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Abstract

Many real-world optimization applications have more than one objective, which are modeled as multiobjective optimization

problems. Generally, those complex objective functions are approximated by expensive simulations rather than cheap analytic

functions, which have been formulated as data-driven multiobjective optimization problems. The high computational costs

of those problems pose great challenges to existing evolutionary multiobjective optimization algorithms. Unfortunately,

there have not been any benchmark problems reflecting those challenges yet. Therefore, we carefully select seven benchmark

multiobjective optimization problems from real-world applications, aiming to promote the research on data-driven evolutionary

multiobjective optimization by suggesting a set of benchmark problems extracted from various real-world optimization

applications.
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Introduction

Evolutionary multiobjective optimization (EMO) has been

flourishing for two decades in academia. However, the indus-

try applications of EMO to real-world optimization problems

are infrequent, due to the strong assumption that objec-

tive function evaluations are easily accessed. In fact, such

objective functions may not exist, instead computationally

expensive numerical simulations or costly physical exper-

iments must be performed for evaluations. Such problems

driven by data collected in simulations or experiments are

formulated as data-driven optimization problems [1], which

pose challenges to conventional EMO algorithms. Firstly,

obtaining the minimum data for conventional EMO algo-

rithms to converge requires a high computational or resource

cost [2]. Secondly, although surrogate models that approx-

imate objective functions can be used to replace the real

function evaluations [3], the search accuracy cannot be guar-

anteed because of the approximation errors of surrogate

models. Thirdly, since only a small amount of online data

are allowed to be sampled during the optimization process,

the management of online data significantly affects the per-

formance of algorithms [4,5]. The research on data-driven

evolutionary optimization is highly in demand for handling

various real-world applications. One main reason is the lack

of benchmark problems that can closely reflect real-world
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challenges, leading to a big gap between academia and indus-

tries. In real-world applications, there are a large amount

of difficulties which are totally different from the existing

benchmark test problems. For example, there may be no exact

objective functions to reflect the mappings between the deci-

sion variables and the objectives in practice [6], or some noise

factors are involved during the fitness evaluation [7], or the

computation time of the algorithm is limited due to the hard-

ware limitation/demands [8], or a number of constraints are

involved [9], or even the “curse of dimensionality” can result

in the failure of optimization algorithm [10].

Despite those mentioned difficulties in real-world appli-

cations, many benchmark test suites, which try to mimic the

properties of real-world problems, have been used to exam-

ine the performance of data-driven EMO algorithms. For

instance, the KNO and OKA problems was used in [11]; the

Zitzler–Deb–Thiele test suite (ZDT) [12] was used in [13–

16]; the Deb–Thiele–Laumanns–Zitzler test suite (DTLZ)

[17] was used in [18,19]; and the MF test suite was used

in [20]. It is highlighted that these benchmark test suites

promote the development of data-driven evolutionary multi-

objective optimization, but the abilities of these data-driven

EMO algorithms in solving real-world expensive MOPs are

not validated. On the other hand, a suite of computationally

expensive shape optimization problems using computational

fluid dynamics was proposed in [21]. This suite has somehow

filled the aforementioned gaps, nevertheless these problems

could be relatively too expensive and specific for designing

a new algorithm.

Online data-driven evolutionary
multiobjective optimization

Online data-driven EMO algorithms are based on con-

ventional EMO algorithms but involve surrogate assists.

Therefore, a very general process of online data-driven

EMO algorithms consists of surrogate model building, multi-

objective optimization, and model management. One or

multiple surrogate models are trained to replace the expen-

sive fitness evaluations to guide the search. In the search,

new candidate solutions are generated using different vari-

ation operators such as crossover and mutation, but they

are selected according to the predicted fitness using surro-

gate model rather than expensive fitness evaluations. During

the optimization process, a small number of online data

can be selectively sampled via model management strate-

gies to enhance the quality of the surrogate models. To

further discuss the methodology of online data-driven algo-

rithms, we briefly introduce four representative algorithms

(ParEGO [11], MOEA/D-EGO [16], K-RVEA [19], and

CSEA [18]).

Efficient global optimization (EGO) [22] is a very classic

online data-driven single-objective optimization algorithm,

while it uses a Kriging model as surrogate model and selects

new training data based on a infill sampling criterion (e.g.,

expected improvement). ParEGO [11] extends EGO to multi-

objective optimization problems. It employs aggregation

functions to decompose one multi-objective optimization

problem into a set of single-objective optimization problems.

Thus, ParEGO repeatedly uses EGO to solve one random

single-objective optimization problem from those aggrega-

tion functions, where an evolutionary algorithm is adopted

to maximize expected improvement for choosing new online

data.

Different from the sequential search for each aggregation

function, MOEA/D-EGO [16] simultaneously solve those

single-objective optimization problems due to the parallelism

of MOEA/D [23]. In MOEA/D-EGO, a Kriging model is

built for each objective, then the prediction of aggregation

functions and their expected improvement can be calcu-

lated. K-RVEA [19] also builds one Kriging model for each

objective, but its problem decomposition follows the angle-

penalized distance (APD) in RVEA [24].

In fact, classifiers can be used as surrogate models to

help evolutionary algorithms distinguish promising candi-

date solutions for the next generation. CSEA [18] is a

representative classification-based EMO algorithm, where a

feedforward neural network is adopted to determine whether

a solution can be selected or not.

Therefore, designing a new online data-driven EMO algo-

rithm needs to consider the following key points.

– Choice of EMO algorithm: The chosen EMO algorithm

is a foundation of an online data-driven EMO algorithm,

which significantly affects its performance.

– Choice of surrogate model: The quality of the chosen sur-

rogate model determines whether the evolutionary search

can be corrected guided. To improve the robustness of

surrogate models, multiple models can be used as an

ensemble. Furthermore, surrogate models can approxi-

mate the objectives, aggregation functions, performance

indicators, and selection for multiobjective optimization

problems.

– Choice of online data: The chosen online data can effi-

ciently and economically improve the surrogate models

and benefit the following optimization search. Different

online data sampling strategies would result in different

performance of online data-driven EMO algorithms.

Test problems

We carefully select seven benchmark multiobjective opti-

mization problems from real-world applications, including
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design of car cab [25], optimization of vehicle frontal

structure [26], filter design [27], optimization of power sys-

tems [28], portfolio optimization [29], and optimization of

neural networks [30]. The objective functions of those prob-

lems cannot be calculated analytically, but can be calculated

by calling an executable program to provide true black-box

evaluations for both offline and online data sampling. A set

of initial data is generated offline using Latin hypercube sam-

pling, and a predefined fixed number of online data samples

is set as the stopping criterion.

– DDMOP1: This problem is a vehicle performance opti-

mization problem, termed car cab design, which has 11

decision variables and 9 objectives. The decision vari-

ables include the dimensions of the car body and bounds

on nature frequencies, e.g., thickness of B-Pillar inner,

thickness of floor side inner, thickness of door beam, and

barrier height. Meanwhile, the nine objectives character-

ize the performance of the car cab, e.g., weight of the car,

fuel economy, acceleration time, road noise at different

speed, and roominess of the car.

– DDMOP2: This problem aims at structural optimization

of the frontal structure of vehicles for crashworthiness,

which involves 5 decision variables and 3 objectives. The

decision variables include the thickness of five reinforced

members around the frontal structure. Meanwhile, the

mass of vehicle, deceleration during the full-frontal crash

(which is proportional to biomechanical injuries caused

to the occupants), and toe board intrusion in the offset-

frontal crash (which accounts for the structural integrity

of the vehicle) are taken as objectives, which are to be

minimized.

– DDMOP3: This problem is an LTLCL switching ripple

suppressor with two resonant branches, which includes 6

decision variables and 3 objectives. This switching ripple

suppressor is able to achieve zero impedance at two dif-

ferent frequencies. The decision variables are the design

parameters of the electronic components, e.g., capacitors,

inductors, and resistors. Meanwhile, the objectives of this

problem involve the total cost of the inductors (which is

proportional to the consume of the copper and economic

cost) and the harmonics attenuations at two different res-

onant frequencies (which are related to the performance

of the designed switching ripple suppressor).

– DDMOP4: This problem is also an LTLCL switching rip-

ple suppressor but with nine resonant branches, including

13 decision variables and 10 objectives. This switching

ripple suppressor is able to achieve zero impedance at

nine different frequencies. The decision variables are

the design parameters of the electronic components,

e.g., capacitors, inductors, and resistors. Meanwhile, the

objectives of this problem involve the total cost of the

inductors and the harmonics attenuations at nine differ-

ent resonant frequencies.

– DDMOP5: This problem is a reactive power optimization

problem with 14 buses, which involves 11 decision vari-

ables and 3 objectives. The decision variables include the

dimensions of the system conditions, e.g., active power of

the generators, initial values of the voltage, and per-unit

values of the parallel capacitor and susceptance. Mean-

while, the five objectives characterize the performance of

the power system, e.g., active power loss, voltage devia-

tion, reciprocal of the voltage stability margin, generation

cost, and emission of the power system.

– DDMOP6: This problem is a portfolio optimization prob-

lem, which has 10 decision variables and 2 objectives.

The data consist of 10 assets with the closing prices in 100

min. Each decision variable indicates the investment pro-

portion on an asset. The first objective denotes the overall

return, and the second objective denotes the financial risk

according to the modern portfolio theory.

– DDMOP7: This problem is a neural network training

problem, which has 17 decision variables and 2 objec-

tives. The training data consist of 690 samples with 14

features and 2 classes. Each decision variable indicates

a weight of the neural network with a size of 14 × 1 ×

1. The first objective denotes the complexity of the net-

work (i.e., the ratio of nonzero weights), and the second

objective denotes the classification error rate of the neural

network.

Specifically, this repository includes six different types of

real-world MOPs with different properties, e.g., irregu-

lar Pareto fronts/sets, different number of decision vari-

ables/objectives, or different problem complexities. For

instance, DDMOP1 and DDMOP2 involve complex Pareto

fronts/sets; DDMOP3 and DDMOP4 involve complex num-

bers; DDMOP5 involves multiple local optima; DDMOP6

involves time-series property; DDMOP7 involves noisy dur-

ing the training. We do not aim to propose a benchmark test

suite with specific properties in each test instance. Instead,

we aim at evaluating the average performance of data-driven

algorithms on different types of problems to support engi-

neers in selecting the candidate optimizer.

General shape of the approximate Pareto
front

To generally characterize the Pareto optimal fronts (POFs) of

our test problems, we have conducted a long-term simulation

on six problems (CSEA [18], NSGA-II [31], K-RVEA [19],

ParEGO [11], SPEA2 [32], and NSGA-III [33] with a budget

of 1000 real function evaluations are used to optimize each

problem), and the non-dominated solutions of the obtained
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Fig. 1 The approximate POF of DDMOP1

Fig. 2 The approximate POF of DDMOP4

solutions are used to approximate the POFs.1 Note that we

do not give the objective values of the obtained solutions,

since we cannot ensure the obtained solutions are exactly on

the POFs due to the computationally expensive cost of the

real function evaluations.

For DDMOP1 in Fig. 1 and DDMOP4 in Fig. 2, their

numbers of objectives are more than eight. It can be observed

from these two plots that the variations of the function values

are different for all the objectives. Nevertheless, the shape of

the approximate Pareto fronts is relatively regular. Hence, the

main difficulty is to ensure the convergence of the obtained

solution set.

1 We do not give the result of DDMOP7 as the number of the obtained

non-dominated solutions is too small, and it is meaningless to display

the result.
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Fig. 3 The approximate POF of DDMOP2
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Fig. 4 The approximate POF of DDMOP3

DDMOP2, DDMOP3, and DDMOP5 are problems with

three objectives. In Fig. 3, the approximated Pareto front of

DDMOP2 is discontinuous and there is a hole on the second

part of the approximate Pareto front. Meanwhile, the approx-

imate Pareto front of DDMOP3 degenerates into an irregular

curve as shown in Fig. 4. It is difficult to obtain a set of repre-

sentative solutions evenly distributed around the entire POF

for DDMOP2 and DDMOP3. In contrast, the approximate

Pareto front of DDMOP5 in Fig. 5 is relatively simple in

comparison with the above two problems. Hence, MOEAs

should pay more attention to convergence enhancement in

solving DDMOP5.

Finally, for DDMOP6 in Fig. 6, the obtained approximate

Pareto front is simple, and it can be used to reflect the gen-

eral performance of MOEAs on solving online data-driven

multiobjective optimization problems.
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Fig. 5 The approximate POF of DDMOP5
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Fig. 6 The approximate POF of DDMOP6

In contrary to most existing benchmark problems with reg-

ular formulations, the proposed benchmark test problems are

extracted from real-world applications, and the irregularity in

the shape of the Pareto fronts encourages us to develop effi-

cient MOEAs with strong ability of diversity maintenance.

In all these test problems, the approximate POFs are irreg-

ular despite DDMOP6, where the objectives have different

scale degrees in DDMOP1 and DDMOP4, the approximate

POF of DDMOP3 is a combination of several degenerated

curves, the approximate POF of DDMOP2 is discontinuous,

the approximate POF of DDMOP5 is a combination of curve

and surface, the approximate POF of DDMOP6 is concave,

and the objective functions of DDMOP7 are complex due to

the existence of neural network.

Software platform information

The proposed test suite has been implemented in MAT-

LAB code.2 We suggest conducting experiments on the

proposed test suite via PlatEMO [34], which is an open

source MATLAB-based platform for EMO. PlatEMO cur-

rently includes more than 90 representative multiobjective

evolutionary algorithms and over 120 benchmark problems,

along with a variety of widely used performance indica-

tors. Moreover, PlatEMO provides a simple interface and a

friendly graphical user interface, which enable users to effi-

ciently conduct experiments on the proposed test suite with

a low learning cost, and users can also investigate the per-

formance of their algorithms on the proposed test suite in

comparison to state-of-the-art algorithms.

To test an algorithm on the proposed test suite, users

should embed the algorithm in PlatEMO with the specified

interface and form, then use the following command: main

(‘-algori thm’,@Alg,‘-problem’,@DDM O P1,‘-N ’,256,

‘-evaluation’,400), where @Alg denotes the function han-

dle of the algorithm to be tested, @DDM O P1 denotes the

function handle of one of the proposed benchmark problems,

‘-N ’,256 defines the population size, and ‘-evaluation’,400

defines the number of function evaluations (i.e., number of

online data samples).

Comparative study

To further examine the performance of existing data-driven

optimization algorithms on these problems, four popular

EMO algorithms are compared.

Compared algorithms

In this work, we compared three representative data-driven

evolutionary algorithms, i.e., CSEA [18], K-RVEA [19],

ParEGO [11], and the model-free NSGA-II [31]. NSGA-II is

used as the baseline to indicate the superiority of data-driven

EMO algorithms in solving computationally expensive mul-

tiobjective optimization problems. It is worth noting that

K-RVEA and ParEGO both adopt Kriging models, but their

approximation targets are different (one Kriging model is

adopted to surrogate an objective function in K-RVEA while

it is used to surrogate the aggregation function in ParEGO);

on the contrary, a feedforward neural network is adopted in

CSEA to surrogate a classification criterion.

2 https://github.com/HandingWang/DDMOP/tree/master/DDMOP_

Exp.
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Experimental settings

To obtain a set of acceptable solutions from each problem

within a bearable time consumption. We recommend the

following settings, including the population size of the algo-

rithm and the predefined fixed number of online data samples.

The number of population size is set to 100 for problems

with two objectives, i.e., DDMOP6 and DDMOP7. It is set

to 105 for problems with three objectives, i.e., DDMOP2,

DDMOP3, and DDMOP5. As for problems with ten objec-

tives, i.e., DDMOP1 and DDMOP4, the population size

is set to 256. The setting of population size enables the

decomposition-based MOEAs to generate a set of uniformly

distributed weight vectors/points.

The terminal criterion for the algorithms that will be tested

on these problems is the predefined fixed number of online

data samples. We set the predefined fixed number of online

data samples according to the number of decision variables

of the test problems. Hence, it is set to 400, 300, 400, 600,

800, 300, and 600 for DDMOP1 to DDMOP7, respectively.

Note that these settings are based on the experimental analy-

sis over a long period function evaluations, and conventional

algorithms can achieve an acceptable result with this setting.

We do not want to spend too much computational/ econom-

ical cost for gaining a relatively small improvement.

Meanwhile, we recommend that each test problem is

tested for more than ten independent runs, so we can obtain

the statistical results, e.g., mean, variance, and worst/best

case result, to analyze the performance of the algorithm.

We recommend that the prefixed number of generations

before updating the surrogate model(s) should be less than

30 to create a fair environment for comparison. Meanwhile,

we have given the initial population for the compared algo-

rithms to avoid the disturbance caused by the initialization

procedure. To conduct fair comparisons, we have used the

recommended settings of specific parameters in each adopted

algorithm. To be more specific, the number of weight vectors

is set to 15, and the maximum number of surrogate-assisted

fitness approximation before the surrogate update is set to

200,000 as recommended in ParEGO [11]. For K-RVEA,

parameter δ is set to 0.05N with N being the population

size, and the number of generations wmax before updating

the Kriging models is set to 20 as recommended in [19].

Regarding the settings of CSEA, the number of surrogate-

assisted prediction before updating the models is equal to

that in K-RVEA, the maximum epochs for training the FNN

T is set to 500 and the training is terminated once the change

of the weights is smaller than 0.001, the number of hidden

neurons H is set to 2 × D with D being the number of deci-

sion variables, and the number of reference solutions is set

to 6 for all the problems [18]. Besides, there is no specific

parameter involved in NSGA-II. In this part, we use the MAT-

LAB toolbox DACE [35] to construct the Kriging models for

both ParEGO and K-RVEA, where the regression model is

set to a constant function, the correlation model is set to the

Gaussian process, and other parameters are set the same as

the default settings.

Performance indicators

Since the true Pareto fronts of the proposed benchmark prob-

lems are unknown, the widely used performance indicator

hypervolume (HV) [36] is suggested to quantitatively assess

the population obtained in each run. The HV value of a popu-

lation P with respect to a reference point set R in the objective

space is defined as

H V (P, R) = λ(H(P, R)), (1)

where

H(P, R) = {z ∈ Z |∃x ∈ P, ∃r ∈ R : f (x) ≤ z ≤ r},

and λ is the Lebesgue measure with

λ(H(P, R)) =

∫
Rn

1H(P,R)(z)dz, (2)

where 1H(P,R) is the characteristic function of H(P, R). In

short, the HV value of P is the area covered by P with respect

to R, and a higher HV value indicates a better convergence

as well as a diversity of the points.

To calculate the HV value of a population obtained on

each benchmark problem, the reference point set R is set to

a single point (1, 1, . . . , 1). Moreover, we collect a set of

non-dominated solutions by conducting a long-term simula-

tion on each problem, which can be used to approximately

normalize the population before calculating HV. To be spe-

cific, all the objective values of P are normalized according

to z∗ and 1.1 × znad, where z∗ is the ideal point that con-

sists of the minimum values of all the objectives of the

obtained non-dominated solution set, and znad is the nadir

point that consists of the maximum values of all the objec-

tives of the obtained non-dominated solution set. In addition,

since the calculation of HV is ineffective for populations

with many objectives, the Monte Carlo estimation method

with 1,000,000 sampling points is suggested for populations

with more than four objectives for higher computational effi-

ciency.

Results

Each problem is tested for 20 independent runs, and the

experimental results of the four compared algorithms are

given in Table 1. It can be observed that ParEGO has
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Table 1 The HV results achieved by the compared algorithms on DDMOP1 to DDMOP7

Problem CSEA K-RVEA NSGA-II ParEGO

DDMOP1 8.23E+07(4.52E+06) 6.96E+07(2.91E+06) 5.81E+07(2.00E+06) 1.35E+08(8.67E+05)

DDMOP2 6.14E+02(1.16E+01) 6.08E+02(6.81E+00) 5.68E+02(9.38E+00) 6.58E+02(6.45E−01)

DDMOP3 3.66E+02(2.10E+00) 3.52E+02(6.52E−01) 3.64E+02(1.63E+00) 3.70E+02(1.45E+00)

DDMOP4 4.33E+21(4.29E+19) 4.18E+21(3.12E+19) 4.01E+21(5.90E+19) 4.48E+21(1.37E+19)

DDMOP5 2.00E−02(3.66E−18) 0.00E+00(0.00E+00) 2.00E-02(3.66E−18) 0.00E+00(0.00E+00)

DDMOP6 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00) 0.00E+00(0.00E+00)

DDMOP7 3.00E−01(2.21E−02) 2.70E−01(2.26E−02) 2.70E−01(1.49E−02) 0.00E+00(0.00E+00)

The best result in each row is highlighted in bold
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Fig. 7 The non-dominated solutions obtained by each compared algorithm on DDMOP1 in the run associated with the medium HV value

Fig. 8 The non-dominated solutions obtained by each compared algorithm on DDMOP2 in the run associated with the medium HV value

achieved four best results while CSEA has achieved two

best results. Besides, the non-dominated solutions obtained

by each algorithm on DDMOP1 and DDMOP2 are given

in Figs. 7 and 8, respectively, where each solution set is

selected from the run in association with the medium HV

value. It can be observed from these two figures that CSEA

and K-RVEA perform well on DDMOP1 with nine objec-

tives, while ParEGO performs the best on DDMOP2 with

two objectives; by contrast, NSGA-II has failed to obtain

a set of well-converged solutions. Moreover, the promising

results achieved by ParEGO may be attributed to the fact that

ParEGO is suitable for this repository. To be more specific, a

random weight vector is adopted to transfer the original MOP

into a single-objective optimization problem and optimize it

independently and, thus, it can obtain a well-converged solu-

tion in association with each weight vector greedily. Thus,

the bias on convergence over diversity has resulted in better

HV results. By contrast, CSEA and K-RVEA tried to strike a
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Table 2 The average computation time of all the compared algorithms

on each test problem

Problem CSEA K-RVEA NSGA-II ParEGO

DDMOP1 6.41E+03 6.48E+03 6.40E+03 6.75E+03

DDMOP2 5.73E+03 5.72E+03 5.70E+03 6.19E+03

DDMOP3 5.63E+03 5.62E+03 5.60E+03 5.92E+03

DDMOP4 5.19E+03 5.28E+03 5.10E+03 5.10E+03

DDMOP5 5.99E+03 6.04E+03 5.92E+03 6.78E+03

DDMOP6 4.39E+03 4.38E+03 4.35E+03 4.58E+03

DDMOP7 4.05E+03 3.88E+03 3.74E+03 4.91E+03

balance between the convergence enhancement and diversity

maintenance, and thus wasted real-objective evaluations on

problems with complex PFs, e.g., DDMOP1 to DDMOP5.

Overall, the three data-driven algorithms have outperformed

NSGA-II, indicating their effectiveness in handling compu-

tationally expensive optimization problems.

Computation time

The average computation time of each algorithm on

DDMOP1 to DDMOP7 over ten independent runs is dis-

played in Table 2. It can be observed that the computation

time of all the compared algorithms on each test problem is

similar, which is attributed to the computationally expensive

properties of the proposed problems. To be more specific,

NSGA-II has achieved the shortest computation time since it

is a model-free algorithm, followed by CSEA, K-RVEA, and

ParEGO. Meanwhile, CSEA has achieved the similar results

with K-RVEA; in contrast, ParEGO has spent the most com-

putation time on each problem, which may be attributed to

the increasing scale of the training set. Note that in ParEGO,

all the newly evaluated solutions are merged to the dataset for

training the Kriging model; by contrast, K-RVEA maintains

a constant number of samples for training the model.

Conclusion

In this work, we have proposed a repository of real-world

datasets for data-driven EMO. We first give the prosper-

ities of these real-world problems and their approximate

Pareto optimal fronts. Then, the performance of four pop-

ular algorithms, including three data-driven EMO algorithm

and a model-free EMO algorithm, is analyzed. From the per-

spective of problem properties, the proposed repository of

real-world datasets has covered different problems with dif-

ferent irregular/regular Pareto optimal fronts. Besides, the

problem complexities of the problems are different, which

can be observed from Table 1.

This repository has been used as the benchmark test prob-

lems for IEEE Congress on Evolutionary Computation 2019

“Online Data-Driven Multi-Objective Optimization Compe-

tition”. The motivation of proposing this repository is to

promote the research in data-driven multiobjective optimiza-

tion, in terms of both algorithm design and application of

these algorithms to real-world problems. Furthermore, this

repository could provide a new benchmark test suite for

examining the performance of existing data-driven EMO

algorithms on real-world problems.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.
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