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A REMOTELY SENSED GLOBAL
TERRESTRIAL DROUGHT
SEVERITY INDEX

BY QIA0zZHEN Mu, MAOSHENG ZHAO, JoHN S. KiMBALL, NATHAN G. McDoweLL, AND STEVEN W. RUNNING

A new global index uses operational satellite remote sensing as primary inputs and enhances

near real-time drought monitoring and mitigation efforts.

ater is essential for life. With increasing

human development and climate change,

water has become a pivotal resource for
sustainable development, both societally and envi-
ronmentally. Agriculture, on which a burgeoning
population depends for food, is competing with
industrial, household, and environmental uses for
increasingly scarce freshwater supplies in many
areas (Vorosmarty et al. 2010; Rosegrant etal. 2003).
Drought is an important adverse climatic event for
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both ecosystems and human society. Global mean
surface air temperature has increased by about 0.76°C
since 1850 (Trenberth et al. 2007) and is expected
to increase by 1.5°-6.4°C by the end of the twenty-
first century (Meehl et al. 2007). Under a warming
climate, persistent drought may increase (Dai et al.
2004; Pachauri and Reisinger 2007; Dai 2011b), while
human populations and associated demands for
freshwater resources are rising, increasing food pro-
duction constraints and putting global food security
at risk. Accurate and consistent global mapping and
monitoring of drought severity is essential for water
management and drought mitigation efforts.

COMMON DROUGHT SEVERITY INDICES.
There are several indices used widely for regional- to
global-scale drought assessment and monitoring.
Drought indices integrate large amounts of data, such
as precipitation, snowpack, streamflow, and other
water supply indicators, to monitor drought sever-
ity in a comprehensive framework and to measure
how much the climate in a given period has devi-
ated from historically established normal conditions
(Narasimhan and Srinivasan 2005). In this section,
we give a brief review of some of the most widely
used drought indices, including the Palmer drought
severity index (PDSI; Palmer 1965; Alley 1984), U.S.
Drought Monitor (USDM; Svoboda et al. 2002), and
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a newly developed evaporative drought index (EDI)
by Yao et al. (2010).

PDSI. Among widely used drought indices (Heim
2002), the PDSI (Palmer 1965; Alley 1984) is the
only index that uses readily available monthly pre-
cipitation and temperature inputs to assess drought
(Heim 2002). Palmer used a two-layer bucket model
to quantify monthly water supply and demand by
accounting for water inputs (precipitation), outputs
(evaporation and runoff), and antecedent soil water
status. The model also considers multiyear average
monthly water exchanges so that for a given month,
the departure level of precipitation (supply) from
the normal water demand can be quantified. It is
difficult to devise a universal drought index because
of the spatial and temporal complexity of drought,
and the limitations of the PDSI are well documented
(Keyantash and Dracup 2002). The PDSI was
originally developed to assess drought in semiarid
climates, specifically, the Great Plains of the United
States (Palmer 1965), and thus some parameters
may not work well for other regions (Heim 2002;
Keyantash and Dracup 2002). Some assumptions of
the PDSI dealing with hydrological processes have
also been criticized, such as not treating frozen soil
or snow accumulation and melt processes, and actual
evapotranspiration (ET) occurring at the potential
rate (Dai et al. 2004; Heim 2002). Despite these limita-
tions, Dai et al. (2004) found that the PDSI correlates
with soil moisture during warm seasons.

To address some of the major PDSI constraints,
several new variants of this approach have been
developed, including the self-calibrating PDSI (Wells
etal. 2004) and the PDSI using improved formulations
for potential evapotranspiration (PET), such as the
Penman-Monteith equation (Monteith 1965), instead
of the original Thornthwaite equation (Thornthwaite
1948). Dai (2011a) compared and evaluated four forms
of the PDSI over the 1850-2008 period and found
that the four PDSI forms show similar long-term
trends and correlations with observed monthly soil
moisture, yearly streamflow, and satellite-observed
water storage changes. Dai (2011a) suggested that
other indices should be adopted to address limita-
tions in the PDSI.

USDM. Currently, the National Oceanic and
Atmospheric Administration (NOAA) and the
U.S. Department of Agriculture (USDA) Foreign
Agricultural Service (FAS) use the USDM (Svoboda
et al. 2002; Lawrimore et al. 2002) to monitor
vegetation drought stress in the United States
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(http://droughtmonitor.unl.edu/). The USDM
assimilates several widely used climatic drought
indices, including the PDSI (Palmer 1965), standard-
ized precipitation index (SPI; McKee etal. 1993), per-
cent of normal precipitation (PNP; Werick et al. 1994),
land soil moisture and streamflow, satellite normal-
ized difference vegetation index (NDVI), and many
supplementary indicators for regional drought detec-
tion. However, in addition to the above-mentioned
PDSI constraints and the limitations of other drought
indices (Table 1), uncertainties in precipitation data
(Gao etal. 2010) and heterogeneous soil moisture con-
ditions may introduce large uncertainties for USDM
drought detection and monitoring. Furthermore, the
USDM only provides drought information across
North America, and no ET data, which makes it
less useful for operational water supply assessments.
These assessments and the broader user community
would benefit from consistent global drought severity
index (DSI) and ET products at relatively fine (1-km
resolution) spatial resolution approaching the opti-
mal scale of utility for a wide range of water resource
applications (Wood et al. 2011).

EDI. Yao et al. (2010) proposed an EDI to monitor
droughts over the conterminous United States.
They used Moderate Resolution Imaging Spec-
troradiometer (MODIS) and National Centers for
Environmental Prediction-Department of Energy
Atmospheric Model Intercomparison Project
Reanalysis II (NCEP-DOE II) data, and statistical
methods to estimate ET and PET at 4-km spatial
resolution and a monthly time step, and used the
deviation of the ET/PET ratio from unity to define
the EDI The integrated remote sensing data in the
EDI are sensitive to the vegetation drought response
and enhance EDI capabilities for drought monitoring
and detection. However, the statistical models used to
calculate ET and PET for the EDI calculation lack a
physical basis, while the application of these models
outside the domain and conditions from which they
were developed can result in uncertain ET and PET
estimates and degraded EDI accuracy. This limits the
effective use of the EDI outside of the United States.
The EDI also cannot easily quantify the wetness
or dryness of a region in a given monthly or yearly
period. For example, in a semiarid region where the
ET/PET ratio is low, a small change in the ET/PET
ratio might correspond to a significant change in
wetness but result in missed drought detection. In
contrast, for a wet region where the ET/PET ratio is
high, a large change in EDI might not necessarily
imply a significant change in water stress.


http://droughtmonitor.unl.edu/

TaBLE |.

Summary of the commonly used drought indices.

Indices Description Strengths Woeaknesses Citations

PNP A simple calculation by Effective for a single region | Precipitation does not have Werick et al. (1994)
dividing the 30-yr average or season. a normal distribution. PNP
precipitation for the region, depends on location and
and multiplying by 100%. season. PNP cannot identify

specific drought impacts.

Deciles | A simple calculation by Accurate statistical Accurate calculations require | Gibbs and Maher (1967)
grouping precipitation into measurement of drought a long climatology record of
deciles distributed from | to | response to precipitation, precipitation.

10. The lowest value indicates | and providing uniformity in
conditions drier than normal | drought classifications.
and the higher value indicates

conditions wetter than

normal.

SPI A simple calculation based on | Computed for flexible Precipitation is the only input | McKee et al. (1993)
the concept that precipitation [ multiple time scales, data. SPI values based on
deficits over varying periods | provides early warning of long-term precipitation may
or time scales influence drought and help assessing [ change. The long time scale up
ground water, reservoir drought severity. to 24 months is not reliable.
storage, soil moisture,
snowpack, and streamflow.

PDSI Calculated using precipitation, | The first comprehensive PDSI may lag emerging Palmer (1965); Alley (1984)
temperature, and soil drought index used widely to [ droughts. Not effective for
moisture data. Soil moisture | detect agricultural drought [ mountainous areas with
algorithm has been calibrated | (see text for details). frequent climatic extremes, or
for relatively homogeneous in winter and spring (see text
regions. for details).

PHDI Derived from PDSI to Same as PDSI, but more PHDI may change more slowly | Palmer (1965)
quantify long-term impact effective to determine when | than PDSI.
from hydrological drought. a drought ends.

CMI A derivative of PDSI. CMI Effective for the detection CMI cannot monitor Palmer (1968)
reflects moisture supply in of short-term agricultural long-term droughts well.
the short term. drought sooner than PDSI.

SWSI Developed from the SWSI takes into account SWSI is difficult to compare | Shafer and Dezman (1982);
Palmer index by combining reservoir storage, between different basins. Wilhite and Glantz (1985);
hydrological and climatic streamflow, snowpack, and [ SWSI cannot detect extreme | Doesken etal. (1991)
features. precipitation. Effective under [ events effectively. Not

snowpack conditions. a suitable indicator for
agricultural drought.

RDI Similar to SPI based on Drought is based on both Uncertainties in input data Tsakiris and Vangelis
precipitation and PET. precipitation and PET. for the calculation of PET. (2005); Tsakiris et al.

Appropriate for climate RDI at different basins cannot | (2007)
change scenarios. be compared with each
other and has been computed
seasonally.
USDM | Based on several key physical | Integrating remotely sensed |USDM is weighted to Svoboda et al. (2002)

indicators, such as PDSI, SPI,
PNP, soil moisture model
percentiles, daily streamflow
percentiles, remotely
sensed satellite vegetation
health index, and many
supplementary indicators.

satellite vegetation health
index together with other
drought indices (see text for
details).

precipitation and soil moisture
in short term. USDM inherits
the weaknesses of the other
indices it uses (see text for
details).
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Other commonly used drought indices (Table 1)
include PNP (Werick et al. 1994), deciles (Gibbs and
Maher 1967), SPI (McKee et al. 1993), the Palmer
hydrological drought index (PHDI; Palmer 1965),
the crop moisture index (CMI; Palmer 1968), the
surface water supply index (SWSI; Shafer and Dezman
1982; Wilhite and Glantz 1985; Doesken et al. 1991),
and the reclamation drought index (RDI; Tsakiris
and Vangelis 2005; Tsakiris et al. 2007). The relative
strengths and weaknesses of these indices are sum-
marized in Table 1, while most were designed to detect
meteorological and/or hydrological drought without
incorporating vegetation responses into drought.

To overcome these limitations and to exploit the
relative wealth of operational satellite records and
associated vegetation indicators, we developed a DSI
algorithm using satellite-derived ET, PET, and NDVI
products to detect and monitor droughts on a global
basis. Precipitation and soil moisture are not used as
DSl algorithm inputs because of current large spatial
uncertainties in these data.

REMOTELY SENSED GLOBAL DSI. The
strengths of remotely sensed data, especially those
from polar-orbiting satellites, are to provide tem-
porally and spatially continuous information over
vegetated surfaces useful for monitoring surface
biophysical variables affecting ET, including albedo,
biome type, and leaf area index (LAT; Los et al. 2000).
MODIS on board the National Aeronautics and
Space Administration’s (NASA’s) Terra and Aqua
satellites provides unprecedented information on
vegetation and surface energy conditions (Justice
etal. 2002). Despite the strengths in the models and
concepts of the various drought indices summarized
in Table 1, except for the USDM and EDI, which use
both reanalysis meteorological data and remotely
sensed data (Svoboda et al. 2002; Yao et al. 2010),
most drought indices use reanalysis meteorological
data that contain substantial uncertainties (Zhao etal.
2006; Chen and Bosilovich 2007; Gao et al. 2010).
Mu et al. (2007, 2009, 2011b) developed a MODIS ET
model to estimate ET and PET using MODIS data.
Using the MODIS ET/PET (Mu et al. 2007, 2009,
2011b) and MODIS NDVI (Huete et al. 2002) data
products, we calculated the remotely sensed DSI
globally for all vegetated land areas at 8-day, monthly,
and annual intervals over the MODIS (collection 5)
operational record from 2000 to 2011.

In the following sections, we first introduce the
input datasets and the DSI model; we then evaluate
DSI patterns and anomalies in relation to alternative
global PDSI information and documented regional

| BAMS JANUARY 2013

drought events. The MODIS operational net primary
production (NPP) product is used as an indicator of
vegetation productivity changes under documented
severe droughts in the Amazon, Europe, and Russia,
and to evaluate corresponding DSI- and PDSI-based
vegetation drought responses. Finally, we discuss
the DSI sensitivity and uncertainties in relation to
different base periods and input data.

Datasets. Operational global land products available
from MODIS on NASA Earth Observing System
(EOS) Terra and Aqua satellites include the MOD16
ET/PET (Mu et al. 2007, 2009, 2011b) products and
provide a means to quantify water fluxes between
terrestrial ecosystems and the atmosphere. The
MODI16 ET and PET data are used as primary inputs
to calculate the DSI on a global basis for all terrestrial
ecosystems at continuous 8-day, monthly, and annual
time steps and 1-km spatial resolution. Daily meteo-
rological reanalysis data and 8-day remotely sensed
vegetation property dynamics from MODIS are used
as inputs to the MODI16 ET/PET algorithm.

The MOD16 ET/PET algorithm uses the well-
known Penman-Monteith equation (P-M) (Monteith
1965) to calculate global remotely sensed ET (Mu
et al. 2007, 2009, 2011b), and integrates both P-M
(Monteith 1965) and Priestley-Taylor (1972) methods
to estimate PET (Mu etal. 2007, 2011b). The ET algo-
rithm accounts for both surface energy partitioning
and environmental constraints on ET, and includes
evaporation from canopy interception, wet and moist
soil surfaces, and transpiration from canopy stomata.
Atmosphere relative humidityis used to quantify the
proportion of wet soil and wet canopy components
(Fisher et al. 2008). Proportional vegetation cover is
estimated from MODIS fraction of photosyntheti-
cally active radiation (FPAR) retrievals (Los et al.
2000), and used to partition net radiation between
vegetation and soil surfaces. Leaf-level stomatal
conductance is controlled by the average daytime
surface air vapor pressure deficit (VPD) and daily
minimum air temperature, and is further upscaled
to the canopy level that is not covered by water using
MODIS (MOD15) LAI (Myneni et al. 2002). Using
the complementary relationship hypothesis (Bouchet
1963, Fisher et al. 2008), soil evaporation is estimated
as the potential evaporation rate for wet soil surfaces
scaled down by relative humidity and VPD for moist
soil conditions. The daily ET calculation represents
the sum of daytime and nighttime ET estimates.
Additional details regarding the MODIS ET/PET
algorithm logic and accuracy are described elsewhere
(Mu et al. 2007, 2011b).



The MODIS (MODI16) global ET product has
been widely validated (Mu et al. 2011b) and applied
for regional and global analyses (e.g., Montenegro
et al. 2009; Jung et al. 2010; Loarie et al. 2011). The
ET product shows generally favorable correspondence
(r = 0.86, statistical significance p < 0.0001) with
daily ET estimates based on tower eddy covariance
measurements for a wide range of global land cover
and climate conditions (Mu et al. 2011b). The mean
absolute error of the MODIS ET retrievals was found
to be approximately 24.1% of the average measured
ET, and within the range (10%-30%) of ET measure-
ment uncertainty (Courault et al. 2005; Jiang et al.
2004; Kalma et al. 2008; Mu et al. 2011b). The MODIS
ET estimates were also found to account for approxi-
mately 85% of the global variability in ET estimates
based on river discharge measurements from 232
global watersheds (Q. Mu et al. 2012, unpublished
manuscript). A global analysis of MODIS E'T retrievals
from 2000 to 2010 indicate a total annual ET flux from
the vegetated land surface of 63.4 x 10° km*, with an
average of 569 £ 358 mm yr, similar to the previously
reported annual ET estimate of 65.5 x 10° km?* for the
global land surface (Oki and Kanae 2006).

Satellite vegetation greenness indices (Vls),
especially the NDVI and enhanced vegetation index
(EVI), have been successfully used to monitor global
vegetation photosynthetic activity (Tucker 1979;
Justice et al. 2002; Huete et al. 2002). The VIs can
potentially link climate changes (e.g., increasing
frequency and severity of drought) and vegetation
responses as observed through vegetation green-
ness changes with land-atmosphere water, carbon
and energy fluxes, and associated climate feedbacks
(Atkinson et al. 2011). We integrate the operational
MODI16 ET/PET and MOD13 NDVI products to
calculate a new remotely sensed global DSI.

Methodology. ET is a metric of ecosystem functional
status and is directly related to water, carbon, and
energy cycles of the land surface. The ratio of ET to
PET is commonly used as an indicator of terrestrial
water availability and associated wetness or drought.
For each 8-day, monthly, and annual composite
period, we calculate the ratio of ET to PET (Ratio) as

ET
Ratio = —. )
PET
The temporal standard deviation of Ratio (o, )
and Ratio average (Ratio) are then computed on a
gridcell-wise basis over the available satellite record
(2000—present). The standardized Ratio (7, ) is then
calculated as

AMERICAN METEOROLOGICAL SOCIETY

Ratio — Ratio

Ratio

2

o

Ratio

We derive the standardized NDVI (Z ) for
each composite period during the classified growing
season at each grid cell as

NDVI - NDVI
“~Novi ¢ )
G\I)\ |
The Z, . and Z_  terms are then summed as
Z=Zo T Lypyi )

The remotely sensed DSI is finally calculated as the
standardized Z value as

z2—Zz

DSI = (5)

G.

where the DSI is a dimensionless index ranging
theoretically from unlimited negative values (drier
than normal) to unlimited positive values (wetter
than normal). Because of relative greater noise in the
nongrowing-season NDVTsignal (Zhao and Running
2011), we only use NDVI during the classified
snow-free growing season indicated by the MODIS
8-day Climate Model Grid (CMG) 0.05° snow cover
(MOD10C2; Hall and Riggs 2007); the DSl is derived
using ET/PET without NDVI during the classified
dormant season.

The DSI model uses relatively finescale (I-km
resolution) NDVI inputs from MODIS, which
provides potential advantages over other global
drought indices. First, the MODIS (MOD15) LAT/
FPAR product (Myneni et al. 2002) is produced
at 8-day intervals and is a primary input to the
MODI16 ET algorithm (Mu et al. 2011b), instead of
the finer (250 m) resolution but coarser (16-day)
temporal fidelity MOD13 NDVI/EVI product (Huete
et al. 2002); the MOD15 and MOD13 products are
derived independently using the same atmosphere-
corrected surface reflectance data (Vermote and
Kotchenova 2010) as inputs. The NDVI is also sensi-
tive to vegetation drought response (Atkinson et al.
2011) and associated water stress, especially over
water-limited regions (Paruelo et al. 1995; Schultz
et al. 1995; Douglas et al. 1996; Nicholson et al.
1998). The MODIS ET/PET algorithm uses coarse-
resolution global NCEP-DOE II (Kanamitsu et al.
2002) reanalysis data as daily metrological drivers,
which, like all existing reanalysis datasets, contains
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FiGc. |I. Annual global terrestrial DSI data over the 2000-11 MODIS record. The DSI ranges theoretically from
unlimited negative values to unlimited positive values for dry to wet climate deviations, respectively, from

uncertainties, especially in the tropics (Zhao et al.
2006). Small-scale convection dominates atmospheric
processes in the tropics and the convection scale is
too small for coarse-resolution reanalysis systems to
render in detail (Kerr 2011). Integrating the NDVI
into the DSI calculation partially mitigates model
uncertainties associated with the reanalysis inputs
for improved DSI accuracy.

ANCILLARY DATA. Another operational global
land product available from MODIS on the NASA
EOS Terra and Aqua satellites, the MODIS (MOD17)
product (Running et al. 2004; Zhao et al. 2005; Zhao
and Running 2010), provides estimates of vegetation
gross primary production (GPP) and net primary
production (NPP) at consistent spatial and tempo-
ral resolutions for global vegetated land areas. The
MOD17 GPP/NPP product has been widely validated
and applied to regional and global scales (Turner et al.
2005, 2006; Heinsch et al. 2006; Zhao and Running
2010). The MOD17 GPP/NPP product was used in this
study as a surrogate measure of vegetation activity
and associated NPP response to severe droughts, for

comparison against DSl and PDSI global patterns and
temporal changes.

The widely used global annual growing-season
PDSI data (Palmer 1965, Zhao and Running
2010) were used to evaluate the performance of
global annual DSI results. In the PDSI calcula-
tion (Palmer 1965; Alley 1984), PET was estimated
using Thornthwaite’s formula (Thornthwaite 1948).
Following Dai et al. (2004), if soil water holding
capacity (awc) data from Webb et al. (1993) is no
more than 2.54 cm (or 1 in.), then awc is assigned
to the top soil layer, and the bottom layer has zero
capacity; otherwise, the top layer has 2.54 cm water-
holding capacity, while the bottom layer has (awc -
2.54 cm) capacity. The monthly air temperature from
NCEP-DOE II (Kanamitsu et al. 2002) was smoothed
into half-degree spatial resolution. The monthly
half-degree precipitation data generated using the
method developed by Chen et al. (2002) based on
gauge measurements at weather stations were used
instead of data from NCEP-DOE I, since precipita-
tion data from meteorological reanalysis datasets
generally contain relatively large uncertainties (Chen

-15 -1.0 =05 0.0
Drought Severity Index

prevailing conditions.
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and Bosilovich 2007). For a given month, multiyear
average monthly water exchanges were used to quan-
tify the departure level of precipitation (supply) from
the normal water demand (Palmer 1965; Dai et al.
2004; Zhao and Running 2010).

RESULTS. We produce the global DSI results at
8-day, monthly, and annual intervals, and 1-km
spatial resolution consistent with the MODIS inputs.
In this study, we aggregated the 1-km-resolution DSI
productinto a coarser half-degree-resolution dataset
to focus on large-scale droughts.

Annual global DSI. Figure 1 shows the annual global
DSI over the 2000-11 MODIS record, which is the
period used for defining averages and standard de-
viations in Egs. (1)-(5). Negative DSI values represent
drier-than-normal conditions and positive values
represent relatively wet conditions. We begin our
examination of the DSI results in relation to reported
droughts within the 2000-11 record.

First, we evaluate DSI performance in the Asia
and Pacific region where some 23 million hectares
are drought-prone and represent a fifth of the total
rice production area of the region (Pandey et al.
2007), and drought represents a major constraint on
food production. The high frequency and intensity
of droughts in many parts of Asia are captured by
the annual DSI (Fig. 1). From 2000 to 2011, vast areas
in this region experienced drought (Fig. 1), which
affected large tracts of the main rice-producing
areas of Asia (6.7 million hectares during 2000-07;
Fan et al. 2003; Pandey et al. 2007). In South Asia,
consecutive droughts during 2000-03 in Pakistan
and northwestern India (Fig. 1) led to sharp declines
in water tables and crop failures (Pandey et al. 2007,
Fig. 1). In 2004, a severe drought hit Southeast Asia
and caused the shriveling of crops on millions of
hectares, costing millions of dollars, shortages of
water for drinking and irrigation, and the suffering
of millions of people (NBS 2005; Fig. 1). In Thailand,
the 2004 drought alone (Fig. 1) is estimated to have
affected 2 million hectares of cropped area and over
8 million people (Bank of Thailand 2005; Asia Times,
29 April 2005).

The DSI captured major documented droughts
within the 2000-11 period for North America, where
severe drought is purported to be the greatest recur-
ring natural disaster for the region. The continuous
severe 1998-2004 drought in the western United
States resulted in considerable water supply deficits
in reservoir storage (Cook et al. 2007, Fig. 1). When
the drought peaked in July 2002, more than 50% of

AMERICAN METEOROLOGICAL SOCIETY

the contiguous United States was under moderate
to severe drought conditions, with record or near-
record precipitation deficits throughout the West
(Lawrimore and Stephens 2003). Large portions of the
Canadian prairie provinces also suffered from severe
drought (Cook etal. 2007; Fig. 1), as well as extensive
areas of Mexico, particularly in the northern and
western parts of the country in 2002 (Lawrimore et al.
2002; Fig. 1). The DSI results are also consistent with
the severe drought in the contiguous United States
in 2006 (Fig. 1) and reported by Dong et al. (2011).

The annual DSI data capture major droughts and
floods in Australia (Fig. 1) during the study period.
The National Climate Centre (2007) reported a 6-yr
widespread drought in southern and eastern Australia
from November 2001 to October 2007 (Fig. 1). The
2002-2003 Australia drought (Horridge et al. 2005;
Fig. 1) was purported to be one of the worst short-term
droughts in Australia’s recorded meteorological
history (Nicholls 2004). The exceptional drought
in 2005 (Watkins 2005) and continuous droughts
from 2007 to 2009 in Australia (National Climate
Centre 2009) are effectively captured by the annual
DSI data (Fig. 1). The period from 2010 to early 2011
experienced one of the strongest La Nifa events in
history, which caused heavy rain events starting in
north and east Australia in spring 2010 and extending
across most of Australia into 2011, and resulting in
the wettest 2-yr period on record (Fig.1; National
Climate Centre 2012).

Several other extreme droughts are captured by the
annual DSIin Fig. 1. For example, the DSI results cap-
ture the 2003 heat wave in Europe (Ciais et al. 2005;
Fig. 1), severe droughts in the Amazon and Africa in
2005 (Hopkin 2005; Phillips et al. 2009; Fig. 1), the
Great Russian Heat Wave and severe Amazonian
droughtin 2010 (Barriopedro et al. 2011; Lewis et al.
2011; Fig. 1), and a severe drought in the Horn of
Africain 2011 (Lyon and Dewitt 2012).

Comparisons between annual DSI and PDSI. The PDSI
is a widely used global drought index (Heim 2002;
Dai et al. 2004; Wells et al. 2004; Dai 2011a,b). The
annual DSI results were therefore evaluated against
an alternative global growing-season PDSI dataset
(Zhao and Running 2010).

The correlation between the 0.5° annual global
terrestrial growing-season PDSI and annual DSI,
with an area-weighted average correlation coefficient
of 0.43, is shown (Fig. 2). Notably, the correlation be-
tween annual DSI and growing-season PDSI (Fig. 2)
is the highest where the weather stations are relatively
dense, such as in the southeastern United States and
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Correlation between Annual DSI and Growing Season PDSI (2000-2011)

portions of Eurasia (Fig. 2in
Chen et al. 2002; Fig. 2b in
Zhao et al. 2006). The cor-
relation in western Europe
(40°-66.5°N, —5°~15°F)
is 0.41, and 0.60 in west-
ern Russia (40°-66.5°N,
30°-55°E). However, where
rain gauges and weather
stations are sparse (Fig. 2
in Chen et al. 2002; Fig. 2b
in Zhao et al. 2006), the
correlation between DSI
and PDSI is low, such as
middle and northern South
America, northern Africa,
and the high-latitude areas
(Fig. 2). The correlation

Fic. 2. Spatial correlation coefficient between |2-yr annual global DSI and coefficient in the Amazon
growing-season PDSI data from 2000 to 2011. The area-weighted average r [the study region in Lewis
is 0.43 over 36,594 vegetated pixels (~75.8% of the global vegetated domain). et al. 2011)] is only 0.17

The mean correlation is 0.17 for the Amazon, 0.41 in western Europe, and

0.60 in western Russia.

DSI & PDSI
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Fic. 3. Annual DSI, growing-season PDSI, and MODIS (MODI7)
NPP data for selected subregions, including the Amazon, western
Europe, and western Russia regions, and the 2000-11 period.
Vertical gray bars denote years with documented droughts within
each region.
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This spatial correlation
map provides further evi-
dence of uncertainties in
the reanalysis data and hence the
calculated drought indices, such as
PDSI. For example, during the last
decade two major drought events—
one in 2005 and another in 2010—
occurred in the Amazon basin
(Atkinson et al. 2011). Xu et al. (2011)
suggested that the vegetation brown-
ing in 2010 was 4 times greater than
in 2005 as a response to the 2010
drought. However, in Fig. 3, the PDSI
indicates that 2005 was the driest
year (PDSI = —0.644), while 2010
(PDSI = —0.620) and 2003 (PDSI =
—0.615) were the second and third
driest years of record, respectively, in
the Amazon over the 2000-11 period
(Figs. 3,4), which differs from earlier
reports (Atkinson et al. 2011; Lewis
etal. 2011; Xu et al. 2011).

While comparisons between the
DSl and PDSI results provide insight
into product performance, both in-
dices have limitations. The various
PDSI limitations are described earli-
er in this paper. A relative advantage
ofthe DSIis thatthe model integrates
remotely sensed ET, PET, and NDVI
data to monitor and detect droughts.



Precipitation data are relatively
uncertain on a global basis and are
not used in the DSI calculation.
However, uncertainties in the DSI
arise from several other sources,
including uncertainties from global
reanalysis data inputs (Zhao et al.
2006) and satellite remote sensing
inputs into the MODIS ET algo-

rithm, including MODIS FPAR/LAL,
land cover (Friedl et al. 2002), and
albedo (Schaaf et al. 2002). Other
sources of DSI uncertainty are
introduced from the MODIS NDVI
inputs and the various MODIS ET
algorithm assumptions (Mu et al.
2007, 2009, 2011b). Many of the lower
correlation areas (Fig. 2), including
high-latitude and tropical regions,
are also areas where persistent cloud
cover, atmospheric aerosols, or low
solar illumination significantly
constrain satellite optical-IR remote
sensing (e.g., Fensholt and Proud
2012); the resulting gaps in the satel-
lite VI retrievals and uncertainty in
reanalysis meteorology inputs can
degrade the resulting DSI calcula-
tions for these areas.

These uncertainties may result
in a false DSI drought detection
signal. Both the DSI and PDSI show
strong negative values in central
south China in 2008, such as the
Hunan province (Fig. 5); however,
the negative drought signal is likely
due to a combination of summer
drought and damaged trees caused
by a preceding severe snow storm
and icing event in January 2008
(Zhou et al. 2010). Vegetation activ-
ity in southern China is generally
not limited by water supply (Nemani
et al. 2003). Most of the regional ET
flux comes from plant transpiration and evaporation
from canopy-intercepted water (figure not shown).
The damaged vegetation showed reduced LAI, which
lowered plant transpiration and canopy evaporation
in the following summer. In the Guangdong province
of southern China, the DSI shows a strong negative
anomaly in 2008 (Fig. 5a), but the PDSI only shows a
weak negative or near-zero value (Fig. 5b). There was
no reported drought in the Guangdong province in
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2008; the strong negative regional DSI value for this
period is likely a false drought signal, though the
cause of the negative anomaly is unknown.

Drought-induced NPP change. We used the MODIS
(MODL17) global NPP record as a relative indicator
of vegetation productivity changes for comparing
against the DSI regional patterns and temporal
anomalies. The NPP and DSI results are largely
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Fic. 4. Spatial patterns of (a),(b),(e),(f) annual DSI and (c),(d),(g),(h)
growing-season PDSI for selected subregions, including the Amazon
in (a),(c) 2005 and (b),(d) 2010, (e),(g) western Europe in 2003, and
(f),(h) western Russia in 2010.
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Fic. 5. Spatial patterns of (a) annual DSI and (b)
growing-season PDSI over southern China (17.8°-
40.8°N, 100°-123°E) in 2008.

independent, but both utilize MODIS dynamic
MOD15 LAI/FPAR and reanalysis daily surface
meteorology inputs. The DSI and NPP results should
be correlated, especially for water supply-constrained
regions (Nemani et al. 2003) through vegetation
moisture constraints on canopy transpiration, net
photosynthesis, and CO, exchange. Severe droughts
can induce progressive leaf stomatal closure, which
reduces plant water loss and photosynthesis. The
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PDSI and MODIS DSI, ET, and GPP/NPP data were
compared to evaluate relationships between DSI- and
PDSI-inferred water supply reductions, and associ-
ated ecosystem drought responses indicated by the
satellite-derived productivity record.

Figure 3 shows the annual DSI, growing-season
PDSI, and MODIS NPP results for the Amazon [the
region asin Lewis et al. (2011)], western Europe (40°-
66.5°N, —5°-15°E), and western Russia (40°-66.5°N,
30°-55°E) from 2000 to 2011. The DSI captures four
severe droughts in these regions (Figs. 3, 4) that
generally coincide with the other products and are
consistent with reported events. In 2003, Europe
experienced a severe heat wave (Ciais et al. 2005)
that caused 35,000 human deaths (Shaoni 2003). The
Amazon rain forest experienced once-in-a-century
droughts in 2005 and 2010 (Marengo et al. 2008;
Phillips et al. 2009; Atkinson et al. 2011; Lewis et al.
2011; Xu et al. 2011). The Great Russian Heat Wave
of 2010 caused extensive wildfires and thousands of
human deaths (Barriopedro et al. 2011). Induced by
the severe droughts, the NPP record shows anomalous
declines in vegetation productivity in all of these dry
years, consistent with the DSI results (Fig. 3).

8-day composite global DSI. Drought is a progressive
lack of water in an area usually over a time scale
of a month or longer. However, weekly- or 8-day
information is still critical for near-real-time drought
monitoring, especially for areas with consecutive
multi-8-day drought. The finer (8 days) DSI tempo-
ral fidelity provides potentially greater precision for
documenting drought onset, duration, and transient
wetting/drying events, but it should be used with
caution because of reduced signal-to-noise ratio for
distinguishing climatological drought from variable
weather. Both small and large-scale drought patterns
can be clearly identified in the 8-day composite global
DSI maps in 2011. For example, early spring drought
occurred over large areas of northern Eurasia,
followed by early summer drought. Persistent drought
in Texas and surrounding areas of the United States,
and the Horn of Africa are also clearly depicted (not
shown). The 2011 drought in the Horn of Africa was
caused by a failure of the East African rains (March-
May) in spring 2011, consistent with a recurrent
large-scale precipitation pattern that followed their
abrupt decline around 1999 (Lyon and Dewitt 2012).

Classification of drought severity index. The DSI
provides a measure of wetness relative to normal,
which is proposed in this study to monitor and
display the magnitude and spatial extent of drought



TaBLE 2. Dynamic range and relative categories for wet (W) and dry (D) conditions of the global PDSI and DSI.

Category Description PDSI DSl Category Description PDSI DSl
W5 Extremely wet 4.00 or greater 1.5 or greater DI Incipient drought —0.50 to —0.99 -0.3 to -0.59
W4 Very wet 3.00 to 3.99 1.2 to 1.49 D2 Mild drought -1.00to —-1.99 -0.6 to -0.89
W3 Moderately wet  2.00 to 2.99 09to I.19 D3 Moderate drought -2.00 to -2.99 -0.9to —I.19
w2 Slightly wet 1.00 to 1.99 0.6 to 0.89 D4 Severe drought -3.00to -3.99 -1.2to —1.49
Wi Incipient wet spell 0.50 to 0.99 0.3 to 0.59 D5 Extreme drought -4.00 orless —I.5orless
WD Near normal 049t0-049 0.29t0 -0.29

over the global terrestrial land surface. For consis-
tency, we scaled the DSI classification levels to the
corresponding PDSI drought severity categories,
where D1-5and W1-5 categories denote progressively
drier and wetter conditions, respectively (Palmer
1965; Table 2). While the primary objective of this
study is drought detection, the DSI (and PDSI) can
also detect abnormally wet periods.

DISCUSSION. There have been 12 yr of MODIS
ET and NDVI data, enabling a continuous global
DSI record from 2000 to 2011, with the potential for
continued operations. The DSI appears to capture
the major regional droughts that have been reported
over the last decade (e.g., Figs. 1, 3, 4). The World
Meteorological Organization, the National Oceanic
and Atmospheric Administration, and the National
Aeronautics and Space Administration all reported
that the last decade of the twenty-

periods. Also, to test the uncertainties in the DSI
product induced by the input global meteorological
reanalysis data to the MODIS ET/PET algorithm, we
used an alternative [Global Modeling and Assimila-
tion Office Modern Era Retrospective-Analysis for
Research and Applications (GMAO MERRA)] global
reanalysis dataset with approximately 0.5° spatial
resolution (Yi et al. 2011) as meteorological input
data to the MODIS ET/PET algorithm to estimate
global 1-km MODIS ET/PET, and hence global an-
nual DSI with the base period of 2000-11. We then
integrated the global 1-km annual DSI data from the
different experiments into a consistent 0.5° resolution,
and calculated the area-weighted spatial correlation
coefficients between these different experiments
and the 12yr_std DSI baseline for each year (Fig. 6).
The resulting correlation is significant for each year
in each experiment over the 36,594 0.5° vegetated

first century was the warmest decade
since instrumental measurements
of temperatures began in the 1880s

0.9

o
(Zhao and Running 2010; Mu et al. E
2011a). Under a warming climate, ‘/’ i
drought severity and persistence (l: 9:8
may increase (Dai et al. 2004; Dai .
2011b). © 7
The 12-yr record used in this § ' . ’}AESEQISMAO
study may be too short to char- g o éOyr_tS(;td
acterize “normal” climatological 8 0.6 o— Sgi:ztd
conditions required for accurate DSI W g;tﬁg
drought detection and monitoring. .
We conducted a sensitivity study to 2000 2002 2004 2006 2008 2010 2012
examine how the base period length Year
affects the DSI results, by varying the
base period length over 6-yr (2000- Fic. 6. Area-weighted annual spatial correlation coefficients between
05; 6yr_std), 7yt (2000-06; 7yr_ 12yr_std (baseline) global DSI data and alternative global DSI

std), 8-yr (2000-07; 8yr_std), 9-yr calcula}tions d?termi.ned from different sensitivity and uncertainty

experiments involving progressively shorter record lengths for
(2000-08; 9yr_std), 10-yr (2000-09; determining normal DSI conditions ranging from é-yr (éyr_std) to
10yr_std), 11-yr (2000-10; 11yr_ I1-yr (11yr_std) periods, and alternative DSI calculations derived from
std), and 12-yr (2000-11; 12yr_std) GMAO MERRA (MERRA_GMAO) reanalysis inputs.
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pixels. The spatial patterns of global DSI results from
the different sensitivity experiments using differ-
ent base period lengths are very close (not shown),
though some differences occur over small areas, and
the degree of drought from the 6yr_std experiment
may be different from the 12yr_std baseline. When
there are at least eight years of MODIS ET/PET and
NDVI data, the global DSI product does not change
significantly over longer base period lengths.

For the uncertainty experiment driven by GMAO
MERRA meteorological data, though there are sub-
stantial differences between the GMAO and NCEP-
DOE 1II (Kanamitsu et al. 2002) reanalysis datasets,
the area-weighted spatial correlation coefficients
between the resulting DSI calculations are significant
over the 36,594 global vegetated pixels (Fig. 6), and
the spatial patterns of the 12-yr annual global DSI
results are very close to those driven by NCEP-DOE
I reanalysis data (figures not shown). To reduce the
DSI uncertainties caused by using a single reanalysis
dataset, we suggest that future applications only label
a region as undergoing drought when both the DSI
using MODIS ET/PET driven by MERRA GMAO and
NCEP-DOE Il reanalysis datasets detect drought. In
the future, not only PDSI but also other widely used
drought indices, such as SPI and PNP, and more
historical drought and flooding cases will be used to
validate and improve the DSI product.

FUTURE STUDIES AND ANTICIPATED
IMPACTS. The operational production of simi-
lar vegetation indices from the Visible Infrared
Imaging Radiometer Suite (VIIRS) on the National
Polar-orbiting Operational Environmental Satellite
System (NPOESS) Preparatory Project and Joint
Polar Satellite System (JPSS) satellites enables the
potential continuation of global DSI and ET records
in the post-EOS MODIS era. We suggest additional
follow-up studies to clarify the DSD’s utility and
limitations, and to improve understanding of drought
globally. First, the DSI should be evaluated against
extensive historic climate records to clarify further
product sensitivity and the range and diversity of
ecosystem responses to drought. Evaluation of the
DSI and its associated input parameters (ET, PET,
NDVI) against long-term ET observations from
the flux network (FLUXNET; Baldocchi 2008) will
allow improved understanding of DSI performance
and limitations. Regional comparisons of alternative
drought monitoring methods, including the DSI,
against a range of observations provides a means for
better understanding of relationships and limita-
tions among the various approaches, which may lead

| BAMS JANUARY 2013

to further improvements in product accuracy and
utility. The global terrestrial DSI product from this
study is available online for public use (ftp://ftp.ntsg
.umt.edu/pub/MODIS/Mirror/DSI) and provides a
potential means for global assessment and potential
monitoring of drought occurrence, severity, and
duration at relatively fine (1-km resolution) spatial
scales. The DSI and similar global products derived
from operational satellite remote sensing should be
useful for regional drought assessment and mitigation
efforts, especially for areas of the globe where sparse
measurement networks and poor infrastructure de-
velopment limit other information sources.
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