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[1] Uncertainties in assessing the effects of global-scale perturbations on the climate
system arise primarily from an inadequate understanding of the hydrological cycle: on
land, in oceans, and in the atmosphere and biosphere. Because of this uncertainty, almost
all science-based initiatives have expressed the need for continued advances in global
observations and modeling of the Earth system. It is in this spirit that we advocate
establishing a hydrologic remote sensing observatory (RSO) to advance sensing
technologies and their use in scientific inquiry into hydrologic processes. There are two
fundamental reasons why establishing such a RSO is timely. The first is operational:
Developing assimilation techniques to estimate unobserved fluxes and uncertainties in
hydrologic forecasts has sufficiently matured to take advantage of computing facilities and
detailed hydrologic observations shaped by the RSO. The second is scientific: This RSO
will permit us to refine knowledge from physical and hydrologic models that can then
be converted to local and global strategies for water resources management and ecosystem
health evaluation. The authors outline the conceptual design, scope, and functionality of a
RSO and present four examples to illustrate how the hydrologic community can take
advantage of such facility.
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1. Introduction and Problem Statement

[2] The complexity and heterogeneity of hydrologic
interactions exists over a wide range of scales in space
and time. It is also widely accepted that remote sensing,
broadly defined as a collection of noncontact observational
methods, offers the potential to capture some of the intri-
cacies of these spatial and temporal processes. Yet, hydrol-
ogy today finds itself in a paradigm lock with respect to
understanding the controls on hydrologic fluxes and states
and how these controls vary spatially and temporally with
scale and how the land surface and subsurface couples with

the overlying atmospheric boundary layer. The current
paradigm is that a given hydrological scale, whether it be
a ‘‘Darcian,’’ catchment, or the atmospheric boundary layer,
the nonlinear dynamics describing water transport is pre-
sented as a function of the state at that resolved scale, and
all finer scale (or faster) processes are treated as subgrid.
Much coarser scale processes are generally assumed to be
either sufficiently slow, or their effects are prescribed as
forcing. It is clear then that the high dimensionality of
hydrologic processes prohibits us from tracking cross-scale
interactions across space and time. This knowledge gap
invites the use of multiscale data offered by remote sensing
platforms; however, the remote sensing algorithms are
insufficiently developed for these complex processes to
provide the spatial observations necessary for exploring
cross-scale information flow.
[3] To break this lock we propose establishing an inte-

grated remote sensing observatory (RSO) where research
across the spectrum of hydrologic remote sensing can be
integrated with hydrologic processes occurring at scales of
less than a meter to thousands of kilometers. Historically,
remote sensing products have been evaluated through short-
term activities focusing on a single geophysical variable.
We question this approach, and instead offer a vision of a
community observatory where fundamental research on the
estimation of water-energy-ecosystem variables can be
carried out in an integrated manner across complex land-
scapes. The observatory offers the potential of improved
predictions from remote sensing measurements for other
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regions, thus offering the hope that remote sensing can be
used to address fundamental hydrologic research questions
at local to global scales. These are the issues of critical
importance to international activities such as the World
Climate Research Programme’s Global Energy and Water
Cycle Experiment (GEWEX), the Prediction in Ungauged
Basins (PUB) [Sivapalan et al., 2003], and the United States
Global Change Research Program’s Water Cycle Initiative.
[4] This opinion paper is developed around our belief that

understanding terrestrial hydrologic processes across scales
must include remote sensing measurements at multiple
scales, and that the proper use of the data requires, as a
logical first step, research into the statistical and physical
relationships among remote sensing measurements, in situ
measurements, and hydrologic modeling. Existence of a
long-term observatory would allow effective pursuit of
these goals and efficient use of collective resources and
efforts. We envision a ‘‘prototype’’ of such an observatory
to be a piece of land that is well instrumented with in situ
and ground-based high-resolution remote sensing instru-
ments that allow detailed observations of the hydrologic
processes occurring at the site. In that respect the embryonic
form of the RSO would be similar to an extended field
experiment such as those conducted in the past, with the
main difference being the duration and comprehensiveness
of instrumentation and variables measured. Careful defini-
tion of control volumes and nested sampling schemes would
facilitate resolving the terms of the energy and water
balances with known errors and providing observations
for investigations of scaling relationships.
[5] Recurrence of major field experiments, such as the

recent Soil Moisture–Atmosphere Coupling Experiment
(SMACEX [Kustas et al., 2005]) and NASA’s Ground
Validation programs for precipitation, are all indications
that the concept of a RSO is sound. Below, we offer a
sample set of examples appropriate for such an observatory,
and sketch out how the observatory would foster the
research. We also show that the proposed observatory is
consistent with the scope of the Consortium of Universities
for the Advancement of Hydrologic Science, Inc.
(CUAHSI) HydroView research infrastructure.
[6] While it is clear that over the last decade, satellites

have proven the capability to monitor many aspects of the
total Earth system on a global scale, it is also clear that
aircraft- and ground-based systems play a vital role in
improving our understanding of hydrologic processes and
their interactions. Thus the first step in constructing the
skeleton of such a RSO is to use well-established methods
that have a proven success record such as weather radar,
lidar, as well as radiometers and spectrometers. The main
hydrologic variables of interest include precipitation (espe-
cially liquid), snow water equivalent, evapotranspiration,
surface water reservoirs and river discharge, soil moisture,
precipitation interception, groundwater storage, soil freez-
ing and thawing, and ecosystem variables like vegetation
biomass and carbon content.

2. Science and Research Questions and Issues

[7] We argue that the hydrologic research community
needs a remote sensing observatory to address numerous
science questions that range from the spatial-temporal
dynamics of hydrologic processes across complex land-

scapes to the statistical properties of hydrologic variables
retrieved via remote sensing and their assimilation into
hydrologic models. Below we offer four examples that in
our opinion are representative of important hydrologic
research problems to which remote sensing can contribute
and for which an observatory is the appropriate mechanism
for answering the questions.

2.1. Question 1: A Changing Landscape

[8] Globally, landscapes are changing in a dramatic
fashion through such processes as deforestation-reforesta-
tion, anthropogenic water management in agriculture such
as irrigation or tile drainage, and urbanization. Implications
of these changes in both the terrestrial hydrologic budget
and alterations in weather and climate have been docu-
mented. Since these changes occur spatially across the
landscape, remote sensing is needed to monitor the land
surface characteristics, to observe changes in hydrologic
states and fluxes, and to compare these with predictions
from hydrologic models. Remote sensors have the ability to
make spatially resolved measurements over large areas.
Remote sensing also often allows us to visualize complex
processes because the spatial data can be captured regularly
over time.
[9] What are the observational requirements of remote

sensing measurements to help us better understand the
effects of a changing landscape and changes in water
management on hydrologic processes and their subsequent
feedback to weather and climate at the regional to conti-
nental scales? Modern forecasting methods have sufficiently
matured to include the basic processes that govern climate
so that large-scale weather prediction is fairly reliable on
some timescales. More importantly, the predictability time-
scale has been well quantified in such systems. At smaller
scales, the problem is considerably more complex. Histor-
ically, researchers have made convenient mathematical
assumptions such as homogeneity because the capacity to
resolve the flow domain attributes was severely restricted. It
is for this reason that serious issues exist in our understand-
ing of small-scale flows, particularly in complex environ-
ments [see Tenhunen and Kabat, 1999, and references
therein].
[10] Traditional techniques of measuring hydrologic var-

iables rely on point sensors to collect information, which is
then assumed to be representative of large areas. In some
cases, the point measurement does represent a ‘‘hydrolog-
ically integrated’’ catchment area (e.g., streamflow at a
point). However, this approach is not particularly helpful
in complex or heterogeneous environments where the data
cannot be assumed to represent a much larger area. Part of
the problem is that the bulk of the Earth’s surface is not
horizontally homogeneous with respect to topography,
geology, soil moisture availability, soil type, or canopy.
More highly resolved information is necessary to separate
the contributions of each of these variables. The surface-
atmosphere interface is an example of a system that is
highly variable in both space and time [e.g., Cooper et al.,
1992, 2000; Eichinger et al., 2000]. Details of the soil
surface affect soil moisture availability, which in turn affects
both canopy development and local evapotranspiration
rates. Detailed measurements at scales approaching a meter
are needed to separate the effects of canopy, topography,
and soil moisture on the evapotranspiration rate. In fact, the
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problem of biosphere-atmosphere exchange from canopies
on complex terrain serves as an illustration of how nonlinear
dynamics can ‘‘break’’ symmetries and produce high spatial
variability even when the canopy is uniform and the terrain
is a gentle cosine hill [Katul et al., 2006].
[11] In many regions, landscapes are changing spectacu-

larly, particularly with respect to land use and water
management in agriculture. There is evidence that these
changes affect regional climates. For example, there is
evidence that irrigation in Nebraska has changed the amount
of precipitation in Iowa, that irrigation in Texas has led to an
increase in tornado activity, and that mesoscale changes in
land use can significantly affect storm events [e.g., Doran
and Zhong, 2000; Weaver and Avissar, 2001]. El Nino
events in the Pacific Ocean result in different climate signals
in different parts of North America, halfway around the
world. While researchers can show correlations between
suspected causes and effects, we do not have sufficient
measurements to conclusively and quantitatively document
processes such as these that occur on near-continental to
global scales; nor do we have appropriate and complete
mathematical models for these processes. There is little
ability to connect local measurements to intermediate, large,
and global scales. A quantitative description of events and
processes is needed so we can properly understand and
propagate them across scales, thereby leading eventually to
a capability for predictive modeling.
[12] The recent development of land data assimilation

systems (LDAS) [Mitchell et al., 2004; Rodell et al., 2004]
is an important step toward using remote sensing observa-
tions to merge the effects of a changing landscape with
incomplete models of hydrologic processes. The primary
goal of these systems is to produce optimal output fields of
land surface water and energy states and fluxes by using
data from advanced observing systems. These systems
include one or more land surface models (LSMs) that are
typically run retrospectively ‘‘offline,’’ or uncoupled, using
a blend of modeled and observed precipitation and radiation
forcing to overcome the inherent weaknesses of the repre-
sentations of cloud and precipitation processes by atmo-
spheric models. In addition to numerous other applications,
these output fields, e.g., soil moisture and temperature
profiles, may be used to initialize coupled land-atmosphere
models to explore the subsequent feedback of landscape
changes to weather and climate at the regional to continental
scales. Further, by employing these land data assimilation
systems in coupled or uncoupled observing system simula-
tion experiments (OSSEs) [Atlas, 1997], one can estimate
the impact of planned future observing systems and deter-
mine requirements or gaps to help guide priorities for
unplanned future observing systems.
[13] Current LDAS include the Global LDAS (GLDAS)

[Rodell et al., 2004], the North American LDAS (NLDAS)
[Mitchell et al., 2004], and the new NASA’s Land Infor-
mation System (LIS) [Peters-Lidard et al., 2001] that
unifies the capabilities of GLDAS and NLDAS and pro-
vides community Grid Analysis and Display System
(GRADS) Data Server (GDS). The LIS is capable of
running an ensemble of land surface models (currently
Noah, CLM, VIC, Mosaic) on points, regions, or the globe
at spatial resolutions from 2.5� � 2.5� down to 1 km or
finer.

[14] The substantial intermodel differences and errors
relative to the observations in the NLDAS project were
highlighted by Mitchell et al. [2004] and more fully
discussed by Robock et al. [2003]. Their findings imply
that any LDAS’ ability to explore the impacts of changing
landscapes or of additional observing systems depends
heavily on the accuracy of the required input data sets
and the physics of the models. Even more challenging is the
attribution of these differences to input parameters, forcings,
or physics, and being able to discriminate statistically
significant differences. For example, most LSM physics
has been developed and evaluated at a few sites selected for
their data richness (e.g., the Department of Energy Atmo-
spheric Radiation Measurement program’s Southern Great
Plains region), while the remote sensing inputs to these
models have been evaluated at typically separate ‘‘valida-
tion sites.’’ The LDAS experience suggests that the inter-
actions between input parameters, forcings, and model
physics is complex and requires careful forethought and
metrics to distinguish between uncertainties in the inputs,
models, and responses due to changes in landscapes. A
remote sensing observatory could fill a critical role toward
addressing this signal/noise problem.
[15] Recent work [e.g., Bosilovich, 2002] has suggested

that the joint spatial distribution of parameters and forcings
yields nonlinear effects that can propagate to larger scales,
again, highlighting the need for quantifying cross-scale
information flow in hydrology. A critical need to help us
evaluate the effects of local landscape change (e.g., urban-
ization, irrigation, deforestation) at regional and continental
scales is one or more test beds where such impacts on the
hydrologic cycle can be studied at multiple spatial scales to
inform the required complexity of coupled modeling sys-
tems. It is clear that remote sensing provides the only
reasonable means to quantify heterogeneity and change at
regional and continental scales, and a hydrologic RSO that
can support multiscale studies of land-atmosphere interac-
tion could serve a central role in addressing this problem.
[16] A case has been made that measurements of hydro-

logic variables are needed with high spatial and temporal
resolution at continental to global scales. The sheer volume
of data that this represents will likely preclude achievement
of this goal. However, if we can understand small-scale
processes (e.g., �1 m) and develop methods to obtain
representative values for hydrologic variables at somewhat
larger scales (e.g., �1 km) to bridge the gap between the
smallest scales at which variability occurs and scales at
which modeling is possible and appropriate, the problem
becomes far more tractable. This then is an important first
requirement for a remote sensing facility to address how to
make truly representative measurements at a given scale
from a limited number of measurements.
[17] There are not currently remote sensors capable of

making all of the measurements that may be required by all
of the various branches of hydrology. The identification of
specific requirements and the development of techniques to
address current and evolving issues would also be a task for
a remote sensing facility.

2.2. Question 2: Scaling of Hydrologic Variables

[18] For over 25 years, theories on spatial hydrologic
processes have been developed and tested through modeling
or exhaustive point measurements [e.g., Wood et al., 1988;
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Famiglietti and Wood, 1995; Blöschl and Sivapalan, 1995;
Rodriguez-Iturbe and Rinaldo, 1997; Crow et al., 2000;
Brown et al., 2002;Milne et al., 2002; Rietkerk et al., 2004].
Much of these developments have been related to the space-
time organization of soil moisture fields and their influence
on runoff production, and more recently their influence on
vegetation and its organization. Rainfall, surface and sub-
surface flow, and soil moisture also have received much
attention through scaling studies [e.g., Gupta and Waymire,
1990; Gupta et al., 1996].
[19] It is critical that we understand the observational

requirements for remote sensing if we are to assess whether
remote sensing offers the potential to provide a multiscale
view of the landscape so that such theories can be further
developed and tested. We need to move measurements from
scale to scale, and it appears that remote sensing is the only
approach that has the potential. This means that we need to
understand at each scale the uncertainty in the retrievals and
in model prediction, so that theories on how hydrologic
variability may change with scale can be adequately tested.
For this, we also need to understand the effects of landscape
heterogeneity on coarse-scale remote sensing measure-
ments, and to develop methods to combine these with
small-scale representations of hydrologic processes and
their physics. Thus an important question is, Can remote
sensing be used to test theory on spatial and temporal
ecohydrologic processes, and can it provide us with multi-
scale measurements, so that these processes are transferred
correctly across scales?
[20] Although many components of the hydrologic cycle

exhibit considerable variation in space and time that
changes with scale, to focus our discussion we use soil
moisture as an example. Soil moisture is the amount of
water stored in the unsaturated zone above the water table.
Although small relative to the other terrestrial reservoirs in
the hydrologic cycle (groundwater, glaciers and snow,
permafrost, lakes), soil moisture is an important and active
reservoir since it is directly linked to several hydrologic
fluxes, namely precipitation, runoff, evapotranspiration, and
drainage. Remote sensing appears to be the only technique
that can provide measurements of near-surface soil moisture
over the range of spatial scales required to understand its
variability.
[21] Spatial and temporal variations of soil moisture can

be observed with microwave remote sensing using both
passive (radiometry) and active (radar) techniques. Soil
dielectric properties at microwave frequencies are strongly
dependent upon water content [Wang and Schmugge, 1980;
Dobson et al., 1985]. The relationship between soil mois-
ture and both microwave brightness [Schmugge, 1978] and
microwave backscatter [Ulaby et al., 1978] has been well
documented. In contrast to high-frequency optical and
infrared radiation, microwaves penetrate vegetation and soil
because of their longer wavelength. At 1.4 GHz, soil
emissivity/reflectivity is determined by the first several
centimeters of the soil moisture profile. Radiometric sensi-
tivity to soil moisture through vegetation as dense as a
full corn canopy has been demonstrated [Hornbuckle and
England, 2004]. At higher frequencies there is sensitivity to
only the first centimeter of the soil, and the temperature,
architecture, and moisture content of the vegetation canopy
begin to dominate the signal. At frequencies lower than a

gigahertz, there is the potential for measurements of rooting
depth soil moisture through vegetation as dense as forests
[Moghaddam et al., 2000].
[22] Soil moisture is the product of several hydrologic

processes that operate on different spatial and temporal
scales. Soil moisture is primarily a function of topography,
soil type, vegetation, and precipitation. Variables such as
topography and soil type do not change rapidly in time but
can have high spatial variability. Other variables, such as
precipitation and vegetation through evapotranspiration
driven by energy balance, influence soil moisture on much
shorter timescales. Consequently, soil moisture variability
and its spatial pattern can be both scale- and time-dependent
[e.g., Hills and Reynolds, 1969; Kachanoski and de Jong,
1988; Wilson et al., 2004]. Can observed soil moisture
variability be predicted from hydrologic theory using
knowledge regarding hydrologic processes and observed
spatial data on vegetation, soils, and topography? Some
theoretical efforts to employ Reynolds-averaged equations
to predict the temporal dynamics of the spatial variability in
soil moisture appear promising, at least on small scales
[e.g., Katul et al., 1997]. Remote sensing will play the key
role in answering this question by providing soil moisture
data at a variety of spatial scales with the relevant temporal
frequency.
[23] Nykanen and Foufoula-Georgiou [2001] observed a

break (transition) in the scaling of the variance of relative
soil moisture content (the ratio of volumetric soil moisture
to porosity) with spatial scale for areas of Oklahoma and
Kansas. The break was between the smallest scale soil
moisture data that were obtained by aggregating point
samples and data from an aircraft radiometer that were used
at the other scales. At the smaller scales, a linear log-log
relationship between soil moisture variance and scale was
observed. At the larger scales, a different scaling relation-
ship that also changed with time was found. Similar
transitions in soil moisture variability between scales have
been observed in other experiments [Crow and Wood,
1999].
[24] Is this transition due simply to different data sets, or

is the transition real and are these observations a correct
characterization of the physical processes involved? Would
this transition appear if only one data set were used?
Furthermore, can present land surface models reproduce
this transition? Remote sensing is the only viable method
that can be used to determine whether there indeed exists a
transition between the variability at small spatial scales and
variability at large scales, and what hydrologic processes
control this transition.
[25] Another significant problem in hydrology is that the

spatial scale of a measurement or a model is often different
than the scale at which hydrologic predictions are needed.
Consequently, upscaling and downscaling of measurements
must occur. Can remote sensing provide multiscale mea-
surements to transfer hydrologic processes correctly across
scales? Ground-based radars and radiometers have meter-
scale spatial resolutions [O’Neill et al., 1996; Laymon et al.,
2001]. Microwave remote sensing instruments mounted on
airplanes [Jackson, 2001; Njoku et al., 2002] can observe
soil moisture at spatial scales on the order of a kilometer.
Satellite radiometers can produce global observations with a
temporal frequency of a few days at spatial resolutions of
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tens of kilometers [Kerr et al., 2001; Entekhabi et al.,
2004]. Satellite radars typically have better spatial resolu-
tions but lower temporal measurement frequencies. Various
areal coverage up to global is possible with remote sensing.
The support of remote sensing observations spans six orders
of magnitude, from meters to hundreds of kilometers.
[26] An example of the fine spatial detail possible with

microwave remote sensing, and the hydrologic processes
that can be revealed, is shown in Figure 1. This is a
differential interferometric synthetic aperture radar
(DINSAR) image of an area of the Colorado High Plains
at 5.3 GHz using data from the ERS-2 satellite [Nolan et al.,
2003]. The image maps the relative change in phase of the
SAR signal between two acquisitions of data. Wetting the
soil decreases the penetration depth of the propagating wave
and can increase the surface elevation (clay swelling). Both
effects result in a decreased path length and a change in
phase of the SAR signal. Hence a change in relative
displacement indicates areas where soil moisture has in-
creased (negative displacement) or decreased (positive dis-
placement). The spatial resolution of the image is 50 m. Are
the differences in Figure 1 due to rainfall, snowmelt, soils,
vegetation, or topography, or a combination of these pro-
cesses? Can the differences be apportioned quantitatively
among these hydrologic processes? If so, how? Further-
more, can these processes be transferred across scales?
Some variables that directly affect soil moisture, such as
porosity, appear to be scaling, while others, such as residual
soil moisture, appear to be multiscaling [Peters-Lidard et
al., 2001]. What is the effect of averaging nonlinear
hydrologic processes so that large-scale aggregations may
be interpreted correctly? Such questions can only be an-
swered with multiscale measurements available via remote
sensing.
[27] A dedicated RSO would be able to address several

key issues that currently hinder our ability to use remote
sensing in the context of spatial hydrologic processes and
scaling. The first key issue is infrastructure. It can take

several years for a single research group to plan and prepare
for a ground-based microwave remote sensing experiment.
Airborne and satellite instruments require enormously more
planning, preparation, and resources. In each case, the net
result may be only one or two weeks of data. Microwave
radiometers and radars are not readily available and nor-
mally are custom-made by members of the research group
themselves. In addition, such custom instruments normally
require significant maintenance to keep them in operating
condition. Besides the engineering expertise required to
fabricate complex instruments, the research group must also
be adequately adept in traditional hydrologic measurement
techniques. In the past, only groups with significant exper-
tise and focus in hardware design have been able to
undertake these endeavors, and as a result, the science
return has been reduced. An observatory could have remote
sensing instruments and a procedure for maintaining these
instruments already in place so that the time, resources, and
effort required to undertake experiments could be greatly
reduced.
[28] There is also a need for further integration of remote

sensing and hydrologic data. Such integration would be
encouraged by a remote sensing observatory. For example,
integration of remote sensing and hydrologic measurements
at many spatial scales will further our understanding of
landscape heterogeneity and its contribution to within-pixel
variability [Famiglietti et al., 1999; Mohanty and Skaggs,
2001; Bindlish and Barros, 2002]. Additionally, models of
microwave brightness, and particularly backscatter, do not
match observations in some situations. Further development
of these microwave models will likely require the complete
consideration of competing processes besides soil moisture,
such as changes in important soil properties (roughness,
macropores) and the effective constitutive properties of
vegetation (canopy structure, water content). Furthermore,
remote sensing measurements must be combined with
models of land surface processes in order to make the
hydrologic predictions that our society needs. When micro-

Figure 1. Differential interferogram (DIG) of an area of the Colorado High Plains produced with
DINSAR at 5.3 GHz. Areas of positive relative displacement correspond to areas which are drier, while a
negative relative displacement indicates wetter conditions for the second date of data acquisition as
compared to the first date. Dates of data acquisition appear in the upper left-hand corner of the image.
The black lines are stream channels. After Nolan et al. [2003].
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wave remote sensing measurements are assimilated into
land surface process models, better estimates of the spatial
patterns of hydrologic properties, hydrologic reservoirs, and
hydrologic fluxes are produced [Houser et al., 1998;
Reichle et al., 2001]. Assimilation is the only way quantities
such as soil hydraulic conductivity [Burke et al., 1998], the
full soil moisture reservoir [Wigneron et al., 1999], evapo-
transpiration, runoff, and groundwater recharge can be
determined [Liou et al., 1999]. Integration of remote sens-
ing measurements with land surface process models will
also provide the framework through which hydrologic
measurements at different scales and remote sensing
measurements will be related.
[29] Finally, a RSO would provide longer periods of time

over which to test microwave and land surface process
models. As we discussed earlier, spatial statistics are time-
dependent. Much of the previous research in remote sensing
has suffered from the lack of long time series data. There are
important diurnal [Hornbuckle and England, 2005] as well
as seasonal changes [Hornbuckle et al., 2003] that must be
considered. For example, plot-scale microwave brightness
(tens of meters) and satellite-scale microwave brightness
(hundreds of kilometers) match well in homogeneous areas
[Kim and England, 2003]. In heterogeneous areas, seasonal
hydrologic phenomena (such as winter snow cover) can
make the landscape much more uniform [Judge et al.,
2001]. The representation and effects of diurnal and sea-
sonal hydrologic changes in microwave models must be
improved.

2.3. Question 3: Data Assimilation

[30] Substantial amounts of research suggest that hydro-
logic forecasts can be improved if hydrologic variables, like
precipitation, soil moisture, snow cover, and freeze-thaw
state, along with ground observations, could be fused
correctly into hydrologic models [e.g., Houser et al.,
1998; Reichle et al., 2002; Crow and Wood, 2003; Margulis
and Entekhabi, 2003; Drusch et al., 2005; Dunne and
Entekhabi, 2005; Walker and Houser, 2005]. To correctly
combine different sources of data requires knowledge of the
uncertainty in all three components of the prediction sys-
tem: the retrieved remotely sensed variables, the ground-
based observation system, and the predictive hydrologic
model. Therefore a general question for the hydrologic
community involved in using predictive models is, In what
ways can remote sensing data be combined with other data
and hydrologic models to improve hydrologic predictive
skill, and can this increased skill be quantified?
[31] To illustrate how addressing this question could

benefit from carefully constructed experiments within a
remote sensing observatory we use an example of predicting
evapotranspiration. Reliable measurement of evapotranspi-
ration at the watershed scale is a major challenge in
hydrology. Evapotranspiration is the second largest compo-
nent of the surface water balance and remains a major
source of uncertainty in estimates of groundwater recharge.
Because of the spatial variability of evapotranspiration and
its influence on soil water storage and antecedent moisture,
it also can strongly influence runoff estimation. Remote
sensing is ideally suited to assist with estimating evapo-
transpiration because it is able to map spatial distributions
of vegetative cover and surface temperature; two quantities
closely related to evapotranspiration. Here we describe a

method that combines remote sensing observations with
ancillary ground measurements to map evapotranspiration
from scales of tens of meters to thousands of kilometers.
The methodology described below is in the early stages of
development. The potential for routine implementation of
this technique would be greatly enhanced by having a
remote sensing observatory.
[32] Regional-scale land surface models are typically

prognostic; that is, they use operational inputs such as
weather, and detailed soil and vegetation information to
predict fluxes and states of the surface. Because of con-
straints on input data availability, prognostic land surface
models operating over regional or continental scales eval-
uate the water and energy balance at resolutions on the
order of 1–10 km or larger. Not only is this resolution
typically too coarse to demarcate actual variations in land
use/land cover on the hydrologic cycle, but comparison to
ground-based observations of the surface energy balance
results in a significant mismatch in scale. Tower-based
measurements represent a source area of �100 m (micro-
meteorological scale), an order of magnitude smaller than
the output from such models. Airborne flux instruments
can sample larger scales, although such measurements are
not routinely available. A means of comparing model
output directly with ground reference data at matching
scales is critical to establishing the credibility of land
surface models.
[33] While prognostic models predict land surface states

(e.g., surface temperature and moisture), diagnostic models
infer these conditions from remote-sensing observations and
therefore can operate at the spatial resolution of the remotely
sensed images, which can range from a few meters to
several kilometers. In the following, we describe two very
different kinds of diagnostic models that predict fluxes at
micrometeorological scales: a surface temperature-based
system called the Atmosphere-Land Exchange Inverse
(ALEXI) model and associated disaggregation technique
(DISALEXI), and a system using Raman lidar data, which
analyzes fluxes from an atmospheric perspective. Agree-
ment between these two approaches will lend credibility to
both.
[34] The ALEXI/DISALEXI multiscale modeling system

has been developed to disaggregate regional fluxes based on
5 km resolution thermal data from GOES (Geosynchronous
Operational Environmental Satellite) to finer pixel resolu-
tions associated with Landsat/MODIS/ASTER or aircraft-
based remote sensing instruments. The ALEXI model com-
ponent [Anderson et al., 1997; Mecikalski et al., 1999] uses
5 km GOES-based remotely sensed surface temperature and
AVHRR/MODIS-based vegetation cover coupled with an
atmospheric boundary layer growth model to compute fluxes
at 5–10 km resolution. These regional-scale flux predictions
from ALEXI can be disaggregated to finer scales (1–1000 m
resolution) more commensurate with micrometeorological
observations by using high-resolution surface temperature
and vegetation cover information collected by Landsat/
MODIS/ASTER or an aircraft-based system. The disaggre-
gation procedure [DISALEXI) [Norman et al., 2003;
Anderson et al., 2004] uses ALEXI predictions of air
temperature at 50 m above ground level as an upper
boundary field for local scale flux evaluations, and enforces
conservation in aggregated sensible heating.
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[35] In Figure 2, spatially distributed output of evapo-
transpiration from the multiscale modeling system is illus-
trated for the state of Oklahoma at the 5 km ALEXI
resolution. Sites having micrometeorological flux towers
are indicated with two of these sites having exploded views
where DISALEXI is run using Landsat imagery with a
sharpened surface temperature field derived from a proce-
dure described by Kustas et al. [2003a]. Also illustrated in
the DISALEXI evapotranspiration fields is the tower loca-
tion for both sites and the approximate extent of the upwind
source area contributing to the flux measurements. Because
of local heterogeneity in surface conditions, Figure 2 shows
that changes in wind direction (and therefore the source area
influencing the tower measurements) can significantly affect
the flux measured at a given tower site. Model predictions
at 5–10 km resolution cannot capture such local effects,
and thus direct comparison with tower measurements is
degraded.
[36] An independent evaluation of the DISALEXI high-

resolution flux fields can be obtained with a Raman lidar
technique for making three-dimensional measurements of
water vapor concentration in the atmosphere. These water
vapor profiles can be combined with local wind measure-
ments to map evapotranspiration over a �1 � 1 km2 area
with relatively fine (�25 m) spatial resolution [Eichinger et
al., 1999]. The utility of the technique to determine evapo-
transpiration fluxes over complex terrain and canopies with
nonideal micrometeorological fetch conditions has been
demonstrated [Eichinger et al., 2000]. An example applica-
tion of this technique is illustrated in Figure 3 showing a

30 m resolution evapotranspiration map over adjacent corn
and soybean fields from lidar data collected during the Soil
Moisture Atmosphere Coupling Experiment (SMACEX) in
Iowa [Kustas et al., 2003b]. The evapotranspiration patterns
at this resolution highlight the degree of nonuniformity
present even in agricultural fields. DISALEXI output cre-
ated with Landsat data over the same area provides a unique
opportunity to assess consistency in the spatial pattern of the
evapotranspiration field.
[37] Again, these two flux-mapping approaches are

complementary yet completely independent, one being
surface-based and the other being atmosphere-based. In
combination, and in comparison with ground-based tower
measurements, a strong argument can be made for the
validity of flux predictions at meter-scale resolution over
regions the size of a watershed basin.
[38] This example demonstrates the power of combining

tower and aircraft micrometeorological measurements with
diagnostic modeling techniques for robust validation of
evapotranspiration estimates at watershed and regional
scales. Prognostic models at coarser spatial resolutions are
more difficult to validate directly. Furthermore, the range in
resolution afforded by multiscale diagnostic modeling
allows for the investigation of the impact of land cover/
land use variability on hydrologic fluxes, both of which
have length scales on the order of 101–102 m.

2.4. Question 4: Validation

[39] Historically, the validation of remote sensing prod-
ucts consisted of comparisons to ground-based measure-

Figure 2. Latent heat flux, 29 May 2000 at the Oklahoma Mesonet.
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ments with the goal of having the former match the latter.
Too often the comparisons were based on short field
campaigns, and the retrieval algorithms applied to areas of
questionable validity without any statement of their uncer-
tainty. This approach to validation needs to be revised. We
define validation as quantitative determination of uncertainty
of remote sensing products. Thus the problem of validation
becomes equivalent to answering the question: What is the
statistical structure of uncertainties associated with remote
sensing products at different space-time scales?
[40] Implicit in this questions are issues of error definition

(additive or multiplicative), and determination of bias,
probability distribution of the errors with their moment
characterization, and spatial and temporal dependence.
Adequate ground-based observations either are too sparse
or do not exist. Their measurement errors are often not well
recognized. Thus the observatory offers the opportunity to
develop new rigorous approaches for validating, i.e., eval-
uating, remote sensing products.
[41] To demonstrate how a RSO could help address the

validation issue, we use an example of radar-rainfall esti-
mation. Prior to the advent of remote sensing, hydrologists
relied on rain gauge networks and suffered from an inability
to account for the high spatial and temporal variability of
rainfall. While the arrival of radar networks, e.g., the
NEXRAD system in the United States, has dramatically
improved our ability to detect storms and offered hydrolo-
gists a wealth of information on the spatial and temporal
structure of rainfall systems, quantifying the uncertainty of
rainfall estimates remains an important challenge [e.g.,
Krajewski and Smith, 2002]. Unless the uncertainty of
radar-rainfall products is quantified, the research benefits
of the data will be limited.
[42] The main challenge in designing a network adequate

for rainfall validation purposes is closing the scale gap.
Considering that rain gauge and weather radar have sensor
sampling areas differing by some 8 orders of magnitude, it
is clear that the challenge is significant and cannot be
addressed by a standard operational network.
[43] In our vision the rainfall validation network will

comprise several types of sensors [Krajewski, 2006]: (1)

standard rain gauges to facilitate transferability of results,
(2) disdrometers, i.e., devices for measuring drop size
distribution (DSD), as these are fundamental to radar (and
satellite) remote sensing of rainfall, (3) vertically pointing
radars, as the vertical variability of precipitating cloud and
rain systems seems to be of fundamental importance for
addressing the radar-rainfall estimation problem, and (4) a
network of specialized inexpensive radars to provide very
high resolution observations.
[44] A strategy based on a colocated collection of the

instruments listed above requires characterization of point-
scale measurement error. In the case of tipping bucket rain
gauge data, Habib et al. [2001] and Ciach [2003] conducted
experimental studies that provide mathematical models of
rain gauge rainfall accumulation random errors. The stan-
dard errors decrease with increasing rain amount and time
integration scale. Another conclusion from these studies is
that tipping bucket rain gauges, when well maintained and
deployed as a pair [Ciach and Krajewski, 1999; Steiner et
al., 1999; Cruse et al., 2006] provide accurate observation
of rainfall accumulations at scales from 10 min up. Sys-
tematic errors in rain gauge measurements can be attributed
to wind effect that has been extensively studied experimen-
tally [e.g., Sevruk and Hamon, 1984; Yang et al., 1998], and
recently numerically [Nešpor et al., 2000; Habib and
Krajewski, 2001; Constantinescu et al., 2006].
[45] Validation of hydrologic variables, rainfall in partic-

ular, using in situ data requires separation of the effects of
natural variability from the measurement/estimation uncer-
tainty [Ciach and Krajewski, 1999]. This, in turn, implies
the need for estimation and characterization of the variabil-
ity in space and time across spatial and temporal scales. For
rainfall this requires specialized networks [e.g., Moore et
al., 2000; Habib and Krajewski, 2002; Krajewski et al.,
2003; Ciach and Krajewski, 2006].
[46] Closing the scale gap would be achieved by using

high-resolution short range X-band polarimetric radars [e.g.,
Matrosov et al., 1999; Zrnic and Ryzhkov, 1999; Matrosov
et al., 2002; Anagnostou et al., 2004] operated as a network
[Krajewski, 2006]. Attenuation of X-band signal by rainfall
would be mitigated by use of multiparameter algorithms,

Figure 3. Output of latent heat flux from lidar-based technique over corn and soybean fields in central
Iowa in comparison to DISALEXI output using aircraft imagery during SMACEX.
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multiple radars ‘‘seeing’’ the same location, and other
corrections [e.g., Berne and Uijlenhoet, 2005]. With spatial
resolution on the order of 100 m, the effect of spatial
variability of rainfall becomes negligible and in situ data
can be used to estimate the error structure of these radars,
which in turn, ‘‘connect’’ to NEXRAD’s network of radar
and satellite rainfall estimates. Disdrometers and profilers
(i.e., vertically pointing radars) provide additional context
and information relevant to rainfall estimation using remote
sensing. By measuring raindrop size distribution (DSD) and
drop velocity, disdrometers allow us to estimate spatial
variability of radar reflectivity, as well as other rainfall
characteristics. Since disdrometers measure DSD indirectly
and the cumulative experience with their operation is much
less than with rain gauges, they require thorough testing.
Several disdrometer intercomparison experiments point
to the sensitivity of the results to the instrument type
[Sheppard and Joe, 1994; Campos and Zawadzki, 2000;
Williams et al., 2000; Tokay et al., 2001; Miriovsky et al.,
2004; Krajewski et al., 2006.]
[47] Vertically pointing Doppler radars (VPR) provide

crucial information for radar remote sensing. They are
capable of observing vertical profiles of precipitating clouds
thus identifying features affecting radar observables. These
features include thickness and height of the melting ice at
cloud base (i.e., bright band problem), precipitation phase,
convective cores, updrafts and downdrafts, etc. They are
also capable of providing estimates of the vertical profile of
DSD. These estimates are more reliable if the profiler
operates at multiple frequencies so that air and raindrop
motion can be distinguished. Profiler-based studies of
precipitation systems and the related instrumental and
estimation issues have been well documented in a number
of publications [e.g., Wakasugi et al., 1986; Gage et al.,
1999, 2000, 2002; Williams et al., 2000; Williams, 2002;
Kollias et al., 2002].
[48] Development and operation of a network of radars,

in concert with other ground-based sensors at a rainfall
validation site, offers numerous advantages. For example,
consider a network of four radars overlooking a regular
dense network of rain gauges. Its operation can lead to
(1) improved accuracy of rainfall algorithms, (2) increased
resolution, (3) increased reliability, (4) reduced develop-
ment and operating costs, and (5) repeatability. Still, much
research remains before we can fully realize the above
benefits. Research needed includes technological advance-
ments of radar hardware, development of software to
operate the radar as a true network and not simply a
collection of four individual radars, and refinement of
rainfall estimation algorithms.
[49] Many of the issues we discussed using validation of

rainfall as an example apply to other, but not all, hydrologic
variables. For some of the variables, e.g., soil moisture,
additional complications immediately come to mind: the
validation setup needs to take into account effects of
topography, soil type and distribution, and vegetation cover,
among others.

3. Design of a Remote Sensing Observatory

[50] Up to this point we have discussed the remote
sensing observatory somewhat in the abstract. In this

section we provide more details. A broad definition of the
RSO is a piece of land that is well instrumented with in situ
and ground-based high-resolution remote sensing instru-
ments that allow detailed observations of the hydrologic
processes occurring at the site. In that respect, the RSO is
quite similar to a hydrologic observatory with the main
difference being the size. We contend that the area of a RSO
does not need to be larger than about 10 km by 10 km. Such
a size is greater than the resolution of most remote sensing
platforms, yet not too large to be unmanageable. The
questions ‘‘Where?’’ and ‘‘How many?’’ immediately fol-
low. However, as these questions are not critical to estab-
lishing the soundness of the concept, we will not address
them at this time.
[51] Issues relevant to site selection include variability of

the hydrometeorological processes, access to land, and how
well it represents other areas. Obviously, we need to sample
a range of conditions; a place where it rarely rains would
not be a good choice for remote sensing of rainfall studies.
A site having good seasonal variability and representing
both cold and warm season processes and their transitions
would be preferred. On the other hand, difficult terrain
imposes unnecessary obstacles early in our efforts. A
mountainous site would make more sense after we convince
ourselves, as a community, of the merits of the RSO
concept. By the same token, one could argue for a multisite
dynamic adaptable facility designed to sample a broad
range of heterogeneities focused on variability in vegeta-
tion, terrain, and hydroclimatic conditions. This would be
possible with participation by a broad international hydro-
logic community.
[52] After site selection the next critical questions are,

‘‘What instruments should be deployed, how many of them
do we need, and in what configuration?’’ As our examples
above illustrate, the answer depends on the variable of
interest. With some (e.g., rainfall), our knowledge is suffi-
cient to address the specific design issues now; for other
variables (e.g., soil moisture) we have major gaps in our
understanding. Still, this should not stop us from making the
commitment and developing a RSO. The whole point is that
the observatory is a ‘‘playground’’ where we can easily
modify, enhance, and adapt the sensor network as our
knowledge of the relevant processes increases. For many
variables, the scale of the variability may be such that it
would prevent dense deployment of sensors. In that case,
we should consider nested design that would enable gradual
bridging of the scale gap and enable upscaling studies. For
other variables we need to consider one or more specific
locations representative of elements present in the observa-
tory, to later allow integration of the entire domain or the
scale relevant for a particular remote sensor. For example,
rather than deploying a uniform network of flux towers, we
may deploy them at the locations with topography and land
use characteristics representative for the particular RSO site.
Understanding evaporation over corn or forest at some
selected sites would allow upscaling to a larger domain.
In some cases we may need to resort to virtual reality
modeling of the local hydrologic processes based on our
current state of knowledge for the design of our observa-
tional network.
[53] What variables are of primary interest? It seems that

the priority should be the variables that control or deter-
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mine near surface states and fluxes of mass and energy
transfer. Precipitation, soil moisture content, and evapo-
transpiration are the basic variables that constitute a core of
observations for a wide variety of hydrologic studies. The
measurements would include several components of the
radiative energy balance, surface, and near-surface temper-
atures, other properties of the landscape such as vegetation
characteristics, as well as boundary layer processes includ-
ing wind profiles.
[54] Other principles of the RSO design include high and

well-determined quality of the data, redundancy of infor-
mation, oversampling design, immediate access to data by
the entire research community, long-term deployment,
automation of data collection, etc. Selection and deploy-
ment of specific instruments should be preceded by careful
comparisons and short-term experiments, while the double-
sensor principle will aid in data quality control and in situ
error characterization. The length of deployment of a
particular set of instruments at a given location should be
guided by frequent assessment of the need to help our
understanding. Thus, if we as community feel that a
particular aspect of remote sensing is well understood
and dealt with, we can move on to study another. For
example, if we understand measurements and estimation of
evapotranspiration over uniform vegetation on flat terrain,
there is little sense in continuing to maintain an array of
instrumentation doing just that. The design of the RSO
should be inherently flexible to allow for reconfiguration of
the site as hypotheses are tested and new hypotheses are
formulated.
[55] We have estimated that the cost of establishing a

RSO would be about $10 million, with about $5 million a
year to run the facility. In our calculations we assumed
deployment of only ground-based instruments; having an
aircraft available to the facility would add additional cost.
The staff of the observatory would be about 10–15 highly
qualified scientists, engineers, and technicians. The data
distribution, archival, and mining would be handled by the
Information Technology unit of the RSO. Considering the
cost of a single satellite mission, the above price, while only
a rough estimate, seems a bargain. The new capability
afforded to the research community would quickly result
in value added products and would pave the way for future
advances.

4. Closing Remarks

[56] The concept of the remote sensing observatory we
propose should be viewed as development of new capabil-
ities and not as a large-scale experiment. For remote sensing
to be useful in studies at hydrologic observatories as well as
in monitoring continental and global-scale water resources,
it needs to be investigated through a series of focused
studies. A number of questions and issues remain; we have
discussed some of them in this paper. We need a statistical
approach to test for consistency between remote sensing and
ground data. We need to quantify uncertainty in derived
remote sensing products and ground measurements. We
need to improve our understanding of subgrid heterogeneity
and its effects on hydrologic processes. We need to develop
approaches to assimilate remote sensing data and products
into new models and theories.

[57] At remote sensing observatories many variables
would be monitored at comparable scales. The necessity
of this multicomponent approach has been recognized by
those currently involved in remote sensing validation
efforts. For example, the SMEX 2002 experiment in Iowa
has demonstrated the value of boundary layer and water
vapor monitoring for interpretation of passive microwave
remote sensing of soil moisture. Even in validation of
precipitation (seemingly an external input) the information
on three-dimensional wind structure, atmospheric stability
and humidity of the prestorm and poststorm environment
are critical for proper interpretation of the results.
[58] How should we go about establishing RSOs? While

the developing structure of the CUAHSI seems well suited
for the task, it is still somewhat of a moving target.
Therefore we resist temptation of putting our RSO concept
into the framework of CUAHSI. Our main objective in this
paper was proposing a concept, not a design. We hope this
paper will stimulate the hydrologic community to initiate
more discussion on the issues and needs we raise herein. As
the scope of remote sensing is wide, developing smaller
focused prototypes of RSOs may be a good first step to
consider. In designing such prototypes we should capitalize
on lessons learned from previous community experiments
such as FIFE, BOREAS, HAPEX-Mobilhy, HAPEX-Sahel,
LBA, etc., and coordinate with efforts of agencies involved
in hydrologic remote sensing.
[59] A remote sensing observatory would allow us to

assess more quantitatively the state-of-the-art on remote
sensing and hydrologic prediction, thus providing a credible
path toward future progress. Without being able to deter-
mine the uncertainty of many remote sensing products, it is
hard to argue for resources needed for future progress. Since
building observational systems is expensive, societal deci-
sions leading to such investments need to be firmly based in
science. The RSO will greatly improve our capability to
make credible scientific recommendations of resource
investments, including those directly affecting the research
enterprise.
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