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A RENEWAL THEOREM FOR RANDOM WALKS 
IN MULTIDIMENSIONAL TIME 

J. GALAMBOS, K.-H. INDLEKOFER AND 1. KATAI 

ABSTRACT. Let X, Xl, X2, ... be a family of integer valued, independent and 
identically distributed random variables with positive mean and finite (posi-
tive) variance. Let Sn = Xl + X2 + ... + X n . The asymptotic behavior of 
the weighted sum R(k) = LanP(Sn = k), with summation over n 2': 1, is 
investigated as k -t +00. In the special case an = dr(n), the number of solu-
tions of the equation n = nln2 ... nr in positive integers nj, 1 ~ J. ~ r, R(k) 
becomes the renewal function Q(k) for a random walk in r-dimensional time 
whose terms are distributed as X. Under some assumptions on the magnitude 
of an and of A(x) = Ln<x an, (i) it is shown that R(k) is asymptotically 
distribution free as k -t +00, (ii) the proper order of magnitude of R(k) is 
determined, and under some further restrictions on A(x), (iii) a simple asymp-
totic formula is given for R(k). From (i), the known asymptotic formula for 
Q(k) with r = 2 or 3 is deduced under the sole assumption of finite variance. 
The relaxation of previous moment assumptions requires a new inequality for 
the sum of the divisor function dr(n), 1 ~ n ~ x, which by itself is of interest. 

I. Introduction. Let X, Xl, X 2 , • .. be a family of integer valued, independent 
and identically distributed random variables with positive mean E(X) = M < +00 
and finite positive variance V(X) = (}"2. Let Sn = Xl + X 2 + ... + X n . Let dr(n) 
denote the number of solutions of n = nln2··· nr in positive integers nj. For a 
fixed integer r 2 2, we consider the sum 

+00 
(1.1) Q(k) = L dr(n)P(Sn = k). 

n=l 

Assume that X is aperiodic in the sense that E( exp( itX)) =I 1 for any t f. o. 
Then, the now classical renewal theorem (see Doob (1948), Erdos, Feller and Pollard 
(1949) and Chung and Pollard (1952)) states that, for r = 1, i.e. with dl(n) = 1 
for all n, Q(k) -+ 11M as k -+ +00. 

The case r 2 2 has recently been the subject of active investigations. Notice 
that Q(k) in (1.1), when r 2 2, can be redefined as follows. Let Kr be the set of all 
r-vectors n = (nl' n2, ... , nr ), ni 2 1 integer, and let Xn, n E K., be independent 
copies of X. Let 
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where the summation is over allj = U}'i2,'" ,ir) such that 1 ~ ii ~ ni, 1 ~ i ~ r. 
Then 

Q(k) = I: P(Sn = k). 

Now, Ney and Wainger (1972) proved that, if r = 2 and if E(IXI4) < +00, then 

Q(k) ~ (logk)/J.l as k -> +00. 
M. Maejima and T. Mori (1984) replaced the moment condition by E(IXI3) < +00 
and proved that, for r = 2 or 3, 

(1.2) Q(k) ~ (log kr-1 /(r - 1)!J.l as k -> +00. 
Their proof is based on the following form of the central limit theorem (see Petrov 
(1975), p. 207): 

P(Sn = k) = <Pn(k;J.l,a2)[1 + (;3/6a2nl/2)(~~,k - 3~n,k)J + cn,k/n(1 + l~n,kI3), 
where ;3 = E[(X - J.l)3J, 

(1.3) 

with 

(1.4) ~n,k = (nJ.l- k)/an1/ 2, 

and Cn,k are constants such that Cn = sUPk ICn,k I -> 0 as n -> +00. The limitation 
r = 2 and 3 is due to the lack of good asymptotic results for the sum of dr (n) over 
n. 

In a recent paper, Galambos and Katai (1986) gave an error term in (1.2) for 
r = 2 or 3, and proved that, for arbitrary r 2': 2, as N -> +00, 

1 2N 
lim sup N I: IQ(k) - s(logkJ.l-1)1 < +00 

k=N+l 
with an explicitly given polynomial s(·) of degree r - 1, under the assumption that 
the third absolute moment of X is finite. One of the main reasons for this last 
assumption on the third moment is the appeal to the quoted central limit theorem 
for first establishing that the asymptotic behavior of Q(k), as k -> +00, can always 
be reduced to that of 

+00 
(1.5) Ql(k) = I: dr(n)<Pn(k). 

n=l 

The relation of Q(k) and Ql(k) is made more precise in Galambos and Katai 
(1986a) under a weaker moment assumption. As a matter of fact, it is established 
that, whatever r, 

(1.6) Q(k) = Ql(k) + 0(1) as k -> +00 
if 
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with a suitable 0 < a < 1, where F denotes the distribution function of X. Fur-
thermore, Galambos and Katai (1986a) also prove that 

(1.7) 

with a suitable constnt Cl > 0 which may depend on r. 
The aim of the present paper is to further relax the moment assumption and to 

prove the following results. 

THEOREM 1. Let X be integer valued, aperiodic, with finite positive mean J.l 
and finite (positive) variance 0'2. Then, for any fixed r ~ 2, 

(1.8) 

Consequently, 

(1.9) Q{k)/Ql{k) ---- 1 as k ---- +00. 
COROLLARY. Let r = 2 or 3. Then, for integer valued, aperiodic X with finite 

positive mean J.l and variance, (1.2) holds. 

Note that, on account of (1.7), (1.8) indeed implies (1.9). In addition, it should 
be noted that (1.8) and Lemma 2 of Maejima and Mori (1984) immediately yield 
the corollary. 

The proof of Theorem 1 is based upon the following assertions. 

LEMMA 1. Under the hypothesis stated in Theorem 1 

(l.1O) 

where e{n) ---- 0 as n ---- +00. 
For the proof see Bhattacharya and Ranga Rao (1976), Theorem 22.1, pp. 231-

237. 

LEMMA 2. Let e > 0 be an arbitrary constant. Then for xE ::::; y ::::; x, 

(1.11) L dr{n) < c{r, e)y{log xr- 1, 

x~n~x+y 

where c{r, e) is some positive constant depending on rand e. 

We shall use Lemma 2 only with e = 1/2. 
The proof of Theorem 1 is given in the next section within the framework of a 

more general formulation. Lemma 2, which appears to be of interest on its own, is 
proved in §3. 

2. A renewal theorem for a class of weighted renewal functions. Let 
an ~ 0, n ~ 1, be a sequence of real numbers, and set 

(2.1) 

Assume that 

(2.2) 
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for every c > 0, where the constant implied by the order term may depend on c. 
Furthermore, let us assume that, with some positive constants Cl,C2,C3 and C4, the 
inequalities 

(2.3) 

and 

(2.4) 

c1hL(x) ~ A(x + h) - A(x) ~ c2hL(x) 

C3 ~ L(h)/L(x) ~ C4 

hold with a positive function L(x) for all x 2: 1 and Vx ~ h ~ x. 
Let 

+00 
(2.5) R(k) = L: anP(Sn = k) 

n=l 

and 
+00 

(2.6) Rl(k) = L: anf/Jn(k). 
n=l 

We now prove the following result. 

THEOREM 2. Assume that the conditions stated for X in Theorem 1 and the 
order assumptions (2.2)' (2.3) and (2.4) hold. Then 

(2.7) R(k) = Rl(k) + O(Rl(k)) as k -. +00. 
Furthermore, with suitable positive constants C5 and C6, 

(2.8) 

Before proceeding to the proof, let us remark that all assumptions of Theorem 
2 which relate to an are satisfied when an = dr(n) with arbitrary r. Indeed, (2.2) 
is well known (see Hardy and Wright (1960) for r = 2, which trivially extends to 
r 2: 2 by induction), and the lower inequality of (2.3) with L(x) = (log xt-1 is very 
simple to prove (see Galambos and Klitai (1986a) for details). The upper inequality 
of (2.3), on the other hand, is our Lemma 2. Finally, (2.4) is evident when L(x) is 
a power of log x. Consequently, Theorem 2 implies Theorem 1. The inequalities in 
(2.8) are new even for the special case an = dr(n) for r 2: 4. The fact that (2.8) 
does not extend to an asymptotic formula without some further assumptions on the 
sequence an is pointed out by Kawata (1961) who investigated R(k) in the special 
case A(x) '" ax with some real number a. 

PROOF OF THEOREM 2. We first observe that the inequality c7(lOgX)-C < 
L(x) < cs(logx)C, where c, C7 and Cs are suitable positive constants, immediately 
follows frim (2.4). 

Let 
H(n, k) = IP(Sn = k) - f/Jn(k)1 

and 
+00 

(2.9) T(k) = L: anH(n, k). 
n=l 
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In view of the elementary inequality 

(2.10) IR(k) - RI(k)1 ~ T(k), 
we have to show that T(k) = O(RI(k)), which in turn is equivalent to 

(2.11) T(k) = o(L(k)), 
assuming that (2.8) has been proved. We thus have to establish (2.8) and (2.11). 

We first prove (2.11). From Lemma 1 we have 

(2.12) H(n, k) ~ c(n)/ In(1 + c;~,k)' 
and we may assume that c(n) tends to zero monotonically. Let MI = k/2J-t and 
M2 = 2k/J-t. Ifn < M1, then c;~,k ~ k2/4u2n, while for n > M2, c;~,k» n. (Here, 
and in what follows, a » b signifies the existence of a positive constant c such that 
a > cb.) Thus, the contribution of the integers n < MI and n > M2 to T(k) in 
(2.9) can be majorized by the sums Ln<Ml anJn/k2 and Ln>M2 an/n3/ 2. On 
account of (2.2), both sums above are O(k-I/4), and thus 

M2 
T(k) = L anH(n, k) + O(k- I/4). 

n=M1 

Because, as was pointed out earlier, L(k) can go to zero at most as fast as a power 
of log k, the error term above is o(L(k)). Hence, it remains to estimate the sum on 
the right-hand side above, and to show that 

M2 
(2.13) T*(k; M1 , M2) = L anH(n, k) = o(L(k)). 

n=Ml 
Let now mj = j(2k/ J-t)1/2 + M1, j = 0,1,2, ... , s, where s is determined by the 
inequality m" ~ M2 < m,,+!. Then, by (2.12), 

" 1 
T*(k;MI,M2)~c(MdL(I+e ) m' Lan, 

j=O nj,k ,;mi mj~n<mj+t 
where nj is defined as an integer in [mj, mj+!) for which c;~,k takes its minimum in 
the interval [mj, mj+!). To estimate the inner sum, we observe that mj+! - mj ~ 

,;mi, and thus (2.3) is applicable. This, together with (2.4), yields 

" 1 
T*(k; Mb M2) ~ cgc(MdL(k) L (1 e ). 

j=O + nj,k 
The sum appearing on the right-hand side can be majorized by the convergent series 
L 1/ p, and thus (2.13) is proved. 

For establishing (2.8), first note that ¢n(k) » n- I / 2 in the range 

n E [k/J-t - uVk, k/J-t + uVkj. 
Hence, keeping only these terms in RI (k), the lower inequality of (2.8) follows 
by an appeal to (2.3) and (2.4). For the upper inequality of (2.8) we start with 
showing that the contributions of those terms to RI(k) whose index n satisfies 
either n < k/J-t - Vku(logk)2 or n > k/J-t + Vku(logk)2 are negligible. Indeed, 
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for these n with the additional limitation n < 2k/p" I~n,kl » (logk)2 as well as 
I~n,kl » (log n)2, while for n 2: 2k/ p" I~n,kl » yin. Hence, in view of (2.2), the total 
contribution of these terms to Rl(k) is smaller than an arbitrary negative power of 
k, which is negligible in terms of L(k) (recall that it can go to zero at most as fast as 
a negative power of log k). Next, we split up the remaining values of n into intervals 
ofthe type [k/ p,-a(j+1)Vk, k/ p,-ojVk) and [k/ p,+ajVk, k/ p,+a(j+1)Vk) where 
o ~ j ~ (log k)2. Over the jth interval of either type above, cj2 ~ ~; k ~ c* (j + 1)2 
with some positive constants c and c*. Thus, for these n, ' 

4>n(k)« k- 1/ 2exp(-c*(j + 1)2) 

and their contribution to Rl (k) is of the magnitude 

k- 1/ 2 exp( -c*(j + 1)2)[A(k/p, + (j + l)aVk) - A(k/p, + jaVk)], 
where A(x) is the function defined in (2.1). Now, upon utilizing (2.3) and (2.4), 
the summation over j of these contributions to Rl(k) yields the upper inequality 
of (2.8). This completes the proof of Theorem 2. 

For the validity of (2.7), condition (2.3) can be weakened at the expense of 
assuming more than just the finiteness of the second moment of X. In fact, with 
no change in the proof of the corresponding result in Galambos and Katai (1986a), 
the following result can be obtained. 

THEOREM 3. Let an 2: 0 satisfy (2.2). Let L(x) be a positive function for which 
(2.4) holds. Assume that A(x) < cxL(x) with some positive constant c and that the 
lower inequality of (2.3) is valid. Let X satisfy the conditions of Theorem 2 as 
well as the condition J1xl?,:z x2 dF(x) = O(z-a) with a suitable constant 0 < a < 1, 
where F(x) is the distribution function of X. Then (2.7) holds. 

In order to give an asymptotic formula for Rl(k) we have to assume more than 
(2.3). 

THEOREM 4. Assume that conditions (2.2), (2.3) and (2.4) hold for an 2: O. 
Furthermore assume that there exists a positive function p( x), tending to zero mono-
tonically, such that 
(2.14) (A (x + h) - A(x))/hL*(x) --- 1 (as x --- +00) 
uniformly in h E (p(x)JX, JX), where L*(x) is a very slowly varying function in 
the sense that, as x --- +00, 

L * (Y (x)) / L * (x) --- 1 whenever (log Y (x)) / (log x) --- 1. 

Then, as k --- +00, 
Rl(k) ~ (l/p,)L*(k/p,). 

PROOF. From (2.3) and (2.14) it follows that L(x) and L*(x) have the same 
order of magnitude, i.e. L(x) « L*(x) and L*(x) «L(x). Now, let u(k) be a 
function tending to infinity with k and satisfying u( k) = O(log k). Let 

J = [Nl' N2], Nl = k/ p,- aVk u(k), N2 = k/ p, + av'k u(k). 
By elementary estimates, upon utilizing (2.3), we get 

L an¢n(k) = o(L*(k)) as k --- +00. 
nr£J 
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Thus, as k ---> +00, 
Ri(k) = Ri(k) + o(L*(k)) 

where 
Ri(k) = L an4Jn(k). 

nEJ 

Choose an integer M such that p( n) yin ~ M ~ yin for each n E J. It is easy to 
see that 

1 M-i 

4Jn(k) = M L 4Jn+j(k) + o(4Jn(k)) 
j=O 

(k ---> +00) 

uniformly in n E J. Hence, 
M-i 

Ri(k) = ~ Lan L 4Jn+j(k) + o(Ri(k)), 
nEJ j=O 

which, by changing the order of summation, becomes 

where the star at the end of the inner sum means that the summation extends only 
to those m for which m - t E J. This implies restriction only if either m < Ni + M 
or m > N2 • The total contribution of these terms, however, does not exceed 

L*(k) 4Jm(k) + L*(k) 

which is o(L*(k)). Therefore, since, in view of (2.14), 

1 M-i (k) 
M L am-t = (1 + o(l))L* -

t=O Jl 

uniformly in m E J, 

This now completes the proof upon observing that the sum appearing on the right 
side converges to 1/ Jl as k ---> +00 (see formula (34) in Galambos and Klitai (1986) 
and the hint for its proof). 

Asymptotic formulas have been developed only in a few special cases (see W. L. 
Smith (1958), Kawata (1961) and Greenwood et al. (1982)) for R(k). Several 
other papers deal with general renewal functions R(k) whose assumptions on an, 
however, are unrelated to the current investigation (our assumption (2.2) is essential 
in relation to renewal problems in multidimensional time). In fact, the example 
given in Remark (b) on p. 568 by Embrechts et al. (1984) clearly shows this claim: 
it is demonstrated there that, under our assumption (2.2), their conclusion, and 
earlier related results, cannot be applied. 
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3. Proof of Lemma 2. By the nature of Lemma 2, its proof is of a quite 
different character when compared with the rest of the paper. The basic ideas we 
shall use here can be found in the paper of Linnik and Vinogradov (1957). 

Clearly, it is sufficient to prove the assertion for y = xE • Let the integers bn , n = 
1,2, ... , [y], be defined by the formula bn = [x] + n, where [z] signifies the integer 
part of z. For an integer m, let p(m) denote the smallest and P(m) the largest prime 
factor of m. For every bn , let bn = CnTn, where P(cn) ~ yl/2 and P(Tn) > yl/2. 
Since dr(m) is multiplicative, i.e., dr(mlm2) = dr(mt}dr(m2) for coprime ml and 
m2, and, for primes p and integers a 2': 1, 

dr (pa) = (a + T - 1), 
r-l 

we have that dr(bn ) «dr(cn ). Hence, for Lemma 2, we have to develop an estimate 
of the sum 

(3.1) 

Now, upon noting that 

dr(cn) = L dr-l(mt}, 
mlm2=cn 

we can write 

(3.2) 

where 

(3.3) Bi = L Lidr-l(mt}, i = 1,2, 
n~y 

with Ei signifying summation over ml satisfying mlm2 = Cn and ml ~ Y in El 
while ml > y in E2. The sum Bl can easily be estimated. By interchanging 
summations, we have 

1 
ml~Y n~y 

c",=O (mod md (3.4) 
«y L dr-l(mt} «y(1ogyr- l . 

ml 
ml~y 

The estimation of B2 is much more involved, and we do it in several steps. Let 
ml = PlP2 ... Ps be the prime decomposition of ml with Pl ~ P2 ~ ... ~ Ps. Let t 
be defined so that t = PlP2 ... Pk ~ Y and tPk+1 > y. Hence, t is well determined 
by ml. Let us now split B2 into two parts, B2 = B 2,l + B 2,2, say, according as 
pet) ~ log x or pet) > log x. 

Since, for fixed nand t, 

L dr-1(mt}« x'" 
tlml 

mlle" 
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with arbitrary 1] > 0, B2,1 « xTiy ~ l/t, where the summation is extended over 
those t for which yl/2 ~ t ~ Y and P(t) ~ log x. For estimating this sum we appeal 
to the following well known result of Rankin 

(3.5) 

We thus have 

(3.6) 

L 1 «2(21ogx)/Iog1ogx. 
t<:;y 

P(t) <:;log x 

B2,1 = O(y). 

Let now P( t) > log x. It is obvious that dr - l (uv) ~ dr - l (u )dr - l (v) for all 
integers u and v. Thus, for fixed nand t, 

where q runs over the prime divisors of cn/t. Since Cn ~ x + Y < 2x, we get 

L dr-l(md ~ dr_l(t)r(lOgx)/(logPk). 

Hence, 
fflllcn 

B < "\'" d _ (t)r(lOg x)/(log P(t)) 2,2 - L....l r 1 
cn=O (modt) 

n<:;y 

«y"\'" dr-l(t)r(lOgX)/(logp(t)) = yB 
L....l t 3, 

1 

where ~l denotes summation over t with yl/2 ~ t ~ y and P(t) > log X. 

We split B3 = B3,1 + B3 ,2, where in B3 ,!, P(t) < x"Y with some 1 > 0, which 
may depend on rand c, and in B3 ,2, P(t) > x"Y. 

Note that, in B3 ,2, (logx)/(logP(t)) is bounded. Thus, if we write P(t) = p, 
t = pt*, then 

B "\'" 1 "\'" * dr - 1 (t* ) 
3,2« L.... - L.... t* ' 

x-'<p<y p 

where ~* is summation over t* such that P( t*) ~ P and yl/2p-l < t* < yp-l. 
The sum involving t* is easily seen to be O((1ogxy-l). The well-known asymptotic 
formula 

(3.7) 1 L - = log log z + C + o( 1) 
p<:;z p 

(z -t +00) 

thus yields 

(3.8) B3,2 = O((1ogxr-l). 

We finally estimate B3 ,1. Writing again t = pt*, where p = P(t), 

B « "\'" ! r(log x) /log P "\,,," dr - l (t*) 
3,1 L.... p L.... t*' 

logx<p<:;x-' 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



768 J. GALAMBOS, K.-H. INDLEKOFER AND I. KATAI 

where L:** denotes summation over t* such that y1/2 :::; t :::; y and p :::; x'Y. We 
further increase above if we sum over all t* with y1/4 :::; t*, namely, the mentioned 
limitations in t and p imply this bound for t* if 1 is chosen sufficiently small. We, 
of course, keep the additional restriction P(t*} :::; p. Since t* j y1/4 ~ 1, we further 
increase if we plug in the additional factor (t* j y1/4)O with a suitably chosen 8> O. 
This last step again is an idea of Rankin [10]. Now, if we choose 

1 1 1/4 
8 - - (1 ) -1 1 og Y - 3 ogp og 1 ogp 

it follows (see Indlekofer (1980)) 

2:** dr-1(t*) { 2: r - 1 10gy1/41 10gY1/4} 
---'---=...:---...:... « exp -- - C og --:=--=-----

t* q logp logp q$.p 
q prime 

[ 10gxE/4 10gXE/4] 
:::; exp (r - I) log log p - C 1 log --=-l=---ogp ogx'Y 

with a positive constant c. Thus 

(3.9) " 1 [ log x ] B3 ,1 « ~ - exp (r - 1) log logp + 10 p u r (€, 1} , 
log x<p$.x" p g 

where Ur (€, 1) = log r - (C€ / 4) log( € j 41}. Upon choosing 1 small enough, such 
that ur (€, 1} :::; -1, summation over p in the estimate (3.9) of B3 •1 yields 

(3.1O) B3•1 «exp[( -lh}(log x'Y}r-1], 

where the trivial estimate -(logx}j(logp) :::; -lh as well as the well-known esti-
mate 

(1 }r-1 2: ogp «(logx'YV- 1 

p$.x" p 
(r ~ 2) 

were utilized. Hence, since 

B = Bl + B2 = Bl + B2.1 + B2.2 :::; Bl + B2.1 + yB3 
:::; Bl + B2.1 + y(B3.1 + B3.2), 

the estimates (3,4), (3.6), (3.1O) and (3.8) establish Lemma 2. 
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