss required to reduce a

Jupiter-like gas giant, but can remove a few M⊕ hydrogen and helium envelope on timescales of several

Gyr, implying that any remaining atmosphere is likely to be enriched by water or other volatiles from

the planetary interior. TOI-849b represents a unique case where material from the primordial core is

left over from formation and available to study.

1. MAIN TEXT

The TESS mission (Ricker et al. 2015) observed the Vmag = 12 star TOI-849/TIC33595516 for 27 days during

September and October 2018, leading to the detection of a candidate transiting planet. TOI-849 was observed at

30-minute cadence in the Full Frame Images, and was discovered using the MIT quick-look pipeline (see Methods).

No signs of additional planets or stellar activity were seen in the photometry. Follow-up observations with the High

Accuracy Radial velocity Planet Searcher (HARPS) spectrograph detected a large radial velocity signal, confirming

the planet TOI-849b. Four additional transits were observed using the ground-based telescopes of the Next Generation
Transit Survey (NGTS, Wheatley et al. 2018) and Las Cumbres Observatory Global Telescope (LCOGT, Brown et al.

2013), significantly improving the radius determination and ephemeris of the planet. A search of the Gaia Data Release

2 reveals no other sources closer than 39′′, with the closest source 7.8 magnitudes fainter than TOI-849 in the G band

(Gaia Collaboration et al. 2018). Additional high resolution imaging from SOAR, NaCo and AstraLux revealed no

unresolved companion stars. We perform a joint fit to the data using the PASTIS software (Dı́az et al. 2014; Santerne

et al. 2015) to extract planetary and stellar parameters, using the combined HARPS spectra to derive priors on the

stellar parameters and calculate chemical abundances for the host star (see Methods). The best fit and data are shown
in Figure 1.

TOI-849b has a mass of 40.8+2.4
−2.5 M⊕ , nearly half the mass of Saturn. The planet’s radius is 3.45+0.16

−0.12 R⊕ and its

mean density is 5.5± 0.8 gcm−3 , making it the densest Neptune-sized planet discovered to date (Figure 2). It has a

∗ STFC Ernest Rutherford Fellow
† Royal Society University Research Fellow
‡ Royal Society Dorothy Hodgkin Fellow
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sub-1d orbital period of 0.7655240 ± 0.0000027 d , making it an ’ultra-short-period’ (USP) planet and only the second
such Neptune-sized object. The upper limit on its eccentricity is 0.08 at 95% confidence. The radius, mass and period

place TOI-849b in the middle of the hot Neptunian desert, a region of parameter space typically devoid of planets due

to photoevaporation and tidal disruption (Szabó & Kiss 2011; Beaugé & Nesvorný 2013; Mazeh et al. 2016; Owen &

Lai 2018) (Figure 3). The host star TOI-849 is a late G dwarf with mass of 0.929 ± 0.023 M⊙ , radius 0.919+0.031
−0.022 R⊙

, and age 6.7+2.8
−2.4 Gyr . The close proximity of planet and star lead to an equilibrium temperature for the planet of

1800K, assuming an albedo of 0.3. The full set of derived parameters for the planet and star are given in Table 1, and
general stellar parameters in Table 2.

TOI-849b represents a new frontier for interior structure models. The most widely used models of terrestrial planets

are not valid for planets as massive as TOI-849b, because the properties of matter at such high central pressures remain

highly uncertain. Furthermore, some compositional mixing is expected at these high pressures and temperatures

(Bodenheimer et al. 2018), in contradiction of the usual assumption of distinct layers (e.g. Dorn et al. 2017). We

build an internal structure model based on a modified version of Dorn et al. (2017) (see Methods), accounting for

some of these issues, but restrict our analysis to considering the limiting cases of a maximum and minimum possible
hydrogen/helium (H/He) envelope under the layered structure assumption. We calculate the maximum envelope mass

by minimising the contribution of core, mantle and water, assuming the planet has the same [Fe/Si] ratio as has been

observed for the photosphere of the host star. Under this model, the maximum envelope mass fraction is 3.9+0.8
−0.9%.

TOI-849b presents an interesting comparison to other relatively large planets with high metallicity. Two other recent

planets discovered in the Neptunian desert are both expected to have a small envelope mass fraction. NGTS-4b (West

et al. 2019) has a period of 1.34d, mass of 20.6 ± 3M⊕ and radius of 3.18 ± 0.26R⊕, placing it on the pure water

composition track on the M-R diagram, similar to TOI-849b but at much lower mass (Figure 2). LTT9779b (Jenkins
et al, submitted), the only other USP Neptune known, has a period of 0.79d, mass of 29.3 ± 0.8M⊕ and radius of

4.59 ± 0.23R⊕. TOI-849b is more massive and of higher density than both these objects, implying it could be an

extreme case of whatever formation process is populating the desert.

TOI-849b’s large core mass and low envelope mass fraction challenge the traditional view of planet formation via

core accretion, where planets with masses above a critical mass of ∼10–20M⊕ are expected to undergo runaway gas

accretion within the protoplanetary disc (Mizuno et al. 1978; Rafikov 2006; Movshovitz et al. 2010; Lee et al. 2014;

Piso et al. 2015). Why, then, does TOI-849b lack a massive gaseous envelope? Apparently, the core somehow avoided
runaway accretion, or else the planet was once a gas giant which somehow lost most of its envelope. If runaway

accretion proceeded to produce a giant planet, significant reduction in the original mass would be required to reach

the present day state. HD149026b (Sato et al. 2005) is a giant planet with mass 121 ± 19M⊕(Stassun et al. 2017)

thought to have a solid core with a mass of ∼50M⊕(Fortney et al. 2006; Ikoma et al. 2006), similar to TOI-849b.

Starting from a planet like HD149026b, mass-loss of 60–70% would be required to produce the present day TOI-849b.

Considering the proximity of TOI-849b to its host star, one would expect some mass-loss to photoevaporation. The
lifetime predicted mass-loss rate for a Jupiter-like planet is only a few percent, well below the required range (see

Methods). For a planet like HD149026b the situation is less clear, and the lifetime mass removed depends critically

on the assumptions made. We proceed to explore several formation pathways for TOI-849b.

Tidal disruption could cause mass loss of one–two orders of magnitude. The close proximity of a number of hot

Jupiters to their tidal disruption radii (e.g. Delrez et al. 2016) and the fact that hot Jupiters are preferentially found

around younger stars (Collier Cameron & Jardine 2018; Hamer & Schlaufman 2019) suggest that tidal disruption of

hot Jupiters might be common. Although it appears they do not typically leave behind a remnant core, or such cores
are short-lived (Winn et al. 2017), as a rare higher mass object TOI-849b may be an unusual case. At the location of

TOI-849b, tidal disruption would be expected for a Jupiter-mass planet with radius > 1.5 Jupiter radii. An alternative,

related pathway to substantial envelope loss is disruption via tidal thermalisation events, which can lead to mass loss

of order one to two magnitudes. If TOI-849b reached its close orbit via high-eccentricity scattering by another planet

in the system, energy build up in the planet’s internal f-modes during tidal circularisation can approach significant

fractions of the planet’s internal binding energy and potentially lead to thermalisation events (Vick et al. 2019; Veras

& Fuller 2019), which may remove envelope layers (see Methods). However, in either case it is unclear whether a giant
planet could harbour a large enough core to leave behind a 40M⊕ remnant, because the gaseous envelope on top of a

few M⊕ core causes planetesimals to be eroded in the envelope. The remaining solids must subsequently rain out to

produce such a large core (Iaroslavitz & Podolak 2007; Brouwers et al. 2018; Bodenheimer et al. 2018).
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Giant planet collisions provide another, intermediate way to produce planets similar to TOI-849b. The Bern plane-
tary population synthesis models (Mordasini 2018) predict the existence of a small population of planets with similar

masses and semi-major axes to TOI-849b (see Methods). In those models such planets were produced via giant planet

collisions at the end of the migration phase, resulting in the ejection of the planetary envelope, and leaving no time

for the remnant core to accrete further gas. In these scenarios, the cores reached an envelope mass fraction of a few
tens of percent, before being reduced to Neptune size and ejecting the envelope through an impact. Such a scenario

leaves a dense planetary core close to the host star.
The alternative hypothesis is for TOI-849b to avoid runaway accretion, possibly through opening a gap in the

protoplanetary disc, largely devoid of gas, before the planet accretes much envelope mass. Because the threshold mass

required for a planet to open up a gap in a protoplanetary disc is sensitive to the disc scale-height, which is small close

to the star, planets on close in orbits can more easily open a deep gap. A 40M⊕ planet like TOI-849b on a 0.1AU

orbit would reduce the disc surface density at its location by a factor ∼10 (Crida et al. 2006; Duffell & MacFadyen
2013; Kanagawa et al. 2015). Recently, it has been argued that a reduction in gas accretion due to gap opening is

required to resolve the fact that runaway gas accretion models tend to produce too many Jupiter mass planets and

not enough sub-Saturn mass planets (Lee 2019). Indeed, by reducing the accretion rate onto gap-opening planets Lee

(2019) are able to produce 40M⊕ planets at 0.1 AU with gas mass fractions below 10% if the planets form late enough.

In contrast to the tidal disruption pathway, reduced gas accretion should leave TOI-849b aligned with the stellar spin

axis. Detecting or ruling out such alignment using measurements of the Rossiter-McLaughlin effect (Triaud 2018), as
well as taking measurements of the atmospheric composition, may aid in distinguishing between the various formation

scenarios.
In all cases, remaining hydrogen and helium envelope masses of a few percent could be removed over several Gyr by

photoevaporation, given the planet’s close orbit. We estimate the current mass-loss rate to be 9.5×10−10M⊕ yr−1 (see

Methods), implying an envelope mass of ∼4% could be removed in a few Gyr. As such, the question changes: where

does TOI-849b’s minor envelope come from? Given the high equilibrium temperature, we would expect to evaporate

some ices to provide a secondary enriched atmosphere containing water and other volatiles. In these circumstances
TOI-849b provides a unique target where the composition of a primordial planetary core could be studied by observing

its atmospheric constituents, with for example the Hubble or upcoming James Webb Space Telescopes.
TOI-849b’s proximity to its host star, encouraging gap opening and increasing the role of photoevaporation, could

explain why similar objects have not yet been found. Ultimately, however TOI-849b formed, the planet’s large mass

and low gas mass fraction will provide a stringent test of planet formation theory. TOI-849b gives us a glimpse at a

core similar to those that exist at the centres of giant planets, exposed through an unlikely combination of inhibited

accretion or mass-loss. Future observations may be able to directly observe the composition of that core by detecting
evaporated material in the planetary atmosphere. TOI-849b is only the second published planet to populate the

Neptunian desert, and is unique in its anomalously high density, pointing to a rare formation and evolution pathway.

2. METHODS

2.1. TESS

TOI-849 was observed in TESS sector 3 (Sep 20 2018-Oct 18 2018), Camera 2 and CCD 3, with 30 min cadence on

the Full Frame Images (FFIs). The calibrated FFIs available at MAST were produced by the TESS Science Processing

Operations Center (SPOC) (Jenkins et al. 2016). The candidate is detected by the MIT Quick Look pipeline (Huang
et al. 2019) with a signal to noise of 18. The candidate exhibited consistent transit depth in the multi-aperture analysis

and appeared to be on target in the difference image analysis. It passed all the vetting criteria set by the TESS Science
Office and was released as a TESS Object of Interest.

The aperture showing minimal scatter was found to be circular with a radius of 2.5 pixels, with the background

determined on an annulus with a width of 3 pixels and an inner radius of 4 pixels. We reject outliers due to momentum

dump using the quaternion time series provided by the spacecraft data. Further long time scale trends are removed

using a B-spline based algorithm (Vanderburg & Johnson 2014). No significant evidence of photometric activity was
observed. The lightcurve was further detrended to remove residual long term trends using a modified Savitzky-Golay

filter as detailed in Armstrong et al. (2015), whereby a sliding window is used to fit a 3-dimensional polynomial function
to the data while ignoring outliers. Both flattening operations were carried out ignoring in-transit datapoints. Data

before 2458383.78 BJD and after 2458405.77 BJD are masked because, during this time, the TESS operations team

carried out several experiments on the attitude control system, causing the jitter profile to differ from normal. Data
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Figure 1. Best fitting model to the TESS , HARPS and NGTS data. a TESS lightcurve with transit times marked as vertical
lines. b Phase-folded HARPS data and best fitting model in black, with residuals below. Several models randomly drawn from
the MCMC chain are shown in red. c Phase-folded TESS 30-minute cadence data in blue, binned to 0.01 in phase in orange,
with models as in b and residuals below. Horizontal error bar shows the TESS cadence. d Phase-folded NGTS data binned to
1 minute (blue) and to 0.01 in phase (orange). We plot the binned NGTS data to aid visualisation but fit to the full dataset.
Model draws are shown as in b, with residuals below. The cadence is negligible at this scale. LCOGT data was also used and
is shown in Supplementary Figure 1.

points between 2458394.54 BJD to 2458397.0 BJD are masked because of scattered light. The resulting lightcurve is

shown in Figure 1.

2.2. NGTS

Two full transits of TOI-849 were observed on the nights UT 2019 August 08 and 2019 August 11 using the Next

Generation Transit Survey (NGTS; Wheatley et al. 2018) at ESOs Paranal Observatory in Chile, and are plotted in
Figure 1. The NGTS facility consists of 12 fully robotic 20cm telescopes coupled to Andor iKon-L 936 cameras, each

with an instantaneous field-of-view of 8 square degrees and a pixel scale of 5′′ per pixel. On both nights, 10 NGTS

telescopes were used to simultaneously observe the transit. The photometric noise was found to be uncorrelated

between the individual NGTS telescopes, and so we can combine the light curves to achieve ultra-high precision

photometry for TOI-849. A total of 29654 images were obtained with an exposure time of 10 seconds, using the

custom NGTS filter (520 - 890 nm). The observations were all obtained at an airmass z<2 and with photometric
observing conditions. The telescope guiding was performed using the DONUTS auto-guiding algorithm (McCormac

et al. 2013), which provides sub-pixel level stability of the target position on the CCD. We do not require the use of flat
fields during the image reduction, as a result of the high precision of the auto-guiding. This reduction was performed

using a custom aperture photometry pipeline, in which the 100 best comparison stars were selected and ranked based

on their proximity to the target star in the parameters of on-sky-separation, apparent magnitude, and colour. This

large number of optimised comparison stars can be chosen because of the wide field-of-view of the NGTS telescopes,

and again improves the precision of the NGTS light curves by reducing the presence of correlated noise.

2.3. HARPS
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a b

Figure 2. Mass-radius diagram of known exoplanets from the NASA exoplanet archive
(https://exoplanetarchive.ipac.caltech.edu/) as of 17th October 2019. Planets are coloured by equilibrium temperature,
where the information to calculate it is available on the archive, and are grey otherwise. Planets with mass determinations
better than 4σ are shown. Some planets where the source paper does not claim a mass determination, notably those from Xie
(2014), were removed. Composition tracks from (Zeng & Sasselov 2013) are shown as dashed lines and defined in the figure
legend, with an additional 5%H-He track at an irradiation level similar to TOI-849b. a Zoom of panel b.

We obtained radial velocity measurements of TOI-849 with the HARPS spectrograph (R=115,000) mounted on the
3.6m telescope at ESO’s La Silla Observatory (Mayor et al. 2003). Thirty observations were taken between 28 July 2019

and 13 August 2019 in HAM mode, as part of the NCORES large programme (ID 1102.C-0249). An exposure time of

1200s was used for each observation, giving a signal-to-noise ratio of ∼20 per pixel. Typically the star was observed 2-3

times per night. The data were reduced with the offline DRS HARPS pipeline. RV measurements were derived using

a weighted cross-correlation function (CCF) method using a G2V template (Baranne et al. 1996; Pepe et al. 2002),

and the uncertainties in the RVs were estimated as described in Bouchy et al. (2001). The line bisector (BIS), and the

full width half maximum (FWHM) were measured using the methods of Boisse et al. (2011). No correlation was seen
between the RVs and calculated BIS, FWHM, or CCF contrast (R< 0.09 in all cases). RV measurements are reported

in Supplementary Table 1, and the RV data, photometry and best fit are shown in Figure 1. A jitter of 4.2ms−1 was

seen, consistent with the low photometric activity level. BIS and FWHM are shown in Supplementary Figure 2. We

investigated the CCFs for contributions from unresolved stellar companion by removing Gaussian fits to the individual

CCF profiles and studying the residuals (Supplementary Figure 3). No evidence for additional companions is seen.

2.4. LCOGT and PEST

Two full transits of TOI-849 were observed on the nights UT 2019 July 30 and 2019 August 09 in i′ band using

exposure times of 30 and 40 seconds, respectively. An additional night of data was taken on UT 2019 July 14, which

unfortunately missed the transit relative to the revised ephemeris from our joint fit. The nights with transit are plotted

in Supplementary Figure 1. Both observations used the CTIO node of the Las Cumbres Observatory Global Telescope
(LCOGT) 1m network (Brown et al. 2013). We used the TESS Transit Finder, which is a customised version of

the Tapir software package (Jensen 2013), to schedule our transit observations. The telescopes are equipped with

4096×4096 LCO SINISTRO cameras having an image scale of 0.′′389 pixel−1 resulting in a 26′×26′ field of view. The
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Figure 3. TOI-849b in the context of the Neptunian desert. Known exoplanets are plotted in grey and sourced from the
NASA exoplanet archive (https://exoplanetarchive.ipac.caltech.edu/) as of 17th October 2019. Only planets with mass or
radius determinations better than 4σ are plotted. In both mass and radius TOI-849b lies in a sparsely populated region of the
desert.

images were calibrated by the standard LCOGT BANZAI pipeline and the photometric data were extracted using the

AstroImageJ software package (Collins et al. 2017). The first full transit on July 30 was observed with the telescope
in focus and achieved a PSF FWHM of ∼ 1.′′6. Circular apertures with radius 3.′′1 were used to extract differential

photometry for the target star and all stars within 2.′5 that are brighter than TESS band magnitude 19. All of the
neighbouring stars were excluded as possible sources of the TESS detection, and the event was detected on target. A

circular aperture with radius 8′′ was used for the other LCOGT observation, which was slightly defocused to a FWHM
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of ∼ 4′′. The nearest star in the GAIA DR2 catalogue is 39′′ to the north of TOI-849, so the target star photometric
apertures are uncontaminated by known nearby stars.

A full transit was observed on UT 2019 August 20 in Rc band from the Perth Exoplanet Survey Telescope (PEST)

near Perth, Australia. The 0.3 m telescope is equipped with a 1530 × 1020 SBIG ST-8XME camera with an image

scale of 1.′′2 pixel−1, resulting in a 31′×21′ field of view. Systematics at the level of the shallow transit depth precluded
inclusion of these data in the joint fit.

2.5. NaCo/VLT

TOI-849 was imaged with NaCo on the night of 2019 August 14 in NGS mode with the Ks filter. We took 9 frames

with an integration time of 17s each, and dithered between each frame. We performed a standard reduction using a

custom IDL pipeline: we subtracted flats and constructed a sky background from the dithered science frames, aligned

and co-added the images, then injected fake companions to determine a 5σ detection threshold as a function of radius.
We obtained a contrast of 5.6 magnitudes at 1′′, and no companions were detected. The contrast curve is shown in

Supplementary Figure 4.

2.6. SOAR

We searched for nearby sources to TOI-849 with SOAR speckle imaging (Tokovinin 2018) on 12 August 2019 UT,

observing in a similar visible bandpass as TESS. Additional details of the observation are available in Ziegler et al.

(2019). We detected no nearby sources within 3′′of TOI-849. The 5σ detection sensitivity and the speckle auto-

correlation function from the SOAR observation are plotted in Supplementary Figure 4.

2.7. AstraLux

We obtained a high-spatial resolution image of TOI-849 with the AstraLux camera (Hormuth et al. 2008) installed

at the 2.2m telescope of Calar Alto Observatory (Almera, Spain), using the lucky-imaging technique (Fried 1978). We

obtained 24 400 images in the SDSSz band of 20 ms exposure time, well below the coherence time. The CCD was
windowed to match 6×6 ′′. We used the observatory pipeline to perform basic reduction of the images and subsequent

selection of the best-quality frames. This is done by measuring their Strehl-ratio (Strehl 1902) and selecting only the
10% with the highest value of this parameter (thus an effective integration time of 48 s). Then, these images are aligned

and combined to obtain the final high-spatial resolution image. We estimate the sensitivity curve of this high-spatial

resolution image by following the process explained in Lillo-Box et al. (2012, 2014), based on the injection of artificial

stars in the image at different angular separations and position angles and measuring the retrieved stars based on the

same detection algorithms used to look for real companions. No companions are detected in this image within the
sensitivity limits. Both the high-resolution image and the contrast curve are shown in Supplementary Figure 4.

2.8. Spectroscopic analysis and chemical abundances

The spectroscopic analysis to derive the Teff , log g, microturbulence and [Fe/H]) and respective errors followed the

methodology described in Sousa et al. (2014); Santos et al. (2013). Equivalent widths (EWs) are measured for a list of
well defined iron lines. We used the combined HARPS spectrum of TOI-849 and ARES v2 code1 (Sousa et al. 2007,

2015) to perform the EW measurements. In the spectral analysis we look for the ionization and excitation equilibrium.
The process makes use of a grid of Kurucz model atmospheres (Kurucz 1993) and the radiative transfer code MOOG

(Sneden 1973). The resulting values are Teff= 5329±48, log g= 4.28±0.09, ξt= 0.82±0.08, and [Fe/H]= +0.20±0.03.

The same tools and models were also used to derive stellar abundances for several chemical elements. For this we

used the classical curve-of-growth analysis method assuming local thermodynamic equilibrium. Although the EWs of

the spectral lines were automatically measured with ARES, for the elements with only two to three lines available we
performed careful visual inspection of the EW measurements. For the derivation of chemical abundances we closely

followed the methods described in Adibekyan et al. (e.g. 2015). The final abundances derived are [NaI/H]= 0.30±0.16,
[MgI/H]= 0.24±0.06, [AlI/H]= 0.30±0.06, [SiI/H]= 0.24±0.08, [CaI/H]= 0.16±0.07, [ScII/H]= 0.23±0.09, [TiI/H]=

0.25±0.09, [CrI/H]= 0.23±0.07, and [NiI/H]= 0.28±0.04.

Supplementary Figure 5 shows a comparison of the abundances of TOI-849 with the ones found in the solar neigh-

bourhood stars (Adibekyan et al. 2012) of similar atmospheric parameters. In terms of chemical composition TOI-849

1 The last version of ARES code (ARES v2) can be downloaded at http://www.astro.up.pt/∼sousasag/ares
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seems to be very similar to the solar neighbourhood stars showing slight enhancement in the iron-peak elements Cr
and Ni.

2.9. Joint RV and photometric fit

The HARPS RVs, the TESS, NGTS and LCOGT photometry and the spectral energy distribution (SED) were

jointly analysed in a Bayesian framework, using the PASTIS software (Dı́az et al. 2014; Santerne et al. 2015). For the
SED, we used the visible magnitudes from the American Association of Variable Star Observers Photometric All-Sky

Survey (APASS) and the near-infrared magnitudes from the Two-Micron All-Sky Survey (2MASS) and the Wide-field

Infrared Survey Explorer (AllWISE) (Henden et al. 2015; Munari et al. 2014; Cutri & et al. 2014). The RVs were

fitted using a Keplerian orbit model and a linear drift. The light curves were modelled with the JKT Eclipsing Binary

Orbit Program (JKTEBOP, Southworth 2008) using an oversampling factor of 180, 12, 6, and 7 for the TESS and the
three LCOGT-CTIO light curves, respectively. The NGTS light curves were not oversampled as the integration of the

individual data is short with respect to the transit duration (Kipping 2010). Finally, the SED was modelled with the

BT-Settl library of stellar atmosphere models (Allard et al. 2012). The system parameters and associated uncertainties

were derived using the Markov Chain Monte Carlo (MCMC) method implemented in PASTIS. The stellar parameters

were computed using the Dartmouth evolution tracks (Dotter et al. 2008) at each step of the chains, accounting for

the asterodensity profiling (Kipping 2014). We also used the PARSEC evolution tracks, with consistent results.
Regarding the priors, we used a Normal distribution with median and width from the spectral analysis for the stellar

temperature, surface gravity and iron abundance. For the systemic distance to Earth, we used a normal prior centered

on the Gaia Data Release 2 (Gaia Collaboration et al. 2018) value, taking into account the correction from Schönrich

et al. (2019). For the orbital period and transit epoch, we used Normal priors centered on first guess values from an

independent analysis of the NGTS and TESS light curves alone, to improve the convergence of the MCMCs. For the

orbital inclination, we used a sine prior and for the eccentricity a truncated normal prior with width 0.083, following

(Van Eylen et al. 2019). For the other parameters, we used uniform priors with width large enough to not artificially
decrease the uncertainties. Initial fits gave an insignificant eccentricity of 0.033+0.025

−0.021 and so we fixed eccentricity to

zero for final fitting. A marginally significant linear drift was included for the HARPS data, and did not affect the

results.

We ran 20 MCMCs with 2 × 105 iterations. We checked the convergence with a Kolmogorov-Smirnov test (Dı́az

et al. 2014; Santerne et al. 2015), removed the burn-in phase and merged the remaining chains. The limb darkening

coefficients were computed using the stellar parameters and tables from Claret & Bloemen (2011). Finally, the

physical parameters and associated uncertainties were derived from samples from the merged chain. The results for
the Dartmouth and PARSEC evolution tracks can be seen in Table 1.

As an independent check on the derived stellar parameters, we performed an analysis of the broadband spectral
energy distribution (SED) together with the Gaia parallax in order to determine an empirical measurement of the

stellar radius, following the procedures described in Stassun & Torres (2016); Stassun et al. (2017, 2018). We pulled

the BTVT magnitudes from Tycho-2, the BV gri magnitudes from APASS, the JHKS magnitudes from 2MASS, the

W1–W4 magnitudes from WISE, and the G magnitude from Gaia. Together, the available photometry spans the full

stellar SED over the wavelength range 0.4–22 µm. We also checked the GALEX NUV flux, which was not used in the
fit as it suggests a modest level of chromospheric activity.

We performed the independent fit using the Kurucz stellar atmosphere models, with the priors on effective tem-
perature (Teff), surface gravity (log g), and metallicity ([Fe/H]) from the spectroscopic values. The remaining free

parameter is the extinction (AV ), which we limited to the maximum line-of-sight extinction from the Schlegel et al.

(1998) dust maps. The resulting fit has a reduced χ2 of 4.5, and a best fit extinction of AV = 0.04± 0.03. Integrating

the (unextincted) model SED gives the bolometric flux at Earth of Fbol = 3.713± 0.086× 10−10 erg s cm−2. Taking

the Fbol and Teff together with the Gaia parallax, adjusted by +0.08 mas to account for the systematic offset reported
by Stassun & Torres (2018), gives the stellar radius as R = 0.896±0.020 R⊙. Finally, estimating the stellar mass from

the empirical relations of Torres et al. (2010), assuming solar metallicity, gives M = 1.01 ± 0.08M⊙, which with the

radius gives the mean stellar density ρ = 1.99± 0.19 g cm−3. These values are consistent with the stellar parameters

found as part of the PASTIS MCMC chain, and so we adopt the PASTIS values for our results.

2.10. Interior structure characterisation

Given the mass and radius of TOI-849b it is clear that the planet does not represent a larger version of Neptune.

This is demonstrated in Figure 2 which shows the M-R relation for a pure-water curve and a planet with 95% water
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and 5% H-He atmosphere corresponding to a stellar irradiation of F/F⊕ = 3000 (TOI-849b). TOI-849b sits on the
pure-water curve and well below the 5% strongly irradiated curve, suggesting that the H-He mass fraction is of the

order of only a few percent, if not negligible. Figure 3 also shows that TOI-849b is relatively isolated in parameter

space, suggesting that it is somewhat unique and could have been subjected to an unusually aggressive removal of the

primordial H-He envelope.
We explore layered structure models containing variable fractions of H-He envelope. Typical available models are

not suited to this planet due to the high pressures in the interior, requiring exotic equations of state. Further, for
planets this massive the interior layers are likely not distinct as for smaller planets, with composition gradients more

likely (Bodenheimer et al. 2018). Rather than build a full model of the interior, which would not be valid for the

reasons stated, we consider some illuminating limiting cases.

We model the planetary interior of TOI-849b assuming a pure iron core, a silicate mantle, a pure water layer, and

a H-He atmosphere. We follow the structure model of Dorn et al. (2017) except for the iron core, for which we use
the updated EOS presented in Hakim et al. (2018). For the silicate-mantle, equilibrium mineralogy and density are

computed as a function of pressure, temperature, and bulk composition by minimizing Gibbs free energy (e.g. Connolly

2009). For the water we use the quotidian equation of state (QEOS) presented in Vazan et al. (2013) for low pressures

and the tabulated EoS from Seager et al. (2007) for pressures above 44.3 GPa. For H-He we use SCVH (Saumon et al.

1995) assuming a proto-solar composition. We then solve the standard structure equations.

We then estimate the possible range of H-He mass fraction in TOI-849b which fits the derived mass and radius. In
order to estimate the maximum possible mass of an H-He envelope, we assume a planet without water. The core-to-

mantle fraction is set by the stellar abundance [Fe/Si] of the host star (Dorn et al. 2015). The minimum H-He mass
fraction is estimated by assuming a large fraction of water of 70% by mass, which corresponds to a water-rich planet.

We search for the maximum and minimum H-He mass fractions for a grid of planetary masses and radii covering the

observed values and their 2-σ error range. It is found that that H-He mass fraction is at minimum 2.8+0.8
−1.0% and

at maximum 3.9+0.8
−0.9%, suggesting that the heavy-element mass is above 39M⊕. It should be noted that our models

assume a pure H-He atmosphere, while in reality the atmosphere is expected to include heavier elements as inferred by
recent formation models (e.g. Lozovsky et al. 2017; Bodenheimer et al. 2018). This is particularly true for planets this

massive where the interior layers are likely not distinct as for smaller planets. The existence of heavy elements in the
H-He atmosphere would lead to compression, and can therefore increase the planetary H-He mass fraction. However,

for the case of TOI-849b, the difference is expected to be very moderate since the planet mass is clearly dominated by

heavy-elements. Lozovsky et al. (2018) calculated the effect of varying atmospheric water content on planetary radii

for fixed masses and H-He gas mass fractions. Applying their model to TOI-849b showed that the inferred planet

radius is only affected on the few percent level for atmospheric water content ranging from 0 to 70%. As such we
expect the plausible increase in H-He to be small even for high levels of volatile enrichment in the planetary envelope.

We can therefore conclude that the mass fraction of H-He is at most a few percent.

2.11. Photoevaporation Rate

We explored the X-ray and EUV irradiation of the planet, wavelengths most relevant for atmospheric mass loss (e.g.

Lammer et al. 2003). Archival X-ray data exists for the system only from the ROSAT All-Sky Survey, where the

nearest detected source is an arcminute away, too far to be associated with TOI-849. Instead, we applied the empirical
relations of Jackson et al. (2012) linking X-ray emission with age, estimating LX/Lbol = 7.5× 10−7 at the current age.

This figure implies an X-ray flux at Earth of 3.0× 10−16 erg s−1 cm−2, much too faint to be visible with XMM-Newton
or Chandra. We extrapolated our X-ray estimate to the unobservable EUV band using the relations of King et al.

(2018), based on the method of Chadney et al. (2015).

To estimate mass loss rates, we applied both the energy-limited approach (Watson et al. 1981; Erkaev et al. 2007),

and a method based on interpolating and approximating to hydrodynamical simulations (Kubyshkina et al. 2018b,a).

The latter yields a loss rate of 1.8×1011 g s−1, more than an order of magnitude larger than the former when assuming
a canonical efficiency of 15%. Integrating over the planet’s XUV history, and starting at a Jupiter mass and radius,

we estimate total lifetime losses of 4.0% and 0.81% of the planet’s mass using the energy-limited and Kubyshkina
methods, respectively. While these calculations have the limitation of assuming a constant radius across the lifetime,

these losses are not enough to evolve the planet to one slightly smaller than Neptune, and so we can be sure the planet

did not start as a Jupiter-like giant if its evolution has been solely through photoevaporation.
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An intermediate starting point is the planet HD149026b (Sato et al. 2005), a giant planet with mass 121 ± 19M⊕

and radius 8.3± 0.2R⊕ (Stassun et al. 2017). For this planet, we estimate total lifetime losses of 11.42% and 100% of

the planet’s mass using the energy-limited and Kubyshkina methods, respectively. These are likely to be significant

overestimates, due to the constant radius assumption which clearly becomes flawed after significant mass loss. As such

finding the limits of photoevaporation in creating a planet like TOI-849b requires detailed models beyond the scope
of this paper.

2.12. Planet Population Synthesis Models

We explored possible formation channels for such dense Neptune sized planets via the Bern planetary population

synthesis models (Mordasini 2018). An updated form of the models was used, with particularly relevant changes being:

1. An improved gas disk surface temperature from the stellar evolution tracks of Baraffe et al. (2015), with a
vertically-integrated approach to compute the vertical structure of the gas disc (Nakamoto & Nakagawa 1994).

2. A higher concentration of solids in the inner part of the disc following Ansdell et al. (2018)

3. Gas-driven type I migration computed following Coleman & Nelson (2014)

4. Giant impacts induce an additional luminosity similar to Broeg & Benz (2012)

In those models, which were run before the discovery of TOI-849b, we found four planets that exhibit similar mass,

radius and eccentricity to TOI-849b, out of a total sample of 1000. These planets have masses between 20 and 50M⊕

and have an ice content of 20-30% by mass, but no H/He. They started as embryos outside the ice line, and migrated

steadily to a position close to the inner edge of the disc. The removal of the primordial H/He is due to a giant impact

that takes place at the end of the migration, which means that the planets are unable to accrete a second H/He
envelope. Due the high equilibrium temperature, it is likely that the ices evaporate to form a secondary atmosphere

consisting of water and possibly other volatiles like CO and CO2. Such an envelope leads to radii comparable to the
discovered planet. From the modelling point of view, the population synthesis models thus prefer planets whose small

envelopes consist entirely of ices. The evolution tracks of the four considered model planets are shown in Supplementary

Figure 6.

Although no similar model planets to TOI-849b were found from other formation pathways, this should not be taken

as evidence against other hypotheses such as gap opening limiting the accretion, or tidal disruption. The Bern models
do not include gap opening in the disk as a limiting factor in gas accretion, and use simplified assumptions for tidal

interactions following Beńıtez-Llambay et al. (2011) that do not include high eccentricity migration.

2.13. Tidally induced thermalisation events

The high bulk density of TOI-849b (5.5 g/cm3) relative to Neptune (1.6 g/cm3) suggests that the planet (with a
radius equal to 90% of Neptune’s) might currently represent the core of a previously giant planet. For this scenario to

be viable, the planet needed to originate as a gas giant and have expelled mass, possibly during orbit shrinkage and
circularization. This evolutionary pathway may occur as a result of chaotic tides (Ivanov & Papaloizou 2004; Vick &

Lai 2018; Wu 2018), where the planet’s internal f-modes were excited after the planet was gravitationally scattered

onto a highly eccentric orbit. Energy build up in the modes could have then led to thermalisation events, potentially

ejecting atmospheric layers (Vick et al. 2019; Veras & Fuller 2019). After the resulting core left the chaotic regime,

subsequent orbital evolution over the ∼ 9 Gyr main-sequence lifetime of the parent star may have proceeded with
weakly dissipative equilibrium tides, leading to the current orbit. In this scenario, the planet may have expelled 1-2

orders of magnitude more mass than its current value.
Accumulation of the internal mode energy leads to thermalisation events, which subsequently deposits energy into

the planet’s interior and resets the mode amplitude. Possible results of the thermalisation events include inflation,

mass ejection or both; TOI-849b could have experienced these events and still retained some or all of its atmosphere.

Although the trigger for and consequences of these events remains largely unknown, Vick et al. (2019) assumed these

events occur when the accumulated mode energy equals 10% of the planet’s binding energy

Ebind ≈
GM2

p

Rp

. (1)



12

They also demonstrated that the resulting changes in orbital evolution due to the thermalisation events is largely
independent of this choice of 10%. With this choice, Veras & Fuller (2019) illustrated that the number of thermalisation

events which a planet experiences is positively correlated with increasing puffiness of the planet and decreasing orbital

pericentre. They showed that even a dense gas giant with a pericentre of about 1.5 Solar radii would experience

at least one thermalisation event, albeit with a smaller mass central star. TOI-849b, which currently resides at
a distance of about 3 Solar radii, previously would have harboured a pericentre that is just half of that value if

angular momentum was conserved as its eccentricity decreased from almost unity to zero, under the high-eccentricity
circularisation scenario.
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Table 1. List of parameters used in the analysis. The respective priors
are provided together with the posteriors for the Dartmouth and PAR-
SEC stellar evolution tracks. The posterior values represent the median
and 68.3% credible interval. Derived values that might be useful for
follow-up work are also reported.

Parameter Prior Posterior

Dartmouth PARSEC

(adopted)

Stellar Parameters

Effective temperature Teff [K] N (5329.0, 48.0) 5375.3+41.8

−41.4 5379.1+41.4

−43.4

Surface gravity log g [cgs] N (4.43, 0.3) 4.48+0.03

−0.04 4.47+0.03

−0.04

Iron abundance [Fe/H] [dex] N (0.201, 0.033) 0.19± 0.03 0.19± 0.03

Distance to Earth D [pc] N (224.56, 7.1) 225.2+6.1

−5.8 224.7+6.6

−5.9

Interstellar extinction E(B − V ) [mag] U(0.0, 1.0) 0.011+0.016

−0.009 0.011+0.017

−0.008

Systemic radial velocity γ [kms−1s−1] U(5.0, 15.0) 9.3503± 0.0012 9.3503± 0.0012

Stellar density ρ⋆/ρ⊙ (derived) 1.197+0.109

−0.132 1.179+0.120

−0.145

Stellar mass M⋆ [M⊙] (derived) 0.929+0.023

−0.023 0.903+0.027

−0.029

Stellar radius R⋆ [R⊙] (derived) 0.919+0.031

−0.022 0.915+0.033

−0.022

Stellar age τ [Gyr] (derived) 6.7+2.8

−2.4 8.5+3.6

−3.0

Planet b Parameters

Orbital Period Pb [d] N (0.76552484, 0.00000435) 0.76552398+0.00000262

−0.00000273 0.76552403+0.00000260

−0.00000278

Epoch T0,b [BJD - 2450000] N (8394.73741796, 0.0017159129) 8394.73767+0.00096

−0.00095 8394.73765+0.00093

−0.00093

RV semi-amplitude Kb [km s−1] U(0.0, 0.1) 0.02988+0.00167

−0.00173 0.02992+0.00170

−0.00176

Orbital inclination ib [◦] S(50.0, 90.0) 86.8+2.2

−2.6 86.5+2.4

−2.8

Planet-to-star radius ratio kb U(0.0, 1.0) 0.03444+0.00091

−0.00092 0.03444+0.00095

−0.00090

Orbital eccentricity eb T (0.0, 0.083, 0.0, 1.0) 0.0± 0.0 0.0± 0.0

Argument of periastron ωb [◦] U(0.0, 360.0) 0.0± 0.0 0.0± 0.0

System scale ab/R⋆ (derived) 3.7+0.1

−0.1 3.7+0.1

−0.2

Impact parameter bb (derived) 0.212+0.158

−0.143 0.228+0.166

−0.152

Transit duration T14,b [h] (derived) 1.57± 0.04 1.57± 0.04

Semi-major axis ab [AU] (derived) 0.01598+0.00013

−0.00013 0.01583+0.00016

−0.00017

Planet mass Mb [M⊕] (derived) 40.78+2.41

−2.45 40.03+2.48

−2.41

Planet radius Rb [R⊕] (derived) 3.447+0.164

−0.122 3.432+0.177

−0.127

Planet bulk density ρb [g cm−3] (derived) 5.5+0.8

−0.8 5.4+0.8

−0.9

Instrument-related Parameters

HARPS jitter [kms−1s−1] U(0.0, 0.1) 0.00422+0.00127

−0.00118 0.00425+0.00134

−0.00118

HARPS drift [kms−1d−1] U(−0.001, 0.001) 0.00054± 0.00022 0.00054± 0.00023

TESS contamination [%] T (0.0, 0.005, 0.0, 1.0) 0.003+0.004

−0.002 0.003+0.004

−0.002

TESS jitter [ppm] U(0.0, 105) 54.1+53.3

−37.4 52.2+54.4

−36.5

TESS out-of-transit flux U(0.99, 1.01) 1.0001002+0.0000225

−0.0000217 1.0001003+0.0000218

−0.0000218

TESS limb-darkening ua (derived) 0.3764± 0.0072 0.3756± 0.0074

Continued on next page
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Table 1 – continued from previous page

Parameter Prior Posterior

Dartmouth PARSEC

TESS limb-darkening ub (derived) 0.2387± 0.0041 0.2391± 0.0042

NGTS1 contamination [%] T (0.0, 0.005, 0.0, 1.0) 0.003+0.004

−0.002 0.003+0.004

−0.002

NGTS1 jitter [ppm] U(0.0, 105) 78.5+87.1

−55.9 78.4+82.8

−55.4

NGTS1 out-of-transit flux U(0.99, 1.01) 1.0000812+0.0000838

−0.0000878 1.0000794+0.0000888

−0.0000843

NGTS2 contamination [%] T (0.0, 0.005, 0.0, 1.0) 0.003+0.004

−0.002 0.003+0.004

−0.002

NGTS2 jitter [ppm] U(0.0, 105) 86.6+93.6

−61.4 84.9+92.6

−60.3

NGTS2 out-of-transit flux U(0.99, 1.01) 1.0000772+0.0000987

−0.0000958 1.0000742+0.0000959

−0.0000938

NGTS limb-darkening ua (derived) 0.4755± 0.0081 0.4748± 0.0084

NGTS limb-darkening ub (derived) 0.2116± 0.0051 0.2121± 0.0052

LCO1 contamination [%] T (0.0, 0.005, 0.0, 1.0) 0.003+0.004

−0.002 0.003+0.004

−0.002

LCO1 jitter [ppm] U(0.0, 105) 1021.9+90.7

−89.0 1020.0+89.9

−84.6

LCO1 out-of-transit flux U(0.98, 1.02) 0.9999932+0.0000854

−0.0000851 0.9999967+0.0000891

−0.0000916

LCO2 contamination [%] T (0.0, 0.005, 0.0, 1.0) 0.003+0.004

−0.002 0.003+0.004

−0.002

LCO2 jitter [ppm] U(0.0, 105) 1421.7+84.0

−84.8 1419.3+84.0

−82.4

LCO2 out-of-transit flux U(0.98, 1.02) 0.9999893+0.0001046

−0.0001040 0.9999905+0.0001043

−0.0001014

LCO limb-darkening ua (derived) 0.3826± 0.0074 0.3818± 0.0076

LCO limb-darkening ub (derived) 0.2388± 0.0043 0.2392± 0.0042

SED jitter [mag] U(0.0, 0.1) 0.047+0.03

−0.026 0.047+0.03

−0.026

Notes:

• N (µ, σ2): Normal distribution with mean µ and width σ2

• U(a, b): Uniform distribution between a and b

• S(a, b): Sine distribution between a and b

• T (µ, σ2, a, b): Truncated normal distribution with mean µ and width σ2, between a and b
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Table 2. Stellar Properties of TOI-849

Property Value Source

Astrometric Properties

RA 01:54:51.7910 GAIA DR21

Dec -29:25:18.1508 GAIA DR21

TIC ID 33595516 TICv82

GAIA ID 5023809953208388352 GAIA DR21

2MASS ID 01545169-2925186 2MASS3

µRA (mas.yr−1) 73.315 GAIA DR21

µDec (mas.yr−1) 20.664 GAIA DR21

Photometric Properties

TESS (mag) 11.55 TICv82

B (mag) 12.84 TICv82

V (mag) 11.98 TICv82

G (mag) 12.06 TICv82

J (mag) 10.83 TICv82

H (mag) 10.48 TICv82

K (mag) 10.42 TICv82

1 Gaia Collaboration et al. (2018)
2 Stassun et al. (2019)
3 Skrutskie et al. (2006)
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Boisse I., Bouchy F., Hébrard G., Bonfils X., Santos N.,

Vauclair S., 2011, A&A, 528, A4

Bouchy F., Pepe F., Queloz D., 2001, A&A, 374, 733

Broeg C. H., Benz W., 2012, A&A, 538, A90

Brouwers M. G., Vazan A., Ormel C. W., 2018, A&A, 611,

A65

Brown T. M. et al., 2013, Publications of the Astronomical

Society of the Pacific, 125, 1031

Chadney J. M., Galand M., Unruh Y. C., Koskinen T. T.,

Sanz-Forcada J., 2015, Icarus, 250, 357

Claret A., Bloemen S., 2011, A&A, 529, A75

Coleman G. A. L., Nelson R. P., 2014, MNRAS, 445, 479

Collier Cameron A., Jardine M., 2018, MNRAS, 476, 2542

Collins K. A., Kielkopf J. F., Stassun K. G., Hessman

F. V., 2017, AJ, 153, 77

Connolly J. A. D., 2009, Geochemistry, Geophysics,

Geosystems, 10, Q10014

Crida A., Morbidelli A., Masset F., 2006, Icarus, 181, 587

Cutri R. M., et al. 2014, VizieR Online Data Catalog, 2328

Delrez L. et al., 2016, MNRAS, 458, 4025

Dı́az R. F., Almenara J. M., Santerne A., Moutou C.,

Lethuillier A., Deleuil M., 2014, Monthly Notices of the

Royal Astronomical Society, 441, 983

Dorn C., Khan A., Heng K., Connolly J. A. D., Alibert Y.,

Benz W., Tackley P., 2015, A&A, 577, A83

Dorn C., Venturini J., Khan A., Heng K., Alibert Y.,

Helled R., Rivoldini A., Benz W., 2017, A&A, 597, A37

Dotter A., Chaboyer B., Jevremović D., Kostov V., Baron
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3. ADDENDUM

3.1. Author Contributions

DJArm is PI of the NCORES HARPS programme which measured the planet’s mass, a member of the NGTS
consortium, developed much of the text and main figures and coordinated all contributions. TLop performed the

joint PASTIS analysis. VAdi, SSou, NSan performed stellar spectral analysis including chemical abundances. RBoo,

FMer provided text analysing potential formation scenarios. KACol, EJen coordinated the TFOP SG1 photometric

followup of the system. KICol, TGan, performed analysis of LCOGT photometric followup of the system. AEms,

CMor performed and analyses the Bern Population Synthesis Models. CHua, LSha developed and ran the MIT Quick
Look Pipeline which identified the candidate in the TESS data. GKin performed the photoevaporation analysis. JLil

obtained and analyses the Astralux data, and synthesised all HR imaging results. EMat obtained the NaCo imaging

data. HOsb contributed to the NCORES HARPS programme and the NGTS survey, and contributed to the main

figures. JOte, OMou, MDel, RHel, MLoz, CDor performed interior structure calculations. DVer performed analysis

on the potential for tidal self-disruption. CZie obtained the SOAR data and provided text summarising SOAR results.
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Extended Data Table 1.

BJD RV σRV CCF FWHM CCF Contrast Bisector S/N(50) Texp Airmassstart

d kms−1 kms−1 kms−1 kms−1 s

2458692.78910182 9.320464 0.003341 6.9814 57.568 -0.0376 28.9 1800 1.464

2458692.87197814 9.348264 0.002660 6.9705 57.606 -0.0149 35.0 1800 1.073

2458693.78193905 9.379034 0.007109 6.9592 58.265 -0.0215 16.7 1500 1.49

2458693.86713031 9.383575 0.006590 6.9876 57.935 -0.0295 17.6 1200 1.069

2458694.79485824 9.352493 0.003080 6.9706 57.677 -0.0212 31.2 1500 1.365

2458694.89266609 9.321555 0.004772 6.9918 57.768 -0.0362 22.3 1200 1.022

2458695.76161626 9.316472 0.004716 6.9732 57.804 -0.0388 22.9 1500 1.633

2458695.8578846 9.318335 0.006212 6.9534 58.095 -0.0274 18.1 1200 1.078

2458697.77111987 9.373754 0.004389 6.9921 57.730 -0.0396 24.0 1800 1.508

2458697.86515415 9.365826 0.009028 6.9604 58.639 -0.0599 13.5 1200 1.051

2458698.79553074 9.316836 0.003574 6.9720 57.644 -0.0413 28.1 1500 1.296

2458698.86273442 9.321557 0.003851 6.9676 57.785 -0.0257 26.1 1500 1.055

2458699.77215996 9.343418 0.003958 6.9579 57.855 -0.0240 26.0 1500 1.434

2458699.86782619 9.360927 0.004984 6.9679 57.876 -0.0322 21.5 1200 1.038

2458700.7860712 9.378852 0.003165 6.9865 57.620 -0.0363 30.7 1500 1.321

2458700.86459501 9.369082 0.004117 6.9778 57.755 -0.0324 24.9 1200 1.039

2458701.74930712 9.337185 0.004769 6.9931 57.629 -0.0369 22.8 1200 1.573

2458701.82063133 9.321939 0.004835 6.9652 57.948 -0.0179 21.9 1200 1.139

2458701.91235041 9.318780 0.007543 6.9811 58.274 -0.0207 15.3 1200 1.0

2458702.75424659 9.323328 0.003815 6.9848 57.651 -0.0093 26.7 1200 1.504

2458702.82285066 9.344083 0.003979 6.9784 57.701 -0.0349 25.8 1200 1.125

2458705.75330754 9.335210 0.006936 6.9343 57.874 -0.0321 16.5 1200 1.443

2458705.8276873 9.326840 0.004757 6.9820 57.743 -0.0368 22.3 1200 1.087

2458705.92257763 9.359851 0.005083 6.9745 57.812 -0.0318 21.9 1200 1.007

2458706.89905173 9.373723 0.005230 6.9735 57.873 -0.0190 20.6 1800 1.0

2458707.74440581 9.372752 0.005320 6.9708 57.367 -0.0207 20.7 1800 1.508

2458707.85009529 9.355053 0.010510 6.9953 57.194 -0.0042 12.4 1800 1.036

2458708.72594834 9.334852 0.004742 6.9977 57.107 -0.0159 22.9 1200 1.626

2458708.82117413 9.335439 0.004273 6.9652 57.287 -0.0182 24.4 1200 1.084

2458708.92270817 9.343619 0.005383 6.9760 57.703 -0.0186 20.9 1200 1.013
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Extended Data Figure 1. Photometric data captured by the LCOGT network on the nights UT 2019 July 30 (top) and 2019
August 09 (bottom). The best fit model is plotted in red and binned data in orange.
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a b

BJD - 2400000

Extended Data Figure 2. a HARPS radial velocities plotted against their bisector value. Colours represent time of observation
measured in BJD-2400000. b as a for the full-width-half-maximum of the CCF. No correlation is seen in either case.
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Extended Data Figure 3. The CCFs of each of the HARPS spectra computed using a G2V template. A gaussian fit has
been removed to leave the residual noise. No clear evidence for a contaminating star is seen.
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Extended Data Figure 4. Collected high-resolution imaging from AstraLux/CAHA, NaCo/VLT, HRCam/SOAR and Zorro.
The images are shown at top for AstraLux, NaCo and HRCam and sensitivity curves for all four below. 1% and 10% contrast
curves are plotted.
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Extended Data Figure 5. Zorro speckle observation of TOI-849 taken at 562 nm. Our simultaneous 832 nm observation
provides a similar result. The red line fit and blue points represent the 5σ fit to the sky level (black points) revealing that no
companion star is detected from the diffraction limit (17mas) out to 1.75 ′′within a ∆mag of 5 to 6.
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Extended Data Figure 6. Abundance ratio [X/Fe] against stellar metallicity for TOI-849 (black) and for the field stars from
the HARPS sample (gray) with similar stellar parameters: Teff= 5329±200 K, log g= 4.28±0.20 dex, and [Fe/H]= +0.20±0.20
dex.
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Extended Data Figure 7. Planet mass against time for three similar planets to TOI-849b in the Bern Population Synthesis
models. Grey shaded regions mark the parameters of TOI-849b. Stars mark the time of a giant impact. The inset shows the
envelope mass, which is removed after collision.


