
����������
�������

Citation: Sun, Q.; Zhang, P.; Jiao, X.;

Lun, F.; Dong, S.; Lin, X.; Li, X.; Sun,

D. A Remotely Sensed Framework

for Spatially-Detailed Dryland Soil

Organic Matter Mapping: Coupled

Cross-Wavelet Transform with

Fractional Vegetation and

Soil-Related Endmember Time Series.

Remote Sens. 2022, 14, 1701. https://

doi.org/10.3390/rs14071701

Academic Editors: Huanjun Liu,

Chong Luo and Qiangzi Li

Received: 12 February 2022

Accepted: 22 March 2022

Published: 1 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Remotely Sensed Framework for Spatially-Detailed Dryland
Soil Organic Matter Mapping: Coupled Cross-Wavelet
Transform with Fractional Vegetation and Soil-Related
Endmember Time Series
Qiangqiang Sun 1,2, Ping Zhang 1, Xin Jiao 1, Fei Lun 1,2, Shiwei Dong 3 , Xin Lin 1, Xiangyu Li 1

and Danfeng Sun 1,2,*

1 College of Land Science and Technology, China Agricultural University, Beijing 100193, China;
qiangsun@cau.edu.cn (Q.S.); pingzh@cau.edu.cn (P.Z.); jiaoxin@cau.edu.cn (X.J.); lunfei@cau.edu.cn (F.L.);
linx@cau.edu.cn (X.L.); leexu@cau.edu.cn (X.L.)

2 Research Center of Land Use and Management, China Agricultural University, Beijing 100193, China
3 Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; dongsw@nercita.org.cn
* Correspondence: sundf@cau.edu.cn

Abstract: Soil organic matter (SOM) plays pivotal roles in characterizing dryland structure and
function; however, remotely sensed spatially-detailed SOM mapping in these regions remains a
challenge. Various digital soil mapping approaches based on either single-period remote sensing
or spectral indices in other ecosystems usually produce inaccurate, poorly constrained estimates of
dryland SOM. Here, a framework for spatially-detailed SOM mapping was proposed based on cross-
wavelet transform (XWT) that exploits ecologically meaningful features from intra-annual fractional
vegetation and soil-related endmember records. In this framework, paired green vegetation (GV) and
soil-related endmembers (i.e., dark surface (DA), saline land (SA), sand land (SL)) sequences were
adopted to extract 30 XWT features in temporally and spatially continuous domains of cross-wavelet
spectrum. We then selected representative features as exploratory covariates for SOM mapping,
integrated with four state-of-the-art machine learning approaches, i.e., ridge regression (RR), least
squares-support vector machines (LS-SVM), random forests (RF), and gradient boosted regression
trees (GBRT). The results reported that SOM maps from 13 coupled filtered XWT features and four
machine learning approaches were consistent with soil-landscape knowledge, as evidenced by a
spatially-detailed gradient from oasis to barren. This framework also presented more accurate
and reliable results than arithmetically averaged features of intra-annual endmembers and existing
datasets. Among the four approaches, both RF and GBRT were more appropriate in the XWT-based
framework, showing superior accuracy, robustness, and lower uncertainty. The XWT synthetically
characterized soil fertility from the consecutive structure of intra-annual vegetation and soil-related
endmember sequences. Therefore, the proposed framework improved the understanding of SOM and
land degradation neutrality, potentially leading to more sustainable management of dryland systems.

Keywords: soil organic matter; dryland systems; cross-wavelet transform; endmember fraction;
time series

1. Introduction

Drylands, defined as regions where precipitation is counter-balanced by land surface
evapotranspiration [1], face considerable threats from pervasive soil fertility loss and
ecosystem fragility [2,3]. Consequently, there is an urgent need to quantitatively assess land
degradation as required by the United Nations Sustainable Development Goals (SDGs) [4].
Land degradation neutrality was established by the United Nations Convention to Combat
Desertification (UNCCD) as a primary operating scheme for achieving a state where
drylands resources remain stable or increase over time [4–6]. In this scheme, soil organic
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matter (SOM) is regarded as one of the most critical indicators for effective land degradation
neutrality assessment [5,7], because of its pivotal roles in agricultural production, the
carbon cycle, climate mitigation, and dryland ecosystems evolution [8–13]. However, our
knowledge of how SOM distributes and changes is limited by the lack of spatially explicit
SOM estimates in dryland systems. Spatially-detailed mapping of SOM is necessary to
scientifically assess and manage the land degradation neutrality in drylands [14], as well as
to contribute to the “4 per mille Soils for Food Security and Climate” initiative [15].

The recent advances in remotely sensed approaches facilitate spatially continuous
SOM and soil organic carbon (SOC) estimations based on a soil-landscape model com-
pared to discrete soil field data [16–21]. These approaches use environmental factors, and
remote sensing derived vegetation indexes as covariates [22–28]. However, the exposed
soil, standing dead vegetation, and litter strongly affect the spectral response of satellite
images [29,30], especially when the proportion of bare soil is greater than 20% of each
pixel [31]. Therefore, the digital soil mapping approaches developed in humid ecosystems
often produce inaccurate, poorly constrained estimates of dryland SOM [32].

The linear spectral mixture analysis (LSMA) model has the advantage of providing
physical vegetation and soil-related endmember fractions [33–36]. This measurement offers
a continuous, quantitative representation of land surface properties, which is superior
to vegetation indexes in dryland systems [37,38]. Studies have confirmed that unmixed
endmember fractions hold a remarkable promise for overcoming the past challenges of soil
properties estimates in drylands [14,39–41] and could revolutionize our ability to monitor
degradation across spatiotemporal scales [42].

Furthermore, long-term remote sensing datasets provide insight into land surface
dynamics to regional soil properties, offer an effective way of inferring soil properties and
improving digital soil mapping [22,43–46]. For example, the recently launched satellites
Gaofen-1/6 Wide Field of View (GF-1/6 WFV, 16-m spatial resolution, about a 2-day revisit
period) and Sentinel-2 (10-m spatial resolution, about a 5-day revisit period), allow im-
proved temporal and spatial resolution, especially when coupled with physical vegetation
and soil-related endmember fractions [47]. This resolution is important for capturing the
intra-annual spatiotemporal variability of dryland systems for SOM mapping. Never-
theless, given the multidimensional, irregular, and redundant information embodied in
temporally dynamical endmember sequences [48], it is challenging to obtain SOM-inferred
features representative of the entire endmembers’ time series [49]. Despite the conventional
arithmetic average of the entire or multi-temporal time series records having been adopted
for digital soil mapping [28,43,44], this may lead to the loss of some critical information in
very heterogeneous dryland systems.

The wavelet transform is an advanced scale-and time-dependent analysis tool to
study multiscale and non-stationary processes [50]. The spatial wavelet transform has
been recently introduced to digital soil mapping with environmental covariates [51]. The
temporal cross-wavelet transform (XWT) can effectively highlight interactive information
recorded on two related time series of signals [50,52]. For example, taking advantage of
intra-annual green vegetation (GV) and soil-related (i.e., dark surface (DA), saline land (SA),
and sand land (SL)) endmember sequences, XWT was utilized to extract 30 feature imageries
for sparse vegetation mapping, and investigated to supply the indicative significance of
ecosystem quality in an integrated manner [53]. However, to the best of our knowledge,
the use of XWT has rarely been reported in digital soil mapping.

Here, based on soil–landscape theory that has been developed as a quantitative tool to
predict soil properties from remotely observed soil-vegetation factors, we hypothesized that
XWT can capture ecologically meaningful features to accurately and reliably quantify SOM
in spatially heterogeneous drylands. This study developed an XWT-based framework for
extracting ecologically meaningful vegetation–soil interaction features from intra-annual
endmembers’ sequences and then applied them in spatially-detailed SOM mapping in
Minqin, Northwest China. The specific objectives of this study were: (1) to extract and
filter appropriate XWT features conducive to SOM mapping, (2) to couple the selected
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XWT features and state-of-the-art machine learning approaches for SOM mapping, and (3)
to illustrate the advantages of the XWT-based framework for SOM estimation in dryland
systems.

2. Materials and Methods
2.1. Study Area

The study area of Minqin (approximately 1.6 × 104 km2) is located in Gansu Province,
Northwest China (ranging from 101◦49′ to 104◦12′ E and from 38◦03′ to 39◦28′ N, Figure 1),
and has an arid continental climate with an average precipitation of about 110 mm; however,
accompanied by quite high annual average evaporation of 2664 mm [38]. This study
area includes six districts (i.e., Huanhe, Baqu, Quanshan, Huqu, Muqu, and Changning)
with diverse dryland landscapes, consisting of oasis and barren areas. The oasis consists
predominantly of alluvial plain, including water, forest, grassland, cropland, and settlement,
and accounting for about 11.06% of the entire study area, while the remaining 88.94% is
covered by the desert vegetation and sand land of the Badain Jaran Desert and Tengger
Desert (Figure 1). Within the barren region, Eolian plain is the largest geomorphological
type, dominated by the interaction between wind erosion and desert vegetation. The study
area is ecologically fragile and infertile, resulting in severe land degradation [39]. Therefore,
a series of ecological management measurements have been implemented since the 21st
century [38,54]. Spatially-detailed SOM mapping has become one of the primary tasks
in this context to reliably evaluate ecological quality and land degradation neutrality at
landscape and field scales.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 24 
 

 

work for extracting ecologically meaningful vegetation–soil interaction features from in-
tra-annual endmembers’ sequences and then applied them in spatially-detailed SOM 
mapping in Minqin, Northwest China. The specific objectives of this study were: (1) to 
extract and filter appropriate XWT features conducive to SOM mapping, (2) to couple the 
selected XWT features and state-of-the-art machine learning approaches for SOM map-
ping, and (3) to illustrate the advantages of the XWT-based framework for SOM estima-
tion in dryland systems. 

2. Materials and Methods 
2.1. Study Area 

The study area of Minqin (approximately 1.6 × 104 km2) is located in Gansu Province, 
Northwest China (ranging from 101°49′ to 104°12′ E and from 38°03′ to 39°28′ N, Figure 
1), and has an arid continental climate with an average precipitation of about 110 mm; 
however, accompanied by quite high annual average evaporation of 2664 mm [38]. This 
study area includes six districts (i.e., Huanhe, Baqu, Quanshan, Huqu, Muqu, and 
Changning) with diverse dryland landscapes, consisting of oasis and barren areas. The 
oasis consists predominantly of alluvial plain, including water, forest, grassland, 
cropland, and settlement, and accounting for about 11.06% of the entire study area, while 
the remaining 88.94% is covered by the desert vegetation and sand land of the Badain 
Jaran Desert and Tengger Desert (Figure 1). Within the barren region, Eolian plain is the 
largest geomorphological type, dominated by the interaction between wind erosion and 
desert vegetation. The study area is ecologically fragile and infertile, resulting in severe 
land degradation [39]. Therefore, a series of ecological management measurements have 
been implemented since the 21st century [38,54]. Spatially-detailed SOM mapping has be-
come one of the primary tasks in this context to reliably evaluate ecological quality and 
land degradation neutrality at landscape and field scales. 
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Figure 1. Study area and soil sampling points. (a,b) location of Minqin in Gansu Province, Northwest
China. (c) false-color composites of GF-1 WFV bands 4, 3, and 2 (Red, Green and Blue, respectively)
on 30 August 2015, in the study area. (d) soil sampling plots distributed in six districts and the
compound dryland landscapes of the study area.
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2.2. Methods

The overall workflow of the XWT-based framework for SOM mapping is shown in
Figure 2. This framework embodies five Sections, which include (1) soil sampling, (2)
XWT features extraction from vegetation and soil-related endmember sequences, (3) XWT
features selection as exploratory covariates, (4) model training, validation and robustness,
and (5) spatially-detailed SOM mapping and mapping uncertainty evaluation. Detailed
descriptions are as follows:
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Figure 2. Overall workflow of the XWT-based framework for SOM mapping. MESMA represents
multiple endmember spectral mixture analysis for unmixing four endmember fractions from GF-1
WFV imageries, corresponding to green vegetation, dark surface, saline land, and sand land. RF,
representing random forest, is one of the state-of-the-art machine learning approaches for feature
selection and soil mapping.

2.2.1. Soil Sampling

We conducted field soil sampling in Minqin from 10 September to 20 September 2016.
To match the spatial resolution of commonly used medium and high-resolution satellites
(e.g., 30-m Landsat, 16-m GF-1 WFV), soil sampling was implemented in 30 × 30 m square
plots [14]. These plots were set across various land use and cover types of the entire
study area (Figure 1d). Within each square, 5–6 surface soil profiles were sampled at a
0–20 cm depth and then mixed into one sample to represent each plot’s soil properties.
We collected a total of 94 samples for SOM estimates and validation. The Walkley–Black
method, commonly determining SOM by quantifying the amount of oxidizable soil carbon
as determined by the reaction with acidic dichromate integrated with external heating [55],
was used to estimate SOM in the laboratory.

In the study area, the measured SOM ranged from 3.450 g·kg−1 to 34.029 g·kg−1,
with an average of 11.992 g·kg−1 (Table 1). Cropland, grassland, and forest in the oasis
regions had the highest averaged SOM (14.340 g·kg−1, 13.237 g·kg−1, and 12.842 g·kg−1,
respectively), while sand land in the barren areas had only 6.112 g·kg−1 of averaged
SOM. As an oasis–desert transitional zone, the averaged SOM of desert vegetation was
10.092 g·kg−1.
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Table 1. Measured SOM of 94 soil samples.

Land Use/Land
Cover

Sample
Numbers

Measured SOM (g·kg−1)

Minimum Maximum Average Standard Error

Desert
vegetation 12 3.614 29.853 10.092 7.200

Sand land 16 3.450 11.043 6.112 3.099
Forest 21 4.183 34.029 12.842 7.069

Grassland 6 8.985 17.623 13.237 3.505
Cropland 39 6.938 27.474 14.340 5.534

Total 94 3.450 34.029 11.992 6.037

2.2.2. XWT Features Extraction from Endmember Sequences

We used 16-period high-quality GF-1 WFV images from October 2014 to November
2015 when the study area had few clouds. This satellite provided free and high-frequency
pretreatment-level radiometric correction products (level 1) with 16-m spatial resolution.
The LSMA procedure was proposed to estimate intra-annual GV and soil-related (i.e., SL,
SA, and DA) endmember fractions at the 16-m subpixel level [47]. In this measurement,
GV represents vegetation photosynthetic foliage, characterized by chlorophyll absorptions
in the visible and high reflectance in the near-infrared band, and SL refers to sand in the
desert. Similarly, SA is a deterministic element indicating saline land [38,47]. The feature
DA contains a fundamental ambiguity resulting from low surface reflectances, caused by
the presence of absorptive (black gravel), transmissive (water), or non-illuminated (shade)
surfaces [35,38]. Therefore, unmixed vegetation and soil-related endmember fraction se-
quences offer a continuous representation of land quality in the entire study area [34,35,56].
The details and datasets about LSMA for these four fractional endmembers’ time series can
be found in [47].

In addition, the XWT-derived cross-wavelet spectrum, embodying the cross-wavelet
power and phase in the temporal space, can quantify interactive information recorded
on two related time series of signals in a given wavelet spatial–temporal domain [50].
These cross-wavelet spectrums are efficient approaches for highlighting feedback between
multiple time series through XWT features extraction [52,53,57]. In general, XWT is defined
as the multiplication of the wavelet spectrum of signal x and the complex conjugate of the
wavelet spectrum from signal y,

Wxy(s) = Wx(s)Wy∗(s) (1)

represents the cross-wavelet power, and the phase is accordingly defined as

ϕxy(s) = arctan
ζ{Wxy(s)}
θ{Wxy(s)} (2)

where ζ{Wxy(s)} and θ{Wxy(s)} are the imaginary and real components of Wxy(s).
Therefore, based on the unmixed vegetation and soil-related endmember fraction time

series imageries, the XWT approach was adopted to identify the cross-wavelet power and
phase dominating in the intra-annual endmember pairs (i.e., GV and SL, GV and SA, GV
and DA) for each pixel. Then, ten ecologically meaningful XWT features (F1 to F10) for each
intra-annual endmember pair were calculated from the cross-wavelet power and phase,
respectively, following [53].

F1 =
∑
s

∑
n

sn|Wxy(s)|

∑
s

∑
n
|Wxy(s)| (3)
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F2 =

√√√√√∑
s

∑
n

s2n2|Wxy(s)|

∑
s

∑
n
|Wxy(s)| (4)

F3 =
∑
s

∑
n
|Wxy(s)|

|Wxy(s)|peak
(5)

F4 =
∑
s

∑
n
|Wxy(s)|

(smax − smin)(nmax − nmin)
(6)

F5 =
∑
s

∑
n

sn|ϕxy(s)|

∑
s

∑
n
|ϕxy(s)| (7)

F6 =

√√√√√∑
s

∑
n

s2n2|ϕxy(s)|

∑
s

∑
n
|ϕxy(s)| (8)

F7 =
∑
s

∑
n
|ϕxy(s)|

|ϕxy(s)|peak
(9)

F8 =
∑
s

∑
n
|ϕxy(s)|

(smax − smin)(nmax − nmin)
(10)

F9 = “s”at peak o f |Wxy(s)| (11)

F10 = “n”at peak o f |Wxy(s)| (12)

where F1 and F2, and F5 and F6 are the different normalized forms of the scale- and
time-averaged cross-wavelet power and phase, respectively. F3 and F7 indicate the ratio
between the summary of the cross-wavelet power and phase and their corresponding
peaks, respectively; F4 and F8 are cross-wavelet power and phase, respectively; F9 and F10
represent the scale and time where the cross-wavelet powers peak.

Finally, a total of 30 XWT feature imageries from three coupled intra-annual endmem-
ber pairs (i.e., GV and SL, GV and SA, GV and DA) were obtained [53]. Since some machine
learning algorithms’ objective functions may be affected by large variability among input
covariates [58,59], Min-Max feature scaling was adopted to normalize the range of each
independent XWT feature image into the range [0,1]. Thus, 30 normalized XWT feature
imageries were obtained as preliminary total covariates in this study. A more detailed
description of the XWT-based features derived from endmember sequences can be found
in [53].

2.2.3. SOM Exploratory Covariates Selection

The 30 × 30 m sampling plots were relatively matched with the four GF-1 WFV pixels
(16-m); we thus collected the average of 2 × 2 pixels of each normalized XWT feature
imagery in the geographic sampling plots. The measured SOM and the corresponding
30 normalized XWT features were considered as the predicted variable and possible ex-
ploratory covariates, respectively. However, some normalized XWT features may not
contribute significant information to the target SOM [60]. Our initial attempt was to filter
appropriate covariates conducive to SOM mapping to construct a better training model.

The random forest (RF) method determines the features’ importance in the process
of training the regression trees [61,62]. This RF-based feature selection module can se-
lect covariates with either linear or nonlinear relationships with the predicted variables.
We adopted the RF method to calculate the Gini importance as the criterion of feature
selection [63]. However, when any of the correlated exploratory covariates is selected



Remote Sens. 2022, 14, 1701 7 of 24

as an important variable in the RF model, the importance of other features will drop
sharply [64,65]. Therefore, a random subspace method in the RF model is widely applied to
weaken the correlation between features through the random utilization of partial features
instead of the entire features [66,67]. Specifically, we employed the entire samples (n = 94)
as an input of the random subspace method of the RF model, and 20-fold repetitions were
conducted to export the corresponding Gini importance of each XWT feature per repetition.
According to average importance of the 20-fold repetitions, we sorted the XWT features
from high to low and computed the cumulative contribution to select the features. The
Pearson correlation coefficient (r) and significance level (p) between each XWT feature and
the measured SOM were calculated with SPSS (Statistical Product and Service Solutions)
Version 19.0 to corroborate the features selection results. SPSS is globally recognized as a
useful statistical software, currently owned and developed by the International Business
Machines Corporation, New York City, NY, United States of America.

2.2.4. State-of-the-Art Machine Learning Approaches for SOM Mapping

In this study, to assess the machine learning approaches that fit our proposed XWT-
based framework, four state-of-the-art machine learning models, i.e., ridge regression (RR),
least squares-support vector machines (LS-SVM), RF, and gradient boosted regression trees
(GBRT), were applied with the selected XWT features for SOM mapping RR is a regression
method commonly applied in collinear data analysis [68–70]. In essence, it is an improved
least squares estimation method for deriving practical and reliable regression coefficients
by abandoning the least squares’ unbiasedness at the cost of losing part of the information
and decreased regression accuracy. The complexity parameter α is usually selected to
control the amount of shrinkage. A larger α relates to higher shrinkage, which corresponds
to more robust coefficients of collinearity. Therefore, based on ridge coefficients’ plots as
a function of the regularization (Figure S1a), α was set to 10. This parameter resulted in
various robust coefficients and intercepts (Figure S1b).

LS-SVM uses equality constraints instead of convex quadratic programming for classi-
cal SVMs and provides a convenient Lagrange multiplier solution alpha from simultaneous
linear equations [71]. The Gaussian radial basis function was selected as the Kernel function.
A grid-search method was used to optimize the C and γ of RBF [72], based on the lowest
root mean square error (RMSE) of leave-one-out cross-validation.

RF is a method of classification and prediction. This method is currently the most
effective and popular machine learning approach for remotely sensed SOM mapping [24,41].
We developed 100 bagged regression trees with a maximum depth of four at each decision
split. The prediction results were considered for the final output of every estimate through
mean squared errors as voting criteria [64,73].

GBRT is an iterative decision tree algorithm based on the gradient descent method.
It involves the synthesis of various weak classifiers, iteratively trained by increasing the
weights of misclassified samples and reducing the weights of accurate samples [74,75].
Here, the least-squares were used to construct the loss profile; we set the number of
regression trees, maximum tree depth, and minimum sample segmentation to 200, 3, and 3,
respectively. The learning rate was set to 0.05 to avoid fluctuations in the learning profile
and over-fitting of the model [63]. The loss profile plot showed that the training and
validation sets’ least-squares were close to equilibrium (0.18 and 5.18) after 1000 iterations
(Figure S2).

2.2.5. Model Training and Validation

The splitting of sampled data into training and validation sets is regarded as a stan-
dard approach to evaluate model performance [14,41]. However, this measurement only
indicates model performance for one specific group of split samples and can result in con-
siderable uncertainty [76]. Thus, multiple cross-validations were used to evaluate model
performances [41,43]. In previous studies, the number of repetitions varied from 10 to 50.
Consequently, in this study, 84% (n = 79) of the soil samples were selected as the training
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set, and the remaining 16% (n = 15) of the samples were used as the validation set. We also
employed a repeated 20-fold cross-validation on our randomly split samples to assess the
XWT-based framework’s reliability and efficiency.

For model cross-validation, the coefficient of determination (R2), the root mean square
error (RMSE), and the relative percent deviation (RPD) were used as accuracy validation
metrics. The first two metrics measure the precision [14,41], while the latter one is used to
quantify the estimation reliability of the model for digital soil mapping [77]. They can be
formulated as:

R2 =


n
∑

i=1

(
Mi −M

)(
Pi − P

)
√

n
∑

i=1

(
Mi −M

)2
√

n
∑

i=1

(
Pi − P

)2


2

(13)

RMSE =

√√√√√ n
∑

i=1
(Mi − Pi)

2

n
(14)

RPD =
SD

RMSE
(15)

where Mi and Pi are the measured SOM and predicted SOM, M and P are averages of
the measured SOM and predicted SOM of the training set and validation set, respectively,
n is the number of the training set (n = 79) and validation set (n = 15), and SD is the
standard deviation of measured SOM. When RPD > 2.0, the model is an excellent index for
predicting soil properties; 1.4 < RPD < 2.0 indicates that the predictive model is acceptable,
whereas RPD < 1.4 suggests that the reliability of the model is low and cannot be used for
prediction [77].

2.2.6. Spatially-Detailed SOM Mapping and Mapping Uncertainty Evaluation

Using a cross-validation model that coupled XWT features with state-of-the-art ma-
chine learning approaches, we predicted SOM at the same scale (16-m) as the GF-1 WFV-
derived XWT feature images for the entire study area. The averaged SOM at pixel level over
the 20 repetitions was calculated as a final mapping result. Mapping uncertainty has been
widely adopted in the digital soil mapping domain to ensure SOM mapping stability and
reliability [78]. A 90% prediction interval is a common uncertainty specification in digital
soil mapping models [78,79]. Therefore, at a 90% prediction interval, we adopted a value of
1.645 times the standard deviation derived from 20 repetitions of SOM mapping results
to analyze the mapping of pixel uncertainty for each state-of-the-art machine learning
approach.

2.3. Comparisons with Conventional Methods

Studies have explored ways to robustly estimate soil properties from time series of
remotely sensed covariates, commonly relying on the arithmetic average of the entire
multi-temporal time-series records [43,44]. To confirm the XWT features’ superiority as
exploratory covariates, we averaged the values for each endmember in different seasons
(i.e., Spring, Summer, Autumn, Winter) and the whole year as covariates to map SOM. In
these solutions, using 20 averaged features from multi-temporal endmember sequences, the
same validation metrics, i.e., R2, RMSE, and RPD, were used to evaluate the predictability
and robustness after 20-fold cross-validation. In addition, the trained model of each state-
of-the-art machine learning approach was used for spatially-detailed SOM mapping and
mapping uncertainty evaluation in the entire study area, as described in Section 2.2.6.
The performance of conventionally extracted features was compared with our XWT-based
framework.

The two datasets were compared with the estimated SOM in terms of spatial patterns
and quantity. They were (1) a 30 × 30 arc-second resolution gridded SOM dataset derived
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from the China Soil Map of 8979 soil profiles [20], and (2) the improved SOC dataset from
SoilGrids at 250-m resolution using a machine learning approach [21]. The SOM and SOC
have a linear relationship, hence the SOC dataset from [21] was firstly transformed into
SOM multiplying by the empirical coefficient of 1.742 [55]. To quantitatively represent the
differences between the existing datasets and our framework, the SOM mapping result
was aggregated into the respective spatial resolutions of the two datasets (i.e., 30 × 30
arc-second and 250× 250 m). Then, we created scatterplots and corresponding fitted curves
at the pixel scale of the entire study area.

3. Results
3.1. Selected XWT Features as SOM Covariates

Based on the random subspace method, each XWT feature’s Gini importance and
cumulative contribution are displayed in Figure 3. The results revealed that the cumulative
contribution of the first 13 XWT features was over 80%. Therefore, these 13 XWT features
were selected as final covariates, including GV and DA F1, GV and DA F3, GV and SL F1,
GV and SL F2, GV and SA F4, GV and SA F9, GV and DA F4, GV and SA F5, GV and SL F7,
GV and DA F7, GV and SL F4, GV and SA F3, and GV and DA F2 (Figure S3).

The XWT feature F1 played a vital role in the RF models, as supported by their Gini
importance and relative ranking. F1 consistently ranked as two of the top three variables
with the highest importance (>10%, Figure 3). In addition, F2 and F3 had relatively high
importance in the RF models (Figure 3). F1, F2, and F3, extracted from the cross wavelet-
power of vegetation and soil-related endmember pairs, weighted by the corresponding
timescale domain, revealed the degree of intra-annual interactions between vegetation
and soil-related endmember sequences. Thus, the three features can reveal the quality of
an ecosystem and characterize the content of SOM in the study area. The XWT features
refined from the cross wavelet-phase (e.g., F5, F7) were less important in the models, even
though they were selected as covariates for SOM mapping (Figure 3). Moreover, it is also
noteworthy that feature F9, revealing vegetation phenological regularity, is not a heavily
weighted covariate for SOM mapping (Figure 3).

For specific vegetation and soil-related endmember pairs, GV and DA had higher im-
portance than the other two pairs, i.e., GV and SL, and GV and SA. This was demonstrated
by the two most important features (i.e., GV and DA F1, GV and DA F3) and a total of five
related features of the thirteen selected covariates (Figure 3). Comparatively, despite the
XWT features derived from GV and SL, and GV and SA accounting for a large proportion of
the selected features (4/13), the contribution of the two pairs was only 24.60% and 22.30%,
respectively, considerably less than the contribution of GV and DA (34.32%) (Figure 3).
This finding suggested that, unlike the sandy and saline lands with low and homogeneous
soil fertility, the greater variability in the interaction of vegetation and dark soil among
the landscape types (i.e., cropland, forest, grassland) provided valuable information for
accurately characterizing soil fertility attributes.

A linear correlation was found between the measured SOM and some of the selected
normalized XWT parameters (GV and DA F1, GV and DA F2, GV and DA F3, GV and
SA F3, GV and SA F9, GV and SL F1, GV and SL F2) at the 5% significance level (p < 0.05,
Figures S3 and S4). Moreover, some selected normalized XWT features (i.e., GV and SA
F4, GV and DA F4, GV and SA F5, GV and SL F7, GV and DA F7, GV and SL F4) had an
insignificant linear relationship with the measured SOM (Figures S3 and S4). These features
reflect either the average extent of the vegetation–soil interaction (F4) or the presence of
phase differences (F5, F7). Therefore, the RF’s random subspace method can effectively
identify both valuable linear and nonlinear features and is thus useful for SOM mapping.
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3.2. Performances of XWT-Based Framework

We coupled 13 selected normalized XWT features with state-of-the-art machine learn-
ing approaches. The relative performances of the accuracy validation metrics (R2, RMSE,
and RPD) averaged from the 20 cross-validated models are shown in Table 2. Both the train-
ing and validation sets showed the satisfactory performances of the four state-of-the-art
machine learning approaches, as supported by high estimation precisions (R2, 0.706–0.875;
RMSE, 2.277–3.635) and great reliability (RPD, 1.733–2.729). The better performances of
RF and GBRT were indicated by lower RMSE (RF: 2.277, GBRT: 2.309), higher R2 (RF:
0.875, GBRT: 0.8738) and RPD (RF: 2.729, GBRT: 2.768), all of which were superior to those
of LS-SVM (RMSE: 2.825, R2: 0.823, RPD: 2.231) and RR (RMSE: 3.635, R2: 0.706, RPD:
1.733) (Table 2). These performances were also supported by the relatively small standard
deviations of the three accuracy metrics of the RF and GBRT approaches (Table 2). This
resulted from the fact that RF and GBRT are able to fully mine both linear and nonlinear
information on the selected features. Additionally, the slopes of the fitting curves of the
scatter plots of the measured and predicted SOM of RF (0.9605) and GBRT (0.9206) for the
validation set were closer to the 1:1 line (Figure 4c,d), also outperforming those of LS-SVM
(0.9100) and RR (0.8592). Therefore, RF and GBRT were the most robust SOM estimation
approaches in the XWT-based framework.
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Table 2. Evaluation of XWT-based framework in terms of RMSE, R2, and RPD through 20-fold cross-
validation on our randomly split training set (n = 79) and validation set (n = 16). The average and
standard deviation (in brackets) of the accuracy validation metrics were computed for the XWT-based
framework, coupled with RR, LS-SVM, RF, and GBRT.

Models
Training Set (n = 79) Validation Set (n = 15)

RMSE R2 RPD RMSE R2 RPD

RR 3.148 (2.002) 0.751 (0.401) 1.860 (1.232) 3.635 (2.926) 0.706 (0.321) 1.733 (1.411)
LS-SVM 2.457 (0.987) 0.851 (0.365) 2.385 (1.454) 2.825 (1.354) 0.823 (0.426) 2.231 (1.874)

RF 0.991 (0.051) 0.888 (0.056) 5.913 (0.859) 2.277 (0.621) 0.875 (0.212) 2.729 (1.456)
GBRT 0.427 (0.026) 0.879 (0.012) 13.731 (1.231) 2.309 (0.798) 0.873 (0.198) 2.768 (1.324)

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 24 
 

 

and nonlinear information on the selected features. Additionally, the slopes of the fitting 
curves of the scatter plots of the measured and predicted SOM of RF (0.9605) and GBRT 
(0.9206) for the validation set were closer to the 1:1 line (Figure 4c,d), also outperforming 
those of LS-SVM (0.9100) and RR (0.8592). Therefore, RF and GBRT were the most robust 
SOM estimation approaches in the XWT-based framework. 

Table 2. Evaluation of XWT-based framework in terms of RMSE, R2, and RPD through 20-fold cross-
validation on our randomly split training set (n = 79) and validation set (n = 16). The average and 
standard deviation (in brackets) of the accuracy validation metrics were computed for the XWT-
based framework, coupled with RR, LS-SVM, RF, and GBRT. 

Models 
Training Set (n = 79) Validation Set (n = 15) 

RMSE R2 RPD RMSE R2 RPD 
RR 3.148 (2.002) 0.751 (0.401) 1.860 (1.232) 3.635 (2.926) 0.706 (0.321) 1.733 (1.411) 

LS-SVM 2.457 (0.987) 0.851 (0.365) 2.385 (1.454) 2.825 (1.354) 0.823 (0.426) 2.231 (1.874) 
RF 0.991 (0.051) 0.888 (0.056) 5.913 (0.859) 2.277 (0.621) 0.875 (0.212) 2.729 (1.456) 

GBRT 0.427 (0.026) 0.879 (0.012) 13.731 (1.231) 2.309 (0.798) 0.873 (0.198) 2.768 (1.324) 

 
Figure 4. Scatter plots and corresponding fitting curves of measured SOM and predicted SOM for
(a) RR, (b) LS-SVM, (c) RF, and (d) GBRT. The training set and validation set were derived from one
of the 20 cross-validation models.



Remote Sens. 2022, 14, 1701 12 of 24

3.3. Spatially-Detailed SOM Mapping and Mapping Uncertainty Evaluation

Using four state-of-the-art machine learning approaches, the predicted continuous
spatially-detailed SOM was mapped at fine resolution (16-m). The spatially-detailed aver-
aged SOM maps are shown in Figure 5. The SOM maps display varying patterns of associa-
tion with the landscapes in the study area. Specifically, the higher SOM (15.01–18.96 g·kg−1)
was mostly clustered within the oasis regions (i.e., Changning, Huqu, Baqu, Quanshan,
Huanhe) (Figures 5 and 6). These regions are covered by forest, grassland, and cropland
but cover only 11.06% of the entire study area (Figure 1). However, regions with lower
SOM content are generally found in barren areas, such as scattered small desert vegetation
and expansive desert.
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(b) LS-SVM, (c) RF, and (d) GBRT, using the XWT-based framework. All images are displayed within
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In terms of model comparisons, the RF and GBRT approaches provided similar
SOM prediction results across different zones, land use, and cover types (Figures 5c,d
and 6). The RR approach, however, underestimated the SOM for the oasis areas (forest:
15.01 g·kg−1, grassland: 15.02 g·kg−1, cropland: 16.81 g·kg−1) and sand land (9.58 g·kg−1)
at significance levels of 95%, especially in Quanshan (11.93 g·kg−1) and Muqu (9.91 g·kg−1)
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(Figures 5a and 6). This is proved by the results that the lowest slope of the RR model
(0.8592) indicates an underestimation of SOM (Figure 4a), as well as the most unsatisfactory
accuracy validation metrics (Table 2). Additionally, the LS-SVM approach also significantly
underestimated SOM in Muqu (10.95 g·kg−1) at the 90% significance level (Figures 5b
and 6a). This result was mainly attributable to the underestimation of SOM in both desert
vegetation (12.73 g·kg−1) and sand land (10.81 g·kg−1) (Figure 6b). As the results suggested,
RF and GBRT were the most effective approaches in delineating patterns of SOM.

The spatially continuous mapping uncertainty for each state-of-the-art machine learn-
ing approach is shown in Figure 7. We used 1.645 times of the standard deviation derived
from 20 repetitions of SOM mapping results as the threshold for evaluating mapping
uncertainty at a 90% prediction interval. Consequentially, the mapping uncertainty of RR,
LS-SVM, RF, and GBRT in the study area were in the range of 0–25.2 g·kg−1, 0–18.9 g·kg−1,
0–13.1 g·kg−1, and 0–12.8 g·kg−1, respectively (Figure 7). The mapping uncertainty his-
tograms (Figure S5) indicated that the mapping uncertainty of the XWT-based frame-
work ranged from 0–5 g·kg−1, representing relatively low averaged uncertainty for all
the machine learning approaches, i.e., RR (2.101 ± 1.184), LS-SVM (1.708 ± 1.016), RF
(1.665 ± 0.816) and GBRT (1.845 ± 1.410). Compared to the barren region with relatively
lower SOM, the oasis regions had higher mapping uncertainty of the XWT-based frame-
work approaches. The mapping uncertainty of RF was slightly superior to the other models
(Figure S5).
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Figure 6. Statistics of SOM estimation results in the study area across different zones and various land
use and cover types. Bars and error bars represent the average SOM and standard deviation. ** at
the top of the bar signifies differences at 95% confidence levels relative to the RF estimation results.
Zones of the study area include oasis regions (i.e., Changning, Huqu, Baqu, Quanshan, Huanhe) and
a barren region (Muqu). The land use and cover types in the oasis regions include forest, grassland,
and cropland, while desert vegetation and sand land are the major land use and cover types in the
barren region. (a) zones; (b) lulc.

Overall, by coupling 13 selected XWT features with the RF and GBRT approaches,
we successfully applied the XWT-based framework to map SOM with superior accuracy
and robustness. Therefore, we suggest selecting the two approaches as the optimal SOM
mapping model when coupled with XWT features.
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prediction interval.

3.4. Comparisons with Other Features and Existing Datasets

Using the 20 averaged value for four endmembers in different seasons (i.e., Spring,
Summer, Autumn, Winter) and the whole year as covariates, both the accuracy and relia-
bility were inferior to those derived when using the XWT-framework. There were higher
RMSE (4.001, 3.258, 2.406, 2.655), lower R2 (0.689, 0.770, 0.854, 0.828) and RPD (1.575, 1.836,
2.325, 2.307) for RR, LS-SVM, RF, and GBRT, respectively (Table 3). These large differences
between the XWT features and the arithmetically averaged covariates resulted in more
dispersed scatter plots between the measured and predicted SOM for both the training and
validation sets (Figure 8). Regardless of the machine learning method, large variances were
observed in the SOM mapping in the entire study area between the two sets of covariate
inputs (Figures 5 and S6). Accompanied by the higher standard deviation of RMSE, R2,
and RPD (Table 3), the conventionally averaged covariates-based models showed higher
variability, resulting in greater averaged mapping uncertainty for RR (5.802 ± 2.921), LS-
SVM (4.485 ± 2.706), RF (3.171 ± 1.839), and GBRT (3.200 ± 2.251) in the entire study area
(Figures 7 and S7). Compared to the averaged covariates of a single-season and the whole
year, the XWT highlights continuous information in space and time domains and quantifies
weighted interactive information, recorded on two related time-series signals.
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Table 3. Evaluation results of SOM estimation based on conventionally averaged covariates in terms
of RMSE, R2, and RPD, after 20 iterations with the same training and validation sets as the XWT
features. Average and standard deviations are shown within parenthesis.

Models
Training Set (N = 79) Validation Set (N = 15)

RMSE R2 RPD RMSE R2 RPD

RR 3.288 (2.961) 0.731 (0.624) 1.782 (1.222) 4.001 (4.565) 0.689 (0.671) 1.575 (1.687)
LS-SVM 2.493 (1.824) 0.795 (0.599) 1.991 (1.416) 3.258 (3.954) 0.770 (0.610) 1.836 (1.600)

RF 1.299 (0.141) 0.831 (0.242) 3.458 (1.211) 2.406 (1.645) 0.845 (0.492) 2.325 (1.723)
GBRT 1.202 (0.107) 0.856 (0.190) 6.459 (1.200) 2.655 (2.470) 0.828 (0.666) 2.307 (1.820)
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We also found that our 16-m spatially-detailed SOM results can provide more spatial
details and patterns compared to the two existing datasets (Figures 9 and 10). Although
linear relationships existed between our SOM map and the two existing datasets, in the
whole area, the similar clusters with discrete values in the existing datasets were corrected
with continuous values by our SOM model (Figure 9c). Moreover, some interesting findings
were observed. First, in the areas with high fractions of soil exposure, common in deserts,
the two existing datasets had a number of SOM with <5 g·kg−1, especially for the 30 × 30
arc-second resolution gridded SOM dataset (Figure 9). Second, within regions with low
vegetation cover fractions, particularly desert vegetation (e.g., sampling plot 57), the
vegetation coverage provided incorrect information for SOM estimation, instead of serious
sandy and salinized soil. Thus, the performance of the SoilGrids dataset overestimated SOM
in the barren region, in which SOM was ~10 g·kg−1. Third, SOM maps are underestimated
by both datasets within oasis regions (e.g., sampling plot 56, Figure 10b–f). Therefore, in
heterogeneous landscapes, the XWT-based SOM map weighted the characteristics of the
inter-annual vegetation and soil-related endmember pairs and produced an accurately
continuous SOM estimation (Figures 9 and 10).
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Figure 9. Comparisons with existing datasets. (a) the 30 × 30 arc-second resolution gridded SOM
dataset developed by [20]. (b) the SOM maps improved from SoilGrids SOC dataset at 250-m
resolution, developed by [21]. Both datasets reflect soil properties within 30 cm depth. (c,d) 2D
histogram plots for predicted SOM of RF with 30 × 30 arc-second resolution gridded SOM dataset (c)
and SoilGrids SOM (d) with bin size of 0.35 for both axes. Total pixels in each bin were calculated
and then normalized by logarithmic function for clear visualization.
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Figure 10. Comparisons with SOM datasets in the transitional zone between oasis and desert, assisted
by landscape photos and measured SOM. (a) GF-1 WFV RGB composited image (bands 4, 3, and 2).
(b) Map of desert vegetation-habitat complexes developed by [53]. (c) 16-m SOM dataset mapped in
this study. (d) 30 × 30 arc-second resolution gridded SOM dataset developed by [20]. (e) SOM maps
improved from SoilGrids SOC dataset at 250-m resolution, developed by [21]. (f–h) are landscape
photos, and the corresponding measured SOM (upper right corner) for three sampling plots indexed
by 55, 56, and 57, respectively.

4. Discussion
4.1. Remotely Sensed Soil–Vegetation Interaction with XWT for Digital Soil Mapping

Benefitting from continuous observation of the earth’s surface, remotely sensed
imageries have been proven to support the spatial interpolation of sparsely sampled soil
property data [16–21]. The spatial resolution of imagery determines the spatial refine-
ment of digital soil mapping. This is mainly due to the fact that a pixel of remote sensing
imagery usually represents comprehensive information of the land surface within such
an extent. High-resolution GF-1 WFV images (16-m) used in this paper are important
for capturing the spatial variability of dryland systems for SOM mapping, and thus
support spatially-detailed dryland soil organic matter mapping. In addition, enriched
and appropriated variables derived from remote sensing data improved the accuracy
of the digital soil mapping. Although various studies have been dedicated to feature
exploitation and optimization from spatiotemporal spectral indexes and other envi-
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ronmental features [22–28,43,44], the detailed information from time series of subpixel
fractions that was proven to be robust and reliable in this study has not been unearthed
and discussed in previous studies.

4.1.1. Soil–Vegetation Interaction Contributed to Digital Soil Mapping

Soil and vegetation are prominent components of natural ecosystems and interact
and affect each other [80]. This feedback results in predictable measurements of soil
properties by using vegetation and soil distributions as the covariate. In previous stud-
ies, an integrated LSMA framework considering both apparent vegetation and soil was
recommended to identify dynamic land quality processes in dryland systems [14]. The
vegetation and soil-related endmember fractions offer a better understanding of the re-
lated biophysical processes [81] and contain more information, compared to susceptible
vegetation indices [47]. Therefore, our results demonstrated that both fractional soil
and vegetation information can capture the complex surface attributes and processes in
spatiotemporal heterogeneous barren areas, in which the presence of soil background
has a huge influence on vegetation indices [29,30,82]. These results corrected the overes-
timation of vegetation indices-driven SOM mapping (Figures 9 and 10). In addition, the
detailed information of soil–vegetation interaction can mitigate the saturation effect of
remotely sensed vegetation indices in high vegetation coverage areas, without enough
differentiated vegetation information [30], and improve mapping accuracy in the un-
derestimated oasis regions (Figures 9 and 10). We thus verified that the soil–vegetation
interaction was sufficient to serve as a fundamental basis for biophysical and biogeo-
chemical SOM mapping in dryland systems. These findings were confirmed by the
outcome of SOM mapping and state measurement using three sparse-temporal vege-
tation and soil-related endmembers and environmental covariates, in Minqin County,
at the same scale as the Landsat data [14]. In addition, the vegetation and soil-related
endmember fractions can be standardized for the inter-comparison of estimates from
different sensors across space and time [35], which would provide migration conditions
for digital soil mapping across space, time, and sensors.

4.1.2. XWT-Based Time-Series Features Extraction for Digital Soil Mapping

The XWT provides a synthetic insight into the structure of signals interaction in con-
tinuous space and time domains [83,84], as well as the weighted interactive characteristics
of wavelet coefficients recorded on two related time series of signals [50,53]. The results
suggested that XWT’s interactive features provided detailed SOM representations in dry-
land systems like Minqin. Therefore, the XWT features perform better than arithmetically
averaged covariates at diverse temporal scales, as well as the previous study, with three
sparse-temporal vegetation and soil-related endmembers in Minqin at the same scale as
Landsat (RMSE = 4.36, [14]).

Substantial evidence supports the notion that SOM dynamics are more suscep-
tible to the total amount of vegetation biomass input and its accumulation and loss
processes [85–87]. Hence, both vegetation productivity across a given year and soil
physical properties play important roles in regulating the accumulation and loss of SOM
in natural ecosystems [87,88]. The observed interactive patterns between vegetation and
soil represent critical land surface processes affecting SOM, and in turn, responding
to SOM. Therefore, the XWT features that revealed temporally interactive degrees of
vegetation and soil-related endmember pairs across continuous temporal and spatial
domains (F1-F3) played a crucial role in SOM mapping (Figure 3). Although previous
evidence underscored the importance that timing corresponds to the peak of vegetation
growth (F9) to help identify different land cover types [53], this feature did not play
a decisive role in the mapping of SOM (Figure 3). This may be explained by the fact
that vegetation’s phenological change is primarily driven by climate [89–91] instead of
soil fertility. Moreover, the XWT features refined from the cross wavelet-phase (e.g., F5,
F7) were less important (Figure 3); however, these features reflect a nonlinear process
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between SOM and the surface vegetation–soil interaction (Figure S4). These results
suggested that known interrelationships between factors in the soil environment could
provide a reasonable explanation for the comparable strength of the models with unique
sets of predictor variables and would be beneficial for digital soil mapping over regions
where base maps are limited.

4.2. Future Applications and Outlook

Our study proved that temporally interactive features extracted with XWT methods
play an important role in SOM mapping, although some limitations and corresponding
outlooks in the domain of digital soil mapping exist. In terms of digital soil mapping
solutions, time-series of remote sensing data at different spatial and temporal scales can
further improve the prediction of surface SOM [92]. Accordingly, more in-depth and
extensive tests of the utility of long-term remotely sensed vegetation and soil fractions were
suggested for predicting SOM across various soil depths, as well as diverse ecosystems. In
addition, with the continuous development of high-frequency satellites and the progress of
space–time fusion technology [53,93], the XWT can extract more useful information from
high temporal and spatial vegetation and soil cubes.

For the application of spatially-detailed SOM mapping in dryland systems, multi-
temporal land use/cover changes derived from LSMA can provide information about
land degradation and help establish restoration strategies [39,94,95]. For example, land
degradation (desertification and salinization) and its associated land cover types can be
estimated by combining the land use and cover with fractions of vegetation and soil-related
endmembers [95]. As a key variable characterizing soil structure and function, SOM can
estimate the processing of land degradation in dryland systems [2,14]. SOM assessments
integrated with terrestrial vegetation primary production parameters, i.e., gross primary
productivity and net primary productivity, are attracting the attention of scientists and
governments for land degradation neutrality evaluation and monitoring [7,96–99]. Thus,
the spatially-detailed SOM derived in this study provides an opportunity to assess the land
degradation neutrality status of dryland systems and offers interpretable land degradation
knowledge for sustainable management.

5. Conclusions

In this study, we demonstrated the efficacy and reliability of the proposed novel XWT-
based framework in predicting SOM in a dryland system of Northwest China. We first
extracted ecologically meaningful XWT features from interactive intra-annual vegetation
and soil-related endmember sequences and then filtered valuable XWT features as final
exploratory covariates for SOM mapping. Using 13 selected XWT features, we successfully
applied this framework to map SOM, coupled with the RF and GBRT approaches, with
superior accuracy and robustness indicated by lower RMSE, higher R2, and RPD, as
well as lower uncertainty. Furthermore, the XWT-based framework outperformed the
arithmetic average based models, as evidenced by the lower RMSE and improved R2 and
RPD of the validation set and the lower estimation uncertainty for four state-of-the-art
machine learning approaches. Meanwhile, our proposed framework provided accurate
high-spatial SOM maps compared to existing datasets. We highlighted how XWT offers
superior accuracy and robustness for SOM mapping. XWT can characterize the intra-annual
feedback between vegetation and soil-related endmember sequences at a high temporal and
spatial resolution. Moreover, our findings of the soil–vegetation feedback contribution to
SOM, advance an improved understanding of soil properties and regional ecological quality
in dryland systems and provide an opportunity to assess land degradation neutrality at
landscape and field scales.
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function of the regularization and ridge coefficient using RR Model; Figure S2: Loss profile example
of GBRT for both training set and validation set; Figure S3: The 13 normalized XWT parameters
selected as variables to map SOM; Figure S4: the Pearson correlation coefficient (r) and the significant
level (p) between SOM and XWT parameters displayed in lower left and upper right, respectively;
Figure S5: The histograms of estimation uncertainty of XWT-based framework using RR, LS-SVM,
RF and GBRT; Figure S6: Average SOM estimated and mapped after 20 operations, using covariate
conventionally averaged from endmembers time series; Figure S7: Estimation uncertainties of
covariate conventionally averaged from endmembers time series.
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Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12,
e0169748. [CrossRef] [PubMed]

22. Guo, L.; Fu, P.; Shi, T.; Chen, Y.; Zhang, H.; Meng, R.; Wang, S. Mapping field-scale soil organic carbon with unmanned aircraft
system-acquired time series multispectral images. Soil Tillage Res. 2020, 196, 104477. [CrossRef]

23. Luo, C.; Zhang, X.; Meng, X.; Zhu, H.; Ni, C.; Chen, M.; Liu, H. Regional mapping of soil organic matter content using
multitemporal synthetic Landsat 8 images in Google Earth Engine. CATENA 2022, 209, 105842. [CrossRef]

24. Guo, P.-T.; Li, M.-F.; Luo, W.; Tang, Q.-F.; Liu, Z.-W.; Lin, Z.-M. Digital mapping of soil organic matter for rubber plantation at
regional scale: An application of random forest plus residuals kriging approach. Geoderma 2015, 237, 49–59. [CrossRef]

25. Luo, C.; Wang, Y.; Zhang, X.; Zhang, W.; Liu, H. Spatial prediction of soil organic matter content using multiyear synthetic images
and partitioning algorithms. CATENA 2022, 211, 106023. [CrossRef]

26. Liang, Z.; Chen, S.; Yang, Y.; Zhao, R.; Shi, Z.; Viscarra, R.R.A. Baseline map of soil organic matter in china and its associated
uncertainty. Geoderma 2019, 335, 47–56. [CrossRef]

27. Wang, S.; Fan, J.; Zhong, H.; Li, Y.; Zhu, H.; Qiao, Y.; Zhang, H. A multi-factor weighted regression approach for estimating the
spatial distribution of soil organic carbon in grasslands. CATENA 2019, 174, 248–258. [CrossRef]

28. Tayebi, M.; Rosas, J.F.; Mendes, W.; Poppiel, R.; Ostovari, Y.; Ruiz, L.; dos Santos, N.; Cerri, C.; Silva, S.; Curi, N.; et al. Drivers of
Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image Time Series. Remote Sens. 2021, 13,
2223. [CrossRef]

29. Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35,
161–173. [CrossRef]

30. Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
31. Sankey, T.T.; Weber, K.T. Rangeland Assessments Using Remote Sensing: Is NDVI Useful. Final Report: Comparing Effects of Management

Practices on Rangeland Health with Geospatial Technologies; NNX06AE47G: Pocatello, ID, USA, 2009; p. 168.
32. Smith, W.K.; Dannenberg, M.P.; Yan, D.; Herrmann, S.; Barnes, M.L.; Barron-Gafford, G.A.; Biederman, J.A.; Ferrenberg, S.; Fox,

A.M.; Hudson, A.; et al. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities.
Remote Sens. Environ. 2019, 233, 111401. [CrossRef]

33. Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1
Site. J. Geophys. Res. Earth Surf. 1986, 91, 8098–8112. [CrossRef]

34. Roberts, D.; Smith, M.; Adams, J. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data. Remote Sens. Environ.
1993, 44, 255–269. [CrossRef]

35. Small, C. The Landsat ETM+ spectral mixing space. Remote Sens. Environ. 2004, 93, 1–17. [CrossRef]
36. Van Der Meer, F. Spectral unmixing of Landsat Thematic Mapper data. Int. J. Remote Sens. 1995, 16, 3189–3194. [CrossRef]
37. Dawelbait, M.; Morari, F. Monitoring desertification in a Savannah region in Sudan using Landsat images and spectral mixture

analysis. J. Arid Environ. 2012, 80, 45–55. [CrossRef]

http://doi.org/10.1016/j.agee.2008.10.008
http://doi.org/10.1038/nature10386
http://doi.org/10.1038/371783a0
http://doi.org/10.1080/01431161.2019.1580795
http://doi.org/10.1016/j.geoderma.2017.01.002
http://doi.org/10.1016/j.rse.2008.09.019
http://doi.org/10.3390/rs13245162
http://doi.org/10.1016/j.geoderma.2010.12.018
http://doi.org/10.3390/rs13152934
http://doi.org/10.1002/jame.20026
http://doi.org/10.1371/journal.pone.0169748
http://www.ncbi.nlm.nih.gov/pubmed/28207752
http://doi.org/10.1016/j.still.2019.104477
http://doi.org/10.1016/j.catena.2021.105842
http://doi.org/10.1016/j.geoderma.2014.08.009
http://doi.org/10.1016/j.catena.2022.106023
http://doi.org/10.1016/j.geoderma.2018.08.011
http://doi.org/10.1016/j.catena.2018.10.050
http://doi.org/10.3390/rs13112223
http://doi.org/10.1016/0034-4257(91)90009-U
http://doi.org/10.1016/0034-4257(88)90106-X
http://doi.org/10.1016/j.rse.2019.111401
http://doi.org/10.1029/JB091iB08p08098
http://doi.org/10.1016/0034-4257(93)90020-X
http://doi.org/10.1016/j.rse.2004.06.007
http://doi.org/10.1080/01431169508954622
http://doi.org/10.1016/j.jaridenv.2011.12.011


Remote Sens. 2022, 14, 1701 22 of 24

38. Sun, D.; Liu, N. Coupling spectral unmixing and multiseasonal remote sensing for temperate dryland land-use/land-cover
mapping in Minqin County, China. Int. J. Remote Sens. 2015, 36, 3636–3658. [CrossRef]

39. Sun, D. Detection of dryland degradation using Landsat spectral unmixing remote sensing with syndrome concept in Minqin
County, China. Int. J. Appl. Earth Obs. Geoinf. 2015, 41, 34–45. [CrossRef]

40. Sun, D.; Jiang, W. Agricultural Soil Alkalinity and Salinity Modeling in the Cropping Season in a Spectral Endmember Space of
TM in Temperate Drylands, Minqin, China. Remote Sens. 2016, 8, 714. [CrossRef]

41. Wang, B.; Waters, C.; Orgill, S.; Cowie, A.; Clark, A.; Liu, D.L.; Simpson, M.; McGowen, I.; Sides, T. Estimating soil organic
carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia. Ecol. Indic. 2018, 88, 425–438.
[CrossRef]

42. Stavros, E.N.; Schimel, D.; Pavlick, R.; Serbin, S.; Swann, A.; Duncanson, L.; Fisher, J.B.; Fassnacht, F.; Ustin, S.; Dubayah, R.; et al.
ISS observations offer insights into plant function. Nat. Ecol. Evol. 2017, 1, 194. [CrossRef] [PubMed]

43. Maynard, J.J.; Levi, M.R. Hyper-temporal remote sensing for digital soil mapping: Characterizing soil-vegetation response to
climatic variability. Geoderma 2017, 285, 94–109. [CrossRef]

44. Wilson, C.H.; Caughlin, T.T.; Rifai, S.W.; Boughton, E.H.; Mack, M.C.; Flory, S.L. Multi-decadal time series of remotely sensed
vegetation improves prediction of soil carbon in a subtropical grassland. Ecol. Appl. 2017, 27, 1646–1656. [CrossRef]

45. Yang, R.-M.; Guo, W.-W. Modelling of soil organic carbon and bulk density in invaded coastal wetlands using Sentinel-1 imagery.
Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101906. [CrossRef]

46. Zhang, Y.; Guo, L.; Chen, Y.; Shi, T.; Luo, M.; Ju, Q.; Zhang, H.; Wang, S. Prediction of Soil Organic Carbon based on Landsat 8
Monthly NDVI Data for the Jianghan Plain in Hubei Province, China. Remote Sens. 2019, 11, 1683. [CrossRef]

47. Sun, Q.; Zhang, P.; Sun, D.; Liu, A.; Dai, J. Desert vegetation-habitat complexes mapping using Gaofen-1 WFV (wide field of
view) time series images in Minqin County, China. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 522–534. [CrossRef]

48. Fayyad, U.; Piatesky-Shapiro, G.; Smyth, P.; Uthurusamy, R. Advances in Knowledge Discovery and Data Mining; MIT Press:
Cambridge, MA, USA, 1996; p. 560. [CrossRef]

49. Gullo, F.; Ponti, G.; Tagarelli, A.; Greco, S. A time series representation model for accurate and fast similarity detection. Pattern
Recognit. 2009, 42, 2998–3014. [CrossRef]

50. Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time
series. Nonlinear Processes Geophys. 2004, 11, 561–566. [CrossRef]

51. Sun, X.-L.; Wang, Y.; Wang, H.-L.; Zhang, C.; Wang, Z.-L. Digital soil mapping based on empirical mode decomposition
components of environmental covariates. Eur. J. Soil Sci. 2019, 70, 1109–1127. [CrossRef]

52. Soon, W.; Herrera, V.M.V.; Selvaraj, K.; Traversi, R.; Usoskin, I.; Chen, C.-T.A.; Lou, J.-Y.; Kao, S.-J.; Carter, R.M.; Pipin, V.; et al.
A review of Holocene solar-linked climatic variation on centennial to millennial timescales: Physical processes, interpretative
frameworks and a new multiple cross-wavelet transform algorithm. Earth-Sci. Rev. 2014, 134, 1–15. [CrossRef]

53. Sun, Q.; Zhang, P.; Wei, H.; Liu, A.; You, S.; Sun, D. Improved mapping and understanding of desert vegetation-habitat complexes
from intraannual series of spectral endmember space using cross-wavelet transform and logistic regression. Remote Sens. Environ.
2020, 236, 111516. [CrossRef]

54. Fang, J.; Yu, G.; Liu, L.; Hu, S.; Chapin, F.S. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad.
Sci. USA 2018, 115, 4015–4020. [CrossRef]

55. Bao, S. Soil Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 1999. (In Chinese)
56. Van Der Meer, F.; De Jong, S.; De Jong, S. Improving the results of spectral unmixing of Landsat Thematic Mapper imagery by

enhancing the orthogonality of end-members. Int. J. Remote Sens. 2000, 21, 2781–2797. [CrossRef]
57. Dey, D.; Chatterjee, B.; Chakravorti, S.; Munshi, S. Rough-granular approach for impulse fault classification of transformers using

cross-wavelet transform. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1297–1304. [CrossRef]
58. Freedman, D.; Pisani, R.; Purves, R. Statistics: Fourth International Student Edition; W.W. Norton & Company: New York, NY, USA,

2007.
59. Grus, J. Data Science from Scratch; O’Reilly: Sebastopol, CA, USA, 2015; pp. 99–100.
60. Keskin, H.; Grunwald, S.; Harris, W.G. Digital mapping of soil carbon fractions with machine learning. Geoderma 2019, 339, 40–58.

[CrossRef]
61. Calle, M.L.; Urrea, V. Letter to the Editor: Stability of Random Forest importance measures. Brief. Bioinform. 2011, 12, 86–89.

[CrossRef] [PubMed]
62. Han, H.; Guo, X.; Yu, H. Variable selection using Mean Decrease Accuracy and Mean Decrease Gini based on Random Forest. In

Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China,
26–28 August 2016; pp. 219–224. [CrossRef]

63. Pedregosa, F.; Varoquaux, G.L.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

64. Verikas, A.; Gelzinis, A.; Bacauskiene, M. Mining data with random forests: A survey and results of new tests. Pattern Recognit.
2011, 44, 330–349. [CrossRef]

http://doi.org/10.1080/01431161.2015.1047046
http://doi.org/10.1016/j.jag.2015.04.015
http://doi.org/10.3390/rs8090714
http://doi.org/10.1016/j.ecolind.2018.01.049
http://doi.org/10.1038/s41559-017-0194
http://www.ncbi.nlm.nih.gov/pubmed/28812587
http://doi.org/10.1016/j.geoderma.2016.09.024
http://doi.org/10.1002/eap.1557
http://doi.org/10.1016/j.jag.2019.101906
http://doi.org/10.3390/rs11141683
http://doi.org/10.1016/j.jag.2018.07.021
http://doi.org/10.2307/1271414
http://doi.org/10.1016/j.patcog.2009.03.030
http://doi.org/10.5194/npg-11-561-2004
http://doi.org/10.1111/ejss.12851
http://doi.org/10.1016/j.earscirev.2014.03.003
http://doi.org/10.1016/j.rse.2019.111516
http://doi.org/10.1073/pnas.1700304115
http://doi.org/10.1080/01431160050121249
http://doi.org/10.1109/TDEI.2008.4656237
http://doi.org/10.1016/j.geoderma.2018.12.037
http://doi.org/10.1093/bib/bbq011
http://www.ncbi.nlm.nih.gov/pubmed/20360022
http://doi.org/10.1109/ICSESS.2016.7883053
http://doi.org/10.1016/j.patcog.2010.08.011


Remote Sens. 2022, 14, 1701 23 of 24

65. Wang, H.; Yang, F.; Luo, Z. An experimental study of the intrinsic stability of random forest variable importance measures. BMC
Bioinform. 2016, 17, 60. [CrossRef] [PubMed]

66. Bryll, R.; Gutierrez-Osuna, R.; Quek, F. Attribute bagging: Improving accuracy of classifier ensembles by using random feature
subsets. Pattern Recognit. 2003, 36, 1291–1302. [CrossRef]

67. Sammut, C.; Webb, G.I. Encyclopedia of Machine Learning and Data Mining; Springer: Boston, MA, USA, 2017. [CrossRef]
68. Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 2000, 12, 55–67.

[CrossRef]
69. Kang, J.; Jin, R.; Li, X.; Zhang, Y.; Zhu, Z. Spatial Upscaling of Sparse Soil Moisture Observations Based on Ridge Regression.

Remote Sens. 2018, 10, 192. [CrossRef]
70. Mcdonald, G.C. Ridge regression. Wiley Interdiscip. Rev. Comput. Stat. 2010, 1, 93–100. [CrossRef]
71. Suykens, J.A.K.; Gestel, T.V.; Brabanter, J.D.; Moor, B.D.; Vandewalle, J. Least Squares Support Vector Machines; World Scientific

Publishing Co.: Singapore, 2002.
72. Zhang, H.; Chen, L.; Qu, Y.; Zhao, G.; Guo, Z. Support Vector Regression Based on Grid-Search Method for Short-Term Wind

Power Forecasting. J. Appl. Math. 2014, 2014, 835791. [CrossRef]
73. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
74. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
75. Schapire, R.E. The Boosting Approach to Machine Learning: An Overview. In Nonlinear Estimation and Classification. Lecture Notes

in Statistics; Denison, D.D., Hansen, M.H., Holmes, C.C., Mallick, B., Yu, B., Eds.; Springer: New York, NY, USA, 2003; Volume
171, pp. 149–171. [CrossRef]

76. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013.
77. Wijewardane, N.; Ge, Y.; Morgan, C.L. Moisture insensitive prediction of soil properties from VNIR reflectance spectra based on

external parameter orthogonalization. Geoderma 2016, 267, 92–101. [CrossRef]
78. GlobalSoilMap Science Committee Specifications. Tiered GlobalSoilMap.net Products Release, Version 2.3; GlobalSoilMap: Wagenin-

gen, The Netherlands, 2013.
79. Odgers, N.P.; McBratney, A.; Minasny, B. Digital soil property mapping and uncertainty estimation using soil class probability

rasters. Geoderma 2015, 237, 190–198. [CrossRef]
80. Ballabio, C.; Fava, F.P.; Rosenmund, A. A plant ecology approach to digital soil mapping, improving the prediction of soil organic

carbon content in alpine grasslands. Geoderma 2012, 187, 102–116. [CrossRef]
81. Quintano, C.; Fernández-Manso, A.; Shimabukuro, Y.E.; Pereira, G. Spectral unmixing. Int. J. Remote Sens. 2012, 33, 5307–5340.

[CrossRef]
82. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance

of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]
83. Bradshaw, G.A.; Spies, T.A. Characterizing Canopy Gap Structure in Forests Using Wavelet Analysis. J. Ecol. 1992, 80, 205–215.

[CrossRef]
84. He, Y.; Guo, X.; Si, B. Detecting grassland spatial variation by a wavelet approach. Int. J. Remote Sens. 2007, 28, 1527–1545.

[CrossRef]
85. Oades, J.M. The retention of organic matter in soils. Biogeochemistry 1988, 5, 35–70. [CrossRef]
86. Preston, C.M.; Schmidt, M.W.I. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special

consideration of boreal regions. Biogeosciences 2006, 3, 397–420. [CrossRef]
87. Heimann, M.; Reichstein, M. Terrestrial ecosystemcarbon dynamics and climate feedbacks. Nature 2008, 451, 289–292. [CrossRef]

[PubMed]
88. Feller, C.; Beare, M. Physical control of soil organic matter dynamics in the tropics. Geoderma 1997, 79, 69–116. [CrossRef]
89. Dose, V.; Menzel, A. Bayesian analysis of climate change impacts in phenology. Glob. Chang. Biol. 2010, 10, 259–272. [CrossRef]
90. Edwards, M.; Richardson, A. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 2004, 430,

881–884. [CrossRef] [PubMed]
91. Zhang, G.; Zhang, Y.; Dong, J.; Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011.

Proc. Natl. Acad. Sci. USA 2013, 110, 4309–4314. [CrossRef]
92. Minasny, B.; McBratney, A. Digital soil mapping: A brief history and some lessons. Geoderma 2016, 264, 301–311. [CrossRef]
93. Zhao, Y.; Huang, B.; Song, H. A robust adaptive spatial and temporal image fusion model for complex land surface changes.

Remote Sens. Environ. 2018, 208, 42–62. [CrossRef]
94. Hill, J.; Stellmes, M.; Udelhoven, T.; Röder, A.; Sommer, S. Mediterranean desertification and land degradation: Mapping related

land use change syndromes based on satellite observations. Glob. Planet. Chang. 2008, 64, 146–157. [CrossRef]
95. Zhang, P.; Sun, Q.; Sun, D.; Sun, M.; Liu, H.; You, S.; Liu, A. Establishment of land degradation assessment system in arid region

based on remote sensing spectrum. Trans. Chin. Soc. Agric. Eng. 2019, 9, 228–237. [CrossRef]
96. Field, C.B.; Randerson, J.T.; Malmström, C.M. Global net primary production: Combining ecology and remote sensing. Remote

Sens. Environ. 1995, 51, 74–88. [CrossRef]
97. Huenneke, L.F.; Anderson, J.P.; Remmenga, M.; Schlesinger, W.H. Desertification alters patterns of aboveground net primary

production in Chihuahuan ecosystems. Glob. Chang. Biol. 2010, 8, 247–264. [CrossRef]

http://doi.org/10.1186/s12859-016-0900-5
http://www.ncbi.nlm.nih.gov/pubmed/26842629
http://doi.org/10.1016/S0031-3203(02)00121-8
http://doi.org/10.1007/978-1-4899-7687-1_696
http://doi.org/10.1080/00401706.1970.10488634
http://doi.org/10.3390/rs10020192
http://doi.org/10.1002/wics.14
http://doi.org/10.1155/2014/835791
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1214/aos/1013203451
http://doi.org/10.1007/978-0-387-21579-2_9
http://doi.org/10.1016/j.geoderma.2015.12.014
http://doi.org/10.1016/j.geoderma.2014.09.009
http://doi.org/10.1016/j.geoderma.2012.04.002
http://doi.org/10.1080/01431161.2012.661095
http://doi.org/10.1016/S0034-4257(02)00096-2
http://doi.org/10.2307/2261007
http://doi.org/10.1080/01431160600794621
http://doi.org/10.1007/BF02180317
http://doi.org/10.5194/bg-3-397-2006
http://doi.org/10.1038/nature06591
http://www.ncbi.nlm.nih.gov/pubmed/18202646
http://doi.org/10.1016/S0016-7061(97)00039-6
http://doi.org/10.1111/j.1529-8817.2003.00731.x
http://doi.org/10.1038/nature02808
http://www.ncbi.nlm.nih.gov/pubmed/15318219
http://doi.org/10.1073/pnas.1210423110
http://doi.org/10.1016/j.geoderma.2015.07.017
http://doi.org/10.1016/j.rse.2018.02.009
http://doi.org/10.1016/j.gloplacha.2008.10.005
http://doi.org/10.11975/j.issn.1002-6819.2019.09.028
http://doi.org/10.1016/0034-4257(94)00066-V
http://doi.org/10.1046/j.1365-2486.2002.00473.x


Remote Sens. 2022, 14, 1701 24 of 24

98. Unruh, J.D.; Akhobadze, S.; Ibrahim, H.O.; Karapinar, B.; Kusum, B.S.; Montoiro, M.; Santivane, M.S. Land Tenure in Support of
Land Degradation Neutrality; FAO: Rome, Italy, 2019.

99. Zhao, M.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production
global data set. Remote Sens. Environ. 2005, 95, 164–176. [CrossRef]

http://doi.org/10.1016/j.rse.2004.12.011

	Introduction 
	Materials and Methods 
	Study Area 
	Methods 
	Soil Sampling 
	XWT Features Extraction from Endmember Sequences 
	SOM Exploratory Covariates Selection 
	State-of-the-Art Machine Learning Approaches for SOM Mapping 
	Model Training and Validation 
	Spatially-Detailed SOM Mapping and Mapping Uncertainty Evaluation 

	Comparisons with Conventional Methods 

	Results 
	Selected XWT Features as SOM Covariates 
	Performances of XWT-Based Framework 
	Spatially-Detailed SOM Mapping and Mapping Uncertainty Evaluation 
	Comparisons with Other Features and Existing Datasets 

	Discussion 
	Remotely Sensed Soil–Vegetation Interaction with XWT for Digital Soil Mapping 
	Soil–Vegetation Interaction Contributed to Digital Soil Mapping 
	XWT-Based Time-Series Features Extraction for Digital Soil Mapping 

	Future Applications and Outlook 

	Conclusions 
	References

