
University of Wollongong University of Wollongong

Research Online Research Online

Department of Computing Science Working
Paper Series

Faculty of Engineering and Information
Sciences

1981

A representation approach to the tower of Hanoi problem A representation approach to the tower of Hanoi problem

M. C. Er
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation Recommended Citation
Er, M. C., A representation approach to the tower of Hanoi problem, Department of Computing Science,
University of Wollongong, Working Paper 81-8, 1981, 13p.
https://ro.uow.edu.au/compsciwp/18

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages

A REPRESENTATION APPROACH TO THE

TOWER OF HANOI PROBLEM

M. C. ER

Department of Computing Science,
The University of Wollongong,

Post Office Box 1144,
Wollongong, N.S.W. 2500

Australia

ABSTRACT

By making the moving direction of each
disc explicit in the representation, a
bit-string so constructed can be used
to drive the Tower of Hanoi algorithm.
The behaviour of disc moves is further
analyzed based on the bit-string
representation. It has been shown that
the bit-string for moving n discs can
be used to generate successively the
Gray codes of n bits.

Keywords and phases: Tower of Hanoi,
representation approach, Gray codes,
combinatorial algorithms.

CR Categories: 5.30, 5.39

A REPRESENTATION APPROACH TO THE

TOWER OF HANOI PROBLEM

M. C. ER

Department of Computing Science,
The University of Wollongong,

Post Office Box 1144,
Wollongong, N.S.W. 2500

Australia.

1. INTRODUCTION

Algorithms for the Tower of Hanoi problem are often used in the

introductory texts on computer programming for demonstrating the power of

recursion (Hayes, 1977j Dijkstra, 1971; Dromey, 1981). Interesting though

these recursive algorithms are, beginners are not always convinced that these

algorithms will work until they are run. Given such recursive algorithms,

it is not obvious how to move discs around until one actually steps through

the programs.

Hayes (1977), Buneman and Levy (1980) present two iterative algorithms

for solving the Tower of Hanoi problem, hoping that they are less mysterious

than the recursive solutions. It is however not clear why the smallest disc

is always moved in the cyclic order. At any rate, they did not argue that

their solutions are the optimal ones; namely, to move the tower of discs from
~

one peg to the other peg in the minimum number of steps. An analysis is

clearly necessary.

It is a common experience in the Articifical Intelligence research (Korf,

1980) that a suitable representation may lead to an efficient and transparent

algorithm. It is the theme of this paper to examine the Tower of Hanoi

problem in this light. By encoding the disc moves into a bit-string, we show

that a straight forward iteractive algorithm can be constructed. More

important, the bit-string lends a hand to an analysis of the behaviour of the

algorithm.

- 2 -

2. THE PROBLEM

The Tower of Hanoi problem involves three pegs (PI, P2 and P3) and n

discs (01 , O2 , 0 3 ... On) such that 0 1 < O
2

< 0 3 < ••• < On' where 0
1

is

the smallest disc. Initially, all the n discs are placed on a peg pi as a

pyramid with 0
1

on the top. The task is to move these n discs from Pi to Pj

such that i ~ j, subject to the following constraints:

Cl : Only the top disc of a tower may be moved from one.2eg to

the other;

C2 No disc may rest upon a smaller disc at any time;

C3 Only one disc may be moved at a time.

3. OTHER ITERATIVE SOLUTIONS

Hayes (1977) gives reasons to believe that the smallest-disc moves must

alternate with other disc moves. However, he did not explain why the smallest

disc must move cyclically. Nor did Buneman and Levy (1980) give reasons to

support their algorithm that the smallest disc must always move in the clockwise

direction. Clearly, to move n discs from peg 1 (PI) to peg 3 (P3), one needs

not have to move n discs from PI to peg 2 (P2), then move them to P3.

Buneman and Levy's algorithm therefore does not provide an optimal solution

under certain circumstances.

Consider the general case. Suppose the smallest disc (0
1

) is on top of PI,

and the other two discs O. and O. are on top of P2 and P3 respectively.
1. J

Clearly 0 1 < 0i and 0
1

< OJ. Suppose we have just moved 0
1

, either 0i or

o. will be moved in the next move. As O. ~ D., the next move is a unique
J 1. J

solution depending on which of O. and O. is smaller. Suppose 0. < D., the
1. J 1. J

next move is to move 0i on top of OJ' After that, we have to move °
1

, Now

we have two choices; either to move 0 1 on top of 0i or to move 0
1

to P2.

It is under these circumstances that both Hayes (1977), and Buneman and Levy

(1980) fail to satisfy uS that one choice is better than the other. A deeper

analysis is clearly called for.

- 3 -

4. TREE AND BIT-STRING REPRESENTATION

Suppose the three pegs are arranged in a circle as shown in figure 1.

pl :'\

antic10CkWise((\\clockwise

P3 P2

\"~

Figure 1 Arrangement of Pegs

Define the clockwise direction as Pl + P2 + P3 + PI, and the anticlockwise

direction as Pl + P3 + P2 + Pl. Any top disc can be moved to its neighbouring

peg in either clockwise or anticlockwise direction at any movement. We can view

the clockwise and anticlockwise moves as traversal of left and right branches

of a binary tree respectively. It is then possible to represent the directions

of disc moves as a binary tree. In other words, we make explicit the directions

of disc moves in the representation.

Suppose we are asked to move n discs from a peg to its neighbouring peg

in the clockwise direction, we can assume that the source is Pl, and the

destination is P2 without loss of generality. This can be expressed formally

as follows:

PI i P2.

When n = 1, only disc DI can be moved from PI to P2 in the clockwise

direction in one step:

When N = 2, the smallest disc D
l

should be moved in the anticlockwise

direction from PI to P3. Then the larger disc D
2

will be moved from pI

to P2 in the clockwise direction. After that, D
l

will be moved from P3

to PI in the anticlockwise direction thus completing the task. Namely,

PI -' P3

PI .J. P2

P3 ~ P2

- 4 -

The tree representations of disc moving directions are shown in figure 2.

disc

n 1

tree representation

/

bit-string
representation

o

n = 2 101

n 3

>

0100010

n = 4 101110101011101

Figure 2 Moving towers clockwise

- 5 -

When n = 3, the steps are as follows:

{
D

l
, D

2
PI ,P3

D
l

, D
2

, D
3

PI ~ P2 D
3

PI .l. P2

D
l

, D
2

P3 ., P2

To move D
l

and D
2

in the anticlockwise direction, the steps can be detailed

as follows:

PI ~ P2

PI L P3

P2 ~ P3

From the tree representation, it is apparent that the tree for moving two discs

anticlockwise is the mirror image of the tree for moving them clockwise as

shown in figure 3.

clockwise mirror anticlockwise

Figure 3 clockwise and anticlockwise trees

Indeed, the clockwise and anticlockwise trees are mirror images of each other

is~generally true for n ~ 1.

Hence, it appears that to construct the tree for D
l

, D
2

, ... , D
n-l'

D
n

PI ~ P2, we simply prepend and append the mirror image of the tree for

D
l

, D
2

... , D
n-l

: PI ~ P2 to the root and leaf of the following tree:

/
If we now encode the binary trees by using Huffman's (1952) method (namely

left and right branches are represented by 0 and 1 respectively), the binary

trees are collapsed into bit-strings as shown in figure 2. By virtue of the way

the binary trees are constructed, we can generate the bit-strings without referring

to the trees. Let BS(n ~) denotes the bit-string for moving n discs clockwise.

- 6 -

It is obvious that

B8(1 ~) = 1 (1)

Let C(bs) be the one's complement of the bit-string bs. One can easily show

that the mirror image of a binary tree is precisely the one's complement of

its bit-string. Therefore,

B8 (n ~) = C (B8(n-1 ,)..)) 1 C (BS (n-l ~)) (2)

For moving n discs anticlockwise, D
1

, D
2

, ... , D
n

: PI ~ P3, one can

derive that the tree is precisely the mirror image of the clockwise case. The

results are shown in figure 4.

Let BS(n ~) be the bit-string for moving n disks anticlockwise. By

the nature of binary digits, one can easily verify that

BS (n .(,) C (BS (n Il-))

or BS(n ~) = C(BS(n ~))

Finally, we establish a property of the bit-strings so generated.

(3)

Property 0 : The bit-string for moving n discs is symmetric with respect

to the centre bit.

Proof This property readily follows from (1) and (2) by induction.

[QED]

disc

n = 1

n = 2

n = 3

n = 4

- 7 -

tree representation

\

I

bit-string
representation

1

010

1011101

010001010100010

Figure 4 Moving towers anticlockwise

- a

5. HOW TO MAKE MOVES

Given a bit-string for n discs«w;~~need to be able to interpret it in
. -' ..-....

order to guide the disc moves. First '-C;fa,ll, let us establish some properties.

Property 1

Proof

D
1

is the first and last disc to move.

When n = 1, this is trivially true.
I

When n 2, BS (2 ~) = C (BS (1 ~ » 1 C(BS (1 ll.))

= BS (1 ~) 1 BS (1 "')

where BS (1 "') is D1'S move.

Likewise for BS (2...£) •

Property 2

Proof

Suppose BS (n ~) and Bs(n") preserve this property.

Then, by (2)

BS(n+l ~} = C(BS(n 'U 1 C(BS(n" »

We have proved by induction.

Likewise for BS (n+l '") .

[QED]

D 's moves always alternate with the moves of other discs.
1

When n = 1, it is trivial.

When n = 2, BS (2 ~) = BS (1 ,,) 1 BS (1 '")

where BS(l,(.) is D
1

'S move.

This property is obviously true.

Similarly for BS (2 J,) •

Suppose this property holds for n discs.

Combine with property 1, the Dl'S moves must occur at the

odd positions.

Now we can prove tqat this property also holds for (n+l) discs.

By (2)

BS (n+l ~) = C(BS (n ~ » 1 C(BS (n ")) •

Note that one's complement does not change the position of its

bits indicating the D1'S moves. By virtue of the fact that

BS (n "') has D
1

' s moves as first and last moves, as well as at

odd positions, C(BS (n " » 1 C(BS (n ,ft » therefore preserves

property 2. Likewise for BS(n+l "').

[QED]

- 9 -

Now, we are in a position to interpret the bit-string. Let {b
l

, b
2

, ... , b
m

}

be a bit-string. For a bit b
i

, i is odd, 0
1

is moved according to this

parity: 0 and 1 are clockwise and anticlockwise respectively. For b., i is
1

is moved. Suppose 0
1

rests on PI and

disc from P3 to PI due to constraint C2.

even, other disc other than 0
1

b. = 0, we cannot move the top
1

Therefore, we have a unique solution, namely to move the top disc from p2 to P3.

Similar argument applies to

top disc from p. to p ..
1 J

summarized in figure 5.

b. = 1. Suppose Moveoisc (P., P.) is to move the
1 1 J

The algorithm for moving D., such that i f I is
1

Switchon 0
1

into

"{ Case P~If b. = 0
1

then Moveoisc (P2, P3)

else Moveoisc (P3, P2)

endcase

~ P2 If b. = 0
1

then MoveOisc (P3, PI)

else Moveoisc (PI, P3)

endcase

~ P3 If b. = a
1

then Moveoisc (PI, P2)

else MoveOisc (P2, PI)

endcase

; }

Figure 5 Moving other disc

- 10 -

6. FURTHER ANALYSIS

We now further analyze the bit-string for moving n discs to reveal the

inherent properties of the Tower of Hanoi problem.

Property 3 The smallest disc always moves in a cyclic order.

Proof When n = 1, this is trivial.

Suppose this property holds for (n-l) discs.

Namely, all the odd position bits are having the same parity.

By properties 1 and 2 and (2), the odd position bits of

the bit-string for moving n discs again have the same

parity.

[QED]

Property 4 The solution offered by the bit-string for moving n discs

is optimal.

Proof When n = 1, BS (1 ~) for 01 : PI ~ P2 or

BS (1 ~) for 01 : pI , P2

is obviously optimal.

to P2, and finally

That is,

PI "P3

pI ~ P2

P3 .4 P2

Dn-l
: Pi "' Pj,

the composite

D
n

PI ~ P2

As as (n-l J,) is optimal for D
l

, D
2

, ..• ,

where i t- j. It follows that as (n Il.) for

solution of moving n discs, 01' °21 ••. , Dn : PI ~ P2, is

optimal. Similar argument holds for as (n '") •

Suppose as (n-lll..) and BS (n-l "') are optimal.

We now show that as (n ~) is optimal too.

To move n discs from PI to P2, we need to move the top (n-l)

discs from PI to P3, then move D from pI
n

move the (n-l) discs again from P3 to p2.

[QED]

Property 5

Proof

- 11 -

The optimal solution takes 2n - 1 steps.

Let S be the number of bits in BS (n .L) •
n

From (2) , S 2 * S 1 + 1-n n-
As Sl = 1 by (1) • Therefore

n-l
2

i
S = In

i=O

= 2
n - 1

As a bit corresponds to a step, thus the optimal solution
n

takes 2 - 1 steps.

[QED]

Property 6 All D., i = odd, move in the same direction. Whereas, all
~

D., j = even, move in the opposite direction.
J

Proof From (2), BS(n~) = C(BS(n-I!l-» 1 C(BS(n-l~»)

where C {BS (n-l !l- ») = C (C (BS (n-2 Il- » I C {BS (n-2 ~)))

C(C (BS (n-2 I)..) » 0 C (C (BS (n-2 i.)))

As the centre bit of BS(n!l-) is an indication of the moving

direction of 0, so the centre bit of C (BS (n-Ill.. » indicates
n

the moving direction of D 1.
n-

As the centre bits of BS (n ~) and C{BS (n-l .l. » are of different

parity, we have proved that

move in opposite directions.

Furthermore,

D.
~

and D., such that li-jl = 1,
J

C {C {BS (n-2 ~))) BS (n-2 ~)

C (BS (n-3 v.-) 1 C {BS (n-3 U.)) •

As the centre bits of BS (n ~) and C {C (BS (n-2 ~) » are having

the same parity, we thus prove that

moving in the same direction.

By induction, the property holds.

o and D
n n-2

are

[QED]

- 12 -

D.
1.

be the number of steps taken byProperty 7 Let M.
1.

destination in the optimal solution. Then

to get to the
n-i

M. = 2 •
1.

Proof: As we know, the centre bit of BS (n ~) indicates the moving

direction of D, and that is the only bit to do so. Hence,
n

M = 1
n

=C(BS(i-l~» 1 C(BS(i-lJ.».

2 * 2
n-

i

n- (i-I)
2=

M. 11.-
Thus,

n-i
Suppose, M. = 2 for 0 < i S n.

1.
By (2), BS (i ~)

[QED]

7. IMPLEMENTATIONS

Now we are in a position to implement the algorithm. From property 5,

we know that it takes 2
n

- 1 steps to move n discs from a peg to a target

peg. So the control loop can be implemented as a for-loop. Further, we

know from property 2 that the moves of D
l

alternate'with other disc moves.

Therefore, the body of the for-loop comprises two move-disc instructions;

one for moving D
l

' another for moving other discs. A program based on these

ideas has been written using. C , and is included in Appendix A for reference.

Notice that the generating function, Generate, successively generates the bit

string from 1 disc up to n discs based on (2).

A moment's reflection would convince us that to generate the bit-string

for n discs, it is not necessary t? generate all the bit-strings for 1 disc

up to n discs. We can indeed generate the bit-string for ndiscs straight

away, by taking the advantage of property 6. Before we spell out the details

of the direction generating function, we prove a property first.

Property 8 . " 2 i - l + 2 i * J' S 2n _lAll b1.t pos1.t1.ons

where j=O,1,2 ... and i=even, are occupied by bits of

same parity. Whereas, other bit positions,
i-I i. .. "

p 'I 2 + 2 * J, are occup1.ed by b1.ts of 0ppos1.te pan.ty.

	A representation approach to the tower of Hanoi problem
	Recommended Citation

	tmp.1283409236.pdf.ss2FE

