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Abstract

"his dissertation presents a new technique for representing digital pictures. The principal benefit
of this representation is that it greatly simplifies the problem of finding Lhc correspondence between
components in the description of two pictures.

This representation technique is based on a new class of reversible transforms (the Difference of
Low Pass or DOLP transfonm). \A DOLP transform scparatcs a signal into a set of band-pass
components. The sct of band-pa§,§ filters uscd in a DOLP transform are defined by subtracting
adjacent members of a sequence.of low-pass filters. This sequence of low-pass filters is formed by
scaling a low-pass filter in sizc Py an exponential set of scale factors. The result of these subtractions is
a sct of band-pass filters wl)ieﬁ arc all scaled copies of a smallest band-pass filter.

Several techniques are presented for reducing the complexity of computing a DOLP transform. It
is shown that as the cach band-pass image can be resampled at a sample rate proportional to the scale
of the band-pass image. This is called a Sampled DOLP transform. Resampling reduccs the cost of
compuiing a DOLP transiorm from O(N?) multiplics] to O(N Log N) multiplies and reduces the
mcmory requiremenis from O(N Log N) storage clements to = 3 N storage elements.

NA Sast algorithm for computing the DOLP transform is then presented. This algorithm, called
“cascade convolution with cxpansion® is based on the auto-convolution scaling property of Gaussian
functions. N Causcaded convolution with cxpansion also reduces the cost of computing a DOLP
transform o O(N Log N) multiplics. When combined with rcsampling, this fast algorithm can
compute a Sampled DOLP transferm in 3 X, N multiplies.2

\ Techniques are then described for constructing a structural description of an image from its
Sampled DOLP transform. The symbols in this description arc detected by detecting local peaks and
ridges in cach band-pass image, and among all of the band-pass image. This description has the form
of a tree of peaks, with the peaks interconnected by chains of symbols from the ridges. The tree of
peaks has a structure which can be matched despite changes in size, oricntation, or position of the
gray scale shape that is described. «

The tree of peaks permits the global shape of a gray-scale form to be matched independently of the

1N is the number of sample points in an imagce or signal

24\', is the number of cocficients in the smallest low-pass filter.
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hizh resolution details of the form. Thus it can be used for rapidly searching through a data base of
prototype descriptions for potential matches. ‘This representation is very efficient for finding the
correspondence of components of forms from two images. In such matching the peaks serves as the
[ tokens for which correpondence is determined. The correspondence of peaks at cach band-pass level
;‘ constrain the possible matches at the next. higher resolution image.  This representation can also be
used to describe forms which are textured or have blurry boundaries. Examples are presented in
which the descriptions of images of the same object are matched despite changes in the size and
image planc orientation of the object.
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Chapter 1
Introduction

This dissertation describes a representation for visual information. ‘This representation is not
specific to a particular visual domain; it can be applied to any problem in which a two dimensional
sampled function must be represented with symbols. It is particularly appropriate for images where
the picture clements have many values, where the objects represented in the picture have blurred or
fuzzy boundarics, or have textured surfaces, and where objects occur at unknown sizes and
orientations.

Interpreting an image requires assertions about regions of the image whose sizes may span the
range from a few picture elements to the entire image. The representation developed below provides
visual primitives which span this range of sizes. The position of these primitives are encoded as nodes
in a graph. ‘The result is a data structure which is relatively invariant to the actual size, orientation
and position of the gray scale form in the image.

1.1 The Problem Context: Machine Vision

This Scction describes the gencral vision problem and how this dissertation relates to it.

This thesis addresses the problem of representing two dimensional (2-D) visual information. The
visual world in which humans function is a three dimensional (3-D) world. Understanding this 3-D
visual world rcquires representation of the 3-D form of objects. The representation described in this
thesis docs not, by itsclf, provide this capability; it is inherently 2-D.

The human visual system receives as raw data a sterco pair of 2-I) images. Each of these images
must be represented as a 2-D signal and the pair maiched against cach other to receive 3-D
information. 'The representation described here is well suited for the analysis of sterco pairs. It is also
well suited for the interpretation of images from some domains which are inhcrently two
dimensional. such as many classcs of biomedical images, acrial and satcllitec photography, and also
terrain data (where depth is represented as intensity).

Test data for this rescarch has been acquired from diverse domains. Many of the images were
digitized from photographs of 3-1) objects. such as the cup image shown as figure 1-1 below. The cup
image is placed here to illustrate a point about 2-1) images of 3-1) objects. Carcful viewing of a 2-D
image of a 3-1) object will usually show that the light and dark regions in the image do not directly
correspond to our ideas of the object’s shape.
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Figure 1-1: 'Tcst Image of a Cup. Notc Shape of Dark Regions.

Note the shape of the dark regions of the cup. There is a dark handle which one might expect.
There is also a dark rcgion at the top where the cup is open, and there is a dark region on the right
side. The shape of these regions arc not at all like what an untrained person would draw if asked to
draw a cup. The human visual system takes the shading, highlights, and textural information, from

.such an image and uses them to reconstruct or recall a model of a 3-D object. ‘This process is

unconscious. and these visual cucs arc often not noticed by an untrained observer unless they are
explicitly looked for.  Although interpreting shading, highlights and texture is an important and
timely problem in machine vision, it is not the problem addressed by this thesis. Rather, this rescarch
will provide a new foundation for such interpretation.

Figure 1-1 also provides an opportunity to define an important term. The dark regions in the cup




image are cxamples of “gray scale forms™. 'The representation describes the shape of both individual
forms und the shape produced by a configuration of forms. The word "form™ is borrowed from the
art community. It refers to a pattern of any shape which is not necessarily uniform in intensity. It is
used in place of image object. because image objects could be confused with real world objects. The
words shape and blob were avoided because they carry connotations of uniform-intensity conncected
patterns.

1.1.1 Role of Representation in 2-D Visual Domains

In a 2-D visual domain. such as aerial photography. many asscmbly and inspection applications,
some classes of biomedical images, or terrain data, recognition of objects requires the following
components:

1. A representation technique which compresses the information and expresses it in a uscful
and cfficicnt form for recognition;

2. A sct of ohject models (or perhaps in the case of terrain data a modecl of the terrain of a
very large region). ‘These modcels should be expressed in a representation which can be
processed efficienty for recognition, or any representation which is easily converted to
such a represcntation.

3. A matching procedure which compares observed data to swred models, gives some
mcasure of similarity. and. if desired, a description of where the observed data matches
and docs not match a specific object model.

Interpretation is then a matter of encoding the observed dats and applying the matching procedure
between it and the object models (or regions of the terrain data base). This sounds simple enough,
but in fact finding an cfficient procedure for such matching can be very difficult. A crucial aspect of
the matching problem is finding the correct represcntation for both the observed data and the object
models. The main contribution of this thesis is the development of such a representation.

In statistical pattern recognition, a pattern is represented by a set of measurements called features.
The set of features comprisc a multi-dimensional space cailed a "fcature space”. The features are
chosen so that cach class of pattern produces a vectors of features that reside in a unique region of the
featurc space. A pattern is assigned to the class which occupics the region of the feature space into
which its vector of featurc measurcments falls.

Recently there has been intercst in a different approach to recognizing 2-ID patterns: so called
"structural pattern recognition”. A structural pattern recognition algorithm employs a proto-type
representation for cach pattern class. ‘This prototype consists of symbols for certain structural
clements. such as cdges or corners, which arc linked together into a spatial relationship. A pattern is
classificd by constructing a correspondence between clements of the pattern and clements of the
prototypes. A 2-1) pattern is assigned the class label for the prototype whose clements most closely
correspond to those of the pattern. The representation developed below may be used for structural
pattern recognition. although this is not the only application to which it may be applicd.




1.1.2 Representation in 3-D Visual Domains

In a 3-D visual world in which input data consists of sterco pairs of 2-ID images. interpretation
requircs the following components:

1. A representation for the 2-D images which may be efficiently used for depth detection by
stereo matching.

2. A procedure for obtaining depth information by detecting corresponding objects in the
two images and observing their relative shift. ‘This procedure should also make use of
information in shading, highlights, texture. and other visual cues.

3. A representation for the 3-D form of objects.
4. A repertoire of models for the 3-D form of objects.

5. A matching procedure to identify which 3-D object model(s) correspond to the observed
3-Dinput data.

Although this dissertation is primarily conccerned with 2-D representation, some suggestions will be
made as to how this representation may be used for interpretation of sterco pairs. The other
components remain as timely and important research topics.

1.2 Thesis Summary and Background

This Scction presents the thesis of this dissertation, describes the methodology for demonstrating
this thesis, and reviews the major results of the research.

1.2.1 The Thesis

This rescarch began as an investigation of the use of a sct of band-pass spatial frequency channels
for representing visual information. This topic was inspired by psycho-physical theories of human
visual perception that hypothesize a set of “spatial frequency channels” in the human visual system
[Campbell 68]. These theories are summarized in an appendix to [Crowley 76].

Early in this rescarch principles (referred to as postulates) were formed to guide and constrain the
design of band-pass filters for representing images. These principles were refined in the course of
experiments in which filters were designed and convolved with test patterns. Some of the results
from these cxperiments arc described in [Crowley 78a) and [Crowlcy 78b]. A refined version of these
principles is given in Scction 4.2 below.

‘Thesc principles and cxperiments led to the development of the reversible Difference of Low-Pass
(DOLP) Transform. The DOLP transform is based on a sct of scaled copics of a circularly symmetric
low pass filter. ‘The scale factors for these filters form an exponcntial sequence. Each low-pass filter is
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subtracted from the previous low-pass filter to form an exponential scquence of band-pass filters.
These band-pass filters may be convolved with the image to form a sct of band-pass images. The set
of band-pass images is very sitnilar to the images which would be produced by the sct of spatial
frequency channels which have been hypothesized to exist in the human visual system.

The set of band-pass filters and the largest low-pass filter sum to form a single coefticient whose
value is 1. Another way to say this is that the sum of all of the band-pass images and the low-pass
image produced by filtering with the largest low-pass filter can be added together to form the original
image. This property demonstrates that no information is lost by the DOLP transform.

The low-pass filters are cach a scaled (in size) copy of the same function. Thus the band-pass filters
formed frem their difference are also scaled (in size) copies of the same function. This gives the
property that scaling a 2-1) pattern shifts the pattern in cach band-pass image to a ncw band-pass
image. ‘Thus a representation bascd on peaks and ridges in the band-pass images is invariant to
changcs of scale of the pattern. The scale information is preserved by noting which band-pass image
the peaks and ridges actually exist at. It is the network of symbols which is not changed by scaling
the 2-D image. Note that in fact their are small cyclic distortions that occur during scaling, but these
can be obviated during matching.

A straightforward implementation of a DOLP transform for an N point signal requires O(Nz)
multiplics and produces O(N Log(N) ) samples. This can he quitc expensive on a general purpose
computer. in an cffort to reduce this complexity the concept of re-sampling each band-pass image
was investigated. Re-sampling at a rate proportional to the scale of the band-puss filter provides the
benefits of:

¢ making the representation size invariant,
« reducing the computational complexity, and

¢ reducing the storage requirements

for the DOLP transform. Re-sampling creates a class of DOLP transforms rcferred to as "the
Sampled DOLP transform”. The re-sampling operation is described in Scction 3.3 and the re-
sampled DOLP transform is defined in Scction 5.5.

Secking to further reduce the computational complexity of the DOLP transform we investigated
the use of repeatedly convolving an image with a Gaussian low-pass filter and re-samipling. This
‘algorithm, referred to as cascaded filtering with sampling, produces a set of low-pass images with
impulse responses which are scaled in standard deviation by a factor of V2 for cach convolution.
Subtracting cach low-pass image from the previous low-pass image gives a sct of band-pass images.

Cascaded convolution with Gaussian filters can produce a sct of low-pass images whose impulse
responscs are are scaled exponentially in standard deviation. ‘This is a conscquence of the Gaussian
Scaling property, discussed in Scction 6.1, 'The Gaussian scaling property shows that convolving a
Gaussian function with itsclf produccs a new Gaussian function which is larger in standard deviation
by a factor of V2. Cascaded Convolution with sampling using a Gaussian filter may be used to

"
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compute a subclass of the Sumpled DOLP wransform called the “Sampled Difference of Gaussian”
(SDOG) Transform. Storage cfficiency and size invariance result from re-sampling, while the
computational efficiency is the result of both re-sampling and an auto-convolution scaling property
of Guussian functions.

Both the DOLP transform and the SDOG transform expand a 2-D (x.y) image into a 3-1) discrete
space (x.y.k). The new dimension of this space is k. the filter index. For an N point image, the
SDOG transform has 3N samples and requires 3 N X, multiplics. where X, is the number of
coefficients in the smallest low-pass filter. This computational complexity. derived in Scction 6.3. is
less than that of un FFT for most signals.

Because the filters implemented by the SDOG transform satisfy the criteria established in Chapter
4 jt is possible to construct a structural representation of an image which has cerwin desirable
propertics for matching object descriptions. This representation is created by detecting peaks and
ridges in the (x,y.k) space given by the SDOG transform.

Let us claborate on the terms "pecak” and "ridge” and on the role of peaks and ridges in this
structural representation. At cach band-pass image, or level, of the SDOG Transform, there are
points where the band-pass impulse response is a "best match” to onc of the gray scale forms in the
picturc. At these points. the filtered picture has a local positive maximum or negative minimum;
such points are called peaks. Because the filter size at any level, k, is V2 larger than the filter at level
k-1. there is a conncctivity between between peaks at adjacent levels. Connecting adjacent peaks
between all of the levels gives a tree (or sct of trees under some conditions) in which the path of the
branches describes the location, size, orientation and shape of objects in the picture. In fact, it is
necessary to compare the values along each branch to dctect local maxima along the branch. These
points serve as landmarks for determining the size, pusition, and orientation of gray-scale forms.

When an object has an clongated shape. it will give rise to a path of values which are larger than
any adjacent valucs. that is. a "ridge”. Ridges tend to begin and end at branches in the tree, and
follow a path which can travel both between and along a level. The paths of the ridges gives further
information about the shape of objects in the image.

Figurc 1-2 shows an cxamplic of a graph composed of pcaks (M's)® and ridges (L’s) which
represents a rhomboid form. This figure is taken from Chapter 7 where it illustrates the scquence of
ridge points that represent an clongated form which changes width,

This tree and its ridges describes a gray scale form with symbols which represent circular regions.
The size of these regions span the range from radius = 4 to the size of the image. The tree and
graphs for a particular gray scalc form will have the same structure regardless of the gray scale form’s
size. position, or orientation. Because this representation spans from global to local, it may be used to
align the representations of a pair of forms which are to be matched, cven if they are of different

3l-'our types of symbols are uscd in the representation. These svmbols arce labeled with the lfetters { M®, M. I, P}. These
symbols arc bricfly defincd in section 1.3, and discussed at length in chapters 7 and 8.




]

v P v Tt ey oy =
- o . P .

——

b e Lad

. e

10

sizes. The correct scale. orientation. and position of une form to the other mayv be determined by
making a corrcspondence between the few "distinguished nodes” in the tree.  Similarity in shape
between two forms is readily apparent from the few symbols at the most global fevel. Thus if the
identity of a form requires matching to a large sct of prototypes. the scarch may be pruned based on
the few most global symbols in the representation.

The representation produced by linking peaks and ridges in the 3-space function given by a SDOG
Transform of an image:

1. is invariant (except for the cffects of a discrete space) to changes in the size or position of
a gray scale form (the effects of 2-D orientation can be casily compensated for);

2. provides a structure which may be used to determine the relative size. orientation, and
position of two gray scale forms from two images;

3. permits the global shape of two gray scale forms to be compared without the cost of
comparing details;

4. is not seriously degraded by textured regions, and degrades gracefully with image noise,or
blurry edges.

The invariance to changes in size and position is qualified because there are small cyclic distortions
which occur when an ubject is moved or scaled in size. These distortions are the result of the discrete
nature of the 3-D) space given by the SDOG transform.

1.2.2 Demonstrating the Properties of the Representation

The validity of the claims made above should become apparent as the reader absorbs the material
presented in Chapters 3 through 8. These claims have been verificd by experiments and are
demonstrated with examples. Test images were taken from local data bases, in particular, from a
copy of test images from GM for the "bin of parts” problem [Baird 77). and from a terrain data base
of the Washington DC arca. Six tcst images werce digitized from 35 mm Black and white ncgatives by
SRI International. In the last year, the CMU image understanding group has permitted access to the
image digitizer on its Grinncll Display system. This has been used to make sterco pair images of a
paper wad and a paint stirrer. ’

The partial invariance to size of the representation is illustrated by the representations from five
teapot images. ‘These images were formed from photographs of a teapot taken at three distances with
two orientations at cach distance. The changg in sizc from the smaliest teapot to the largest teapot
spans a factor of approximatcly V2. The distortion of the representation from changes in scale is
cyclic as scale changes by a factor of V2. The cffects of this distortion arc illustrate with the teapot
images in chapter 8.

The cffects of orientation are cyclic over a rotation of 9%°. Rotating an object has only minor
cffects on the tree of peaks. The major effect of rotation is to change the density of the symbols along
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a ridge path. This effect can also be compensated for in a matching rule. This eftect is illustrated by
. . . . . . . -]
two tcapot orientations that differ in orientation by approximately 30 .

The use of the representation to determine the relative size and orientation of two images of an
object is illustrated with the teapot images. [t has also been demonstrated with the sterco pair of
images of the paint stirrer,

Graccful degradation of the representation with noisc, and the ability to represent both surface
texturc and the shape of a textured object have been demonstrated with the sterco pair of images of a
paper wad. A portion of onc of the paper wad images was degraded by substantial high frequency
noisc during digitization. This high frequency noise is almost entirely confined to the most local level
of the representation. The paper wads also have surface texture which is represented in the lower
(more local) levcls of the representation while the shape of the paper wads is represented in the
higher (more global) levels.

A simple cxplanation can obviatc concern about blurry ecges. A blur is the result of a convolution
with a low-pass "blurring function" which occurs optically in the imaging system, usually from poor
focus. dirty lenses. or motion. Only the highest frequency filters used in the representation are
sensitive to such a distortion. Thus blurring affects only the most local levels of the representation.
'The same can be said for other high frequency noise, and for textured surfaces.

1.2.3 Research Methodology

There arc both analytic and experimental aspects to this research. The nature of image signals and
the desired propertics of the representation are used to synthesize a set of constraints for the filter
design. This is an informal analysis. A more rigorous analysis is used to demonstrate that the
scquence of band-pass filters formed by subtracting a scquence of low-pass filters formed a class of
reversible transforms (the Difference of low-pass (DOLP) Transform). Mathematics are also
employed to derive a "fast” or O(n) form of DOLP transform using Gaussian filters (The sampled
DOG transform).

On the other hand. the techniques for detecting peak and ridge points, and the rules for describing
their behavior have been developed by trial and error. Most importantly, experimental tasks were
performed demonstrating that the representation is not corrupted by certain visual phcnomena such
as blurry cdges. surface texture, and image noisc, and demonstrating the degree of invariance of the
representation to object size, orientation, and position.

‘This empirical stage of the rescarch was undertaken to demonstrate that the DOLP and Sampled
DOG Transforms had the propertics which they were derived to have, and that tney could be applied
to the problem of representing visual information whose structure must be compared to other visual
information (As in stcrco matching) or prototype representation of classes of visual objects (as in
structural pattern matching). Of course. the empirical stage of the investigation yiclded important
principles and techniques for describing visual information with band-pass filters.
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1.3 Results

This Section describes the major innovations developed in this rescarch. New techniques were
developed in three related problem domains:

1. The dctection and mcasurcment of gray scale forms in 2-D images:;
2. Computational techniques for such measurement; and,

3. The representation of 2-D gray scale information.

The following three Sections summarize the results in cach of these probiem domains. The first of
these Sections describes the new representation. In particular it describes the set of symbols used in
this representation, the meaning of these symbols, and how they are interconnected. Some of the
novel and important properties of this representation arc also describcd.  The sccond Section
describes the measurcments on witich this representation is based. The final Subsection describes
new computational techniques which were developed to reduce the time reguired to compute these
measurcments.

1.3.1 The Representation

This rescarch produced a representation for two dimensional gray-scale signals. The
representation is composcd of a tree-like network of symbels which may cxist at discrete locations in
the three space (x.).4). The x and y dimensions of this space represents spatial position, while the k
variable references a spatial frequency band.

This representation may be used for 2-D object class prototypes as well as image data. A
representation computed from image data may be matched to a prototype despite changes in size,
oricatation or position. 'This matching may procced from a few symbols which describe global form
to more detailed local form. In this process, the matching process may be terminated if the global
form is a poor match. Also, when matching sterco pairs, the correspondence between points in the
two images may be casily determined by tracking through the representation.

There are four types of symbols in the representation:
o M*: Peak points (positive maxima and negative minima) in the 3-space
e L: Ridge points in the 3-space
e M: Peak points at a given k (frequency bandj
¢ P: Ridge points at a given k.

Each point in the 3-space, (x.5.&). contains the inner product of a ncighborhood of the image
centered at (x.y) and a circularly symmetric filter impulse response of a radius selected by k. Peak and
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Figure 1-2: A Rhomboidal Form and its Representation
(Reproduced from Chapter 7. figure 7-19)

ridge points (M*'s and L’s) in the 3-space mark the best fit of the primitive over a range of scales to a
local set of image necighborhoods. Peak and ridge points ( M's and P's )at a particular level (or
band-pass image), k, mark the best fit of a particular fixed scale version of the primitive to a local set
of image neighborhoods.

M* points arc particularly significant. These mark distinct visual landmarks or regions. The level,
k. of an M* symbol gives an cstimate of the size of the visual landmark, Morc detailed information
about the shape of the landmark is given by the linked paths of L's (1.-paths) and M's (M-paths) that
are connccted to the M*. ‘The filters adhere to smoothness constraints which provide a continuity to
the L's, to the M's, and between the L's and M's. "The continuity permits paths in the 3-space to be
formed by connecting adjacent L's and adjacent M's.

The shape of a form is represented by the network of L-paths and M-paths which result from it If
the form increascs in size, the entire network moves in the & dircction in the 3-space. but maintains its
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connectivity and structure. Note, however, that since the components of the networks exist at
discrete points in the 3-space. the inotion occurs as discrete jumps of picces of the network. Similarly,
if the shape rotates. its network rotates, and if the shape moves, its network moves. The scale,

}" orientation. and position quasi-invariance that is spoken of in this dissertation refers to the network.
The size, orientation, and position infonmation is availuble from the position (and oricntation) of the

. network in the 3-space. The modifier "quasi-" is used because the individual symbols may only exist

s at discrete points, and make discrete jumps as the form changes smoothly in size, orientation, or

\ position.

b Figure 1-2 shows an cxample of the use of pcaks and ridges for representing the shape of a

3 gray-scale form. This figure, which appears in Chapter 7, shows a thomboid shape. Circles over this

| form illustrate the position and radii of band-pass filters whosc positive center lobes best fit the
rhomboid. Below the rhomboid is part of the graph which is produced by detecting and linking peaks

L‘ and ridges in the SDOG wransform. The meaning of these symbols is described in Chapter 7.

3
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1.3.2 Measurement Technique

» This research produced two results which pertain to the problem of sensing (or mcasuring) the
presence of gray scale forms in two dimensional data;

! 1. Design criteria for kand-pass filters required to describe non-periodic data by means of
peak and ridge detection,

2. A reversible transform (The DOLP Transform) that separates image signals into spatial
frequency channels that mecet the criteria for describing non-periodic data with peak and
ridge detection.

The DOLP transform provides an ordered scquence of band-pass filtered versions of the input
image. The impulse response of cach band-pass image is a finite circularly symmetric function
formed from the difference of two low-pass filters. The radii of the impulse responses form an
exponential scquence of the form:

R,S*

where R, is an initial radi’us ( typically 4.0 ), S is a scale factor (typically V2 ), and X is an indcx that
f ranges from 0 to K (K is 16 for a 256 by 256 image).

One of the principal characteristics of the DOLP transform is that it is reversible. The impulse
responses may be thought of as a sct of primitive functions from which pictures may be constructed.
This primitive looks like a fuzzy disk on an inversely shaded background. The two dimensional

’ convolution of the picture with cach impulsc response is cquivalent to a scquence of inner products
(scc Scction 3.1.3). This result facilitates an intuitive understanding of the filtering process. Each
1 sample from the convolution indicates the proportion of signal energy within the ncighborhood

over-lapped by the impulse response which is identical to the impulse response. In other words it is a
; measurc of similarity between the impulse response and the image signal centered at that sample
point.
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Because these primitive functions are band-pass. they are sensitive to patterns Over a narrow range
ot'sizes. Thus for a textured region, the shape of the texture clements is described by a configuration
of high trequency (smaller) impulse responscs, while the shape of the entire region is described by a
scparatc configuration of lower frequency (larger) impulse responses.

1.3.3 Computational Techniques

There are two computational techniques which resulted from this research:

1. The use of re~-sampling in computing the Differcnce of Low Pass transform, and

2. A fast O(n) implementation of the transform (the Sampled Difference of Gaussian
Transform) that uses a novel technique: "Cascade fiitering with re-sampling”

A conscquence of the use of band-pass impulsc responscs is that the the cost of the convolution
can be reduced by computing only at samplc points. The distance between re-sample points has a
lower bound which is a proportional to the size of the impulse response. Thus as the impulse
response grows in size, the number of points at which the convolution must be computed decreases.
If the convolution is done in the usual manner the increasc in size of the impulse response is exactly
balanced by the decrease (due to sampling) in the number of points at which the convolution is
computed [Crowley 78a). In addition to reducing the complexity and storage requircments of the
filtering operation. re-sampling also contributcs to the size invariance of the fepresentation.

The Sampled DOG Transform, described in Chapter 6, is biced cr - property of Gaussian
functions. Whereas, with re-sampling, a DOLP transform of an Nu!s ‘mage :vuisires O(N logN)
steps, the Sampled DOG Transform produces the same result s €3{IN) steps. A stcp may be a
multiply or an inner product.4

1.4 Organization of this Dissertation

This disscrtation may be divided into the following sections:

e Background Material (Chapters 1, 2 and 3);

» Mcasurcment, detection and mathematical representation of nonperiodic signals (
Chapters 4 and 5);

o Fast computation techniques for the DOLP transform (Chapter 6);

e Converting the mathematical representation to a symbolic representation which describes
gray-scale shape heirarchically by spatial frequency ( Chapter 7);

41‘hc symbol “0O(.)", is pronounced order and uscd to indicate that the number of steps in the nrocess unacr discussion is
less than or cqual to (bounded by) a lincar function of the argument.
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o Examples of the representation and its use for matching. including demonstrations of the
invariance of the structure of a description to the size and orientation of the pattern
(Chapter 8).

Chapter 2 describes related work by other rescarchers in sensing and representing forms in 2-D
grey scale images. Chapter three provides a quick review of signal processing technigues and terms
which were appear in this disscrtation.

In Chapter 4, a set of criteria for designing band-pass filters for detecting and describing non-
periodic signals is described. The criteria described in this Chapter defines a broad class of filters
which may be used for detecting the presence of non-resonant signals of particular sizes (durations).

In Chapter 5. a reversible transform is defined which scparates a signal into a set of short duration
spatial frequency channcls. The filters used in this transform satisfy the criteria cstablished in
Chapter 4. This transform employs a sequence of low-pass filters which arc scale copies of a single
function. 'The subtraction of adjacent low-pass filters gives a scquence of band-pass filters. These
band-pass filters and the lowest frequency low-pass filter define the reversible DOLP transform.
When an image has been convolved with these filters, the band-pass images may be added together to
rccover the original signal. The DOIP transform is shown to require SN2 multiplics and N
LogS(leo) + N storage cells for an image with N sample points. a basc filter of X, cocfficients,
and a scale ractor between filters of S. The technique of computing the convolutions at re-sample
puints spaced propottionally to the scale of the filters is then introduced. The re-sampicd DOLP
transform is shown to require S X, N Logg(N/X,) + X, N multiplics and require =3N storage cclls.

In Chapter 6 a fast version of this transform is dcfined which employs re-sampling and Gaussian
filters to reduce the computational complexity to 3 X, N multiplics. This fast transform employs
repeated convolution with a small filter, and yet gives mecasurements which span the range of
necighborhood sizes from a pixel to the size of the image.

In Chapter 7. techniques are described for detecting peaks and ridges within this three-
dimensional transform space, and connccting these to form the representation. The structure of this
tree represents a gray scale shape independent of its size, position or orientation.

Chapter 8 provides cxamples of the uscfulness of the representation for matching as well as
cxamples of the size. rotation and position quasi-invariance of the representation.  This chapter
describes the matching (or correspondence) problem in the domains of structural pattern recognition
and sterco image interpretation.  Examples arc then presented in which the tree of peaks from the
teapot images arc matched despite changes of size and image plane orientation. A alignment
procedure and similarity mcasure is then presented for ridge paths in the 3-space.
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Chapter 2
Background: Related Techniques

This chapter reviews cxisting techniques for detecting and representing gray-scale forms in 2-D
images. ‘The first scction discusses detecting and representing forms by their boundaries or as
regions. Both region shape and boundarics are encoded in the represcntation developed in this
research.

The second section covers popular techniques for detecting the presence of uniform regions using
some form of linear detection function followed by a nonlincar decision rule. These techniques
attempt to find edges which are then used to locate the boundaries of 4 region. The techniques
described in this section range from very local edge detectors, such as Roberts' gradient [Roberts 65],
to detectors which cover large areas, such as David Marr’s Laplacian of Gaussians [Marr 79al.

The third scction describes representation techniques. The problem here is to develop a
representation for gray-scale forms or uniform regions which permits a fast search, alignment, and
similarity measure. Techniques in this section include representations that are produced by
segmentation programs, Blum's medial axis transform |Blum 67], and Marr’s primal sketch.

2.1 Boundaries vs. Regions

At present there arc two popular approaches to image representation:  boundary representation
and region representation.  Pioncering work with the boundary description approach was done by
Roberts’ [Roberts 65]. The literature is full of recent work with this approach. Notable examples are
[McKee 77] and [Perkins 78]. Estimates of the boundary position arc usually obtained by convolving
the picture with onc or more small local edge detector followed by a non-lincar decision function
such as Roberts’ gradient, the Sobel operator [Duda 73], or the Hucckel operator [Hueckel 71],
[Hueckel 73]. Sec [Crowley 78b] for a list of many popular small edge detection functions and their
transfer function.  Some further encoding of boundary points is usually made to yicld a
representation which may be matched against stored models. McKee's paper [McKee 77] is a good
cxample of this approach.

The primary advantage of most boundary detection schemes is that the description may be
computed by a small, fast operator. However, a small operator can be a disadvantage, since the
boundarics that arc to be detected can be much larger (in width) than the operator. Also, a small
operators tend to be sensitive to image noise. which is small and high frequency. Also, such a
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description is expressed as many symbaols which stand for very local events. It is can be morce efficient
to represent the image as fewer symbols which represent more global (larger) events.

Region description is based on detecting regions of uniform intensity or color. This step is often
referred to as segmentation. The usual approach is to compute a histogram of image intensitics or
histograms of color features which is(are) then scanned for well defined valleys. A threshold is set at
the value in the valley. 'This technique can separate object from background nicely under proper
lighting conditions. Regions arc then represented by a binary bit map. or by mcasuring a set of
features about the binary shape. This approach was pioneerced by Prewitt [Prewitt 66]. and Rosenfeld
[Rosenfeld 69]. A good example of applying this approach to color features is described in
Ohlander’s Thesis {Ohlander 75).

Neither of these approaches are sufficient for an image which contains surface texture or weak and
blurrv boundarics. With both approaches there are problems in how the image structure is measured
and in how the representation presents the information to later recognition processes.

2.1.1 Measurement Problems

Consider an image containing gradual intensity transitions. Such an image could be said to have
blurry edges. If a local edge detector is uscd it will respond weakly over the entire large transition
regions and the response will be so weak in some places that it will be lost. Increasing the gain will
increase the sensitivity to noise. Similarly a region detection process will run into problems defining
where such a iegion stops and starts. In such regions it is difficult to even define what is meant by an
cdge or a uniform region.

In images of real-world scencs, some boundarics between genuine objects are very weak. In a
boundary description produced from local ¢dge detectors, this usually results in missing boundaries
and/or a failurc of boundaries to form a closcd loop.

In a threshold-based region segmenter regions which should be distinct turn up joined. Also,
Unless a region has sharp boundaricd and its intensitics are distinct from those of the background,
the 2-D shape of a region will be very dependent on the threshold.

Onc of the biggest trouble arcas for both of these approaches is image texture. Texture here refers
1o regions of an image containing many smalil forms which have random gray level shapes. Often in
natural texturcs these small gray level forms arc not uniform in intensity. Such textures may appear as
many small hills and vallcys in a terrain map. If the size of these "hills” is approximately uniform
across the object. the way in which the size varics in the image may be uscd to infer information
about the depth of the object surface [Kender 80).

A texture composed of randomly shaped nonuniform clements will swamp a threshold-based
region segmenter with many small randomly shaped regions. ‘The shape of any given clement can
depend on the threshold. ‘The region segmenter will spend a large amount of time and memory
representing cach clement. when what is nceded is the shape of the whole textured region. Rosenfeld
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[Rosenfeld 69] has noted that successively blurring such regions until the clements merge can be

used to segment adjacent regions of different textures. This techniquc is based on the same principle
} as the representation developed in this dissertation.

b With a natural texturce. a local cdge detector will respond sporadically over a large arca with the
result that there is no clear boundary. However, local edge detectors have been used to detect
textured regions for region segmenters [Ohlander 75).

h 2.1.2 Representation Problems

A boundary description attempts to draw a closed boundary around regions which correspond to
| unique objects. Encoding the boundary with a chain code [Freeman 61], {McKee 77], for example,
>‘ provides a representation which can be matched 1o a prototype to identify cach closed region. There

is a problem if the boundary does not close. In this case the interpretation program will not know
which set of boundarics to attempt to identify. If there are many adjacent closcd boundarics, there
can be a problem knowing which corresponds to a genuine object, and which are artifacts. Also the
entirc boundary must be matched to identify an object. That is. if half of the outline of a rcgion
corresponds roughly to a prototype, tut the other half is grossly different, the matching program may
not discover the problem until it has attempted to match most of the boundary. The main problem is
that in many situations edge detectors will report boundaries that do not correspond to an object’s
actual shape.

In a similar manner a region scgmenter may produce crroneous data becausc of measurement
problems, particularly when applied to images with weak or blurry boundaries.

Finally, with both techniques the resulting representation is dependent on the specific size of the
objects in the image when what is desired is to recognize a shape independent of its size.
Furthermore, a good representation should make available both the global shape of a form as well as
local details. In this way a 2-D matching procedure can begin by matching the global form, and
proceed to finer detail only if necessary.

2.2 Edge Detection Techniques for Boundary Representation

In this section we will review several measurement techniques which are related to the techniques
described in this disscrtation. The techniques described in this section have in common the goal of
detecting cdge segments for use as primitive symbols in a boundary represcntation of the forms in an
image. As with the representation developed in this dissertation. most of these techniques are based
on some linear measurcment of image intensity, and seck to provide a description of the 2-ID shapes
in an image.




2.2.1 Local Edge Detectors

Many local operators have been proposed for detecting cdges clements. A survey of such
operators is included in [Crowley 80] along with the formula and plots of their transfer functions.
‘The carliest such operator is Roberts’ Gradient {Roberts 63f. This operator consists of a pair of first
difference masks oriented at 45°. These masks are shown below in figure 2-1° Letthe oulput of
the convolution of the two masks at point (x.y) in the image be defined as c,(x.y) and co(x,y). The
estimate of the boundary at point x,y, denoted ¢(x.v). is then formed as the square root of the sum of
the squares, as shown in the following cquation.

e(x.y) = Ve (xy) +e,(xy)° 2.1

Since Roberts’ first defined this operator many rescarchers have observed that cquation (2.1) may
be approximated by the maximum of the absolute values or the sum of the absolute values as shown
in cquations (2.2) and equation (2.3).

etx.y) = Max( e (x,y)| + le,(xy)l) (2.2)
(2.3)
e(x.y) = e (xy)l + ley(x ¥l
0 1 -1 0
-1 0 0 1

Figure 2-1: Masks Used in Roberts’ Gradient

Probably the most popular focal edge detector has been the Sobel operator [Duda 73] Like
Roberts’ gradicnt, the Sobel operator consist of two small musks that are 90° uricntations from each
other. Thesc masks are shown in figure 2-2.

1 2 1 -1 0 1
0 0 O -2 0 2
-1 -2 -1 -1 0 1

Figure 2-2: Masks Uscd in Sobel Operator

As with Roberts’ Gradicnt, the results of the convolution may be combined by ecither equation
(2.1), (2.2), or (2.3).

The I.aplacian opecrator, Vzp(x.y), has often been suggested as an idcal edge operator. The
Laplacian, and its Fourier transform, arc given in the following cquations.

3’ pxy) . 32 p(xy)
Vip(x.y) = +
puLy ox* ayf

5 Iigures 2-1 through 2-3 show the masks for local cdge detectors. These masks arc shown as an array of coefficients which
are convolved with an image.
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FHVopixy) } = -(u? + v) Fip(xy)}
where u and v arc the spatial frequency variables and F{} is
the I-ourier ‘[ransform Operator.

Prewitt [Prewitt  70] designed two different two-dimensional  diffcrence  equations  which
approximate the Laplacian opcrator. These masks are shown in figure 2-3 below.

0 -1 0 -1 -1 -1
-1 4 -1 -1 8 -1
0 -1 0 -1 -1 -1

Figure 2-3: Two Discrete Approximations To the 1.aplacian from [Prewitt 70]

As with the Roberts’ Gradient Edge Detcctor, these masks are convolved with an image. The result
of the convolutions are then combined using cquations 2.1, 2.2, or 2.3 to producc a map of edges in
an image.

2.2.2 The Hueckel Edge and Bar Detector

Hucckel developed a function for detecting cdges and bars that partially compensates for the fact
that cdges are not always very local discontinuities in an image. Th2 Hueckel edge and bar detector
[Hueckel 71] and [Hucckel 73] is based on a modecl of an edge as a step function, F, within a circular
neighborhood. ‘This step function has a number of parameters as shown in the following equation.

F(x.y,CS.,p,bd) = [b forCx + Sy <p
b+d forCx+Sy>p

The paramecters C, S. and p describe the direction of an edge or line. The parameters b and d
describe the average grey level on either side of the edge. The Hucckel operator approximates the
pixel valucs within a circular ncighborhood.6 E(x.y), by finding the parameters for which F is a
minimum distance from E as shown in the following cquation.

/ / [E(x.y) - F(x.y.C.S.p.b,d)} dx dx i

‘The Hueckel operator solves this minimization probiem by multiplying the neighborhood, E(x.y),
and the idcal step, F. by asct of cight basis functions, H(x.y) for i = {0.1,2.3....7}, as shown in the
cquations bclow. These basis functions, which are separable into a product of angular and radial
components, are referred to as Hilbert functions. ‘The interested reader should sce [Hueckel 71] for a
discussion, definition, and drawings of the zero crossings of these basis functions.

a; =// Hi(x.y) E(x.y) dx dy

6Mlhough Huccke! defines these functions using integrals they are cvaluated as a discrete summation over a circular

ncighborhood.
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s = // H.(xy) F(x.y.C.S.p.b.d) dx dy

In these cquations. the s's are variables and the a’s are constants. Finding the parameters of F
then becomes a matter of minimizing the following cquation.

.
Z(a - s)
i=0

This minimization produces the parameters for the closest fit of an edge and an estimate of the
likelihood that an edgc is present.

All of the technigques described above detect and encode small sharp discontinuities in image
intensity. As we discussed in section 2.1, such a representation does not capture all of the information
in an image that is nceded for matching to an object model. Such a representation is also inherently
incfficient because it describes only very local detail and does not describe the global shape of
regions.

2.2.3 Kelly’s Use of Planning

Onc of the first rescarchers who attempted to use information from more than the most local
resolution for finding boundarics was Kelly [Keily 71}, Kelly called his technique “plaaning”.
Planning is a problem-solving technique for reducing the scarch space for a possible solution.
Planning is the usc of the solution to a simplified version of a problem as a guide to the solution of
the original (more complex) problem [Minsky 63]. Planning was first employed by Newell, Shaw and
Simon in the General Problem Solver [Newcll 59].

Planning was applicd to boundary detection by Kelly as part of his system for classifying images of
faces [Kelly 71} In this form of planning, edges are first detected in a reduced resolution version of
an image. These cdges are then used to guidc the detection of edges in the original image.

Kelly's system operated on images composed of 250 by 330 pictures clements. A 28 by 40 plan was
prepared by dividing the image into disjoint § by 8 scgments and calculating the average intensity
within cach segment. This operation is cquivalent to a form of low-pass filtering followed by re-
sampling. The low-pass filter for this application is an 8 by § array of cocfficients of vaiuc 1/764. The
re-sample distance is 8 picture clements. Scrious aliasing can occur when the sample rate is the same
size as the window. This can be scen by deriving the transfer function of the uniform square Jow-pass
window [Crowlcy 78a). (The transfer function is defined in section 3.3 )

h ..
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2.2.4 Cones and Pyramids

In this scction we will describe several recent rescarch cfforts which employ multiple-resolution
versions of an image.

2.2.4.1 Uhr's Recognition Cones

Uhr has investigated the use of “recognition cones™ for the low level processes of a machine vision
system [Uhr 72], [Uhr 78]. A recognition cone is a multilayer array of micro-processors which exccute
the same instructions in "lock-step” fashion. Each processor in the lowest layer covers and operates
1 on a disjoint region of an image. Successive layers of the cone sce the output of the processors
directly below. With cach layer. the size of the image is reduced by averaging disjoint regions so that
the conc converges 10 a single processor at the apex. Uhr has investigated the use of averaging and
.‘ differencing on such a processor structure. He also suggests that such a structure may be used to
' assign symbols to regions of the image.

2.2.4.2 Hanson and Riscman’s Preprocessing Cones

| < Hanson and Riscman have also investigated scgmentation procedures which may be implemented
on a recognition conc [Hanson and Riscman 74 and [Hanson and Riscman 78]). However. they
prefer the term “pre-processing cone” rather than “recognition cone” because the processcs
performed are pre-recognition. In their system, the pre-proccssing cone serves as the front end of a
general purpose color vision system. The svstem builds a structural description of a scene using
multiple knowledge sources and threshold based secgmentation.

~

Hanson and Riseman have categorized the operations which may be computed on a pre-processing
cone into the following classes:

e Data Reduction: Operations such as averaging which pass information up to the next
higher level,

~Ta"

» Data Projection: Operations in which image data and intcrpretations are passed down to
lower levels.

¢ o Iterative (or Lateral): Operations which are based solely on the neighboring processors at
the same level.

f 2.2.4.3 Pyramid Data Structures

. A recognition or pre-processing cone is a form of parallel Single Instruction-Multiple Data
(SIMD) Processor. The data structure which it contains is somcetimes referred to as a "pyramid data
structure”. The low-pass images on which the DOLP transform is based can be considered as a form
[ of pyramid data structurc. While some rescarchers lump together the characteristics of the processor
and the data structurc it builds, others have made a distinction in order to study the propertics of the
. data structure.
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Tanimoto has defined a pyramid data structure as "a serics of digitizations of the same image at
increasingly higher degreas of spatial resolution” [Tanimoto 78). A standard relationship between a
given level of a pyramid and the level under it is that a local property (such as cdge intensity, color, or
intensity) at the given level is obtained hy averaging the local property over some neighborhood in
the level under it. In virtwally every system these averages are formed over disjoint regions, which
can causc a randomness due to aliasing [Crowley 78a] as noted above in the description of Kelly's
planning technique,

Tanimoto has suggested that the sequence of reduced resolution images need not be obtained by
averaging nor cven based on powers of 2, but can be obtained by a specially designed digitizer and
computcr controlled optics capable of providing magnification of the image over a continuous range.

Levine [Levine and Leemet 76] has investigated a system in which a a pyramid data structure is
used for bottom-up and top-down segmentation.  His algorithm constructs five pyramids from the
original image: one for cach of the following local properties: intensity, a texture measure, hue,
saturation. and edges. These pyramids contain outlines of segmented regions which are then passed
to an intermediate level process for interpretation.

2.2.5 Other Work with Multiple Resolution Representations

Kelly is most frequently cited in the image processing literature for pioncering the use of multiple
resolution versions of an image. However, similar ideas appecared in other literature at about the
same time.

The use of a reduced resolution "plan” for spacc planning (i.e. arranging 2-D shapes in an area) is
discussed in a 1970 paper by Eastman [Eastman 70]. Easuman credits work conducted at SRI on
trajectory planning and on reconnaissance for the idea [Nilsson 69) and [Rosen and Nilsson 69).
Eastman referred to this data structure as a “Hicrarchical Data Structure™ but it has since come to be
known as a quad tree [Klinger and Dyer 76}, [Horowitz 76]. Quad trees represent binary shapes in an
image by recursively dividing the picture into a 2 x 2 sct of sub pictures. If any subpicture is
completcly filled or complctely empty, it is marked as such and not divided further. If a subpicture is
only partially filled it is further divided. This process continucs until cither all the subpictures are
uniform or the individual pixels arc reached. The result is a tree which can be traced to determine if
any point in the picture is filied or cmpty. This algorithm can be very cfficient in terms of the storage
required for pictures that have large uniform regions. However, the description of a region which
this representation gives can vary drastically in its structure if the region is translated in position or
rotated. '

Warnock [Warnock 67] devised a similar algorithm for computing the hidden surfaces in two-
dimensional views of threc-dimensional polyhedra. In Warnock’s algorithm. a two dimensional
picture or subpicture is recursively divided into four squares if it contains a boundary between two
faces of polyhedra or a boundary between a face and the background.

A pyramid data structure has been used by to speed up correlation template matching of acrial
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imagery using hicrarchical search [Hall ct. al. 76]. Two-stage hierarchical template mhatching has also
been reported for image feature detection [Rosenfeld and Vanderbrug 77}

2.2.6 Marr’s Laplacian of Gaussians

Probably the work most similar to that described in this dissertation is that of David Marr. Marr
sought to understand the information processing problems inherent in vision. He was interested in
both the mechanisms to visual stimuli in the human visual system and in the computational problems
of implementing such processes in machines,

[Marr 79a] presents a theory of edge detection which recognizes that the information in visual
stimuli occurs at many scales (or resolutions), To detect these stimuli at different scales he employs
band-pass filters which are formed from a Laplacian of Gaussian low-pass filters (Vzg(x.y) ). Marr
forms these filters using a difference of Gaussian low-pass filters whose standard deviations have a
ratio of 1.6. He uscs an informal argument to show that such a ratio gives an optimum narrow band
width. (The implementation described in this dissertation cmploys a ratio of V2 arrived at by a very
diffcrent line of reasoning.)

A sct of such filters (4 in [Marr 79a] ) are convolved with an image. The resuits are encoded by
detecting the presence of zero crossing scgments and the dircctional derivative perpendicular to the
zero crossing at each scgment (called the amplitude of the segment). This set of zero crossing images
is referred to as the "raw primal sketch”. Marr speculated that if filters were used at a sufficient
number of scales. the raw primal sketch would be reversible. That is, the original image could be
recovered from the raw primal sketch.

Zero crossing clements from several scales are collapsed into a single boundary estimate called the
"primal sketch”™. This is done by comparing zero crossing scgments from adjacent spatial frcquency
levels, to test for similar directions and amplitudes. The zero crossing segment from the highest
resolution raw primal sketch is encoded in the primal sketch. Closed boundarics are labeled as blobs
and assigned attributes of length, orientation, and average contrast. Terminations are assigned a
position and orientation. We shall have more to says about Marr's work in the section on
representation below,

2.3 Representation Techniques

2.3.1 Blum’s Medial Axis Transform

Blum developed a representation for binary shapes cailed the "Mecdial Axis Transform™ (MAT)
[Blum 67]. 'This representation is interesting because it is object centered: that is. components of a
shape are defined relative to a central (or medial) axis. This region representation bears some
similarity to the representation developed in this dissertation,
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The medial axis wansform produces a form of skeleton for a binary shape defined on a continuous
medium. The MA'T may be defined by the following process.  ach point on the boundary of a
binary region transmits a circular wavefront on both sides of the boundary. These wavefronts
propagate untit they reach another boundary point or until they mect a wavefrent traveling in exactly
the opposite dircction. When two wave fronts meet traveling in opposite directions, they cancel each
other, and the point where they meet is marked as belonging to the medial axis. Such points
correspond to the center of circles which are fit tangent to two or more points on the boundary of the
shape.

The collection of medial axis points defines a sct of connccted spines (or center axes) describing
the form of the shape. Where a shape contains a concavity, spines occur outside the binary shape as
well, Similarly, spines occur for the space between shapes. (This is the negative shape which occurs
between two positive shapes.) Spine points can be encoded with the distance to the boundary from
which they propagated. This gives a reversible representation of the binary shape as these distances
correspond to the radii of discs that must be placed overlapping on the spine to reconstruct the binary
shape.

Unfortunately there are scveral problems with the medial axis transform. For onc thing, the
transform opcrates only on binary shapes which introduces all of the problems attendant to
thresholding techniques. Also the transform is only defined for a continuous medium. Propagating
circular wavefronts on a discrete grid is a difficult and costly process. Perhaps most troublesome is
that the structure of the ncdial axes are altered drastically by minor nicks and protrusions on the
boundary of the shape.

There is some similarity between the MAT and the representation described in this dissertation.
The path of the spincs for a simple object rescmble the paths of peaks and ridges from our
representation projected onto the original picture. Qur representation also produces a description of
the negative shapes outside a gray scale form when there is a concavity and when two shapes are
ncarby. However. nicks or protrusions narrower than half the width of the gray scale form do not
affect the overall path of ridges and peaks. The biggest difference is that our representation is
computed for discrete gray scale forms, while the MAT is defined for continuous binary forms.

2.3.2 Marr’s Three Levels

David Marr has dcveloped a framework for visual information processing that includes
representations at three levels [Marr 78], The first such representation is the primal sketch which is
described above. The primal sketch encodes information about the boundaries of forms in an image
from diffcrent resolutions.

The second representation is referred to as the 2 1/2-1 sketch [Marr 79a). This is a form of depth
map of surfaces as scen by the viewer. Various processes that interpret depth cues from such
phenomena as texture, shading, and sterce po eption contribute information to form the 2 172 D
sketch,

.
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Marr asserts that an object centered representation is also required for general purpose vision and
that this 3-1) representation should inctude shape primitives from many resolutions. Fusthermore he
asserts that this representution should take advantage of axes of syminetry which are intrinsic to the
objcct. He cites the generalized cylinder representation [Agin and Binford 73], [Nevatia and Binford
74} and the Medial Axis Transform [Blum 67} as examples of representations that have these
propertics.
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Chanter 3
Signal Processing Bacliground

Digital signal processing is an enginecring discipline which. like image understanding, has been
made possible by the widespread use of digital computers since the early 1960's. It's theoretical
foundation is linear systems theory, a body of continuous mathematics which is fundamental to
electrical engineering.

Since many persons interested in image understanding lack training in digital signal processing,
this chapter provides some definitions and intuitive explanations for techniques from digital signal
processing which are necessary in later chapters. Most of the material in scctions 3.1, 3.2 and 3.4 is
available in widcly used references. The text [Oppenheim 75] is particularly relevant. A very readable
inwoduction to digital signal processing for non-clectrical enginecrs is [Hamming 77). The transfer
function derivation given in section 3.2 is from this book.

3.1 Convolution, Correlation, and Inner Products

This section provides the formulac for the 2-D convolution and 2-D cross-correlation of a finite
2-D filter with a 2-D signal. These formulae are shown to be identical for filters which are symmetric
about both axcs, as is the case with the circular symmetric filters discussed in chapters 5 and 6. The
2-D cross-correlation is then shown to be equivalent to a 2-1) sequence (or array) of inncr products.
This equivalence gives a heuristic for interpreting the results of the cross-correladon. This heuristic
leads to the usc of peak and ridge detection for converting the filtered signals into symbols, as
described in chapter 7.

This rescarch has concentrated on the use of non-recursive finite impulse response (FIR) filters;
we have avoided the design problems involved in 2-D recursive filters. It is impossible for a causal
recursive filter to have zcro or linear phase. Furthurmore, there is no known design procedure for
gene-ating a stable 2-D recursive filter which would satisfy the constraints developed below.

3.1.1 Cenvolution

A 2-D finitc impulsc response digital filter may be defined by specifying its impulse response. For
discussion, lct us define a 2-1) discrete impulse response:

g(x.y) for x| < X and ly] <Y,

The variables x and y are, of course, integers,

:
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The filtering opcration is usually expressed as a convolution, denoted " # ", .ét us also definc a 2-D
discrete input signal:

p(x.y) for x| < X jand y| <Y,
The convolution of g(x,y) with p{x.y) is given by the formula:
Xg Yg.

gxy) % pley) = 2 D plek, y-) g(k.])
l(=-)(g I= ‘Yg

3.1.2 Correlation

In this work we have preferred 1o express the filtering operation as a cross-corrclation. The rcason
will be explained below. We shall denote cross correlation with the symbol "= for lack of a better
symbol. The formula for a 2-D cross-correlation is:

Xg Yq

g(x.y) * p(x.y) = Z Z p(x+k, y+D gk
k=-X e I= 'Yg
The difference between correlation and convolution is the presence of the minus sign in the term
p(x-k. y-0). These minus signs have the cffect of rotating the impulse response about both axes. This
rotation describes the behavior of a continuous linear filter, as implemented. for example. in a circuit.
If the impulse response is symmetric about both axes, as in the case of the circularly symmetric filters
described below, there is no difference.

3.1.3 Inner Products

In this research we arc interested in expressing an image as a configuration of primitive signals.
These primitives were referred to as a family of "detection functions™ in our carly work, [Crowley
78a]. We have since developed a class of families of detection functions such that an image signal can
be cxpressed uniquely as a weighted. displaced sum of detection functions. A mcthod for computing
the weights, which is reversibie, has come to be known as the DOLP transform, and is defined in
chapter 5.

The weight tclls how strongly the primitive matches the image signal at a particular point. This
wcight may he determined by computing an inner product of the primitive (which is an impulse
response) and the signal wiihin a finite neighborhood centered at the sample point. The size of the
necighborhood is the same as the size of the primitive.

An inner product at some sample point x,, y, is given by the formula:

X Y .
B.P(Xo.Y,o)> = i 2 p(xo +X. ¥, + 1) g(k.l)
k=-)(é=-Ys

This formula is identical with the formula for cach point in the cross-correlation.
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The point here is that the filtering opcration, or cross-corrclation is a sequence of inner products.

This notion of the filtering operation as a sequence of inner-products leads to an important
heuristic for converting the filtered signal into a network of symbols. Those points at which the
corrclation of a particular filter and the input signal are at a 2-D local positive maximum or negative
minimum are the points at which that filter most strongly resemblces the input signal. If the inner-
product at that point is also larger than inner-products from filters which are similar in size, then that
filter at that point is the best approximation of the image signal centered at that point. Such points
form an important class of symbols in our representation. They are labeled M*® and serve as
landmarks in the representation, as well as the root for subgraphs.

In summary, the view of the filtering opcration as a sequence of inner-products leads to the use of
pcaks (and ridges) in the filtered signals to construct the representation of the image. This is in
contrast to the more popular approach of using zcro-crossings as pursued by Marr in his related work
(Marr 78].

3.1.4 Boundary Values

The DOLP transform cmploys circularly symmetric low pass filters whose radii range from 4 pixels
to the size of the image. In cach corrclation there is a strip along the border of the filtcred image
whosc width is the same as the filter’s, along which the filtered signal is corrupted becausce the filter
only partially overlapped the image. These points could be discarded. but this would lead to an
inability to detect any object closcr than its own width to the border of the image. Our solution was
to provide a default border value, given by the mean of the image pixel values. This has the desirable
cffects of allowing description of objects ncar the border of the image. and keeping the filtered image
sizes as powers of 2. It has the undesirable affect of causing a ripple along the border whenever the
pixcls at the border arc not closc in value to the mean.

3.2 The Transfer Function

The transfer function is an important tool for the design and analysis of discrete lincar functions.
In this scction we will define the transfer function for the case of a two dimensional discrete linear
function. We will then show that any discrete 2-1) function has a transfer function which is
continuous and periodic in two dimensions. The boundary of the region over which the transfer
function is uniquc is called the Nyquist Boundary. The shape and sizc of this boundary is detcrmined
by the pattern of sample points used in filtering. ‘The Nyquist Boundary is the primary tool for
sclecting the density of sample points for a filter or designing a filter for a given sampling density.
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3.2.1 Eigenfunctions

One of the propertics which make linear systems so mathematically tractable is the existence of a
class of well behaved cigenfunctions (also known as characteristic functions). The cigenfunctions of a
discrete 2-D lincar system are the set of sampled 2-1) cxponentials given in equation (3.1)

e +IY) = Cog(xu+ yv) % jSin(xu+yv) 3.}

The variables u and v are continuous and often referred to as spatial frequencies. The cigenfunctions
for a given discrete 2-1) lincar system are those complex exponentials for which u and v fall within a
bounded regicn in the center of the u.v plane. The boundary of this region is known as the Nyquist
Boundary. Its shape is determined by the pattern of sample points uscd in the filter operation. We
shall return to the Nyquist boundary in the next section.

3.2.2 Derivation of the Transfer Function

When a lincar function is convolved with an cigenfunction the result is the same cigenfunction
shifted in space (or phase) and scaled in amplitude. The phase shift. ®(u.v), and the amplitude
attenuation, A(u,v), arc position invariant. They are a function of only the spatial frequencies of the
cigenfunction.

We can express this phase shift and amplitude attenuation as a complex function, H(u,v), known as
the transfer function. Its relation to ®(u.v) and A(u,v) is given by the following cquations:

Au,v) = | Huw) |
®(u.v) = ArcTan[Im{H(u.v)}})/Re{H(u,v)}]

H(u.,v) = Au,v) eP0V

Where Im{.} gives the imaginary part of a complex function and Re{.} gives the real part.

The cffect of convolving a discrete 2-D finitc impulse response filter,
h(x.y) for x| < X and |yl < Y,

with an eigenfunction may be expressed as a multiplication with the transfer function in the spatial
frequency planc as shown in cquation (3.2).

Xh Yh
Hauw) e+ = 3 3 iy e+ ku+(y+ 0] (G2)
k= -Xh I= -Yh

We can casily derive the formula for computing the transfer function from the impuise response by
factoring out the cigenfunction from both sides of equation (3.2). This formula is given in equation
(3.3).

X, Y,
Hiuy) = 2 O h(k./) efku+® (.3)
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k=-Xh 1=-Yh

3.3 Two Dimensional Re-Sampling

In this section we examine in more detail what the Nyquist Boundary tells us about the pattern of
sample points. In this discussion it is assumed that the input image and the impulse response are
given as discrete 2-1) scquences. We are concerned with reducing the number of sample points. We
use the term “re-sampling” to distinguish this from the related problem of sampling a continuous
function to produce a discrete sequence. Sampling a continuous function is amply treated in many
digital signal processing texts. We recommend [Oppenheim 75] which has come to be recognized as
the classic text book for digital signal processing. Re-sampling a 1-D sequence will be discussed first
and then the results extended to 2-D.

3.3.1 Re-Sampling a One Dimensional Filtered Sequence

For a one dimensional lincar function. the eigen-functions are the complex exponentials, e1wx for
which the continuous frequency variable. w. is within the bounded region | w | < w/Sy. where Sg is
the distance between sampics, and must be an integer. Complex cxponentials for which « is outside
this ranged are aliascd by the sampling. That is. they appear in the sampled sequence as one of the
complex exponentials from within the interval. Complex exponentials from outside the Nyquist
boundary are, in cffect, rotated about the interval boundary.

3.3.2 Two-Dimensional Nyquist Boundary

The extension to two dimensions is straight-forward if the samples are taken at points along axes
which arc aligned with the original samplc axes. That is. if every sxm point in the x dircction on every
Syth row in the y dircction are chosen as sample points, then the transfer function of the sampled
scquence will be defined within the rectangular boundary:

ful<#/S and IVISW/Sy.

In the techniques developed in chapter 5 we employ a type of sampling in which the sampics are
along the diagonals, +45°. We refer to this form of sampling as V2 resampling, because this is the
minimum distancc between sample points. The V2 resampling operation, S\/f(‘) may bc defined
as:

Syzlp(xy)l = [ p(xy) forxmod2 =y mod2
undcfined otherwise

When applicd to a cartesian grid with axes at 0° and 90° it yiclds a new grid where the unit
sampling distance axcs arc at +45° as shown by the circles in the figure 3-1 below. When applied to a
grid where the axes arc at +45° it produces a new sampling grid with a unit distance of 2 and unit
distance axes at 0° and 90° as shown by the squarcs in figure 3-1.
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Figure 3-1: Exampic of Sﬁ[p()(.)’)] and Szlp(x.y)]

In the frequency domain. cach application of V2 sampling introduces a new Nyquist boundary
which is skewed by 45° from the previous Nyquist boundary, and just fits inside it, as shown in figure
3-2,

/ Original Nyquist Boundary

After Sqrt(2) Sampling
| ~
| S
-~ u
() -
After Sqrt(2) Sampling Twice

Figure 3-2: Nyquist Boundarics for Successive Application of V2 Sampling

Aliassing is minimized by designing the filters so that there is a large attenuation for all points
outside of the necw Nyquist boundary.
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3.4 Design Parameters for Digital Filters

In this section we will define some of the terms that are commonly used in the design of finite
impulse response digital filters. "There is nothing original in this scction. It is included so that when
these tcrms are used in later sections and chapters the reader will know what they mean.

Digital filter design is an optimization problem. Digital filters are generally designed by specifying
a sct of constraints on the transfer function and then allowing a lincar optimization program, such as

the Parks-McClellan algorithm [Parks 72] to find the cocfficients for the best solution. The
constraints that arc commonly uscd for designing a low pass filter arc illustrated below in figure 3-3.

HEo)

S

— o ——

~— o cosv T
_9{ oF 'é_
Figure 3-3: Transfcr Function Constraints for a Low-Pass Filter
The symbols for the constraints are:
81: The pass band ripple peak amplitude
82: The stop band ripple pcak amplitude

W The pass-band cut-off frequency where response falls below 1-81.

w: The stop-band frequency edge where response falls below 82




e

-

35
AF: The transition width. or width of the transition region, given by w ~w,
Wygp° The frequency where response falls below 1/2 (-3dB).
The usual goal is to find the shortest filter which has a sufficiently flat pass and stop band and a
sufficiently narrow transition width. §, and 82 can be traded off against cach other. Their product

can be traded off against AF. The product of all three can be traded off against the number of
cocfficients.
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Chapter 4

Criteria for the Design of
Band-Pacs Filters for Detecting
Non-periodic Signals

In this capter we devclop several ideas which are fundamental to the results described in later
chapters. Section 4.1 describes the concept of a family of detection functions which are scaled copies
of a single prototype function. This concept leads to a reversible transform based on the difference of
size scaled copies of a low-pass filter, which is described in the next chapter. Such a family of
detection functions are convolved with a signal or image to separate the information into spatial
frequency channels. This provides an ability to discriminate the size of a gray-scale form by detecting
the frequency at which the maximum response occurs. This transform also provides the basis for the
representation described in chapters 7.

Section 4.2 establishes a set of design criteria for band pass filters that are to be used with peak
(and ridge) detection to construct a scale invariant representation of non-periodic signals. These
criteria are general; there are many methods by which a band-pass filter may be designed to meet
them. Our carly work with this criteria used filters which were designed by a quite different
technique than the difference of low-pass filters that is described in chapters 5 and 6 [Crowley 78a],
[Crowley 78b].

In section 4.3 we consider the problem of selecting the set of scale factors for a family of detection
functions. We show that the criteria of size invariance constrains the filter radii to bc members of an
exponential sequence. Size invariance also dictates re-sampling at a rate proportional to the radius of
cach filter. Unless we interpolate and then decimate, the resampling distances must be members of
the set of distances that occur between points on the sample grid on which the picture {or signal) has
been digitized. The smallest basc for such a scquence which occurs on the 2-D cartesian sample grid

is V2.

4.1 Family of Detection Functions

In this section we define the term "detection function™ and then introduce the concept of a
paramcterized family of detection functions. Some of the possible approaches for designing a family
of detection functions arc then examined.
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4.1.1 Detection Functions

The term “dctection function” was coined carly in this research. A detection function is a linear
function (impulse responsc) followed by some non-lincar decision rulc. Most of the edge detectors
described in scction 3.2 are examples of detection functions,

The techniques developed below extend the concept of a detection function beyond the detection
of local sharp transitions in gray level.

The lincar function part of a detection function is typically designed as a matched filter for the
pattern which it is to detect.  Sce [Wozencraft 65] for a discussion of matched filter design. The
obvious cxample are the plethora of edge detectors in the literature, but there are other examples
such as the GM system for IC chip alignment in which corners are detected. In some systems, such as
the GM system. the image domain can be sufficiently constrained and the problem structured so that
a specialized detection function is quite reliable. However for general purpose vision. where there
arc few constraints on image quality or content there are scrious problems. For cxample, what
pauern should be detected? We have already discussed in section 2.1 some of the problems with
detecting cdges and interpreting them as boundarics. Another problem is that patterns can occur over
a range of ncighborhood sizes. [f the patiern is blurred or noisy or the contrast is low, a larger
neighborhood must be examined. But then it becomes casy 10 miss the edges of small patterns.
"Textured regions are particularly troublesome because it may be desirable o detect information at
many ncighborhood sizes. In the following sections we shall describe a solution that employs a set of
functions whosc sizcs range from very local to global.

4.1.2 A Family of Detection Functions Which Provide Spatial Frequency Channels

This rescarch began as an cffort to demonstrate the following idca [Crowley 78b):

A robust (in the sense of able to handle blurry or textured images) and efficient (in the
sense of representing global shape of an object in a few symbols) structural description of
an image can be formed by filtering the image into a sct of spatial frequency channels and
then representing peak points and ridge points with symboals.

A principle on which much of this work is bascd is that a class of band pass filters can be defined
such that cach filter is sensitive to sigr vIs of a particular range of widths, Furthermore the width of a
signal can be determined, within some tolerance, by determining which filter gives the largest peak
response. In section 4.2 we develop a sct of constraints for designing detection functions for this
purpose.

Investigating the design of the spatial frequency channcls led to the concept of a parameterized
"family of detection functions”. A family of detection functions is defined by a closed form
expression which includes onc or more independent parameters.  ‘The independent parameters
determine the cocfficients of the lincar part of a particular detcction function. Initial experiments
were conducted with a family of detection functions formed by the product of a circularly symmetric
low-pass window and a 1-D cosine [Crowlcy 78a). 'T'he independent parameters were the frequency
and orientation of the cosine.

™
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Idcally we would like to convolve the image with a continuum of filters such that if a test pattern
(say a solid disc) of a particular siz¢ is the input signal, one filter from the continuum will have a peak
response which is larger than all of the others. Furthermore, it should be possible to determine the
size of the test pattern (within some tolerance) from the identity of the filter with the largest peak
response.

A number of experiments were reported in the proposal for this dissertation in which band-pass
detection functions were convolved with uniform intensity circles and squares of different sizes and
with uniform intensity bars of different widths and orientations. These experiments demonstrated
that the size of the circles and squarcs. and the width and orientation of the bars could be determined
by obscrving which detection function produced the largest peak in the convolution. We also
obscrved that certain structural clements such as cdges and corners resulted in casily detected
patterns of peaks and/or ridges when convolved with cach of the detection functions smaller than the
object. Thus it is possible to detect these structural clements at many ncighborhood sizes and
sampling densitics.  Also it was noted that a configuration of test patterns forms a shape which is
independent of the test patterns (a textured shape). The size and structural features of this textured
shape arc apparent in the convolution with dcetection functions which are larger then the individual
test patterns.

4.1.3 The Goal of Size Invariance

The three dimensional shape of an object is intrinsic to the object. The two dimensional image of
an objcct should depend only on the objects 3-D shape. the viewing angle. and the lighting
conditions. A description of the 2-1) gray scale shape of an objcct should not depend on the size at
which the object is imaged.

Early in this research we decided to pursue a representation for 2-D form that has the property of
being independent of the scale at which the object is imaged. That is, suppose an object is in the field
of view of a television camera, and a representation is constantly being constructed of how the object
appecars in a sampled, digitized image from the camera. If the object is moved toward the camera, the
representation should shift in size but retain its structure. Also. as additional information about the
objcct’s surface texture and cdges becomes available it should be appended to the representation, but
this should not alter the part of the representation that denotes the global shape of the object. In this
rescarch we pursuced the goal of producing a size invariant representation using detection functions
that are size scaled copics of the same function.




39

4.2 Linear Functions for Describing Non-Periodic Signals with Peak
and Ridge Detection

In this section we develop a set of constraints for the space domain cocfficients and the frequency
domain (transfer tunction) for the design of a sct of 2-1) lincar functions. These functions are to be
used with peak and ridge detection to construct a representation for the non-periodic signals which
occur in images. We are not ablc to provide a rigorous proof that all of these constraints are
nccessary. We only make the claim that these constraints are sufficient.

The following subsection will develop the reason why the detection functions are constrained to
be:

1. Zero Phase
2. Finite Impulse Response,
3. Circularly Symmetric, and
4. Band Pass Filters.
We will then develop the more complex criteria that the functions:
1. Must have 3 pcaks (5 alternations) in the cocfficients, and

2. Must have a pass band which rises monotonically to a singlc peak.

4.2.1 Zero Phase

The transfer function of the lincar function must be zero or linear phase. A non-zcro phase will
shift the position of the responsce. If the phasc is lincar the shift is the same for all frequencics. [f the
phasc is non-lincar, the shift will vary with spatial frequency. The position of the signal is important
to the structurc of the representation. We cannot permit unpredictable shifts in the reported position
of a signal because of a slight uncertainty in its width (frequency content).

4.2.2 Finite Impulse Response

The impulse response must be finite. The reason is that infinite impulse response filters can only
be implemented by recursive filters. There is no design process for a 2-1 recursive filter that will
guarantec a zero or lincar phase. There are also problems with dcesigning 2-1) recursive filters which
arc stable. We have limited our inquiry to finite impulse response filters to avoid these problems.




4.2.3 Circular Symmetric

The impulse response must be circutarly symmetric. This is because the representation should be
as invariant to orientation as possible. We cannot allow the detected size and position of a peak to be
affected by the orientation of a signal.

4.2.4 Band Pass

The impulse response coefficients must sum to zcro. This will assure that if the function is
convolved with a uniform signal, the response will be zcro. Another way to say this is that the DC
responsc must be zero.

The transfer function must also have a high frequency stop band. This will allow the convolution
to be computed at re-sample points without aliasing. The nct cffect of these two constraints is that
the function will be a band pass filter.

4.2.5 Constraining Alternation (Peaks) in the Space Domain Coefficients

In this scction we will show that the linear function must have 3 peaks (5 alternations) in its
coefficients. 'This constraint is necessary when the detection functions are to be used with peak and
ridge detection (detecting local positive maxima and negative minima). Without this constraint, other
constraints such as the need for a narrow pass-band and sharp transition band would drive the design
to a function which had many ripples (altcrnations) in its impulsc response. To sce why this is a
problem, consider the case where a detection function is convolved with a bar which is smaller than
half the width of the detection function. Each peak in the detection function coefficients will result in
a peak in the convolution output, Since the presence and shape of the bar is to be encoded from the
pcaks and ridges in the convolution, the result will appear to be many bars.

We can determine the smallest number of peaks which the detection functions can have by
cnumerating the possibilities and cxamining the function which results from cach. For convenicnce
this discussion will consider I-D) functions. The results must apply to 2-1 circularly symmetric
functions. The results will only apply o a circularly symmctric function if the 1-D function is
symmetric, i.c. if g(x) = g(-x). Thus the 1-1) functions discussed below are constrained to be
symmetric. Also, we arc only interested in finite zero-phase functions for the reasons cxplained
above.

L.et us define the term “alternation” to refer to a change in sign in the first dii¥erence, dig(x)] of the
function, where first difference of a discrete function g(x) is defined by:

dlg(x)] £ g(x) - g(x-1)

Ict us make the arbitrary definition that when the first difference is zcro, its sign is the same as the
point to the right. With this definition functions which have a constant interval can be considered in
this discussion. Also, to keep things tidy, let us define the boundarics of the support for a finite
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discrete function to be alternations. Thus all finite 1-D functions automatically have at least two
alternations.

]

~
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0

Figure 4-1: The Only Possible Symmetric 1-D Function with Two Alternations

Two Alternations: (sce figure 4-1 above.) In order to be symmetric such a function must be
constant, It is thus a low pass function.
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Figure 4-2: Two Possible Symmetric 1-D functions with 2 Altcrnations

Three Alternations: The third altcrnation must be in the center for the function to be symmetric.
There arc two casces (sce figure 4-2 ): ‘The cocfficients can be all of the same sign. or of diffcrent signs.
If the cocefficients arc all of the same sign, then the filter will have a non-zcro DC response ( sum of
the cocfficients) and will not be band-pass. If the cocfficients are of both signs and sum to zcro, then
the function can be band pass. However, if it is band-pass, the ncgative side-lobes will be
monotonically decrcasing.  This results in sharp discontinuitics at the boundarics. These
discontinuitics causc large ripples in the high-frequency response which makes the function
unsuitable for usc with re-sampling.
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Figure 4-3: A Symmectric 1-1) Band-Pass Function with 4 Alternations

Four Alternations: If the function is finite, then two alteinations are at the support boundaries.
The remaining two alternations must be placed symmetrically for the function to be symmetric. Since
there can be no alternation at the origin, in order to be symunctric the function must be constant
between the two inner alternations. In order for our function to be band-pass, its cocfficients must
sum to zcro. The function shown in Figure 4-3 is such a function. This particular function is the
difference of two constant windows. For 2-D images. convolution withh this function can be
implemented as a difference of square uniform windows, for which there is a fast convolution
algorithm [Price 76]. However, the sharp transitions cause large ripples in the stop band which can
causc aliasing when used with re-sampling.

Figure 4-4: A Symmctric 1-1J Band-Pass Function with 5 Alternations

Five Alternations: (Sce figurce 4-4) Five alternations is the minimum which a symmetric band pass
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function with a well behaved stop-band can have. This is onc of the constraints which is used in the
detection function design. Note that the coefficients must sum to zero in order for the function to
have a zcro [DC response. Note also that the cocfficients must taper to zero at the boundarics in order
for the stop-band ripples to be small.

4.2.6 Monotonic Pass Band with a Single Peak in the Transfer Function

The constraint of five alternations in the detection function cocfficients severcly limits the form of
the transfer function. In particular, it limits the flatness of the pass band and the width of the
transition region.

The ideal situation would be to have a family of filters in which the pcak frequencics give a
continuum. However, this would require an infinite set of convolutions. and so we are forced to
choose a finite set of filters. with the peaks staggered throughout the frequency domain. This is, in
cffect. sampling in frequency. For detection functions which are size scaled copics of a closed form
expression, the peak frequency for a given family of detection functions may be determined by the
radius of the function. For rcasons cxplained below, we end up constraining the filter radii to be
members of an exponcential sequence:

Re{R, RS RS2 ..RS}

This gives an a sequence of pass bands whose center frequencies are an exponential sequence of the
form w,S'k.

Let us define a 3 space, (x,y,k), such that cach point contains the valuc of the inner product of the
filter of radius R‘,Sk with the image ncighborhood centered at x,y. Furthcrmore, let us specify that
for cach increment in k, the points in the image are resampled so that the minimum distance between
samples will increasc by a scale factor, S. A representation can be constructed by detecting peak and
ridge points in this three space and linking them together to form a graph. In order for the structure
of this graph to be invariant to the size of a grey-scale form we must constrain the transfer function of
the filters to rise monotonically to a peak and then fall monotonically as spatial frequency increases.
To sce why this is so, consider the following situation.

Suppose we have a test pattern which is a uniform intensity square. It will result in a distinct
inter-connection of peak and ridge points. An cxample of such a graph is shown as figurc 7-21 in
chapter 7. A uniform intensity rectangle with an aspect ratio between 2 and 1/2 will result in a peak
at the top of this graph whosc valuc is significantly larger than any other peak in the graph. This peak
is labcled as an M* and forms the root of the graph which describes the square. it should be possible
to determinc the size of the square from the level. k, at which this root pcak occurs.

If the test pattern is gradually increascd in size the graph which represents it must move upward (in
the k dimension). This movement must be monotonic with size in order for the size invariance of the
description to hold. As a sufficient condition for this movement in the k direction to be monotonic
we make the following constraint on the transfer function of the detection functions.




Transfer Function Constraint

The transfer function must rise monotonically from a response of zcro at DC to a peak response at
some frequency. It must then fall monotonically until it has cntered the stop band. Within the stop
band it is pcrmitted to ripple with a magnitude less than or equal to some value 8.

This constraint is illustrated by figure 4-5.

g 0 0%

Figure 4-5: Monotonic Pass Band with Single Peak

4.3 Selecting the Sequence of Radii and Re-Sample Distances

In this section we will address the problem of choosing the sequence of radii which the family of
detections functions should have. We also address the problem of choosing the sct of re-sampling
distances. The two problems arc intimately related because the representation can only be quasi-size
invariant if the re-sample distance is the same fraction of the filter radius for all of the filters.

4.3.1 Filter Radius

Scaling the size of a gray scale form is a multiplicative operation. That is if a form is scaled in size
by some factor, F, all of its dimensions arc multiplicd by F. The ideal situation would be to have a
scquence of radii and re-sampling distances which includes all possible scating factors. This is
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impossible, because the set of such factors that can occur is infinite. It is the set of rcal numbers,
which cven over a closed interval is infinite. Thus we must choose a sequence which gives a
rcasonable approximation,

Suppuse there are two instances of a form such that the sccond is a copy of the first scaled in size
by F. For size invariance, we require that the representation of both forms be composed of the same
interconnection of symbols, albeit from different size detection functions. Each structural component
of the form must be shifted in the size dimension (k in our ecarlier discussion) by the same amount.
Also the sampling distance (mecasured in terms of pixels in the original image) must be scaled by the
same amount as the filter radius. That is, a configuration of peak and ridgc points from the filters of
radius 8 must correspond to a configuration of peak and ridge points at radius 8F in the sccond
image. Similarly, a configuration from radius 4 in the first image must match a configuration at 4F in
the second.

If we employed a non-exponential sequence such as the fibonacci sequence, S =5 +S, . 0f the
sct of integers. the number of detection functions between radius 8 and radius 8F would be different
from the number of functions between radius 4 and radius 4F. As a consequence. the representation
of the scaled form would not contain the same configuration of symbols as the original. An
exponcntial sequence allows us to approximate the scalc change. F. by some factor of the form sk,
where S is the basc scale factor, and k is an index. Scaling by SK then shifts all configurations of peak
and ridges by k levels in the represcntation, thus preserving the interconnection of the symbols in the
representation. It is also necessary to have re-sampled the image by the samie factor, Sk, so that the
density of symbols is the same.

4.3.2 Re-Sampling Distances

The accuracy of the size invariance is determined by how closcly the change in scale, F, can be
approximated by Sk, If not constrained by sampling. the value of S would provide a trade off
between the accuracy of the size invariance and the cost in terms of computation and storage.
However, S is constrained by the requirement that the sample distance be a fixed proportion of the
filter radius. There is only a small finite set of rc-sampling distances that can be uscd without
interpolating the image sample points. If we arc to avoid the great increase in processing cost which
would come from interpolation we must use one of the naturally occuring sample distances as the
scale factor, S. The sct of distances to ncighboring points for a cartesian grid is shown in figure 4-6.
Each number in this figure is the cartesian distance to the point on the lower left of the figure.

5v2
a2 var
: V2 5 Vi
V2 V13 V5 1)
vz V5 V10 V17 V26
0 1 2 3 4 5

Figure 4-6; 'The Set of Naturally Occurring Sample Distances
I-or a Cartesian Plane
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Let us define the sct of distances between points on any grid as the set of "natural re-sample
distances”. Within this set we can choose subsets which are members of exponential sequences, i.e.
have the form S¥. In fact, cach natural re-sample distance providces the base, S, for such a subset.

In the following chapters we will define a process in which the image is repeatedly filtered and
then re-sampled at some base distance, S. The smallest such S which naturally occurs on a cartesian
grid (greater than 1, of course) is the value V2. This is the basc value which is used for scaling both
the re-sampling distance and the filter size.

In summary for rcasons of size invariance a family of detcction functions whose radii are an
exponential scquence must be used to filter the image. The set of re-sample distances must also be
from the same cxponential sequence, although smaller by a constant fraction. A great savings in
computational cost is pussible if the basc number of the exponential sequence is a natural re-sample
distance. Thus the cxperimental implementation is constructed using the smaillest such resample
distance for a cartesian grid, V2 .
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Chapter 5

A Reversibie DOLP Transform
~ Which Fesolves Non-Pericdic Data
into Short-term Frecuency Components

This chapter introduces the Difference of Low Pass (DOLP) transform which is designed to
separatc a signal into short-term frequency components. This transform was devised to be used with
peak detection to represent non-periodic 2-D signals as a first step in sterco matching or determining
object identity. The¢ DOLP transform is reversible and thus preserves the information in a signal.

The DOL.P transform is defined in the first section of this chapter so that the reader is aware of the
motivation for the problems addressed in later sections. After the transform has been defined and its
reversibility demonstrated, the form of the band-pass impulse responsc that results at many sizes will
be described. The computational requirements of the DOLP transform will then be cxamined. The
DOLP transform is shown to require O(N?) multiplics for an N point signal of one or two dimensions
and produces O( N Log(N) ) result data points. It is then shown that the DOLP transform can be
computed using resampling with a reduction to O(N Log(N) ) multiplics and O(N) result data points.
This is followed by a discussion of the degradations in frequency and position resolution that result
from such resampling. Chapter 6 will present the sampiced Difference of Gaussian (DOG) transform,
a two dimensional implementation of the DOLP transform that exploits 2 property of Gaussian
functions to produce a form of sampled DOL.P transform in O(n) computations.

Notation:

The sct of symbols which are defined below are used extensively in the next two chapters. Filters
have an index variable, k. The filter's radius is determined by the product of the smallest radius, R,
multiplicd by a scale factor, S, raised to the K power. Thus the radius of the K filter R %18 given by

R, =R, s
Low-pass and band-pass signals also have this subscript. &, which denotces the filter with which the

signal has been convolved. ‘The e low-pass signal and band-pass signal arc sometimes referred to as
being from "level” k.

The DOLP transform definition applics to signals and filters of any dimensionality. The space
variables, (x,y), for signals and filters arc ommitted in some scctions to simplify notation. This
simplification also illustrates the point that this transform is not specific to signals of a particular
dimensionality.
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Let us start with the definitions:
p(x.y): The input signal defined for 0< x € N,0< y < M . In all the cxamples below N = M.

gk(x.y): A finite low-pass filter of radius R © which has been normalized so that the sum of its
cocflicients is 1.0. For a 1-D fiiter, radius is the half width.

R, The radius of the smallest filter with a uscful frequency reponse, g (x.3).

S: A Scaling Factor; typically V2 or 2.

L k( x,y): low-pass signal at level k.

B, (x.y): band-pass signal at level k.

bk(x. ). The band-pass impulse response (f ter) of radius R e

X - The number of cocfficients in the K band-pass filter.

K: The levei at which the size of b,\(x. ) exceeds the size of p(x.y). (X, 2 N? for two dimensions)

Size Scaling:

The DOLLP transform is based on a set of filters which are size scaled copies of a discrete function.
For purposes of the following discussion. assume that the low-pass filter is defincd by a continuous
function that has infinite duration and approaches zero asymptotically. Furthur-more, assume that
this function is sampled over a fixed interval of its range. Thus the radius of cach scaled copy, R,,
actually defines the numbecr of discrete samples which are obtained over the finite interval. This
permits us to discuss the scale of a filter in terms of the filters’ radius.

5.1 The DOLP Transform

This section defines the DOLP transform. The DOLP transform scparates a signal into a sct of
band-pass componcents with exponentially spaced center frequencics. ‘These band-pass components
may be formed by convolving the signal with a sct of band-pass filters which arc sizc scaled copics of
a single prototype filter. Ihesc filters arc all formed by subtracting a low-pass filter from a copy of
itsclf which is smaller in size by a factor of S.

The operations of convolution and subtraction are commutative. Becausc cach band-pass filter is a
difference of two low-pass filters, there are two obvious cquvalent methods for computing a DOLP
transform:

1. (The Direct Mcethod) Form the set of band-pass filters by subtracting cach pair of low-
pass filters, and then convolve cach of these band-pass filters with the signal. This method
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is illustrated in figure 5-1 below. If reversibility is desired the signal must also be
convolved with the largest low-pass filter.

1 2. (The Difference Method) Convolve the signal with cach low-pass filter, and then subtract
cach low-pass filtered signal from the low-pass signal formed from the next larger low-
pass filter. This technique is illustrated in figure 5-2.

_ P =>*b,(xy) > B,(xy)
{

' —>*b, (xy) > B,(xy)

9. ba(X,Y) > Bz(x!Y)

—>*'b; (x,y) > B,(xy)

—>*b_(xy) > B, (xY)

YV ° °

[ ] [ ]

[ J ®

Figure 5-1: Direct Mcthod for Computing a DOLP Transform

The direct method is the simplest to describe. For the DOLP transform as described in this section
{ it is also the most cfficicnt to compute. as it avoids the subtraction step required by the difference
] method. With the difference method, however, it is casier to illustrate the reversibility of the DOLP
transform. Furthurmore, in the next scction we describe a fast algorithm for computing the
convolution with the scquence of low-pass signals. ‘The following is a dcfinition "by construction” of
the DOLP transform. For cach level, we define the band-pass filter, describe the direct method, and

¢ then define the difference method. Reversibility is shown at cach level using the low-pass signals.
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+
P B,(x,y)
+
—>> *g.(x.y) B, (x,y)
+
—>> *g,(x,y) A+ B.(x.y)
+
—> *g:(xy) B, (xy)
—>> *g,(x.y) > B,(xy)
)4 ® . ®
® @
o @

Figure 5-2: Difference Method for Computing a DOLP Transform

Level O
‘The impulsc response (cocfficient array) for the level 0 low pass fllter is g, by definition. The level
0 band pass filter, b,, has an impulse response of
bo =1- -9

The level 0 band-pass signal, B,, also known as the high-pass residue. is computed by the
convolution’

‘.Bo =p*b,
With the difference method, the level 0 low-pass signal, L, is computed by

7ln this and all subsequent convolutions we assume that some boundary valuc is supplicd so that every L X and B X will
have the samce duration as p.
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L, 2 p¥ g,
The level 0 band-pass signal. B, is then formed by the subtraction
By Ep-Ly=p-(p*g)=(1-8,)*p
Note that p may be recovered from B, and L, by

P=By+Ly=p-(p*g)+(p*g)

Some readers may note that for two dimensional signals, the opcration producing the high pass
residue is known as unsharp masking. and is sometimes used for edge detection.

Level 1

The level 1 low-pass signal, Lr is obtained by convolving low-pass filter g, with p. The low-pass
filter 8, is defined as a copy of filter g, scaled larger in size by a factor of S.

The impulse response for the level 1 band-pass filter, b, , is
b, =g, -8
In the direct method, the level 1 band pass signal, B s formed by the convolution
B =p*b
The difference method requires computing the level 1 low-pass signal, Ll.

Llép*gl

The level 1 band-pass signal may then be formed by subtracting the level 1 low-pass signal from
the level 0 low-pass signal.

B, EL,-L,
Note that the original signal may still be recovered by
pP= fno + 3, +L,
=p-(p*g)+(p*8)-(p*¢g)+ (0 * g)
Levels 2 Through K

The low-pass filter at any level. k. is a copy of the level 0 low pass filter, g,. scaled larger by a factor
of V2*. As with level 1, the band-pass filter for level K is the difference of two low-pass filters

by =81= 8

‘Thus for any level, k. the band-pass signal, B, may be computed by
B =p*b
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With the difference method. low-pass and band-pass signals at level k may be formed by

{ L,=p*g ' s.)
; and

{ B, =L _,-1, (5.2)
h ) As with level 1, f(l)(r any K the original signal may be recovered by

: p=L,+2. B, 5.3)
: k=0

:‘ At some level (value of k) the size of the low-pass filter will exceed the size of the finite signal.

Beyond this valuc of & the band-pass signals contain no new information about the signal. This level,
K. is thus choscn as the level at which the transform is halted. Thus the DOLP transform produces:

‘.BO: The high pass residue.

B X for 1 € k < K: The band-pass signals
and
L - A low-pass residue.

Reversibility proves that no information is lost by the DOLP transform.

5.2 The DOLP Transform Parameters

Implementation of this transform requires choosing:

&(x.y): The low-pass filter and its parameters

R,: The radius for the smallest filter, g,(x,y); and

S: The scale factor.

The low-pass filter g(x,y) and its initial radius R, must bc choscn with regard to how well the
band-pass filters. b, £ 8., = &, mect the requirements for describing non-periodic signals, described
in chapter 4. If re-sampling is uscd in the DOLP transform, the low pass filter and its parameters
must also be chosen so that a minimum of aliasing results from the re-sampling.  This gencrally

involves trading off transition width (AF) and stop band ripplc (&) against processing time.

The scale factor, S, governs the bandwidth of bk(x.y) and the frequency resolution of the




53

transform. Since maximizing the frequency resolution also minimizes the degradations to the size
invariance (sce scction 4.3), the choice of S governs the trade-off between degradations to size
invariance and the cost in terms of processing steps and memory. However, if re-sampling is used, S
must be onc of the naturally occuring re-sample distances on the original sample grid, as was
described in section 4.3,

5.3 Complexity of the DOLP Transform

In this scction we examine the computational complexity of computing a DOILP transform with
the dircct method. This analysis shows that the direct method requires 2 N2 multiplics and adds to
produce the N Log(N/X,) + N samples in the DOLP transform.

The DOLP transform is based on a sct of size scaled copies of a Jow-pass filter, g, (x) (or in the 2-D
casc gk(x.y) ). The scaling relationship between the filters is defined by an exponential relationship
for the radii, R,.

— k
 =R,S (54)

where R, is the radius of the smallest low-pass filter. This relationship may also be expressed
recursively as:

R,=R,,S .5)

The band~pass filters, bk(x) or bk(x,y) , arc defined by the difference of two low pass filters.

bk(x) = 8., (0) - g,(x) forke{0,1,2,..K}
where g (x) =1

Thus the radius for cach band-pass filter'is given by equation (5.4) or cquation (5.5).

5.3.1 Number of Coefficients for Each Filter

As the first step of complexity analysis, Iet us examine the number of coefficients in the band-pass
filters usced in a 1-D DOL.P transform and in a 2-D DOLP transform.

5.3.1.1 Onec Dimensional DOLP Transform

Let S] be the scale factor used in a 1-D DOLP transform. A typical valuc for S1 would be 2. The
number of coefficients, X, for the kb bandpass filter is given by:

X, =2R +1 (5.6)

By substituting cequation (5.4) into cquation (5.6) we get the exponential relationship:
- k
l‘-ZR,SI+1 ) (5.7

‘This sequence can be solved to arrive at the relationship:
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X, =(X.-DS{+1 (5.8)

For all k such that S'l‘ > X, we can simplify the mathematics by replacing equation (5.8) with the
approximation:

X, =~ Xo 8§ (5.9)
5.3.1.2 Two Dimensional DOLP Transform

Let us denote the scale factor for a two dimensional DOLP transform by SZ' When resampling is
used a typical valuc is S, = V2 (Sce section 4.3).

As with the 1-D filters, the 2-D filters arc defined to have the relationship between radii given by
cquations (5.4) and (5.5).

The 2-D band-pass filter, b, ( x,y). is defined to have non-zero coefficients over the disc:
X+ y2 < R%

This disc is bounded by a squarc of sides 2 Rk + 1. The number of non-zero cocfficients, X,, may be
approximated by

X, = = R (5.10)

Plugging cquation (5.4) into cquation (5.10) gives:
X, = = RIS (5.11)

This can be solved to yield:
X, = X, S (5.12)

Thus for cach increment in k, the number of coefficients of the filter increascs by a factor of S, for
a one dimensional filter or a factor of Sg for a two dimensional filter.

5.3.2 Computational Complexity

This analysis of computational complexity and memory requirements applics to both the 1-D and
2-D DOLP transforms. In the 1-d case, let:

S=8, and X, = 2R, +1
For the 2-D case let:
S =52 and X,

wR%,.

Assume that we have a signal with N samples, (1-1D or 2-1J) and that onc convolution inner-
product step is to be computed for the filter centered over cach of the N sumples, This assumes that a
default boundary valuc is supplied when the filter cocfficients fall over the edge of the signal. Thus
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cach convolution produces N sample valucs as its result. Also, assume that the smallest low pass filter
with a rcasonable stop band has X, coefficients.

The first filter, which produces the level 0 or high pass residuc has X, coefficients. Thus there are
N inner product steps., with cach requiring X, multiplics, for a total of X N multiplics.

For cach Ievel, k. from 0 through K, the filter has: X,Sk coefficients. Thus the total number of
multiplics, denoted C (for cost), is given by:

C=XN(I+S+8+..+ 5K
= on(fsk)
k=0
=X, N(SK*l_1/(S-1)
For the typical values of S, = 2 and S, = V2, S will have a value of 2.

For S=2, we can make the approximation:

SK + 1_1
S-1
Thus our cost becomes:

C=x X, NsK+l (5.13)

~ SK+1

The largest filter in this sequence has an index, K, chosen such that it is the smallest intcger for
which:

X, SK>N

Plugging this into our cost formula for S =2 gives:

C=SN?

Since there arc K+1 filters and cach filter produces N sample valucs, the total memory
requircment, M, is:

M=(K+1N

Since X, SX = N then the number of levels, K, is:
K = Logy(N/X,)
Thus our total memory cost is:
M = N Log(N/X,) + N (5.14)
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5.4 The Form of the Band-Pass Filters

Scction 5.1.1 described forming band-pass signals by subtraction of two low-pass signals. Bccause
convolution and subtraction are both linear operations, they are associative. Thus in the case of the
band-pass images:

(p*g ,)-(p*g)=p*(g  -8)

Thus the DOLP transform may be computed as cither a difference of low pass images as described
above, or by prccomputing the cocfficients of cach band-pass filter and then convolving each band-
pass filter with the signal. In fact. the latter process saves the subtraction step, and so is less
expensive. However in chapter 6 we describe a fast version of the DOILLP transform in which the
computational complexity is reduced by using cach low pass signal £, to produce the next low pass
signal Lk e

In chapter 7 a description technique which uses peak detection will be described. The usc of peak
detection for describing band-pass signals requires a constraint on the smoothness of the band-pass
impulse responsc (as described in section 4.2) as well as on its transfer function. [n this scction we
show how the low-pass filtcr employed by the IDOLP transform must be constrained to produce a
band-pass filter which meets the constraints described in scction 4.2,

This discussion is illustrated with one dimensional filters: b(x) and g(x). For two dimensions, the
filters should be circularly symmetric, so that response is not dependent on oricntation. The variable
x may then be replaced by a radial distance to the center, r, at any orientation. The transfer functions
of the filters arc denoted as:

B(w) 2 7{H(x)} and
Glw) £ 7{g(x)}.

5.4.1 Space Domain Constraints

The smoothness of the band-pass impulse response is obtained by constraining the low-pass
impulse response to three alternations, or changes in sign of its first difference. The rcasons for this
constraint are described in section 4.2.5. These aiternations should occur only at the boundarics of
the low-pass impulse response and at its center as shown in the following figure.

The band-pass impulse response,

beo (¥ = 8(X) - 8, AX)

which has aradiusof R, _, =R,S = R,s“”. will then have § alternations as shown below. Two
of these arc at the outer edges, x = R,S. labeled A; and Ag. Two alternations. A, and A, will be at
approximatcly x = R o where the first difference
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Figure 5-3: Permissable Alternations in Lew-pass Filter
glx) - gdx, = 1)
first becomcs larger than

ks f(X) = 8ty = D)
and of course, one at the center, A:? where x =0.

Figurc 5-4: Permissable Alternations in Band-pass Filter

5.4.2 Transfer Function Constraints

The size invariance of the final description requires that as a gray scale torm (or signal) increasces its
size. the position of the signals in the transform move up through the levels smoothly, This requires
that the pass region of the transfer function of the band-pass filter have a single peak. and be
monaotonic on cither side of that peak.
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Both low-pass filters arc normalized so that they have a gain of 1.0 af DC (w=0). Since
subtraction and the transfer function arc both lincar operations, they are associative. That is:

Fih} - 7{g} = Fth - g}

Thus the difference of such normalized filters will have a DC response of 0. This will guarantee
that there is no reponse by a filter when it covers a region which is entirely uniform. Both low-pass
filters should have a single peak at DC and monotonically falling pass and transition regions, as
shown below in figure 5-5.

G ( W ) A / Single Peak

) 0 ™
Figure 5-5: Transfer Function G(w)

This will guarantee that the low-frequency side of the band-pass filter transfer-function pass band
is monotonically increasing. The peak frequency of the pass band, w,, will occur somewhere before
the ncgative minimum of the first ripple of the larger low-pass filter’s transfer function. It occurs at
this minimum for large valucs of S ( S > 2 ) and at lower frequencics for smaller S. Since this should
be the first alternation in cither low-pass transfer function (after the NDC alternation) there should be
no problem maintaining monotonically increasing responsc on the low frequency side of the peak
frequency.

A local peak will occur in B, _ (w) for cach interval in which

2G, [w) 5 0 G (w)
dw w

This is the source of the peak responsc of B, . (w) at w,. However such a pcak must not be
permitted any where clse in the pass or transition regions of Bk . I( w). Otherwise, the sive invariance
of the description will be corrupted as a result of the filter having more than onc peak responsc as the
size of an object increases. The regions where this could happen arc where the ripples in Gk . 1(‘") g0
through a zero crossing from positive to negative. ‘Thus we must guarcntee cither:

———— e 4
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0 v
Figure 5-6: Difference of Low-Pass Transfer Functions

e That the second zero crossing from positive to negative at Gk . 1(m) occurs outside the
transition region of Bk +1(m) or,

¢ That the derivative 3 Gk + 1(«.:)/ 0w ncar this zero crossing is smaller than 9 Gk(“’)/ dw at
the same w. .

For S < 2. the first criterion is met for most low-pass filters that mect the space domain critcria.
For larger values of S, if the first criterion is not met, the seccond may be achicved by adjusting the
stop band ripple magnitude, §.

5.5 The Re-Sampled DOLP Transform

In this scction we describe the re-sampled DOLP transform. In this version of the DOLP
transform the convolution "inner product steps™ are computed at a sct of re-sample points.a The
distance between these re-sample points is a fixed fraction of the filter impulse response.

In this scction we show that such re-sampling canccls the growth in computational cest that occurs
in the DOLP transform as a result of the exponcential growth of the number of filter cocfficients as k
increascs. This occurs because the distance between samples grows by the same scale factor as the
impulse responsc size. The result is a form of DO1.P transform which may be computed in O( N
Logg(N) ) multiplics. We also show that the storage cost is reduced by re-sampling to O(N) (For
$,=V2,M=3N). ‘

&Ihis is cquivalent to resampling the filicred image that resuits from cach convolution,




5.5.1 Re-Sampling

The family of band-pass functions employed in the DOILP transform have a high frequency stop
band. For cach increment in the filter index, k, the low frequency edge of the stop band moves lower
in frequency by a factor Sl for a 1-D signai or S, fora 2-D signal.

Because each filter has a high-frequency stop band it is possible to save a significant amount of
storage and processing cost by computing cach convolution at a sct of resample points. That is, when
computing the convolution

?Bz(n.m) = byx, y) ¥ p(nm)
the inner product step of the convolution nced only be computed for the filter centered over the
points along every other diagonal as shown by the boxes in figure 5-7 which is a reproduction of
figure 3-1 of chapter 3. A tw o dimensional form of the Nyquist sampling thercom can be uscd to
show that virtually no information is lost; The value of the convolution at the omitted sample points
can be recovered by interpolation.

MORMORNRORNO
O 00 -0
MOANORRORNO
oo RO

Figure 5-7: Exampic of S\/z-[p(x,y)] and S,[p(x.y)}
From Figure 3-1 of Chapter 3

In addition to the savings in computational cost and storage. the re-sampling used in the DOLP

transform is fundamental to the quasi-size invariance of the representation for images based on the
Sampied DOLP transform described in chapter 7.

5.5.2 Complexity of the Sampled DOLP Transform

In this subscction we describe the re-sampling in the sampled 1201.P transform. and derive its
computational cost and memory requirements.

As before. assume that we have a one or two dimensional sienal composed of N samples, and that
default boundary value is provided for the case when the fiiter coefficients fall over the cdge of the
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signal. Also, assume that the smallest band-pass filter has X, coefficicnts and that the filter sizes are
rclated by a scaling factor, S, by:

— —ck
X, =SX,, =5X,

As in scction 5.4. this analysis of computational complexity and memory requirements applies to
both the 1-D and 2-13 DOLP transforms. In the 1-d case, let:

S=S§,and X, =2R, +1
For the 2-D case let:
S=5%and X, = wR%

The filter for k = 0, b,(x) or b,(x.v). is a high-pass filter. Convolution with this filter can not be
resampled. ‘This filter has X, coefficients and so requires XN multiplies and produces N result
sample points.

The filter for k=1 is a band-pass filter. Its pass band is contained in the original Nyquist boundary
of the signal, and so its convolution with thic image also cannot be resampled without causing
distortion due to aliasing. This filter has SX, coefficients so its convolution requires SX,N multiplies
and produces N result sample points.

The filter for k=2 is a scaled copy of the filter for k=1. Its pass-band is within a new Nyquist
boundary scaled lower in frequency by a factor of S, or S,. The convolution of this filter with the
image can be resampled at points scparated by a dlstancc of S, or S,. Note that in the 2-D case,
re-sampling at a distance of S, reduces the number of samples b) a fdcwr of S= S~ There arc thus
N/S points at which the convoluuon inner product steps must be computed. Smcc this filter has
szx, cocfficients, the convolution requires SX N multiplics and produccs N/S sample values.

As described in scction 4.3, the smallest naturally occuring resample distance for a 2-1D cartesian
grid is V2. Unless the signal is interpolated before the convolution, S2 is constrained to be one of
the naturally occuring resample distances. ‘Thus in the absence of interpolation, the smallest possible
5, for a 2-1> Sampled DOLP is V2. For S, = V2. this resampling consists of computing the
convolution inner products with the filter centered at points along cvery other diagonal as shown by
the squares in figure 5-5.

Similarly, the filter for k=3 has S3X cocfficicnts and is a copy of the filter for k=1 scaled lower
in frequency by a factor of 82 or 52 Thus the convolution with this filter may be computed at
resample points which arc scparatcd by a distance of 52 or S“ This yiclds resampled convolution
requircs S3X N/S§ = §- X N multiplics. The rcsulucqmrcs N/S‘ storage clements.

For the 2-D cartesian grid, with 82 = V2. this re-sampling amounts to computing an inner
product convolution step at cvery other column of cvery other row.

In general, for cach filter, k. the increase in the number of cocfficients from scaling is exactly offset
by the increasc in distance between sample points [Crowley 78a). ‘The computational cost is thus the
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same for every band-pass filter for k ¢ {1.2.3.....K}. Given that there are K= Log((N/X,) band-pass
filters that require SX, multiplics, and one high pass level, k=0. that requires X N multiplics, the
total cost. C. of the Sampled DOLP transform is:

C = $X, N Logg (N/X,) + X N

The number of sample points produced by cach convolution decreases by a factor of S for each
increment of k from k=1 to k=K. Thus the storage requirement, M, for the Sampled DOLP
transform is:

M=N(1+1+1/S+1/8+1/83 + .. + /sK)

_ gkl
=N(1+ “—S—lz ) Storage clements.
(1-S7)

Note that for S = 2,

1-0
1-172

=N(1+2)
= 3N storage clements,

M=N+ N

5.5.3 The Effects of Re-sampling on the Representation

As described in scction 3.3, the distortion from rc-sampling (and subsequent loss of information in
the description) may be minimized by minimizing the signal cnergy outside of the nyquist boundary
defined by | u,v l < -n/SR, where u and v arc the spatial frequency variables and S is the distance in
pixcls between the ncw sample points. This analysis tells what information could be recovered by
interpolation.  Howcever, a pecak detection algorithm will be employed to describe the transform.
Re-sampling introduces an uncertainty in the location of peak. That is, when a peak is detected in a
re-sampled signal it may actually have occurred anywhere in the interval bounded by ( xtSR. y:SR).
If the sample interval is a constant fraction of the size of the impulse response at cach level then the
unccrainty of a signal’s position will always be the same fraction of its sizc. More accurate position
information may be obtained from the description of the object’s boundarics, which is at lower levels
in the transform.

Idcally we would like the configuration of peaks that describes a signal 10 be invariant to the
signal's position. However, as a pcak moves from one samplc to the next, there is a point at which
two adjacent samples will have the same peak value as shown here in 5-8.

The frequency of occurence of such double peaks is dependent on the number of bits used to
represent cach sample and on the signal amplitude. Double peaks occur most frequently when the
signal amplitude is small.

This randomness is also present in the relative position of peaks at adjacent Ievels as shown in
figure 5-9.
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Peak Double Peak Peak

1, = gL = Ll

Peak Makes Discrete Jumps as Object Moves to Right

Figure 5-8: Location of Pcak Sample as Signal Moves to the Right

. . Level k

] L] [ ] L] [ ] Leve' k'1

Figure 5-9: Uncertainty of Position of Peaks at Adjacent Levels

A peak could occur with cqual likclihood at any of the positions dircctly under the higher level
pcak. Thus any matching rule for graphs of pcaks from this transform must accept a peak at any of
the three positions as a match.,

5.5.4 Sampling in Frequency

Each level of the DOLP transform represents an cnsemble of samples at a particular spatial
frequency range. The center frequencics of the band-pass levels are at discrete. exponentially spaced
intervals. ‘The problem of choosing the step size for the center frequencies is discussed in section 4.3.

As with spatial sampling, this frequency sampling definces the resolution in frequency of the DOLP
transform. This translates into the changes in the size of signals that the tansform can resolve. The
interval between center frequencies is given by the scale parameter, S. This parametcr also defines the
band width of the individual filters. The smaller S is, the better the resolution in size (frequency).

A roughly uniform region with a background of a different intensity results in a local maximum in
the three space, (x.y.k), defined by the transform. The level at which this peak occurs gives an
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estimate of the size of the region. Pcak detection between levels produces an uncertainty in a signal’s
size which is analgous to the uncertainty in the signal’s position. That is, as a signal’s siz¢ increases,
the level at which the largest peak occurs will inake dic ~rete jumps. In this case, the size uncertainly is
bounded by the scale factor, S. That is, a peak a. <l &k places the signal duration somewhcere
between

R sk-l/z k+172
2 < Signal Duration < °—2———

The result may be compensated for in a matching rule by permitting a stretching or contraction of
one of the signals by a factor limited by SY2 and $¥°. The particular stretching may be determined
for a given signal by obscrving the distance betwecen landmarks in the description such as two peaks
at some level, Such landmarks for two dimensional patterns are discussed in chapters 7 and 8.
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Chapter 6

] The Sampled
Difference of Gaussian Transform

An Efficient DOLP Transform
Based on Gaussian Filters and ReSampling

This chapter develops an algorithm for computing the two dimensional form of the DOLP
transform in O(N) steps (where n is the number of picture points). This algorithm employs a property
of Gaussian low-pass filters to obtain a drastic reduction in the number of computations necded to
compute the sequence of low-pass images. This property is: when a Gaussian is convolved with itself
the result is the same Gaussian scaled larger in standard deviation by a factor of V2.

- The previous chapter defined a class of reversible transforms referred to as the DOLP transform.
It described how the 2-1D DOLP wansform could be speeded up from O(Nz) multiplies to O(N Log
N) multiplies, and its memory requirements reduced from O( N Log N ) cells to 3N cells by using
V2 resampling. ‘This subclass of the DOLP transform is referred to as the Sampled DOLP
transform.

It is also possible to speed up the DOLP transform by using an algorithm referred to as “Cascade
Convolution with Expansion” ‘This algorithm cxploits the Gaussian auto-convolution scaling.
property and an operation referred to as V2 expansion. The "V2 cxpansion” operator is a mapping
of a function from a Cartesian sample grid to a V2 sampie grid. Cascaded convolution with
expansion reduces the computational cost of a DOLP transform from O(N?) multiplics to O(N log N)
multiplics. 13ccause this algorithm is based on propertics of the Gaussian function the DOLP
transform which it produces is referred to as the Difference of Gaussian (1DOG) transform.
Combining resampling and cascaded convolution with expansion gives a form of 1JOLP transform
which may be computed in O(N) multiplies. ‘This transform is referred to as the Sampicd Difference
of Gaussian (SDOG) transform.

Chapter 7 shows how to construct a structural description of the contents of a grey-scale image by
detecting and linking peaks and ridges in the SIOG transform of the image.

The Sampled Difference of Gaussian (SDOG) Transform is defined in this chapter. The Gaussian
function and its usc as a finitc impulsc responsc low-pass filter are examined. 'The computational
complexity of the SDOG transform is analyzed and shown to be O(N). Two approximations for
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scaling the standard deviation of a finitc Gaussian filter by V2 in standard deviation are introduced:
‘The use of the auto-convolution of a finite Gaussian, and the use of an "expanded” Gaussian.

Section 6.1 describes Gaussian functions and filters and proves the the scaling property. Section 6.2
describes cascaded convolution with expansion. It then examines the effects of the expansion
operation on a low-pass filter. Section 6.3 dcfines the Sampled DOG transform by construction, and
shows that this transform requires 3X,N multiplies and produces 3N samples for an N sample
picture. Scction 6.4 describes an experiment that gives the accuracy of the scaling obtained by
multiple convolution with a Gaussian kernel. Scction 6.5 presents the impulse responses for the level
0 and 1 band-pass filters, and the transfer functions of the level 1 and 2 band-pass filters.

6.1 Gaussian Functions

Even with re-sampling. the DOLP transform of an image is a very costly process in terms of the
number of computations that arc required. It is possible to reduce the computational complexity by
several orders of magnitude by cxploiting the properties of Gaussian filters. In this scction, the
Gaussian function and its propertics are reviewed and the construction of 1-D and 2-D low-pass and
band-pass filters using Gaussian functions is described.

The Gaussian function is most commonly known in its onc dimensional form

1 a--p?2e?
g(tp.o) & — e (t-p720
oVnw

where: p £ The mean and
¢ £ The standard deviation

The term 1/0 V27 scales the infinite Gaussian so that it has unit area.

For the discussion that follows, the mcan will always occur at the origin (¢=0), and so will be
omitted from the notation. In some of the discusion values such as ¢. which determine the specific
function. arc uscd as variables. In these cascs these valucs are included within the parenthesis to
simplify the notation. They are separated from the independent paramcters of the function, such as x°
and w, by a scmicolon.

The standard deviation, o, is the square root of the sccond central moment of the Gaussian
function. and thus defincs its width. The zero mean Gaussian

1 'e-lz/hz
oViw

has a Fourier transform

G(w:.0) = e"'z“’z’z

g(tio) =
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6.1.1 Scaling by Auto-Convolution

The scaling property is casily deduced from the formula of a Gaussian function. It has been
observed by statisticians, and is used in Communications theory and Linear Systems theory to
describe the effect of repeated convolution. In this scction it is employed to describe the eftects of a
finite impulse response Gaussian filter as a kernel for cascaded filicring. This scaling property is only
strictly true for the infinite Gaussian function. For a finite Gaussian low-pass filter this scaling
property is only an approximation. The accuracy of this approximation is cxamined in section 6.3.4
and 6.4.

The fast algorithm described in this chapter is bascd on the following property of Gaussian
functions:

Gaussian Scaling Property:
A Gaussian function convolved with itsclf yiclds a Gaussian function whose standard
deviation (width) is V2 larger than the original function.

Proof:

The convolution:

1 e-(2/20’2 * 1 e-L2/202

oV2xw oVln
may also be expressed as the product of Fourier transforms

2 2.2

-02w2/2 -azw /2 _ a0 w
(S °oC =€

whosc inverse Fouricr transform is

1 e-l2/4 02
o2Vw

To get back to standard form then requires the substitution

af = 20? or o, = V2.

Thus the standard deviation, and hence the function width, have been cxpanded by a factor of

VvZ. O

Note also that the amplitude has been multiplicd by a factor of 1/V2. Auto-convolution
preserves the unit arca normalization.
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6.1.2 Discrete Gaussian Filter

The Gaussian function may be uscd as a low-pass digital filter. When used as a filter the variance
o’ is replaced by the ratio of a shape paramcter, a. to the support radius squared, R This gives a
family of finite functions with different standard deviations for a particular radius. Adjusting the
parameter a permits a trade-off between stop-band ripple. 8. an transition width, AF, for the filter.

An experiment to determinc the effect of a on this trade-off is described in appendix A.

The Gaussian is converted to discrete form by

2
1. Making the substitution o*=_"_ and
2a
2. Sampling the continuous function at 2R + 1 points given by the discrete variable x, |x| <

R.

Implicit in this form is a multiplication by a 2R + 1 point uniform window (or aperturc or support)

Rectyp , (%) = (]for|x| <R
0 otherwise.
This gives a space domain formula.
2,,2
g(x:a.R) = Rectyp , (x) €7% /R

whose transfer function is

i 9 22
GlwiaR) = SMCCORHD/D 2 jvar e Rw™ e,
Sin(w/2)

Where the first term in the convolution is the Fouricr transform of the support

Sin(w(2R +1)/2))

F{R =
{Rectyg 1 (00} Sin(w/2)

6.1.3 Two Dimensional Digital Gaussian Filter

Generalizing the Gaussian low-pass digital filter to two dimensicns can be accomplished by
substituting the radial formula, x2+ yz. for the distance variable x2. In addition. the finite support
must also be genceralized to two dimensions, which presents a choice. The two dimensional support
may be the square

s(xy:R)2 { 1for|x| <R, ]yl <R
0 otherwise

which is scparablc and has a transfer function [Oppcnheim 75)

Sin(u(2R + 1)/2) Sin(v(2R +1)72)
Sin(u/2) Sin(v/2)
Or it may be the disc

S(u.viR) =

imaemninantneninm. mmnhemiatad: eeainendy
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c(x.y:R) é{ 1 for x2+y25R2

0 Otherwise
which is circularly symmetric and has a transfer function [Papoulis 68]
R Vut+v?
Cluv:R) = 27 JI(R u‘+v ).
Vu+ve

where Jl( -) is the first order Bessel function.

The Gaussian is the only two-dimensional function which is both circularly symmetric and
separable into one-dimensional components. This property can be used to speed up two-dimensional
filtering with a Gaussian by replacing convolution with a 2R+ 1)x(2R + 1) filter by two convolutions
with 2R +1 point onc-dimensional filters ( onc for cach dimension). This requires 4R+2
multiplications for each picturc point instcad of ARZ4+4R +1 multiplications. However, this savings
can only be obtained by defining the Gaussian over a scparable support, such as s(x,y;R).9
Unfortunately, the square support focuses the stop-band ripple of the filter along the u and v axes.
This gives a non-circularly symmetric transfer function and a larger worst case stop-band ripple than
for the circular support. The stop-band ripple must be minimized if the filter is to be used with
re-sampling in order to minimizc the maximum aliasing error.

For the cxperiments described in this dissertation, circular symmetry and the best possible stop-
band performance were judged to be more important than the computational savings. However, in a
real system, it may be worthwhile to accept some degradation in order to gain a significant savings in
processing speed.

The implementation described in this chapter and used for experiments in constructing a
representation is based on the Gaussian filter with circular support:

2 2
£a(1y) = c(xy:R) €70+ VR
Whose Transfer function is

_ 2wRJ,(R\/u2+v2)“ Va )e_Rz(quzW
Vur+v? RVa
In the examples given in this disscrtation, the parameters R=4.0 and a = 4.0 were uscd for the

Gaussian filter. These values were obtained by an experimental procedure described below in
Appendix A,

Gol(uv)

To control the filter gain, the filter cocfficients are normalized so that they sum to 1.0. This is done
by summing the cocfficients and then dividing cach cocfficient by the sum.

9/\Ithough any uniform rectangle is a separable suppon. the uniform square has the least effect on the circular symmetry of
the filter. Secuon 4.2 decribes the need for circular symmetry m the filters used in a DOLP transform
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The following figures show the impulse response, g,(x.y) for R=4, a =4.0 and a plot of its transfer
function.

001488
003150 .006669 .008564 .006669 .003150
003150 .010996 .023278 .029890 .023278 .010996 .003150
006669 .023478 .049280 .063276 .049280 .023478 .006669
001488 .008564 .029890 .063276 .081248 .063276 .029890 .008564 .001488
006669 .023478 .049280 .063276 .049280 .023478 .006669
003150 .010996 .023278 .029890 .023278 .010996 .003150
003150 .006669 .008564 .006669 .003150
001488 ~

Figure 6-1: Normalized Impulse Response g (x,y) for R=4, a =40

Figure 6-2: Transfer Function G,(u,v) for R=4, a=4

In figurc 6-2 and all other transfer function plots, the transfer function was cvaluated over a 64x64
floating point array representing the Nyquist region - < u.v < #. Because the filters have zero
phasc. the imaginary part of the function is identically zero. Thus only the real part is plotted. The
values were scaled so that the maximum would extend full scale on the plot. Lincar interpolation was
uscd 0 obtain the value between sample points. ‘The range from 0 to maximum response (1.0 for
low-pass filters. =0.25 for band-pass filters) is represented by 4096 increments at 2045 dots/inch.
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6.2 Cascaded Convolution with Expansion and Resampling

In this scction we introduce a fast algorithm for computing the 2-D Sampled DOLP transform
with Gaussian low-pass filters. This algorithm. referred to as "Cascaded Convolution with
Sampling”. is based on the convolution scaling property of Gaussian filters. the V2 expansion
operation and resampiing. In this algorithm, the image is filtered. re-sampled at V2. and then
filtered again with a filter that has been expanded out to the sample grid of the re-sampled image.

In chapter S it was shown that a DOLP transform could be computed by 2 methods:
1. Convolution of the image signal with a sequence of size-scaled low-pass filters followed
by a subtraction of cach low-pass signal from the next. i. e.

Ly=g *p

Bo=Lyp -4

2. Convolution with an exponentially size-scaled set of band-pass filters which are formed
by subtracting sizc scaled low-pass filters. i. e.

b =818

B, =p*b,

This fast algorithm is based on the first of these two approaches. That is the computation cost is
reduced by computing each Lk from LH. As is shown below this computation may be done by
convolving the filter g, with L, | k times. or by a single convolution with a version of the filter g,
which has been expanded by V2 k-1 times. That is,

Ly =Ly * Eypdge}

~/\lthough this cxpanded filter covers an arca which is V2 ¥ larger than g, it has X, cocficients just as

8o docs. Thus a set of low-pass signals with an exponential scries of impulse response sizes can be
formed with cost which is the same for cach low-pass signal.

This section is mainly concerned with the effects of the V2 expansion operator. A form of DOLP
transform based on cascaded convolution with expansion is first introduced to isolate the effects of
cascaded convolution and cxpansion from those of resampling. The cffects of the expansion
op<cration arce then cxamined.

‘The impulse response of the level 0 low-pass signal, L. is g, (x.y) by definition. At level 1 the
desired impulse response is g,(x.y) as described ‘in scction 5.1. 'The Gaussian scaling property,
described in scction 6.1, shows that if g (x.y) is a Gaussian filter, the level 1 low-pass filter impulse
reponse can be approximated by

gi(x.y) = 8o(x.y) ¥ go(x,y).

In a Sampled DOI.P transform, for cach level above level 1, both the impulse response and the
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unit sample distance, SR. are o be scaled in size by an additional factor of V2. This section
describes how this sequence of fow-pass signals can be formed by repeatedly re-sampling and then
convolving with the same filter expanded out to the proper sample grid. ‘The maotivation for this
algorithm is a great reduction in computational compiexity in acquiring the sequence of sampled
low-pass signals necded to form a Sampled DOLP transform and its description.

6.2.1 Cascaded Filtering and the v2 Expansion Operation

The cost of computing the DOL.P transform without resampling can be reduced from O(Nz)
multiplications to O(N log N) by using the Gaussian scaling property and the V2 cxpansion
opcration (defined below).

[.et us consider the use of the Gaussian scaling property for forming a DOLP transform without
the use of V2 cxpansion or resampling. in this version of the DOLP transtorm the low pass image at
level k is formed by 2*"V convolutions of the low pass itnage at levet k-1 with the kernel low pass

filter g,. Thus the level 1 low-pass filter impulse response, 8, i$ approximated by
8,=8 %8

and the level 2 low-pass filter. g,. is approximated by
8)=8, %8, %8 *8

For each additional level, the number of convolutions with g, doubles.

6.2.2 Cascaded Convolution with Expansion

The exponcential growth that results from cascaded filtering can be averted by cxpanding each
low-pass filter onto a sample grid which is a V2 larger before the convolution to produce the next
low-pass level.  This cxpansion operation scales the low-pass filter impulse response larger in
standard deviation by V2. but it also introduces reflections of the low-pass transfcr function in the
corners of the Nyquist plane, ~7 < u. v € #. The kernel filter can be formed so that these
reflections fall over the stop region of the kernel filter and arc thus greatly attenuated, as shown in
scction 6.2.4 below.

Cascaded convolution with expansion can be used to compute a DOLP transform that is not
resampled in O(N log N) multiplics. This complexity may be arrived at by the following rcasoning.
The V2 expansion operation does not change the number of coefficients in the filter. Thus cach
low-pass image may be formed from the previous lTow pass image with the same cost in multiplics.
The cost of cach convolution is X, N multiplics where X, is the numbcer of cocetficients in the kernel
filter and N is thc number of samples in the image. Since the impulse response scale grows
cxponentially, there are O(l.og N) low-pass images. Hence the cost of cascaded convoluiion with
expansion is O( N Log N ) multiplics. This expansion operation and its effect on the transfer
function of a Gaussian low-pass filter is cxamined in the following Subscctions.
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6.2.3 V2 Expansion and Resampling

In this scction we consider the expansion operation in the context of the use of cascaded
convolution and resampling. The V2 expansion operator is a convenient way of scaling a Gaussian
low-pass filter by a factor of V2. When images arc resampled, expanding the filter onto the same
sample grid automatically gives the expansion operation.

The V2 cxpansion operation maps cach row from a filter on a cartesian sample grid into every
other diagonal. This mapping takes cach coefficicnt from point (x,y) of a filter g(x.y) and places it at
point (x-y.x+y) of a filter 85(X5.¥5). Points of 8,{X4.¥,) which reccive no coefficient under this
mapping are declared to be undefined.

[.ct us define this mapping as the function F.V~2-[']. Since

X, =X~y
y2=x+y
we get
x = Xty
2
and
y_—.l‘z?z

So that this function may be defined by

Ey/zla(xy)] = gy(x5¥,) = [ 8((-x,+¥,)/2.(x,+y,)/2) Forx,Mod2 =y, Mod 2
Undcfined otherwise

Where A Mod B is the remainder of A/B. This mapping is illustratcd by figure 6-3. This figure

shows the correpondence between points in the mapping. The dashes ("-") illustrate the points which

arc not defined in the new filter.

The algorithm for cascaded filtering with sampling involves repeatedly re-sampling. Each re-
sampling cnlarges the actual smallest distance between samples by V2 and alternates the direction of
that smallest distance between £45° and 0°.90°. For cach convolution the distance between filter
cocfficicnts must be expanded by V2 as many times as the imagc has been re-sampled. For this, a
more general expansion operator is needed: E, 5 /4.}. This more general operator expands the filter
to the same grid as an image which has been V2 -samplcd I times.

When /is odd. the filter is mapped onto a grid whose axcs are +45°, and whose smallest distance

between samples is 2172 The points on this grid arc thosc at which

x, Mod A+1V2 y, Mod +D2 =,

For even /, the expanded filicr will be mapped onto a grid whose axes are at 0° and 90°. The distance
hetween samples along these axes will also be 2”2 The mapping l{\ﬁl may be defined as:
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(0.1) (2,2) (2.1)
(0.0) (1.0) .(2.0)
£0,-D1.-1).2,-1)

maps into

2.1)

LD - .20)
01 - (10 - .(2-1)
0.0) - (1-1)
(0,-1)

Figure 6-3: Examplc of mapping given by E\/?“

Foreven [

X
g(xy) = { g(ilJ/i'zll/]?) For x, Mod 2=0and y, Mod2 =0
Undefined otherwise

For odd I

_ Xty X +y (+1)/2 _ (+1)72
g(x.y) = { g("—l-z(lfl')'lll'_l__l'z(l*fl)/z) For x; Mod 2 =y, Mod 2

Undefined Otherwise

For a circularly symmetric filter this mapping is cquivalent to applying the following procedure
recursively / times:

E,/sK.} Procedure:

For cach point (x.y) at which the filter g (xy)is defined, define a new point in g[x.y)
at (x-y, x+v) and copy the valuc from gH(x.y) into the point.

This is the procedure which was used for the experimental implementation.

6.2.4 Frequency Domain Effects of V2 Expansion

The V2 cxpansion operator has a well defined cffect on the transfer function of its argument. As
with V2 sampling a ncw Nyquist boundary is created which is a 45° rotation and a V2 shrinking of
the old boundary. Inside this ncw Nyquist boundary is a copy of the old transfer function scaled
down in size by a factor of V2. Outside this new Nyquist boundary is a reflection of the scaled
transfer function. This is illustrated by figurc 6-4 below, which shows the 3dB contour of a low-pass
filter before and after the expansion operation. Figures 6-5 and 6-6 show actnal plots of a Gaussian

PR g Y P e
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low-pass filter (R=4. a=4). before and after the expansion operation. Note the 4 lobes in the
corners of figure 6-6. Thesc are the reflections of the pass region. If these were to show up in the

composite filter they could cause a large stop-band response. which would add aliasing to the
1 transform becausc of re-sampling.

3dB Contour
.

F o A N

T —

Figure 6-4: Effect on Transfer Function of E\/T Expansion
Operator

\
c

E\/T{'} scales the size of the transfer function by V2 so that it fits into the new smaller Nyquist
boundary. Thatis

F{Ey/zl8.(xV} = F{g)(xy)}

withine < I u+v | < 7 (The new Nyquist boundary)

Because the expansion operation introduces a reflection about the new Nyquist boundary, there is
rcason to be concerned about dhe stop-band crror introduced by this technique. The stop-band error
is not a serious problem for the paramcter valucs R =4, a=4. The reflected energy from expansion
falls into the stop-band of the previous filter. That is, cutside of the new Nyquist boundary,

F{go(x.y) * go(x.¥)}
will be very small (i.c. < =60 dB'® for R =4. a =4) and thus the product
FIE\/7lgo(xY)} © Figo(x.y) * 8o(x.y)}

IORcsponsc is < 95 dB in the arca of the corner where the reficcted nodes are present
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Figure 6-5:  Filter G (u.v) for R = 4.0, a = 4.0 Before V2 Expansion

Figure 6-6: Filter G,(u.v) After V2 Expansion

will be very very small outside the new Nyquist boundary. Thus the impulse response at low-pass
fevel 2, .Lz. which is desired to be g(x.y; "2=2°°) that is, g4(x.y) with its standard deviation scaled
larger by a factor of 2, is actually approximated by
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g(xy: 0,=20,) = S, /5[8,(x.y) ¥ 8.(x.y)] * E,/5lg.(x.y)]
Where S, /5()is the V2 resampling operation which was defined in section 3.3 as
Syzlp(xy)l = { p(x.y) forxmod2 = ymod2

undcfined otherwise

Figure 6-7 is a plot of the transfer function of the level 2 low-pass filter. As can be scen the
response in the corners is so small that it does not register in this plot.

Figure 6-7: Filter Gz(u.v) forR =40, a =40
8y(x.y) =Sy 58 (x.y) * 8o(xy)] * E, 5(28.(x¥)]

A logarithmic plot of the amplitude of Gz(u.v) is shown in figure 6-8. This plot spans -120 db in
amplitude. The scale on the left marks off drops of -10 db. Note that the response in the corner
rcgion is well below -100 dB.

6.3 The Sampled DOG Transform

In this scction we define the Sampled DOG transform by construction and cxaminc the
computational complexity and memory requirements. Unlike the similar sections in chapter 5 on the
DOLP transform and the Sampled DOLP transform, in this scction we are concerned with only the
two-dimensional version of this transform. Also, because we use the Gaussian scaling property and
resampling, we arc concerned only with a scale factor of, 82 = V2.

As in the similar scctions in chapter 5. the number of filter cocfficicnts for the level 0 band-pass
filter, X, is related to the radius by:

X, =7 R,2

Also, as before, the 2-D image signal is assumed to have N samples. The convaolutions arc computed
for the filter contered over cach sample point, with a defauit boundary value supplicd as needed.
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Figure 6-8: Plot of 20 Logw[G 2(u,v)]
Scale (shown at left) spans -120 dB.
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6.3.1 Construction of a Sampled DOG Transform

The sampled DOG transform may be cxpressed by the data flow graph shown below as figure 6-9.
The number of points ( for an N point image) produced by cach step are given in square brackets to
the right of each band-pass level.

As with the DOLP and Sampled DOLP transforms, the high-pass residue, 9B, is formed by
convolving g, with the image, p, to form L and then subtracting the convolution output at cach
point from the sample under the center of the filter as it is computed. That is, the low-pass level 0
signal is given by:

Lo =g, %p
and the level 0 band-pass signal is given by:
gBo =p- ‘Lo
The level 0 impulse response is:
by =1-g,
Notc that when filters of different sizes are subtracted, it is implied that their centers are aligned,
and that undcfined cocficicnts arc treated as having the value zero. The filter, b,, defined above is
the same as that given in figure 6.12 below.

Computing B, requires X, N multiplics and produces N sample points.

The low-pass level 1 signal is then formed by convolving g, with the low-pass level 0 signal. Thus

Ll =g, *L,
and
8 = 8 * 8

During the convolution, the level 1 band-pass signal B, is formed by subtracting cach sample
point of L, from the corresponding point of L.

B =L,-L
and
bl =80 -(80 *8)
This operation also requires X, N multiplics and produces N sample points.

Since the level 1 low-pass filter transfer fu.ction has a pass and transition band that has been
designed to be inside a V2 shrinking of the Nyquist boundary, it can be re-sampled at V2. Thus,
only the samplcs along cvery other diagonal are storcd. The result is a low-pass signal, S\/-z-{.t.l}
which has N/2 samplc points.
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This sampled low-pass level 1 signal is then convolved with an cxpanded version of g, to produce
L,. Thus:
>

Lz = S\/}'{Ll}* E\/E{go}
and

8, = Ey/7{80} * Sy /518, * 8.}

During this convolution. the level 2 band-pass filter is formed by subtracting cach low-pass sample,
L, from the sampled version of Ll.

B, = S\/E'{Ll} -2,
Thus the level 2 band-pass filter is given by:
b, =Syzig} -8,

Since S\/T{‘Ll} has N/2 samples, this operation requires X N/2 multiplies and produces N/2
samples.

The Sampled 1DOG process continues in this manner until the K™ level. Thus the level 2 low-pass
signal, 1.2 is again sampled at a distance of V2. corresponding to a sample for every other column of
every other row of the original picture, p. This is a total of N/4 sample points. This resampled
low-pass signal is convolved with a twice expanded low-pass filter:

E,{g.} = Ey52{g.} = E\5{E\5{8.}}

to form the level 3 low-pass signal,
L; = Ez{ge} * S\/f{l-z}
and '

8; = E,{8.} * S\ /7{ E/7{8.} * Sy /5180 *80}}
Thus band-pass level 3 is formed by:

B, = S\ﬁ{.t.z} -1, .
and the level 3 band-pass impulsc response is:

by =S, 5{8,} - (E{g.} *S\5{g, D

Since S\/iu'z} has N/4 samples, producing the level 3 band-pass signal requires X N/4
multiplics and produccs N/4 sample points.

In summary. for levels 2 through K we can state the following recursive formulae:

L, = Es0enig) * S 5it, ) (6.1)

g, = Eyzenig,} * Sy 5{g,.} (6.2)

s e = e o ke - B ——mit et mnn e e M
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(6.3)
=SyziLt b * 4

bk = gk'l - ( F.\/Eﬂ(']){go} * ) ) (6.4)
6.3.2 Computational Complexity and Memory Requirements

Producing each band-pass level. k, for the k-1t low-pass level requires X, N/2k1 multiplies, and
produces N/21 samples. Thus the cost. C of computing a Sampled DOG transform of an
image signal with N samples is:

ConoG = Xo (N + N+ N/2 + N/4 + N/8 + ..)
=3X, N multiplies

SDOG’

The total number of band-pass samples produced., M, is:

M=N+ N+ N/2+ N4+ N/8 + ..
= IN samples

6.3.3 Comparison of Complexity with Filtering Using FFT

The Sampled L. ™7 Transform is bascd on a filtering algorithm which we have named "Cascade
Convolution with Sampling”. Any sampled DOIL.P transform could alternatively be computed using
the Fast Fourier Transform (FFT) algorithm. A Sampled DOLP Transform of an N point signal
(1-D or 2-1D) could be computed using the FFT algorithm by the following steps:

1. Precompute the coefficients of the level 0 band-pass filter (high-pass residuc) and the
level 1 band-pass filter, Evaluate the transfer functions of these two filters over N equally
spaced points in the nyquist interval. Since the level 2 through K band-pass filters are
size scaled copies of the level 1 filter, their transfer functions can be obtained from the
level 1 band-pass transfer-function by resampling. as described below. The cost of
computing these transfer functions will not be includced in this complexity analysis.

2. Compute the Discrete Fourier Transform (DFT) of the signal using the FF F algorithm.
This requires N Log, N multiplics for an N point 1-D signal or [M | 08,y M] multiplics
foran N = M x M 2°D) signal. Note that for this step alonc is more expensive for:

Log, N>3 X, in the 1-Dcase, and
[log,MP>3X, inthe2-Dcase

3. For band-pass levels 0 and 1, multiply the DFT of the signal by the transfer function of
cach filter. Each product costs N multiplics. For band-pass levels k=2 through k=K,
both the transfer functions and the DET of the signal must be re-sampled to N/2k]
cvenly spaced points. Each re-sampled uansfer function is then multiplied by the
corresponding re-sampled DET, for a cost of N/2%" multiplics at cach level. The total
cost of these multiplics is then:

| -—
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N+ N+ N[1/72 + 174 + 1/8 + ..] = 3N multiplics

4. Compute the inverse FFT of each array. This requires

g N Log, N + i (N /2%1) Log,(N 7 2*) multiplies
k=1

= 2N Log,(N) + N/2Z Log,(N/Z) + N/4 Log,(N/4) +...
2 2 2

= 2N Log,(N) + N/2[Log2(N) -1] + N/4 [Log,(N) - 2]
+ N/8[Logy(N) - 3] + ...

= 2N Log,(N) + Log,( N/2 + N/4 + N/8 + ..) - t k N/2k
) k=1

The final scrics term at the end converges to approximately 2N, The middle scrics, as we
have secn before converges to N, so that the cost of the inverse FFTs is approximately:

3N Log,(N) - 2N multiplies

Thus the total cost of using the FFT algorithm is:

Cypr = NLogy(N) + 3N + 3N Log,(N) - 2N
= 4N L()gz(N) + N Multiplics

Recall that the Sampled 1DOG transform requires approximately:

CSDOG
‘Thus the Sampled DOG algorithm costs less whenever:

IX, < 4 Logz(N) +1

= 3 X, N multiplics

For the 1-D case, X 0 has a typical valuc of 9. Thus the Sampled DOG Transform is cheaper
whenever:

N>265 =905

For Circularly Symmetric filters in the 2-1 case. X, is typically 49. Also the cost of a FFT for an N
= M x M signal is [ M Log, M]z multiplics, so that the Sumpled 1DOG ‘I'ransform is cheaper in terms
of multiplics whenever:

4] Log. (M +1> 3(49)
or

[Log,(M)? > 36.5

or

Log,(M) > 6.04

or
M > 2004 — 6586
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6.3.4 The Size of Cascasded Filter impulse Response

As discussed above, the sampled DOG transform employs cascaded convolution with sampling to
produce a sct of low-pass images whose Gaussian impulse responses are scaled larger in standard
deviation by a factor of V2 from cach level to the next. In chapter 5 this scaling was discussed in
terms of the filter radius. Cascaded filtering produces a sct of impulse responses whose radii grow
faster than a factor of V2.

‘The level 0 Tow-pass filter is defined over a disc of radius R, =4. When convolved with itsclf to
produce the level 1 low-pass filter it produces an impulse response which is non-zero over a disc of
radius 2R,. 'This is a property of the convoultion opcration. At the same time, the siandard
deviation of this impulse response has only grown by V2.

The convolution of two functions which are normalized to sum to one produces a function whose
values also sum to one. Thus the autoconvolution of the Gaussian preserves its normalization to unit
sum. Since the auto-convolution has its unit sum spread out over a larger arca, the cocfficient values
are slightly s..aller than the same coeficients for a unit-sum Gaussian filter which is computed by
scaling the R parameter by v2.M' The auto-convolved Gaussian filter has a larger tail and 15 thus a
closer approximation to the infinite 2-1> Gaussian function.

The level 1 low-pass image is sampled at V2 and so the low-pass filter must be expanded to the
same sample grid by the E\/i'{} operator defined above. From a filter defined over a disc of radius
R9_.thc cxpansion operator F,\/Z-{} produces a filter whose furthest cocfficient from the origin is at
V2R,. Thatis. for a radius 4 filter, the cocfficient from (4.0} is mapped into the point at (4.4).
When this filter is convolved with the level 1 low-pass filter, the result is a filter whose radiusis R, +

R, V2.

Each additional expansion of the filter will enlarge it in radius by a factor of V2 and will add its
sizc to that of the cumulative impulsc responsc. Thus the radius of the cumulative impulse response,
R,. for the level k low-pass filter is given by the following formula:

k
R, = R, > Vir

n=0

This support radius grows much faster than the support radius

R, = R V2]
for a simple scaling of the function. This faster growth in support radius is advantageous: it provides
a low-pass impulse response at cach Ievel which is a closer approximation to the infinite Gaussian
function. ‘Thus at cach level the crror in the auto-convolution scaling that results from the finite
duration of the C ussian filter is reduced.

n Note that the two functions do have the same standard deviation.




>

AD-A121 443 A REPRESENTATION F
CARNEGIE-NELLON - UN
L CROMLEY NOV 81

OR e = 1 R -77l. " T~
IV PITTSBURGH PR ROBDT;CS INST
CMU-RI-TR~82-7 N30839-79-g;8169

UNCLASSIFIED

=
-

T
T
I [
I

[
-4
N\

RN

<

HEENEE

B .

I - .
g | | |

—
I A

il
i -



§

|
|

o FE
———— m 3.2 2
——— IL: s mgg
I
——— m“Lg
=

iz 25 ENT

lllllc»

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAY OF STANDARDS -1963~ A




85

6.4 Verification of Scaling Approximation

Because the discrete two dimensional Gaussian filter defined in scction 6.1 is defined over a finite
window, the scaling relation described in scection 6.1.1 is only approximate for g,(x.y). Described
below are three measures for the accuracy of this scating for the approximation:

gR=4V2 a=40) = g(R=4,a=4) * g(R=4,a=4)

6.4.1 Diagonal Method in Space Domain:

The casiest measure of the accuracy of scaling by auto-convolution is to compare the cocfficients of
g.(x.y) along the axis x=y to the cocfficients of g,(x,y) ¥ g.(x.y) along the x axis. Thesc sample
points have the same ratio of distance from the center to total radius, and thus will have the same
value if the filter is exactdy expanded by V2 and is circularly symmetric. These data are shown in
table 6-1 below. The coefficients of g, (X.y) are gencrated normalized to a dc response of 1.0. Their
auto-convolution also has a dc response of 1.0. The effects of this normalization were removed by
dividing cach coeficicnt by the coefficient at 0,0, and this could be a source of small inaccuracy.

X 1 2 3

g 0.7788 0.3678 0.1054
g¥*g 0.7768 0.3607 0.0952
%error 0.25% 1.9% 9.6%

Table 6-1: Comparison of Filter Coefficients

It should be noted that the auto-convolution, g,(x.y) * g,(x.y). has a finitc support that is a disc
with a radius of =2R, as opposed to g,(x.y) which is defined over a disc of radius V2 R. Yet both
filters are normalized so that their sum is 1.0, For this reason the autoconvoiution should be expected
to taper slightly faster than the scaled filter. The auto-convolved filter will actuaily be a closer
approximation to a Gaussian function.

6.4.2 Diagonal Method in Frequency Domain:

This method involves comparing valuces in the real part of the transfer function G(u, v; R=4,
a=4) along the diagonal axis u=v to valucs of F{ g(R=4,a=4) * g(R=4.a=4)} along the axis
v=0. The distance to the origin is uV2 for the points from the first transfer function and u for the
second. The values arc shown for distances of u= na/32 where n ranges from 1 to 16.

The maximum crror shown by this mcthod is 0.011 and it occurs at n = 9 and 10 or frequencies of
u = 9n/32 and u = 107/32. As with the diagonal method in the space domain this comparison may
be sensitive to any circular non-symmetry in the filter. A larger source of error would be the
difference in normalization that occurs becausc of the larger support for the auto-convolved filter.




n 1 2 3 4 3 6 1 8
G(uyv) 0982 0931 0852 0750 0636 0518 0414 0.302
G(uy) * G(uyv) 0982 0932 0852 0.752 0639 0523 0412 0312
error 0000 0001 00600 0002 0003 0005 0008 0010
% crror  0.00 0.10 0.00 0.26 0.46 0.95 1.94 3.20

n 9 10 11 12 13 14 15 16
G(uyv) 0215 0.146 0095 0060 0037 0024 0016 0012
Gluv) * G(uyv) 0226 0157 0104 0066 0040 0023 0.013 0.007
error 0011 0011 0009 0006 0003 0001 0003 0005
%error 486 700 865 909 750 434 2307 7142

Table 6-2: Diagonal Comparison Of Transfer Function Samples

6.4.3 Expansion Method:

The third technigue for measuring the accuracy of the approximation was to form the two filters
g.(x.y) * g,(x.y) and E\/f {g,(x.¥)}, subtract the expanded filter from the auto-convolved filter, and
then compute the transfer function of this difference. A plot -of this difference is shown below as
figure 6-10. This plot is dominated by the reflection of the center lobe from the expanded filter,
which is not present in the auto convolved filter. The idea behind this method is that within the
diamond shaped region. lu + v| < « the expanded filter should be identical to a V2 scaling in size of
the original filter.)? 'The transfer function to the third decimal place shows a number of circular
ripples within the rcgion where the two filters should be the same. The largest ripple has a peak of
-0.012 which occurs over an arc of constant radius, spanning u,v = -97/32, -3%/32 to -3w/32,
-9%/32.

Table 6-3 below shows the error values along the diagonal u=v for u=nw/32 for n € {1,2,3....,16}.

The errors shown by this method are of the same magnitude, but not identical to those found by
the diagonal frequency domain method. In both measures involving transfer functions the crror in
the 5pproximaliun was found to be at most 0.012 ¢ out of 1.000) and this maximum crror tended to be
at or near u®+v2 = 87/32, which is also the peak frequency, w5 of thc band-pass filter at band-pass
level 1.

The conclusion formed from these cxperiments was that the scaling approximation was accurate
cnough for the finite filters formed using R = 4, a = 4.0, to permit its use in developing a
description technique based on the Sampled DOG transform.

12Ou!side this region the reflection of the center lobe in the auto-convolived filter will dominate the difference as scen in
figure 6-10.
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Figure 6-10: Transfer Function of E\/i-{g,(x,y)} =~ g.(xy) * g (x,y)

n 1 2 3 4 5 6 1 8
- F{E\/z{e}-(g*g)} 0000 0001 0002 0005 0008 0011 0012 0010

n 9 10 11 12 13 14 13 16
FEsz{e} -(g*g)} 0005 0001 -0.005 -0.007 -0007 -0.004 -0.001 0.000

Table 6-3: Values Along Line u=v in Transfer Function of E\/i-{g} -
(g*g)

6.5 The Band-Pass Filters

This chapter comes to a close by showing the impulse responses and transfer functions for the
smaller filters. Given befow are the coefficients for the band-pass filters at Ievels 0 and 1, and plots of
the transfer functions of the level 1 and Ievel 2 band-pass filters.

6.5.1 Size of Positive Center Radius

The scale or sizc of forms to which cach filter in a sampled DOG transform is sensitive depends on
the sizc of the positive center lobe of the impulse response. We have observed by examining the
cocfficients of the impulse responses that for the Sampled 1DOG transform based on a Gaussian low
pass filter with a radius, R, = 4.0, and a shapc paramcter of @ = 4.0. the radius of the zcro crossing

of this positive center lobe, Rk 4oata level, k, may be predicted by the following formula.
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(6.5)
R, L= V5 (V2 l‘)

This formula is based on the obscrvations given in table 6-4 below. The radii of the positive center
lobes in this table were measured by finding the distance from the center point to the furthest ( and
smallest ) positive cocfficient. The filters tend to be most sensitive to objects whose width is
2Rk .t 1. Note that as the radius incrcases there are more cocfficients near the zero crossing, and
thus the accuracy to which the zero-crossing radius can be determined increascs.

Level Radius of Center Lobe
1 V5 = 223606
2 V10 = 3.1622
3 V20 = 44721
4 VAl = 64031

Table 6-4: Radii of Center Lobes
As measurcd by Distance to Furthest Positive CocfTicient

6.5.2 Relative Size of Filters and Their Transfer Functions

Since the filters are circularly symmetric, it is possible to visualize cach filter impulse response and
transfer function from the values along a line which passes through the center of the filter or its
transfer function. Figurc 6-11 shows plots of the coefficient values along the X axis of the band-pass
filters for levels 1 through 4. Note that the size of each filter increases by a factor of V2 from the
previous filter and that the maximum response (at the center) decrcases by a factor of 2 from the
previous filter. '

The following figure shows the transfer functions for the band-pass filters from levels 1 through 4.
The transfer function values from the u axis (v = 0 ) from 0< u < # are shown. The spatial
frequency values are shown as integers from 0 to 32 because the transfer function was cvaluated over
a 64 x 64 grid. (Note thatu = 2#f = 27k/64).

6.5.3 Filter at Band-Pass Level 0

We start with figure 6-13 which shows the filter which gives the high pass residuc, B,. This filter is
the lowpass filter g.(x.y) with its center cocfficient subtracted from 1 and all other cocficients
subtracted from zero.
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Figure 6-11: Cocfficients Along X Axis for Filters from Levels 1 Through 4

6.5.4 Filter at Band-Pass Level 1

Next is figure 6-14 which gives the cocficients for the band-pass filter at level 1. The formula for
this filter is:
by(x.y) £ go(x.y) = (8,(x.y) * 4(x.y))

The values for this filter are shown in two sections so that they fit on a page. The first section is
columns -8 to 0, and the sccond is columns 1 to 8.

Figurc 6-15 shows the transfer function. B,(u,v) for the level 1 band-pass filter. The peak response
is 0.250 at VWZ+v2 = a/4. '

Figure 6-16 shows a logarithmic plot of B,(u.v). This plot spans -40 dB. The scale at the left marks
off drops of -10 dB in response. ‘This relatively large ripple is not a concern because the level 1
band-pass imagg is not resampled.

(o]
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Figure 6-12: U Axis Of Transfer Functions for Band-Pass Filters from
Levels 1 Through4.u = 2#k/64
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Figure 6-13: Filter for High Pass Residue, 9,
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Figure 6-14: Impulsc Response of Level 1 Band-Pass
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Figure 6-15: B.(u.v), The Transfer Function
of the Level 1 band-pass Filter




Figure 6-16: 20 Log w[B](u.v)], The Transfer Function
of the Level 1 Band-Pass Filter Plotted in dB
Scale, shown at left in increments of -10 db, spans -40 dB
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6.5.5 Filter at Band-Pass Level 2

The impulse response of the filter at band-pass level 2 requires a 32 column by 32 row table to
cnumerate. Rather than fill two pages with these coefficients we show its transfer function in figure

6-17 below. The formula for this filter is

by(x.y) = go(xy) * 85(x.y) - Ey/5{20(x.¥)} * go(x.y) * go(x.y)]

P
R R

Figure 6-18 shows a plot of By(u,v) in dB, with a scale spanning -80 dB.

Figure 6-17: Bz(u,v), The Transfer Function of the Level 2 band-pass Filter




Figure 6-18: 20 Log, [B.(u.v)]. The Transfer Function
of the I.evel 2 band-pass Filter Plotted in dB
Scale, shown at left marks increments of -10 dB to -80 dB




Chapter 7

A Symbolic Representation Based
. on the Sampled
Difference of Gaussian Transform

The previous two chapters described techniques which could be considered within the domain of
digital signal processing. In order to demonstrate the uscfuiness of these techniques. it is necessary to
show that the filtered image signals can be used to construct a structural representation of an image.
This chapter will describe such a technique, These algorithms were developed to demonstrate the
uscfulness of the sampled DOG transform, and to ¢xplore and develop the principles for using the
transform to form a structural represcntation of gray scale images for object recognition and stereo

matching.

The algorithms described below were designed to be local. As with the transform itself, they can
be implemented in parallel. Rather than try to develop a single monolithic process that would
construct the description, the process was broken down into a serics of stages, and a number of
competing ideas were cvaluated for cach stage.

The process was broken into the following stages:

1. Identify and link ridge points (P-nodes) and local peaks (M-nodes) at cach band-pass
level;

2. Remove small loops and fix short broken conncections in the P-paths at each level;
3. Connecct together peaks at adjacent levels (M-paths);

4. Use 2-D ridge points (P-nodes) as candidates to find 3-D ridge points (I.-nodes) in the
three dimensions (x,y.k);

The iesult of this process is a tree-like graph which contains four classes of symbols:
o P: Points which arc on a ridge at a level.
e M: Points which arc local maxima at a level.
e L: Points which arc on a ridge across levels (i.c. in the three space (x,y.K) ).

o M *: Points which arc local maxima in the three space.
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Every uniform (or approximately uniform) region will have one or more M*’s as a root in its
description. These are connected to paths of L's (L-Paths) which describe the general form of the
region, and paths of M’s (M-Paths) which branch into the concavitics and convexities. The shape of
the boundaries arc described in multiple resolutions by the paths of P's (P-Paths). If a boundary is
blurry. then the highest resolution (lowest level) P-Paths are lost, but the boundary is still described
by the lower resolution P-Paths.

Before launching into a discussion of how the valucs from the Sampled Difference of Gaussian
(SDOG) transform may be mapped into symbols. a word about one of the terms used below. The
SDOG transform produces values at discrete points in a finite space (x.y.k). Each point in this space
has the potential to contain a symbol. When a symbol is assigned to a poing, a certain amount of
additional statc informationr is encoded at the point. To avoid confusion between the words point
and pointer, each point in the space (x,y.k) will be referred to as a sample, when speaking of only the
band-pass value, or as a "node” when describing the various labels, flags and pointers assigned at a
sample point.

7.0.1 Information Stored at Each Node

In the implementation that is described in this chapter, nodes were subdivided into the fields
shown in table

Filter Value 8 bits
Direction 8 bits
E.BS,*.LM/P 1 bit flags
P Pointers 8 one bit pointers
Label, U,D 6 bit Symbol ID,
Pointer bits Straight up and down
UP (10 k+1 level) pointers * For L and M paths
(8 Bits, 1 for cach neighbor)
Pointers to SAME level For L and M paths

DOWN (to k-1 level) For L. and M paths

Table 7-1: Ficlds of a 64 Bit Node

The first 8 bit sub-ficld holds the valuc from the Sampled DOG transform. The direction sub-ficld
contains the result of a dircctionality measure¢ that was cmployed in carly versions of the
representation.  This number is between 0 and 179 degrees.  Next are seven 1-bit flags whose
mcanings are discusscd in the scctions 7.2, 7.4, and 7.5. ‘The ncxt subficld contains the 8 pointer bits
for connecting P nodes. Each pointer corresponds to one of the adjacent 8 neighbors. The neighbor to
the right is pointed to by the pointer at bit 0. Nceighbor numbers increase in a counter-clockwise
dircction. ( A number of the algorithms below do modulo 8 arithmetic on the P pointers.) The next
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subficld is a 6 bit symbol ID that is assigned based on the configuration of ridges around the node.
There are then two 1-bit fields which act as pointers for the L. and M paths. The U ficld can be set to
point to the neighbor directly above if that neighbor exists. The D bit can be set to point to the
ncighbor dircctly below (at the k-1% Ievel). The "UP" ficld contains the pointers for the L and M
paths that can point to the 8 neighbors at the k+ 1st level. The "SAME" ficld contains pointers for L
paths that can point to any of the adjacent 8 neighbors at the k™ level. The "DOWN" subficld points
to the 8 neighbors below (at the k-1st level) for representing L and M paths.

7.0.2 Meaning and Purpose of Peaks and Ridges

Section 3.1 showed that a 2-D sampled corrclation is equivalent to a 2-D sequence of inner
products between the filter and the neighborhoods centered at the sample points. An inner product
has its largest possible valuc when the two functions are identical. 1t is also a good measure of how
similar two functions are. For cxample. in communications theory an inner product is used to tell
how much of the cnergy in a received signal is described by a basis function [Wozencraft 65]. Thus a
local peak in a band-pass image indicates a local point where the image signal most resembles the
impulse response of the band-pass filter.

It is possible for a two dimensional signal to maintain a large amplitude along a line or a curved
path such that all of the neighboring values are smaller, When this happens in the band-pass images
from a DOLP or SDOG transform it means that the impulse response of the band-pass filters are a
best fit to the gray-scale form in the image at a scquence of points. Such a sequence of points is
called a ridge. A ridge could be looscly defined as a 1-D sequence of points in a 2-D signal along
which the function value is larger than any neighboring points.

Both ridges and peaks occur in each of the band-pass signals produced by a DOLP transform. This
chupter shows that the appcarance of an object in an image can be represented by encoding the ridges
and peaks from all of the band-pass images from a SDOG transform. To the extent to which the
band-pass signal can be reconstructed from knowledge of the position and magnitude of the peaks
and ridge paths, this encoding is approximatcly reversible. This chapter also shows that the concepts
of peak points and ridge paths can be extended to the third (or k) dimension, that is between
band-pass Ievels. These peak points and ridge paths in the (x.y.k) space provide sufficient
information to uniquely represent descriptions of the 2-1) appearances of objects. Chapter 8 shows
how this a representation can be used to cfficiently match 2-1D appearances, despite changes in size,
2-D orientation, or position of the object relative to the camera.
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7.1 Phenomena in Each Band-Pass Image

This scction describes the manner in which peaks and ridges occur in cach band-pass image of a
SDOG transform. Section 7.4 describes peaks and ridges in the 3-D space (x.v.k). The phenomena
described in these sections are illustrated with filter output from uniform intensity rectangles. ‘These
artificial shapces have simple descniptions and yet illustrate the principles on which this representation
is bascd. Exampics of the descriptions of the images of real objects are presented in later sections and
in the next chapter.

7.1.1 The SDOG Band-Pass Impulse Response

In the following discussions, it is helpful to recall the form of the impulsc response of the band-
pass filters implemented by the sampled DOG transform. The zero crossings and the center row of
this impulse response are illustrated below in figure 7-1.  The impulse response is circularly
symmetric. The coefficient along any line passing through the origin will rescmble the cross-section
shown on the right in figure 7-1. The impulse response consists of a positive center lobe, surrounded
by a ncgative side lobe. The sum of the cocfficients is zero. The response at any point may be
thought of as the sum of the weighted points under the center lobe minus the sum of the weighted
points under the outside side lobe.

0.039

llr III

Zero Crossings Impulse Response

(Center Row)

Figure 7-1:  Impulsc Responsc of Band-Pass Filter
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7.1.2 Edges of Large Regions

Let us start by considering the response of the band-pass filters at the boundary of a much larger
uniform region. Consider a square whose side length is much larger than the diamcter of the
band-pass filter, and whose picture clements are of a larger value than the surrounding background.
Let us examine the response of the filter along a line which is perpendicular to the side of the square
and passes through the center. This response is illustrated in figure 7-2.
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Path Across Square (Level 1)

Figure 7-2: Response Across Center of a Square

When the filter support is totally in the uniform background region the responsc is zero. As the
filter’s negative side lobe begins to overlap with the square, the inncr-product becomes negative. As
the edge of the positive center lobe reaches the edge of the square, the inner-product reaches a
ncgative minima. The responsc climbs through zero as the positive center lobe overlaps with more of
the squarc. Just before the positive center lobe completely overlaps the square, the response will
reach a positive maximum and begin to drop. The drop continues untii the filier is completely within
the squarc and the responsc has tapered to zero. Thus the edges of the squarce result in a pair of peaks
of opposite sign. on cither side of the edge. The distance of the pcaks from the edge can depend on
how sharp the cdge is, and will occur at approximately 2/3 the filter radius on cither side of the cdge.
If the edges are blurred at the resolution described by the filter. the amplitude of the peaks will be
decrcascd, the width will be increased, and the peaks will tend to be a little further apart.

The fact that a negative response occurs outside of the square is interesting. Any approximately
uniform region will have a negative ridge surrounding it. Artists refer to a similar phenomenon in the
human visual system as "negative shape”.
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7.1.3 Convex Protrusions: The Corner

- - - - -

The filters tend to respond to concave and convex protrusions by producing a pcak. When linked
between levels, these peaks form an M-path which describes the shape of the protrusion. As an
example of a convex protrusion, consider the uniform square described in the previous section.
Consider the rcsponse along a line which is parallel to and about half the filter radius below the
upper edge of the square as shown in figure 7-3.
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Figure 7-3: Response at Corner of a Square

As before, the filter responsc is initially zero. As the negative sidclobe moves over the corner of
the squarc, the response will go negative uatil a minimum is reached. The amplitudce of this negative
pecak will be smaller than for the negative edge at the center of the square. This is becausc less of the
negative side lobe is overlapping with the square. As the positive conter lobe comes over the square,
the response will rise through zcro to a positive maximum. The amplitude of this peak will be
approximately twice the amplitude of the positive pcak at the center of the square. Again, this is
becausc Iess of the negative side lobe overlaps with the square. To the right of the positive maximum,
the response will decrease to about half of its maximum value. ‘These points are along the positive
ridge that is insidc the boundary of the squarc. "I'he response is symmetric about the middle of the
square.

Pcaks, such as the one described above, will occur whenever there is a protrusion. Protrusions
which have sharp straight edges appear the same over a range of scales. I<or such protrusions the
height of the peaks at several adjacent band-pass levels will be approximately the same. If the
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protrusion docs not have sharp straight edges. then there will exist levels at which the peak is larger

than the peak at adjacent levels. An example of such a shape would be a square in which U ¢ corners
are rounded.

7.1.4 Across a Long Thin Rectangle

Let us consider the responsc of a filter along a line crossing a rectangle (or bar) whose width is
approximately the same as the radius of the filter’s positive center lobe. This situation is illustrated in
figure 7-4,
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Figure 7-4:  Responsc of Filter Across a Rectangle

As with thc first square cxample, the response starts out as zero, and falls to a negative peak as the
side lobc overlaps with the rectangle. However, since the side lobe passes beyond the rectangle as the
center lobe comes over the bar, the positive response will rise faster and rcach a peak which is
approximately twice that of the positive edge of the squarc. ‘The response is symmetric about the
center of the rectangle. What is important about this cxample is that the responsc of the filter whose
positive inner lobe is the same width as the rectangle will be larger than the response for filters which
are larger or smaller. Such a ridge results in a path of L-nodcs: that is, a ridge between band-pass
levels. The index of the level at which the L path occurs gives an cstimate of the width of the
rectangle.
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7.1.5 At the Ends of the Rectangle

I.et us now consider the response of the same filter along the long axis of the same rectangle. This
is illustrated by figure 7-5.
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Figure 7-5: Response of Filter Along a Rectangle

The negative minimum that occurs as the filter comes over the end of the rectangle will be smaller
than the the ncgative minimum beside the rectangle, because less of the negative side lobe will be
over lapping with the rectangle. As the positive center lobe comes over the end of the rectangle, the
response will rise to a positive maximum which is cven larger than for the center of the rectangle.
‘This is because at the end of the rectangle, only about a quarter of the negative side lobe overlaps
with the rectangle. whereas in the center almost half of the negative side lobe overlaps. Thus at the
ends of a rectangle, a local peak occurs.  For the filter whose center lobe most closcly fits the
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rectangle. the amplitude of this peak will be larger than for filters that are smaller or larger. Such a
peak will be detected as a peak between levels. and labeled as an M*. The levels below it will contain
an M path which splits into two parts. one for each corer. Above it another M-path will lead to the
center of the rectangle. This M-Path may or may not join with onc from the other cnd of the
rectangle, depending on both the length to width ratio. and the difference in gray level between the
rectangle and the background.

7.1.6 A Square Which is Smailer Than the Filter

As a final illustration, let us consider the response of a filter to a square whose size is approxnmatcly
the same as the positive center lobe of the filter. This is illustrated by figure 7-6.

ey gl [

Path Across Square ) = Response
(Level 4)

Figure 7-6: Rcsponsc of Filter To a Square

As with the carlicr cxamples, there is a negative ridge surrounding the square. As the center of the
filter moves over the square the responsce riscs to a strong peak. The height of the peak will be
approximately four times the amplitude of the negative ridge outside the square. The peak that
occurs for the filter whose center lobe just covers the square is the largest responsc to the square
which any of the filters will have. This peak is detected as an M* point, and scrves as a root for the
graph which represents the square. An M Path will extend above this peak for several levels. Below
the pecak an M Path will split into four parts, one for cach corner.
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7.2 Peak and Ridge Path Detection at Each Band-Pass Level

Detecting a local pcak in a band-pass level from the SDOG transform is simple because of the
smoothness given by the band-pass impulse response. Unambiguous detection of the path of a ridge
with an algorithm that may be implemented in parallel has proved to be a more difficult problem.

It was originally belicved that the detection of points on a ridge would require measuring the
direction of lcast change (local directionality) and then finding the local ridge by scanning
perpendicular to that direction. Several techniques for measuring local directionality were
investigated. A particularly rcliable and efficient mecasure based on a 4 point DFT of the inner-
product from 1-D filters at four dircctions will be described in a separate report.

The simplest measurc of local directionality at a point is to compare the filter output at cach of the
8 ncighbors. At any point. the directions at which the largest neighbors exist is the most likely
dircction of the nearest ridge. By definition. the largest neighbors of points on a ridge arc also points
on a ridge. This simple principle serves as a basis for the ridge detection algorithm described below.
Becausc it is not based on a costly directionality measurement function, this algorithm is simpler to
program and cxccutes faster than any of the other algorithms for ridge dectection that were
investigated.

None of the algorithms that were developed for detecting and linking ridge path points always
produced unbroken path.. The problems with these algorithms is that the data consists of fixed point
numbers which exist at discrete locations. While the algorithm described below was sufTicient for the
purpose of demonstrating this thesis, there is room for further rescarch,

7.2.1 Detecting Local Peaks

Local peaks ( positive maxima and negative minima) at a band-pass level arc casy to detect. A local
peak (M) is defined as any sample in a band-pass level for which none of the adjacent 8 neighbor
samples has a value of the same sign and larger magnitude. Note that this definition allows adjacent
samples with the same value to both be detected as peaks. This situation oceurs because of the fixed
point quantization and is handlcd by interpreting adjacent pcak points as part of a singlc peak. 1f two
samples have the same valuc, and only one of them has an adjacent neighbor with a larger value, then
ncither sample is labeled as a peak.

By this definition, an arca of uniform filter output is composed of all pcaks. Only a constant signal
will produce a uniform response over an arca in 4 band pass image. and the values in this response
are zero. Such arcas are casily detected and cxcluded. It is possible to have small regions of width <4
which have a constant valuc if the amplitude is very small (c.g. < 3). 'This is because of quantization
with fixed point numbers. ‘This problem is avoided by not allowing a point where the magnitude is
less than 10 to be labeled as a peak.

1t is mentioned above that a situation can occur where two adjacent samples have the same value,
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and only onc of the samples has a larger ncighbor. An cxample of this occurs in figures 7-8 and
7-9 below at row 54 column 142. Such false peaks arc climinated by sctting the E flag for any
M-node which has an cqual valued neighbor. A second pass is made through the image during which
the M and E flags are cleared for any M-node which has its E flag sct and is not adjacent to another
M-node.

Thus peaks are detected by comparing a value to its neighbors, and to the quantization threshold.
If implemented by itself, this algorithm requires 8 references to the image array for cach sample. This
simple detection procedure is casily implemented as part of the more complex ridge path detection
procedure described below.

7.2.2 Detecting Ridge Paths at a Band-Pass Level

This scction describes an algorithm for detecting samples which are on a ridge in a 2-ID band-pass
image. This algorithm is based on the principle that the largest neighbors of a point on a ridge are
also on the same ridge. Thus any pair of samples which point to each other as largest neighbors are
on a ridge ( detected as P-nodes).

The algorithm for detecting ridge path nodes consists of two stages and requires 8 “"pointer™ bits.
The following is an informal explanation of this algorithm: The cight ncighbors of a point are
assembled into a circular list, with the nodes of the opposite sign marked as zcro. This list is then
scanned looking for local maxima. For each local maxima, the corresponding pointer bit is set. After
this process has been executed for every node in the level the second stage commences. At this stage,
at each node, any ncighbor for whick the pointer has been set is tested. If the ncighbor has its
corresponding pointer (pointing back) set, then both points are labeled as ridge nodcs. and marked
by scuting a P flag. By dcleting all unanswerced pointers, the ridge nodes are left with a two way linked
list giving the path of the ridge.

This algorithm consists of the following steps:
¢ Stage 1: At cach node:
1. Make a circular list of the absolute value of the 8 ncighbors.

2. For any ncighbor where the sign of the valuc is different then the center node, enter
azero.

3. Scan the list (A finite state process works nicely here). For any list clement for
which there is no larger adjacent value, set a pointer for that neighbor.,

4, Store the pointers for the next stage.

e Stage 2: For cach point:

1. Scan the pointers. For cach pointer that is set. get the pointer of that neighbor that
points back.
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2. If this pointer is also set, mark the node as a P. Otherwise delete the pointer.
The two way linked 1i-t of pointers is used in later processes.
This process is illustrated by the cxamples shown in figures 7-7 through 7-9 below. Figure

7-7 shows the raw values filter values from level 2 of the piston rod test image, columns 141 through
152, rows 47 through 57. Note that this data is on a V2 sample grid.

Values for nodes - Level 2 rod.dat raw data
141 142 143 144 145 146 147 148 149 150 151 162

47 13 7 -3 -6 -11 -12
48 -2 -9 -15 -18 ~20 -19
49 -5 -18 -19 -17 -18 -18
50 -18 ~14 ~7 -3 -1 ~3
51 ~16 -11 1 11 14 14
52 -3 8 13 15 17 16
53 0 14 15 8 1 1
54 14 7 -9 -18 ~19 -16
55 12 1 -20 ~29 -36 -38
56 0 -26 -38 -38 -39 -43
57 0 =217 -37 ~29 -24 -23

Figure 7-7: Valucs at Level 2 of rod.swf

Figure 7-8 shows the pointers that are created by the first stage of the ridge path detection process.
The pointers are marked by the symbols { /! \ - }. Also shown is the symbol M wherever a peak has
been detected.

The result of the second stage is shown in figure 7-9 below. At this stage the ridge path points have
been marked with a P and only answered pointers arc not deleted.

7.2.3 Eliminating Small Loops

In most cases the algorithm described above produces a unique path of largest values.
Occasionally two points occur with the same value such that the direction between them is
perpendicular to the ridge path. This occurs because a continuous ridge is represented by fixed point
numbers at discrete sample points. This phenomenon becomes more likely as the signal intensity
becomes weaker.

Such small loops complicate the programming for later stages of the process. Fortunately, they are
casily detccted and climinated by delcting one of the sub-paths.

The sct of all such loops involving 3 or 4 points may be divided into three classes by grouping
together those that are rotational cquivalents. These classes arc listed in figure 7-10 with the cqual
samplcs shown as "E” and the other sampics as "P". Note that in classcs 1 and 2 the loop on the right
ison a V2 sample grid.
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Values for nodes <~ Level 2 rod.swf pointers
141 142 143 144 145 146 147 148 149 150 161 1562

47 13 7 -3 -6 -11 -12

47 \ / \ / \

Figure 7-8: Pointers From First Stage of Ridge Path Detection Procedure

The possible presence of such a loop is signaled by a sample having a pair of pointers in adjacent
directions. When such an adjacent pair of pointers is detected the node is marked by sctting its S
flag. A sccond stage process then makes a test of the directions of the pointers in the next sample in
the path. Loops arc broken by dcleting the P flag and the pointers of one of the cqual valued
samples. The sample that is deleted is chosen such that path length is kept as short as possible and as
straight as possiblc. When these two criteria are not sufficient to choose an equal valued point to be
removed, the more clock-wise sample is choscn arbitrarily.

Figure 7-11 shows a path that includes a small loop. The nodes with adjacent pointers are marked
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rod. swf
145 146
-3
-15
-19
- NP -
-7
1
13
P -
/
/
15
- MP
-9
-20
-38
P -
/
/
-37
P
/

Ridge Paths

147 148
-6
~18
P -
/
/
-17
[
-3
11
15
- p -
8
-18
-29
-33
_
-29

149 150
-11
-20
-~ MpP -
/
/
-18
PB
-1
14
17
~ MP -
1
-19
-36
-39
- P_
-24

Figure 7-9: Ridge Paths Aftér Stage 2 of Procedure

151 152
-12
-19
- P
\
-18
-3
14
15
- P -
1
-16
-38
-43
- MPe-
-23

Figurc 7-12 shows the same poath after it has been processed the procedure that
climinates small loops. This ridge path is from the left most piston rod in the Piston Rods test image
which is shown in figurc 7-25. The ridge is a ncgative ridge that occurs outside the oval shaped
region within cach piston rod.
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Class 1:

Class 2:

~

, ~lass 3:

Figure 7-10: Classes of Small Loops
values for nodes - Level 3 rod.swf Ridge Path
49 51 53 55 57 59 61

61 -26 -22 -16 -5 8 24 37

63 -29 -28 -24 -18 -7 11 23
63 pP-- P P

66 -18 -26 -29 -24 -15 1 16

69 20 -4 -26 -33 -22 -6 9
71 26 3 -23 -32 -25 -8 8
Figure 7-11: Ridgc Path Containing Small Loop

7.2.4 Unterminated Ridge Paths

In most cascs a ridge path will tcrminate at both cnds at an M node. There are, however, several
situations where this docs not occur. In the following sections we describe these situations and how
they are treated.

Whenever a node has only one P pointer, a flag, called the B flag (for Broken) is set. A B node can
occur for the following rcasons:
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Values f¢. nodes - Level - 3 rod. swf Small Loops Removed
49 51 53 55 §7 59 61

81 1
61 -26 -22 -16 -6 8 24 37

63 29 -28 -24 -18 -7 11 23
63 P -- P p

65 -i8 -26 -29 -24 -1§ 1 15

69 20 -4 -26 -33 -22 -6 9
7" 26 3 -23 -32 -25 -8 8

Figure 7-12: Path Aftcr Removal of Small Loop

1. When a ridge path is broken, usually because of an abrupt change in the ridge amplitude.
Such cases are an error and arc handled by attempting to extend the path as describsd in
section 7.2.5 below.

2. A "Spur”: This is an cxtra point which occurs to the side of a ridge p'-. usuaiy
connccted to an M node. Spurs arce deleted only when they are a single nag> d not
connected to an M node, as described by section 7.2.7.

3. A Fading Ridge: This can legitimately occur for some patterns. For exampie, when a bar
ends by fading into the background, or when a large arca has squ-re wave "tecth” that are
longer than they are wide.

4. An Isolated Pair. This is the case when two P nodes are connected to cach other and only
cach other. This can be the result of a small region which is described at lower levels and
should be ignored at this level, or it can occur at a saddle point along a ridge.

The action which is taken at a B nodc is first determined by the number of pointers which the
connccted neighbor of the B node has. The following situations occur:

1. One pointer: This signals an [solated Pair.

2. Two pointers: ‘This usually indicates a break along a ridge path. although a fading path or
a long spur might be the cause. Which of these is the casc is determined by attempting to
cxtend the path as described in section 7.2.5 below.

3. Three (or more) pointers: The B node is a spur.

_ | |
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7.2.5 Repairing Broken Paths

Under some conditions the amplitude of a ridge can make a sharp increase or decrease. Such a
rapid transition can result in a ridge path point not being detected or in a pair of pointers not being
formed along a ridge. An cxample in which this occurs in 4 places is shown in figure 7-13. The
pointers are used in the process for detecting the L-nodes. Thus it is necessary to correct such broken
paths.

A one pass process is cxccuted for each node with its B flag set which is connected to a node with 2
pointers. This process attempts to extend the ridge path for up to 2 samples. If it is possible to close
the path with samples of the same sign. and without creating an adjacent pointer condition (as
defined above), then the path is closed. The algorithm runs as follows:

1. Determine the direction of the single pointer.

2. For the opposite direction. and the two directions adjacent to the opposite direction, get
the neighbor node.

3. If any of these neighbors arc also a P-node and have the same sign, and linking to that
node will not create an "adjacent pointers” condition (sec exception below), link to the
P-node with the largest magnitude and quit.

4. If none of these three nodes arc P nodes. choose the largest of them (with the same sign)
and repeat steps 2 and 3. Use the direction between the starting point and the chosen
neighbor for choosing the next set of three neighbors.

5. Steps 2 and 3 are repeated twice if the largest neighboring node is always found in the
same direction. Otherwise steps 2 and 3 arc only repeated once to avoid creating small
loops.

Exception: At step 3. an adjacent pointer condition does not inhibit linking to a node if the
adjacent pointer points to a B-node. In such a casc the the link is made and the B-node is deleted.

Figure 7-13 shows the inner oval region from a piston rod at band-pass level 3 before it is
processed by the algorithm to connect broken ridge paths, Figure 7-14 show the result”afier the
extension algorithm. This figure also illustrates that the extension algorithm has a preference for
conneciing to the adjacent node that has the largest value. The procedure also deleted the B-nodes
that remaincd as spurs after the linking.

7.2.6 Isolated Pairs

The configuration of two P nodes with only 1 pointer (i.c. connccted only to cach other) is a rare
but troublesome one. It usually occurs in arcas where the signal is weak. and if extended can often
causc a spur of length 2 or 3. It has been observed that when the amplitude of a ridge makes a dip
this configuration will occur. In this case, the broken path on cither side of the pair of isolated

| | | |
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Valves for nodes - Level 3 rod.swf Ridge Paths
39 41 43 45 47 49

67 2 20 29 28 22 2
67 P8

67 !

69 !

69 16 35 39 38 34 20
69 PB-- MPp -- P -- PB

5 20 32 30 31 32 26 -
71 PB PB

73 16 21 21 22 26 24
75 15 21 19 16 25 23
77 16 22 20 21 22 20
79 21 29 27 26 31 24

81 19 34 38 36 33 21
81 PB-- MP -- P -- PB

85 ~14 3 16 156 7 -1
85 PB

Figure 7-13: Example of Broken Ridge Paths Before Extension

P-nodes will extend to the P-nodes, thus connecting the broken path. Thus these points are not
cxtended. If they both remain as B nodces after the extension process they are deleted.

7.2.7 Deleting Spurs

Occasionally the algorithm for detecting ridge nodes will Icave a node which is adjacent to, but not
on the path of, the ridge marked as a P-node. Such P-nodes, which are referred to as "spurs™ are
casily detected. Spur nodes have only onc pointer, and they are connected to a node with 3 pointers.
When a spur P-node is detected, if the node 10 which it points is not an M node, it's P flag and
pointer are deleted. A spur which points to an M point is retained as a potential point on an L-path.
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Values for nodes - Level - 3 Ridge Paths After Extension
39 41 43 45 47 49
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67 2 20 29 28 22 2
67 P8
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69 16 35 a9 38 34 20
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n 20 32 30 31 32 268

73 16 27 21 22 28 24

75 16 21 19 16 26 23

77 16 22 20 21 22 20

79 21 20 27 25 31 24

81" 19 a4 a8 36 33 21

85. -1 3 15 15 7 -1
86 P8

Figure 7-14: Examplc of Repaired Ridge Paths After Extension

7.3 Phenomena Between Levels in the Transfurm Space

In this scction we review some of the structures that occur in the sampled DOG transform of some
common forms. We first describe the chain of M-nodes (the M-path) that result from non-clongated
forms. ends of clongated forms and corners. We then describe the chains of L-nodes (the L-path)
that rcsult from clongated forms and edges. This scction describes the purpose and principles behind
the algorithms for forming M-paths and L-paths that arc described in the next section.
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7.3.1 Connectivity of Peaks: M-Paths

In our first experiments with the band-pass detection functions {Crowley 78b] we observed a
phenomenon which has proved fundamental to constructing a size invariant representation of gray
scale forms from a SDOG ‘Transform. This phenomenon is: Any non-clongated gray scale form will
cause a peak at approximately the same location in several adjacent band-pass levels. Furthermore,
except for certain degenerate cases, the magnitude of the peaks will rise monotonically across levels to
amaximum and then decrease.

These pcaks may be detected individually at each level as described above in section 7.1. The
peaks may then be linked by starting at each and cxamining its neighbors in the next upper level for a
peak of the same sign. The largest peak may be found during this linking process by comparing the
valucs of the peaks as they are linked. This process, which is called "flag stealing”, is described in
scction 7.4,

To sce why this conncctivity occurs, let us consider the Sampled DOG Transform of a uniform
intensity 11 x 11 square. Each band-pass filter will respond most strongly to a uniform region which
just fills it positive center lobe. However the response of a filter falls off gradually as the size of a
uniform region grows larger or smaller. We have observed that the response will decrease by about a
factor of 2 for a factor of 2 increase or decrease in the width of a square. Since the filters are scaled by
a factor of V2 alocal peak occurs within several adjacent band-pass levels. The band-pass signals for
an 11 x 11 square arc shown below in figure 7-15. In this figure we have plotted the valucs along a
line which pass through two corners of the square for the band-pass levels 6 through 1. The largest
peak occurs for the filter at level 4, which has a positive center region of diameter 2 V20 + 1 (See
cquation (6.5)) or diameter of approximately 9.9 samples.

In fact there are distinct types of M-paths that occur in a DOLP transform. The following three
sub-sections cxamine the three most common classes of M paths. Each of these classes has been
given a name. These names, “spots”, "bar-ends”, and "corners™, are not intended to imply that these
peaks only occur in patterns which an English spcaking human wouid call a spot, bar, or corner.
These are mercly labels with which we can refer to these classes. These labels could just as easily be
labeled with numbers (as indced they arc in our programs).

In this subscction we are concerned with regions of pixels in which the valucs are approximately

uniform. ‘These regions must have a background which is predominantly darker or lighter than the
region for these results to hold.

7.3.1.1 "Spots” or Non-Flongatcd Forms
I.ct us consider such a region which is not more than twice as long as it is wide. We refer to this
class of gray scalc forms as "spots”. ‘The square in figure 7-15 is an example of a form that includes a

spot M-path.

A spot will result in M-nodecs at a sct of adjacent levels of a DOILLP transform. These M-nodes will
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be located at the sample at each level closest to the center of the form. As a result, these M's will tend
to be almost directly under one another. An cxample of such a sequence of peaks is shown in levels 7
through 3 in figure 7-15.

These M-nodces may be detected individually at cach level. They may then be linked together by a
quite simple process to form a two-way linked list. We call such a linked list of M nodes an M-path.
The magnitude of the values of the M nodcs along such an M-path will rise to a maximum and then
drop off. The level at which the maximum occurs provides an estimate of the size of the spot. This
estimate may be obtained from the formula for the radius of the positive center lobe of the level k
band-pass filter. This formula is given as equation (6.5) in chapter 6.

In most cascs cach peak in the spot M-path will be surrounded by a ridge path of the opposite sign
at a distance of 3 to 5 samples. One way to classify a peak as part of a spot M-path is to detect such an
opposite signed ridge at all directions within a distance of 6 samples. We have employed a process
which scans at multiplcs of 45° scarching for such opposite signed ridges to classify individual peaks
with satisfying results. The classification accuracy can be improved by combining the result of such a
scan from the peaks within several levels of the largest, or M* peak. This provides a label for the M*
peak.

7.3.1.2 "Bar-end”: The Ends of an Elongated Form

If a gray scale form is more than twice as long as it is wide, a sequence of pcaks will occur at several
adjacent levels at the ends of the form. This is illustrated by figure 7-16. This figure shows onc end
of a uniform intensity rectangle. Circles are drawn over this rectangle to represent the locations
where difference of gaussian filters from an SDOG transform best fit the rectangle. Each circle has a
radius which is that of the zero crossing of the inner positive center lobe of the corresponding filter.
The circles are centered at legal sample points from the level of the SDOG transform of the filter
which they represent.

To the right of the partial rectangle is a tree of M-nodes. Each symbols corresponds to one of the
circles on the left and represents the location of a peak in the SDOG transform of the partial
rectangle. The largest circle corresponds to the top symbol, the second largest circle corresponds to
the sccond symbol, ctc. The labels "Bar-End™ and “"Corner™ are those which were assigned on the
basis of the out side negative ridge. The labeling process employed a scarch scan in 8 directions that
returned one of three states: no ridge, same-signed ridge. or opposite-signed ridge. The base three
number was then used to index into a table of labels. The table was constructed by a training process.
This labeling procedure will be described in a report.

The position of these peaks will move from the center toward the conds of the form as the level
index, k, decreases. As with a spot M-path, the magnitudc of the peaks will rise to a largest value and
then fall off. This largest value, which is labcled an M*, corresponds to the filter whose positive
center lobe best fits the ends of the form.

At cach level. the peaks at the end will be connected by a ridge path of the same sign. The entire
configuration will be surrounded by a ridge of the opposite sign. For bar-cnd M-Paths a scan of its
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Figure 7-16: Examples of Bar-End M-Paths

neighbors to a distance of 6 samples will show this opposite signed ridge spanning an angle of
approximately 270°. ‘This fact, and the presence of the single ridge of the same sign can be used to
label the peaks as "bar-ends”. As before, a label may be assigned to the M* peak on the basis of the
labels of the other M’s in the M-Path.

7.3.1.3 "Corners™ and Other Protrusions

A corner or a sharp protrusion will also result in a scquence of peaks at several adjacent levels.
However, if the edges of this corer or protrusion are straight, then we have a shape which is the
same at several resolutions. In this case the magnitudc of the pcaks will tend to be constant. ( In fact,
small fluctuations can causc spurious M*'s 1o be detected.) If the protrusion is rounded. the value of
the pcaks will risc to a maximum and then diminish as k decreases. The M-Path may cven end before
the lowest (k = 1) level. In this case there will fikely be a largest M node. For a peninsula that is
more than twice as long as it is wide, this M-path will be a bar-ecnd. Both of thesc situations are
illustrated in figure 7-17.

In most cascs. corners will have two ridges (P-pa.ths) of the same sign connected to them, usually at
right angles. Also, within a distance of 6 samples there will be an ridge of opposite sign spanning an
arc of about 180°.
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Figure 7-17:  Two Forms that Causc "Corner™ M-Paths

7.3.2 3-D Ridges: L Paths

Whenever an clongated gray scale form occurs, the DOLP transform of the form will contain a
ridge at scveral adjacent levels. The sample points along these ridges correspond to points in (x,y.k)
where the positive center lobe of a band-pass filter is a close fit to the width of the gray scale form.
‘These points are detected by the ridge detection process described above and labeled as P nodes. As
with M nodcs. P nodes will occur at approximately the same x.y locations in several adjacent levels.
At the level where the filter center lobe is the closest fit to the gray scaic form, the magnitude of the
filter output (along the ridge) will have a larger value than at adjacent levels.
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These largest ridge nodes ( called 1.-nodes ) can be detected from the ridge nodes ( P-nodes ) at
cach level by a process which is similar to the "flag stealing” process used for detecting the largest
M-node on an M path. Unfortunately this detection process is somewhat more complex because of
’( the directional naturc of ridges and the difference of sample rates at different levels. Once the
I.-nodes have been detected they can be linked into a two-way linked list call an L-path.

In the following paragraphs we will examine the patterns of ridges that occur for uniform width
bars, bars of changing width , and edgcs of regions.

7.3.2.1 Ridge Paths for a Uniform Bar

Consider the uniform rectangle which was used as an example in figure 7-5 above. The response at
levels 6 through 1 of the Sampled DOG transferm along 4 line through the center of the rectangle is
shown in figure 7-18 below. At level 2, an M* occurs at both ends of this rectangle. Between these
M*-nades there is a ridge node that is larger than the ridge nodes above and below it. This ridge
node is detected as an 1. node by the process described in the next section. ‘This rectangle produces a
graph as shown in figure 7-18. We can abstract all of the M* nodes and L-paths in this graph to
obtain a description of a class of forms that resemblc this bar. This class of forms is defined by the
presence of the symbols:

M*-L-M*

If we held the width of the rectangle constant and increased its length the number of L-nodes
between the M™ nodes would increase. We can define the class of bars as those forms which have a
pair of M* nodes connected by some number of L-nodes between them, and then encode the
cartesian distance between the M* nodes (measured in samples at some reference level) as an
attribute of the form.

7.3.2.2 Bars of Changing Width

Suppose. instcad of a rectangle, we have a four-sided form which changes in width by a factor of 2
along its length. Such a form is shown in figure 7-19. As the width of the form decreases, the level of
the filter which best fits the form decreases. As a result the M* nedes occur at different levels, and
the 1.-Path changes levels. We can dcfine a class of bars that includes bars that change width, by
collapsing the l.-path into a single symbol. The L-path should rctain the attributes of its length
(Mcasured in number of samples at some reference level) and the change in levels between the M*
nodes that it connects (ak).

7.3.2.3 Fdges of Regions

A straight line cdge of a uniform region will result in a sct of ridge paths at several levels in which
the values are approximately the same. If the cdge is blurry, then the value along these ridge path will
decrease with decreasing k. If. on the other hand, the figure is washed out, the valucs along the ridge
path will be largest at some level, and will be detected as L-nodcs.
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Figure 7-19: An Elongated Form That Changes Width

The fact that an L node is part of an edge can be detected by the same scan procedure described
above for labeling M-nodces. An L node or P-node which is part of an cdge will have a single ridge of
opposile sign running paralicl to it within.a distance of 6 samplcs. It may or may not have a same
signed ridge parallel to it in the opposite direction within 6 sampics, depending on how wide the form
is. An lL-path which is part of a "bar” or other clongated form will have opposite signed ridges
running paralicl to it on two sides. Figures 7-2 through 7-6 show examples of the ridge points and
opposite signed ridge points that occur for an edge. Thesc figures show the responsc along a line at
one level, Figure 7-4 shows an example of a ridge point which is an 1. node and dctected as a bar
with ridge points of the opposite sign on both sides. Both of these cases are illustrated with a piston
rod image shown in figures 7-26(a) through 7-26(h) and 7-27(a) through 7-27(h) at the cnd of this
chapter. Figure 7-27(h) is a good 2-1) example of the ridges that occur on both side of an edge.
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7.3.3 Connectivity of L-Paths and M-Paths

One of the propertics that permits us to construct a representation of an image using only local
operations is the property that L.-paths wiil almost always terminate at an M-path,

An L-path follows the length of an clongated form. As the form widens, the L-path moves
upwards in the k dimension. As the form narrows, the L.-path moves downward in the k dimension.
At the ends of an clongated form the response of a DOLP (or SDOG) transform increases due to the
presence of more background arca in the negative side-lobe of the band-pass filter. This increase
results in an M-node. Unless the form fades into the background very gradually there will be an
M-node at its end, and thus the L-path will terminate at an M-path. Because the same band-pass
filter will best respond to the width of a form both along the form and at its ends, an L-path will
usually terminate within one level of an M* node.

7.4 Connecting Peaks Between Levels

This section describes a process which links peaks (M nodes) which are at adjacent levels in the
DOG transform to form M-paths. This process also detects the largest M nodes in a path and labels
these as M* nodes. An M* node is an M node which is part of an M-path and which has a larger
value than the adjacent M nodes in the M-path,

7.4.1 Linking M’s

The principle behind the process for linking M nodes is simple. Starting at the highest level, K, at
cach level k cach M node looks at the nodes withim a local ncighborhood above it, at level k+1. A
2-way pointer is made to all M nodes that are found within this ncighborhood.

This process proceeds as follows: For each level k, from K through 1, cach M node at level k
examincs the nodes which are adjacent to it at level k+1. There may be cither 4 or 9 such adjacent
nodes duc 1o the V2 sampling. The nodes which arc adjacent to these nodes at level k+1 are also
cxamined. Thus cither 25 or 16 total nodces arc cxamined. 1f any of the adjacent 4 or 9 nodces at level
k+1 arc M nodes and have a valuc of the same sign. then a 2-way pointer is formed. This pointer is
formed by sctting the appropriate down pointer of the node at level k+1 and setting the up pointer
corresponding to that upper ncighbor in the node at level k. See wable 7-1 and section 7.1 for an
cxplanation of the up and down pointer bytes.

If any of the ncighbors of the ncighbors at level k+1 aic an M node an indirect 2-way pointer is
made. An indircct pointer goes through the adjacent ncighbor’s pointer. he sct of pussible indirect
paths arc illustrated in figurc 7-20. The fact that a pointer is indirect may be determined by
cxamining the 1. and M flags of a node. If both these are zero then any pointers for 1. and M paths are
indirect pointers.
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Figure 7-20: Possible Sct of Indirect 2- Way Pointers for M-Paths

7.4.2 DetectingM*™’s

M* nodes arc detected by a process which we refer to as "flag stealing”. When an M node detects
another M node at fevel k-+1, it compares values. If the M node at level k has a value of smaller
magnitude it clears its own * bit. If the M nodec at level k has a value of larger magnitudc it clears the
* flag of the node at level k+1 and sets its own * flag. 1f more than one M node is detected at level
k+1 they must all be smaller for the node at level k to sct it’s * flag. 1f no M nodes are found at lcvel
k+1 then the * flag is clearcd: This prevents any isolated M nodes from becoming M* nodes, If
more than one node at level k link to an M node at k+ 1 any of them will clear the * fiag of the node
at level k+1 if they have a larger valuc. Thus * flags propagate down an M-path until they reach a
nodc with the largest magnitude.

7.4.3 Example

Figure 7-21 shows the M-paths and the M* node that occur at Ievel 7 through 1 for a uniform
intensity square of width 11 pixels, and grey level 96 on a background of 32.

7.5 Detecting Ridge Nodes in (x,y,k) Space

This scction describes the processes for detecting ridge nodes (1.-nodes) in the 3-D SDOG
transform space. The scction starts with a discussion of the approach which is used and a description
of some of the problems that complicate such detection. A description of the scarch procedure for
P-nodes within two ncighborhood sizes above cach P-node is then given. A discussion of the "flag
stealing™ process that is used and modifications to this process is then presented.
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Figure 7-21: M Paths For Square of Size 11 Pixels

7.5.1 Problems and Approach

Ridge nodcs in the (x.y.k) space produccd by the SDOG wransform are detected with a form of flag
stcaling process. As with detection of M*-nodes from M-nodes. the P-nodes which have been
detected as ridge points at each level are used as candidates for L-nodes.

These P-nodes cxamine the P-nodes within a ncighborhood at the level above them. This
cxamination occurs during a two stage scarch procedure. Initially a smatl neighborhood at level k+1
is cxamined above cach P-node at level k. If no P-nodes are found in this small ncighborhood, then
the nodes within a larger neighborhood arc scarched for P-nodcs. ‘This second scarch is inhibited for
dircctions within 45° of any P-path pointers in the P-nodces at level k to prevent a P-node at level k
from stealing the 1.-flag from a P-node at level k+ 1 over a different part of the ridge.

The situation is more complicated than with detection of M*-nodes. because:

o Ridge paths (1.-paths) arc dircctional and may travel through as well as along the levels.

e Ridge paths that describe an edge tend to move sideways toward the cdge as the level
decreascs. This creates situations where cach P-node at level k+1 is examined by scveral
P-nodes at level k.
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« Two connected P-nodes at level k may, because of V2 resampling. have a P-node at level
k-1 between them, as illustrated by upper part of figure 7-22. In this figure, the larger
squares represent the P-nodces at level k + 1. and the smaller squares represent the P-nodes
at level k. Which of the nodes at level k+1 should the node in the center at level k
compare its value to?

The problem illustrated by figure 7-22 is even more severe when the P paths at adjacent Jevels are
displaced side-ways as shown in the lower part of figure 7-22. This situation is handled by a
modification to the flag stcaling process described in section 7.5.5  This modification is based on the
principle that an L-flag is stolen only if all its lower P-node neightors have a larger value.

Overlapping Ridges at Adjacent Levels

Displaced Ridges at Adjacent Levels

Figure 7-22: Two Configurations of Ridge Paths at Adjacent Levels

7.5.2 Search Paths

At cach P-node at a level k, the upper ncighborhood at level k +1 is scarched for P-nodes. The
P-node at level k from which the scarch originatcs is refered to as the "source™ node.

A source node at (x, y, k) can have two possible ncighborhoods at level k+1 depending on
whether a sampie exists at (x, y. k+1). Thesc two neighborhoods are illustrated in figure 7-23. In
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this figure, circles represent sample points at level k while boxes represent sample points at level

k+1. The source node has a cross through it. If k is even (i.c. on a V2 sample grid). these two
neighborhoods are rotated by 45°.
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Figure 7-23: Two Possible Upper Neighborhoods

" There are two scarch procedures that are used to detect P-nodes at an upper level, depending on
whether the source node at (x, y. k) has a sample directly above it, i. e. at{x, y, k+1). The test which
tells whether a sample exists at (x. y, k +1) is used to determine which search procedure is used. That
is, if’:

xmod 28 = ymodz" =1

is true then the source node at (x, y, k) has a sample dirccly above it.

If a samplc cxists above the source node, then it is tested to sce if it is a P-node. If it is a P-node,
then only this node is cxamined.

If no sample exists above the source node. or the sample above the source node is not a P-node,
then a two stage scarch procedure is employed. The first stage examines the ncarest 4 upper
neighbors. 1f no P-nodce is found in this first stage. a second stage scarches for P-nodes in an cnlarged
neighborhood. ‘The neighborhoods examined by these scarch algorithms are illustrated in figure
7-24. In this figurc the samplc points at level k which have no ncighbor arc illustrated with a circle,
Points where samples cxist at both levels are indicated by a 1. or a 2. Thosce points with a 1 are
examined in the first stage, those with a 2 arc cxamined in the sccond stage if no P-nodcs arce found in
the first stage.

The sccond stage scarch docs not occur for any dircction within 45° of a P-path pointer in the
sourcc node. ‘This helps prevent nodes from interfering with the flag stealing process at other points
on the P-path,
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Figure 7-24: Upper Scarch Neighborhoods for Stage 1 and Stage 2

7.5.3 The Modified Flag Stealing Process

The principlcs of "flag stealing” were described during the discussion of detection of M*-nodes
given in scction 7.4.2. This process must bz modificd to use with detecting 1.-nodes, because each
L-node at level k+1 is likely to be cxamined by several P-nodes at level k, some of which may be
displaced along the P-path ridge. Since the value can change along a 3-D ridge. aodes further along
the ridge might improperly clcar the L-flag of nodes above them, breaking the [-path. The
modification is bascd on the principal that all of the lower neighbors must have a larger value, before
the upper P-nodes L flag will be reset.

Modificd flag stealing employs two temporary bits at cach node which denote whether any lower
necighbors have a smaller value ( flag 1) or a larger (or equal) value (flag T2). Aftcr flag sicaling is
exccuted at level k, the L-nodes at fevel k+1 are examined, and any with node which has its T2 flag
sct and its T'1 flag clcar has its L flag cleared.

A scarch ncighborhood which is of restricted duration along a ridge is also uscd. A larger

ncighborhood is needed for directions perpendicular to the ridge because of the lateral drift that can
occur with P-paths as the level decreases.

75.3.1 Modified Flag Stealing

If a source P-nodc at (x, y, k) has an upper ncighbo: at (x. y, k+1) which is also a P-noce, then
only this ncighbor is cxamined by this source node.

If the source P-node at (x. y, k) has nc upper ncighbor. ¢r the upper ncighbor is not a P-node, then
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this process is applied to the ncarest upper 4 neighbors. If no P-nodes are found in the nearest upper
ncighbors, the scarch is applicd to an cnlarged upper neighborhood. As mentioned above, the second
stage scarch is inhibited for all samples within 45° of a P-path poinier in the source node.

When a P-node is found at level k+ 1, its value is compared to that of the source node. If the value
of the upper neighbor is larger and the upper neighbor has its 1. flag sct, then the T2 flag of the upper
neighbor is sct to indicate that the upper neighbor has a lower neighbor with a smaller value. If the
value of the source node is larger, then the L flag of the source node is sct. Also, if the L flag of the
upper neighbor is set, then the TI flag of the upper neighbor is set to indicate that the upper neighbor
has a lower neighbor which attempted to steal its flag.

7.5.3.2 Resolving the T1 and T2 Flags

After the L node detection process has been run at level k, the L-nodes at level k+ 1 are processed
to resolve the T and T2 flags. At cach L-node atlevel k+1, if its T1 flag is sct and its T2 flag is not
sct. then all of its neighbors at level k arc larger. In this case, its L flag is cleared.

This modified flag stcaling process will permit two or more P-nodes at the same location in
adjacent levels to be L-nodes. This can occur when an clongated form has a sudden decrease in
width. For such a form, the L-path can travel straight down through the levels. An example of this
occurs with in the Piston Rod images and can be scen at column 41, rows 97 to 109 in levels 7 and 6
of the Piston Rod description shown in figures 7-27(d) and 7-27(c). The L-nodes at the upper level
are inhibited from losing their L.-flags. because other P-nodes at in the lower level P-path have
smaller values. and thus sct their T1 flag.

7.5.3.3 Linking L-nodes

After the T1 and T2 flags have been resolved, a process is cxecuted to form two way pointers
between all adjacent L-nodes. ‘This process runs as follows. Each 1.-node at level k + 1 cxamines all of
its neighbors at level k 42 within its 2nd stage ncighborhood and all neighbors at level k+1 for which
it has a P-path pointer but no I.-path pointer. If any of these neighbors are an |.-node. an M-node, or
an M*-nodc a two way pointer is made by setting the appropriate pointers in the UP, SAME and
IDOWN pointcer bytcs of the neighbor and the source L-node. .

7.6 Examples

This scction shows some examples of M*'s, M Paths, L. Paths and P Paths. These cxamples are
from levels 10 through 3 of the right most piston rod in the image shown in figure 7-25 below. This
image is fram the GM "Bin of Parts” data basc [Baird 77].

Figure: 7-26(a) through 7-26(f) show the upper third of the left most pistor rod. These figures are
shown with nodes spaced at 4 pixcls, which is the sample rate at level 5. Figures 7-26(g) and
7-26(h) show a smaller window which is from the upper left corner of the window shown in parts a
through f. In parts g and h the sampie ratc is 2V2 and 2 respectively.
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Figure 7-25: Piston Rod Image. Sampled at 256 by 256.
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Figure 7-26(a) is from level 10 of the DOG transform. At this level the data has been sampled at
16V2 and so this figure is very sparsc. Note the M node at row 81. col 49. This is the start of an M
path that leads into the piston rod.

Figure 7-26(b) shows the same window at level 9. As is often the case there are short spurs hanging
off of the M node at row 81, col 33.

Figure 7-26(c) shows the same window at level 8. At row 73, col 41 is the M* node which serves as
a landmark for the upper part of any piston rod. The two L. nodes at row 65 are spurs; they do not
connect to anything eise. The L node at row 89 is part of an L. path that travels down through the
levels and down through the rows to become the long part of the piston rod.

Figure 7-26(d) shows a phcnomenon which is very rare: This is the only instance that we have
obscrved. On rows 73 and 81, The values in columns 41, 49, and 57 arc the same. The result is a pair
of parallel adjacent ridges of the same sign. This is not a serious problem as these points are not
strong enough to be L. nodes. Note also that the M path has split into two parts. Both parts have two
way pointers to the M* node at level 8.

In figure 7-26(c) the shape of the upper part of the piston rod begins to become apparent. Note
that an M nodc has appeared in the middle, at row 77, col 45. This M nodc is attached by P paths to
ncarby M nodecs in 4 dircctions. These paths resulted when the spurs attached 1o this central M nod
were extended. This central M node evolves at lower levels into the oval shaped region which occurs
in the center of the top of the piston rod.

Figure 7-26(f) shows level 5 of the description. Note the M* node on row49, column 45. This
marks the large region at the top of the piston rod. Notice also that two L paths extend from this M*
node. These L. paths drop down to lower levels as that part of the piston rod narrows. Also note that
at this fevel the negative ridge surrounding the inner oval has appearced. The oval is not conncected to
the rest of the piston rod in this or any of the lower levels.

Figurc 7-26(g) shows thc upper right corner of the window from the previous subfigures, as scene
in level 4. At this level the dar . is sampled at 2V/2. Note that the 1. path begun in level 5 continues
into this level. Note also that at this level the negative ridge which surrounds the oval also forms a
part of an L. path,

Figure 7-26(h) shows the transform at level 3. The L path that describes the ring of the upper part
of the piston rod dips into this level in its narrow parts. The P path for this form is broken at this
level. This is an artifact of the ridge detection process. The negative ridge outside of the piston rod
has an M* at this level. This indicates that a rounded corner occurs in the background (A negative
corner!) The M* occurs because this corner is not sharp.  The ncgative ridge between the outer
pusitive ring, and the inner oval also contains two M*'s at this Ievel. These correspond to negative
corners in the inside of the ring. The 1. path attached to these negative M*'s extends up to level 4,
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Figure 7-26a: Top Of Piston Rod at Level 10
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Values for nodes - Level 9 rod. swf
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Figure 7-26d: Top of Piston Rod at Level 7
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Figure 7-26h: Top 1.cft Corner of Piston Rod at Ievel 3
(Note that Sample Rate is 2)

Figures 7-27(a) through 7-27¢h) show the description for the middle of the same piston rod. The
window within which these points are shown is immediately below that for figures 7-26() through
7-26(h).

o | |




140

Figure 7-27(a) shows this window at level 10. Because of the sparse sampling, there are only 2 P
nodcs, which are an cxtension of the ridge path for the middie of the piston rod. The same is true for
levels 9 and 8, although one can see the values increasing as the level decreases.

Atlevel 7, figure 7-27(d) shows this P path with two L nodes at rows 97 and 105. These L nodes are
part of the L path that started with the M* node at row 73, col 41 of level 8 shown in figure 7-27(c).
This L path continucs into level 6. as shown in figure 7-27(c) as the upper part of the piston rod
narrows. Note, also, how the negative ridges move closer t the positive ridge as the filter radius
becomes smaller. This is a classic ecxample of the configuration of ridges that occurs for a uniform
width longish object.

The L path finally settles into level 5, as shown in figure 7-27(f). This L path connects to the M*
node at row 133 col 41, and then continucs down the piston rod.

Figures 7-27(g) and 7-27(h) show blown up versions from the middle of the window shown in the
previous figures. In these two figures. the nodes arce printed with a spacing of two columns; the
sample rates are 2V/2 and-2, respectively. Figure 7-27(g) shows this smaller window at level 4. The
positive ridge at this level has a lower value than at level 5. Figure 7-27(h) shows this smaller window
atlevel 3. At this level the positive ridge has split into two ridges, representing the edges of the piston
rod. The spurs attached to the M nodes at this level extended to reach cach other, giving an
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occasional path between the two positive ridges.
Values for nodes - Level 10 rod. swf L Paths and M Paths
17 21 25 29 a3 37 41 45 49 53 57 61
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Figure 7-27a: Middle of Piston Rod at Level 10
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Chapter 8
Matching the Representation

This chapter concerns matching the representations of pairs of gray scale forms, particularly in
situations where:

o the two forms are in digitized images of the same object (or very similar objects), and

« onc of the objccts was at a different distance and/or 2-D image plane orientation from the
camera than the other at the time of digitization.

This chapter provides examples of the rotational quasi-invariance and the size quasi-invariance of
the representation developed in the previous chapters. However the techniques involved in such
matching can also be uscd for stereo image interpretation and object recognition. Thus, it is worth
while to develop principles and approaches to such matching while demonstrating the properties of
the representation.

The remainder of this section discusses the role which correspondence plays in stereo
interpretation and structural pattern recognition. Scction 8.2 summarizes the matching techniques
which are illustrated in this chapter. These techniques are preliminary; matching was not within the
domain ¢ this rescarch. These techniques were explored to assist in demonstrating the usefulness of
the representation and as a preliminary look at an important problem which we will address when
this disscrtation is complete. This is followed by a scction which presents the test data (section 8.2)
which was used to verify the size and rotational invariarnce of the representation.

Scctions 8.3 and 8.4 concern the use of M-nodes (local peaks at a level), M*-nodcs (local peaks
among the ievels), and P-paths (ridges at a level) for determining the relative position, orientation
and sizc of two representations of the same (or similar) gray scalc forms. In scction 8.3, the concept
of connected M-nodes is defined and an cxample is presented.  Scction 8.4 illustrates the
correspondence of M-nodes and M*-nodes in rotated and scaled images of an object using the tcapot
images. This scction cnds by showing the correspondence of the M-nodes in a stereo pair of paper
wad images. Scction 8.5 discusscs the use of the M*-node correspondence to align L-paths (ridges
among the levels) from rotated and scaled images of an object and describes a simple similarity
measure for aligned L-paths. This scction ends with cxamples of matching the L-paths from the
right-side shadow of the tcapot image.
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8.0.1 Applications of Correspondence Matching

This Subscction brieflv introduces the matching problem in the domains of sterco matching and
structural pattern rccognition. It also describes the properties of the representation that make it
uscful in these domains.

In image understanding there are several problem domains where it is desirable to determine the
correspondence between parts of two representations. One such problem domain is interpretation of
. pairs of sterco images to obtain depth information. Depth information is obtained from a sterco pair
of images by triangulation. Triangulation depends on knowledge of the relative positions and
orientations of two cameras., the so-called "camera paramcters” {Duda 73], The "stereo
correspondence” of surface points in the images is also required. This is the positions of pixels in the
two images that correspond to the same point on the surface of an object. It is then possible to set up
the projective gecometry that relates the two cameras to points on the surface of objects. Given this
geometry. the distance may be computed from one of the cameras to cach surface point for which
corrcspondence is known. These distances provide a map of the 3-D form of a scene.

Before the depth to a surface point can be computed, it is necessary to determine the location of
the pixels which correspond to that surface point in cach of the images This stereo correspondence
problem is the most difficult problem in stcreo image interpretation. The usual approach to this
problem is to corrclate patches in the two images. But this is an expensive process, and there are
problems with determining how large a necighborhood to correlate.

The representation developed in the previous chapters has propertics which greatly simplify the
process of determining the correspondence of patterns of pixels in two images.

1. Only peaks correspond to peaks. The existence of peaks or M-nodes provides a set of
landmarks which can be uscd as tokens in the matching process.

2. The multi-resolution hicrarchical structure of the representation permits the
correspondence process (o commence with the most global M* nodes for cach form.
Since very few such symbols exist at the coarsest resolution, the complexity of this process
is kept small,

3. The conncctivity of M-paths permits the match information from a coarsc resolution to
constrain the possible sct of maiches at the next higher-resolution level. ‘Thus what could
be a very large graph matching problem is repeatedly partitioned into scveral small
problems.

Another important problem domain in image understanding is classifying two dimensional gray
scale forms. ‘The represcntation developed in this dissertation can be used for a structural pattern
recognition approach to this problem. That is, a gray scale form may be classificd by mcasuring the
similarity of its representation to a number of prototype represcentations for object classes.  This
approach was described bricfly in chapter 1 for both 2-1) gray scale forms and for 3-1) shapes.

The propertics of the representation cited above facilitate its use for constructing object-class
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prototypes and for matching prototypes to object representations. An object class prototype may be
formed by constructing the rcprescntations of a trainirng set of images. The configurations of M-
paths and L-paths that occur for a given class of objects can be determined by matching the
representations from this training sct. The prototype description can be composed of the M-paths
and L-paths that occur in the majority of the dcscriplions.13 This provides a simplified
rcprescntation which can serve as an object class prototype. The multi-resolution hierarchical
structure of the representation permits the set of possible matching prototypes to be reduced on the
basis of the few coarsest resolution symbols.

The study of creating and matching such prototypes could be a dissertation in itself. Only a few of
the more obvious principles and techniques are described below.

8.1 A Matching Procedure for Descriptions of Similar Grey Scale
Forms

This section describes a matching procedure for descriptions of the same or similar objects from
two images. The investigation of such matching is a research topic which we expect to pursue in the
near future. The procedures described below are very preliminary; matching techniques were not
within the scope of the rescarch proposcd for this dissertation. These techniques were investigated to
assist the demonstration of the uscfulness of the representation for matching, and to show the
invariance of the representation to changes of the size and orientation of a gray-scale form.

Matching is treated as a problem of comparing a reference description to a measured description.
In this process the reference description is transformed in size, oricntation, and position so as to bring
its components into correspondence with the measured data. The goal of this process is to determine:

o the overall relative position, orientation, and size of the of the forms represented in the
two descriptions,

o which M*-nodes. M-nodcs, and L.-nodes in the reference description correspond to which
M*-nodes, M-nodes, and L-nodes in the mcasured description (the correspondence

mapping),

e local relative changes in position, oricntation. and size between parts of the reference
description and the corresponding parts of the measured description,

e parts in cither of the descriptions that do not occur in the other description.

Such matching consists of scveral steps:

1. Initial alignment: In this stage the most global M*-nodce(s) is(arc) used to determine the
relative positions and sizes of the two descriptions.

nAllhough this technique has been tricd for a few hand cxamples. we have not, as of this writing, tricd to implement it in
code.
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2. Oricntation: Given the relative positions and sizes. the correspondence of M-nodes and
L-nodes in the few levels below the most global M*-node(s) can be used to estimate the
rclative orientations of the two descriptions.  This correspondence can be found by the

{ same procedure used for the feliowing task.

: 3. Correspondence of M-nodcs: Each level in which there is more than one M-node in the
description of a form. givcs a graph composed of M-nodes connccied by ridges (P-paths).
Each P-path has the attributes of distance and orientation between the M-nodes at either
end. Techniques exist for determining the correspondence between nodes in such a pair
of graphs. Indeced. when the number of nodes is small it is not unrcasonabie to
exhaustively examine every possible correspondence. A similarity measure, such as the
average difference in the lengths and oricntations of the P-paths may be used to
determine the correspondence which is most likely. A fundamental principle in matching
descriptions from an SDOG transform is to usc the correspondence at the previous (lower
frequency) level to constrain the set of possible correspondences at the next (higher
frequency and higher resolution) level. This prevents the computational complexity of
maiching M-nodes from growing cxponentially as the number of M-nodes grows
cxponentially with increasing resolution.

4. Correspondence of L-nodes: Forms which are clongated can result in a description
which contains few M-nodes. The shape of such forms can be compared by comparing
the L-paths in their descriptions. Comparing L-paths consists of two stages:

e alignment of the L-paths by aligning the M*-nodes which terminate thee L-paths at
cach end, and

» computing the distance of each L-node in the reference L-path to the nearest L-
node in the measurced L-path,

Determining the correspondence of individuai L-nodes in two descriptions is not a
reasonable approach because the distance between L-nodes in an L-path varies by as
much as a factor of V2 with orientation. Measuring the distance from cach L-node in
onc description to the ncarest L-node on the second description allows the measures of
maximum distance and average distance to be used to compare the cntire L-path

8.2 Test Data

The matching techniques described in this chapter are illustrated with representations from five
teapot imagcs.’4 These images were formed by photographing a scenc composed of a teapot flanked
on cither side by a cup: all of these objects are on a white table cloth. The photographs were taken
with a 35 mm camera using a 55 mm lens and Pan-X black and white film. The ncgatives were
digitized by SRi-International to 512 by 512 by 8 bits. Test images of the tcapots were formed by
cropping 256 by 256 pixcl scctions from cach image. The pixel valucs in these cropped sections were
then normalized to have a mean of 128 and a standard deviation of 32.

l4/\ sixth teapot image was also formed and processed but the tape on which the image was stored became unrcadable
during preparation of this disscriation
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Images were formed at three scales by moving the tcapot away from the camera. This movement
changed the position of the teapot and cups with respect to the lights, causing some changes in
shading and shadows among the images of different sizes. The distances are such that if the size of
the smaliest teapot image is defined as 1.0, the middle scale images are larger by a factor of 1.14 and
the largest images are larger by « factor of 1.36.

At each distance, a second photograph was taken with the camera tilted by approximately -15°,
Thus there were originally six tcapot images. The scales and 2-D oricntations of the five images
shown in this chapter arc summarized in table 8-1.

Teapot Size Orientation
1 10 0°

2 1.14 0°

3 1.36 0°

4 1.0 -15°

5 1.14 -15°

Table 8-1: Size and Oricntation of five Teapot Images

Reproductions of these five test images are displayed below in figures 8-1 through 8-5. To produce
these figures, the original digitized images were displayed with the Grinncll image display on the
C-MU Computer Science Dept. 1US VAX. Each display was zoomed by a factor of 2 to simulate the
cropping that produced the teapot image. The zoomed images were then photographed with the
Dunn film recorder attached to the Grinnell monitor. The resulting 8" by 10™ glossy prints were then
half-toned to produce the images shown in figures 8-1 through 8-5.

Section 8.4 below describes the results of matching for teapot images # 1 through #5.

8.2.1 Example of Band-Pass images of Teapot

Following the pictures of the test data is a picture showing the band-pass images for teapot #1.
The format for this band-pass image is shown in figurc 8-6. The actual band-pass images for tcapot
#1 arc shown in figurc 8-7. The level 0 band-pass image (also known as the high-pass residuc) is
shown in the lower right corner. The upper left corner shows the level 1 band-pass image. The level 2
band-pass imagc is shown in the upper right corner. The level 3 and 4 band-pass images are shown
underneath the level 1 image and so on. down to level 13,

The even level images ( levels 2. 4. 6....,12 ) arc sampled at V2. In order to display these images
on a raster display. cach pixcl on an odd row is used to fill the undefined location to its right, and
cach pixcl on an cven row is used to fill the undefined location on its left. ‘This creates an interlocking
brick-like texture in the display. This filling was donc only for display purposes.

‘The band-pass levels 12 throygh S arc important to the examples given in section 8.4. Since these
levels are so hard to scc in figure 8-7, they arc shown enlarged in figure 8-9. Thus figure was formed
by zooming the display of Jevels 12 through 5 by a factor of 4. 'The format for this image is shown in
















Figure 8-5: Teapot #5. Size = 1.14, Oricntation = -15.0°




159

figurc 8-8. Becausc of the zoom, the brick-like display texture, and the individual pixels are much
more visible in figure 8-9. The interested reader may wish to refer back to this figure while reading
the examples in scction 8.4.




Level 1

Level 2

Level 3

Level 4

Level5 | Level6

Level 0
(High-Pass Residue)

Figure 8-6: Format for Display of Band-Pass 1.evels 13 through 0




Figure 8-7: Band-Pass Images for Levels 13 Through 0 of Teapot #1
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Figure 8-8: Format for Display of Zoomced Band-Pass I.cvels 13 through §




Figure 8-9: Zoomed Band-Pass Images for Levels 13 Through 5 of Teapot #1
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8.3 Matching M-Paths

This scction describes how the M-paths from two representations may be matched to determine
the correspondence of M-nodes. The techniques described in this section employ only information
that is intrinsic to M-paths and P-paths. For clarity the section starts by describing how this
information is obtained from the representation. This additional information may be thought of as
cither an abstraction from the rcpresentation, or as something that is computed from the
representation “on the fly”. After this M-node representation is described, the process of obtaining
the initual alignment based on the highest level (lowest resolution) M* node is described. The
correspondence of lower level nodes in the test images is then shown.

The processes described in this section will not work for gray-scale forms which are very long and
thin (e.g. roads, rivers, bars, stripes ctc.) and do not have ends within the image. These forms are
described primarily by L-Paths., Matching L-paths is discussed in section 8.5.

8.3.1 Abstracting M-Paths from the Respresentation

Unless a gray scale form is a thin form with its end off of the image, it will have one or more
M-Paths in its representation. The M-nodes in these M-paths provide tokens for aligning pairs of
representations and determining whether structures that exist in one image also exist in another, as
well as determining how the structures differ in two images. Determining the correspondence of
M-Paths in two representations depends on information which is intrinsic to the M-nodes and the
P-paths that connect M-nodes. In order to illustrate M-path correspondence more clearly this section
describes this information and how it may be obtained from the representation. The first concept
that must be clucidated is that of connected M-nodes.

8.3.1.1 Strongly Connected M-Nodes

Definition: Two M-Nodes are said to be "strongly conncected” if and only if:

1. They cxist at the same level of the same representation,
2. They are not adjacent to cach other (i.c. arc not part of the same M-path ),

3. They arc linked by a P-Path or sequence of P-Paths.

In most cases. M-nodes which are at the same level and of the same form will be strongly
connccted. When two M-nodes are connected by a P-Path with no intervening M-Nodes along the
P-Path between them, they arc said to be "dircctly” strongly connected. If a third M-Node occurs
along the P-Path between the two M-Nodes, then the two (outer) M-Nodes arc said to be "indirectly™
strongly connected. ‘This distinction will come in handy when discussing M-Path maiching in the
presence of spurious or missing M-Nodes,
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8.3.1.2 Weakly Connected M-Nodes

Definition: Two M-Nodes are said to be "weakly connected” if and only if:

1. They cxist at the same level of the same representation,
2. They are not adjacent,
3. They arc not linked by a P-Path at their level,

4. Other M-Nodes within one level in their M-Paths are strongly connccted.

The concept of weakly connected M-Nodcs provides for the case where a P-Path has been broken
either for reasons intrinsic to the form or because of an error in the P-Path detection algorithm.

Weakly connected M-Nodes can be detected by examining the connectivity above or below them
in their M-Paths.

M-Nodes have certain attributes based on their position in the transform space (x,y.k). They also
have an attribute that is the value of the filter at that ievel and location. Also, if desired, they can be
assigned a label on the basis of the configuration of oppositely signed ridges around them. Such
labceling can simplify the correspondence processc.

. Connected M-Paths are "linked” by two way pointers. Each half of a pointer may also be assigned
the attributes of distance (D)) and oricntation (8). which are defined as:

Distance: The distance between two M-nodes is the cartesian distance measured in terms of
the number of samples at that level. In levels with a V2 sample grid, the distance
along the x and y axcs arc in units of V2.

Oricntation: The orientation between two M-nodcs is the angle between the line that connects
them and the x axis in the positive dircction (right). For convention, this angle
ranges from 0° to 359° in the counter-clockwise direction. Up is 90°, left is 180°
and down is 270°.

8.3.1.3 Example of Abstracted M-nodes and P-Paths

Scveral figures arc shown in the next scctions to illustrate connected M-Nodes and M-Paths from
the upper levels of the teapot images. The following example illustrates how these figures are derived
from the representation.

Figure 8-10 shows thc M-nodes and P-nodes from level 7 of teapot image #1. Level 7 is the
highest level with more than one M-node. Because of space limitations this figure does not include
all of the ncpative ridges surrounding the tcapot.  ‘This figure shows three positive M-nodes,
connccted by P-paths, Also present is the negative ridge above the tcapot, the negative peuk inside
the handle of the teapot, and a part of the negative ridge below and to the Ieft of the tcapot. The
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most important feature of this figure is the presence of the three connected positive M-nodes (peaks)
and the P-paths that connect them.
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Figure 8-10: 1.cvel 7 from Teapot Image #1

The three positive pcaks from level 7 of teapot # 1 arc shown abstracted from the band-pass data
in figure 8-11. "The direct P-Path links between these M-nodes arc illustrated with solid arrows and
labeled with circled numbers. The indirect P-Path link between the right-most and Ieft-most M-nodes
is shown as a dotted arrow labeled with the circled number 3. ‘The numbers are an index into a table
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Figure 8-11: M-nodes and P-Paths for Level 7 of Teapot #1

of attributes. The attributes for these pariicular links are given in table 8-2 in the next section. This
same sct of links is included in figurc 8-12. These numbers are also uscd to show the correspondence
which was assigned by hand martching between these links and the same links in the other teapot
images.

8.4 Examples of M-node Correspondence

This scction presents examples of M-node correspondence using the most global levels of the
teapot images. In cach of the cxamples, the M-nodes from the most global level (level 12) to the
second highest level with more than one M-node are used. .

This section begins with the M-node graph for levels 12 through 6 of teapot image #1. This is
followed by the results of hand matching this graph to teapot image # 3 (scale = 1.36, orientation =
0°)and to teapot image #4 (scale = 1.0, orientation = -15°). Other examples of M-node matching
for the teapot imagces are then presented and discussed. The section ends with M-node matching for
the upper levels of the stereo pair of paper wad images.

Figure 8-12 shows the upper M-nodes. M-Paths and P-path links for teapot image 1. In figures
8-12 and the other M-node graphs, the M-path links arc shown as a dark line. Lighter solid arrows
arc shown between directly linked M-nodes at cach level. Dashed arrows arc shown connecting some
indircctly linked M-nodes.

Each P-path link in the M-nodc graphs (such as figure 8-12) is labeled with a circled number.
These labels were assigned by hand on the basis of the length and relative orientations of the P-paths,
In the assignment of the labels in the second lfevel with more than one M-node, the correspondence
of the M-nodes in the level above this level was uscd to constrain the possible set of correspondences,
As mentioned above, these numbers also serve as an index into a table of attributes for the links.

These attribute tables give the values for dx. dy. . and @ for cach P-path link. ‘The positive
dircctions for dx and dy arc the same as uscd in the image: +x points right, +y points down,
However, note that 8 increases in the counter-clockwise direction, In these tables, ™ the levels which
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are at a V2 sample grid, the distances dx and dy are recorded in units of V2. In cases where an
M-node spans two adjacent samples, the M-nodes position is assigned at the mid-point between
them. ‘This results in values of dx or dy that have fractional parts of .5 in the cartesian sampled levels,
and .25, .5 or .75 in the V2 sampled levels.

In these tables. oricntation (8) is measurcd in degrees. On a cartesian grid, at distances that are
typically § to 10 pixels, angular resolution is typically 5 to 10 degrees. Of course, the longer the
distance, the more accrrate the estimate of orientation.

8.4.1 M-nodes for Teapot image # 1

The M-nodes for levels 12 through 6 of teapot image #1 are shown in figure 8-12. As shown in
tablc 8-1 this is the smallcst "non-rotated” tcapot image. In levels 12 through 9 of figure 8-12 oniy a
single M-node occurs in the teapot. These M-nodes all occur within a distance of two samples of the
M-node above them, and arc thus linked into a single M-Path.® This M-path is referred to as the
principal M-Path. The M-node at level 8 has the largest value along this M-path and is thus marked
as an M*-node. This M*-node corresponds to a filter with a positive center lobe of radius R | = 18
plxcls"’ ( sce cquation (6.5) ) ur a diameter of 37 pixels. This corresponds to the form in thc image
that results from the overlap of the shadow on the right side of the teapot and the darkly glazed upper
half of the tcapot which appears as a light region in figurc 8-1.17 At level 7, additional detail begins
to cmerge. M-nodces occur over the upper right comer of the teapot and over the handle region.
These M-nodes are joined to the M-node on the principal M-path by a P-Path. These P-Paths are
illustrated by a solid arrow.

The indirect links between the M-node on the principal M-path and other M-nodes are shown as
u-shed arrows. There are two reasons for showing the attributes of the indirect links between these
>4 nodes:

1. In some of the tcapot images, the M-node corresponding to the M-nodc of value 19 at
level 7 does not occur. In such a case the indircct link labeled as 3 occurs as a direct link, -

2. Quantization introduces an crror into the attributes 1D and @. The magnitude of the error
in the D term is independent of . Thus the proportion of 1D dominated by the crror
decrcases as 1) increascs.  The crror in @ decreases as 1) increases. Thus longer links
provide a more accurate measurc of the scale and orientation of the object.

Five M-nodes occur in level 6. Three of these M-nodes occur underncath (within 2 samples) of
M-nodcs from level 7. These three M-nodces arce thus part of three M-paths. The remaining two

IS'l‘m: M-path links appcar as siraight dark lines in figure 8-12 although in fact there can be a lateral shift of up to two
samples between their positions. M-path linking was dcscribed in section 7.4,

l6/\ pixcl is the sample rate in the original image

l‘,'lhc: tcapot images were digitized from negatives. Thus dark forms appear light in figures 8-1 through 1986
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Figure 8-12: M-nodcs and P-Paths for Levels 12 to 6 of Teapot #1
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P-Path _ Level dx dy D [

1 7 -6 -2 6.32 161.5°
2 7 -5 3 5.83 2109°
3(1&2) 7 -11 1 11.04 185.2°
4 6 -4.0V2 -20V2 6.32 153.4°
5 6 -325V2 15V2 5.06 205.8°
6 6 -3.0V2 0.0 424 180°
7 6 0.25V2 3.25V2 46 265.6°
8 (4&S5) 6 125V2 05V2 102 176.1°
9 (4&5&6&7) 6 -10v2 2.75V2 14.6 195.3°

Table 8-2: P-Path Links for Levels 7 and 6 of Teapot #1

M-nodes are in fact the highest levels of two more M-paths. For simplicity, this illustration shows
only the indirect links for the M-nodes that are part of established M-paths at level 6.

Note that onc of the M-nodes at level 6 is an M* node. This M-node corresponds to the upper left
corner of the teapot. This M*-node marks the left end of the dark region of glaze on the upper half
of the teapot. The width of the positive center lobe of the filter which corresponds to this M*-node
gives an approximation of the width of the darkly glazed region.

8.4.2 Initial Alignment to Obtain Size and Position

An initial estimate of the alignment and rclative sizes of two gray scale forms may be constructed
by making a correspondence between their highest level M*-nodes. This is illustrated by comparing
the M-nodes and links in figure 8-12 to thosc in figure 8-13 shown below. Figure 8-13 shows the
M-nodcs and P-Path links for tcapot number #3. Recall from table 8-1 that teapot # 3 has the same
oricntation as tcapot #1 and is scaled larger in size by a factor of 1.36 which is just less than V2.
The distance and oricntation for cach P-Path link in teapot # 3 lcvels 12 through 7 is shown in table
8-3 below.

The highest level M*-nodc in teapot # 3 occurs at level 9. The fact that this M*-nodc is one level
higher than the highest level M*-node for teapot #1 confirms that teapot #3 is approximately
V2 larger than teapot #1.

‘The correspondence of the highest level M*-nodcs from these two teapots gives an cstimate of the
alighment of the two teapots as well as the scaling. "The correspondence tells us the position at which
teapot # 1, scaled by V2 in size will match tcapot #3. The tolcrance of the initial alignment is
dependent on which of the teapots is designated as a reference pattern. “I'he reference pattern is the
onc which is scaled, rotated and translated so that its components arc brought into correspondence
with the sccond, observed pattern.  In this matching (as well as with sterco interpretation) which
image is used as the reference image and which image is used as the data image is arbitrary. The
tolerance of the initial position alignment is £ the sample rate at the level of the M*-nodc in the data
image. If tcapot #3 is designated as the data image, then the sample rate at level 9 determines the
tolerance. "The positioning tolerance at level 9 is +8V2 pixels.
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Figure 8-13: M-nodes and P-Paths for Levels 12 to 7 of Teapot #3
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P-Path Level dx dy D 0

3 8 -15V2 1.5V2 10.81 191.3°
4 7 -3.5 -6.0 6.94 149.7°
5 7 -4.0 1.0 412 194.0°
6 7 -4.5 1.0 4.61 1920°
7 7 0.5 5.0 5.02 264.3°
8 (4&5) 7 -10.0 -15 10.11 171.5°
9 (4&5&6&7) 7 -15 35 15.4 193.1°
11 7 -1.5 6.5 6.67 257.0°

Table 8-3: P-Path Links for Levels 8 and 7 of Teapot # 3

The tolerance of the size scaling is less than +v2. The correspondence of the highest level
M*-nodes provides an estimate of the size scaling factor which is a power of V2. Such an estimate is
sufficicnt to constrain the correspondence process. A more accurate estimate can be obtained from
the average of the ratio of D’s for links whose correspondence has been found. An example of this
will be given in the next section.

8.4.3 Determining Further Correspondence and Orientation

The matching process starts by finding the correspondence for the highest level M*-nodes. This
provides the process with an initial cstimates of the size and position of the two forms. The next step
is to find the correspondence of lower level M-nodes to refine the estimates of relative size and
position, discover the relative oricntations, and discover where onc of the forms has been distorted by
parallax or other effects. ’

Let us continue with our example. An M-node for the upper left corner of teapot #3 does not
occur, The change in scale from teapot # 1 to teapot # 3 was not cnough to bring this M-node up to
level 8. This may also be a result of the slight difference in shading that resulted from moving the
teapot with respect to the lights and camera in order to size scale the object. The fact that the M-node
of value 16 in level 8 of teapot # 3 corresponds to the M-node of value 13 in level 7 of tcapot #1
must be discovered from the position relative to their principal M*-nodes and the distance and
oricntation from the M-nodc on the principal M-path at the same level.

The valucs for D and @ for the link attributes in levels 7 and 6 of tcapot 1 are compared to the
auributes in the corresponding links from levels 8 and 7 of teapot 3 in tablc 8-4. The reader should
recmember that all of these links are constrained to begin and end at samples in their respective levels,
Because we are dealing with distances of between 4 and 15 samples at arbitrary angles, there is
quantization noisc in these attributes. The differences in orientation arc shown in the column labeled
01-03. Except for link 3, these valucs show a consistent small rotation in the counter-clockwise
direction for the links from teapot 3. In light of this. the image data was re-cxamined after compiling
this table. l.andmarks were choscn at the base of the handle and the basc of the spout in both images.
In teapot # 1, this bascline had an angle of 3.8° relative to the raster linc. In tcapot # 3, this bascline
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Teapot 1 Teapot 3 Difference

PPah D, 8 D, 6, 66, DyD DD 100x(DsD)D,

102 176° 101 1M1° 5 099 -01 -10%
146 195 154 193° 2 105 08 52%
Average Error 457° 1020 0257 43%

Table 8-4: Comparison of D and @ attributes for Teapots 1 and 3

3 11.09 185° 108 191° -6 0974 -02 -18%
4 6.3 153° 69 148°  §° 1095 06 8.7%

5 5.1 206° 41 194° 12° 0804 10 24.4%
6 4.2 180° 46 192°  12° 109 04 8.7%

7 4.6 266° 5.2 264°  2° 113 -06 -11.5%
8

9

had an angle of 7.1°. Thus it appears that the two teapots actually have a relative change in
orientation of approximately 3.3°. The actual values of @ fluctuate more than this due to
quantization error from sampling and changes in shading.

The ratio D3/D1 would show a factor by which the lengths consistently shift when the teapot is
scaled by 1.36. Since this shift in scale was enough to drive the corresponding P-paths in tecapot # 3
up to a new level, but less than the V2 = 14l scale change between levels, an average ratio of
D3/D1 = 1.36/1.41 = 0.96 was anticipated. In table 8-4 we sce that this average ratio worked out to
1.02. Our conclusion is that quantization noise and changes in shading accounted for most of this
difference. The actual differences in length, D3 - Dl* show that the lengths were always within one
sample. Except for link 5. the percentage differences, (D,- D, )/D, were generally smalt ( <10%).
The conclusion from this experiment is that the correspondence between M-nodes from similar
gray-scale forms of diffcrent sizes can be found. provided that the matching tolerates variations of the
lengths of P-paths of up to 25% and variations in the relative angles of up to 12°.

8.4.4 Correspondence of M-nodes Under Rotation

Figure 8-14 shows the M-nodces, M-paths, and P-path links for levels 12 through 6 of teapot image
#4. This tcapot image is the same sizc as tcapot image # 1, but rotated by approximately -15°,
Figurc 8-14 contains all of the M-nodcs found in figurc 8-12 (tcapot # 1) plus onc additional M-node
at level 6. The valucs for dx, dy, D, and @ for the links in tcapot 4 arc shown in table 8-5. These
values are comparced to those from tcapot # 1 in table 8-6.

This comparison shows an average rotation for the P-Paths in teapot #4 of -13.7 ® with respect to
the P-Paths in teapot #1. This is very close to lhc.-15° which the rotation was cstimated to be from
the photographs. As with the size scaling cxample in the previous scction, all of the lengths match
within onc sample. The percentage difference in the length of links ranges from -9% to 14%.
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Figure 8-14: M-nodcs and P-Paths for Levels 12 to 6 of Teapot #4
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P-Path_ Level dx dy D, 8.

1 7 -6 -3 6.71 153°
2 7 -5 2 5.38 202°
3(1&2) 7 -11 -1 11.04 185°
4 6 2.5V2 -3.0V2 5.52 130°
5 6 -3.75V2 0.25v2 531 184°
6 6 325V2 075V2 4T 167°
7 6 0.75V2 315V?2 54 256°
8 (4&5) 6 625V2  275V2 965 153°
9 (4&5&6&7) 6 -1025vZ 025V2 14.50 179°
10 6 25V2 25V2 50 315°

Table 8-5. P-Path Links for Levels 7 and 6 of Teapot #4

Teapot 1 Teapot 4 Diffcrence
P-Path D, 9, D, g, 6,6, Dy/D, DD 100x(DD)D,
1 6.3 161° 67 153° 8° 106 0388 57%
2 58 211° 53 202°  9° 0914 -05 -9.4%
3 110 185° 11 185°  0° 1.0 0.0 0.0%
4 6.3 153° 552 130° 23° 0876 -07 -127%
5 5.1 206° 5.3 184°  22° 1039 02 37%
6 42 180° 47 167°  13° 1119 05 10.6%
7 4.6 265° 54 256"  9° 1174 038 14.8%
8 102 176° 96 153°  23° 0931 -07 -7.3%
9 146 195° 145 179° 16° 0992 -01 -0.72%
Average Error - 137° 1012 -0.121 0.52%

Table 8-6: Comparison of D and 8 autributes for Teapots #1 and #4

8.4.5 Examples of Size Change Less than V2

This subsection shows the result of hand matching the upper levels of tcapots #2 and #35. Teapot
#2 is the same oricntation as tcapot #1, but digitized approximately 1.14 larger. Tcapot #5 is
approximately the same siz¢ as tcapot #2, but oricnted at -15°. Because of the change in scale and
lighting, both of these tecapot images contain additional M-nodes in their upper levels.

Figure 8-15 shows the M-nodes, M-paths, and P-paths links for levels 12 through 6 of tcapot image
#2. Level 7 of teapot #2 contains 3 additional M-nodes that did not occur in level 7 of Teapots #1
and #4, or level 8 of teapot #3. These M-nodes are all at the top of M-paths that start at level 6 of
teapots #1 and #4 and level 7 of teapot # 3. The small scale change between teapot #1 and teapot
#2 was cnough to bring these M-nodes up to the next level. These P-paths are not labeled in figure
8-15 and their attributes are not included in wble 8-7.
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Table 8-7 shows the attributes of the P-paths in figure 8-15 which were matched by hand to the
P-paths from teapot #1. These values are compared to those of tcapot # 1 in table 8-8.

This comparison shows that cach of the P-Paths links in teapot #2 are slightly larger than the
corresponding links in teapot # 1. with the average ratio of lengths being 1.19. This is slightly larger
than the 1.14 cstimated from the photographs, but well within the expected range. The average
mismatch of P-path links was 1.57 samplcs. The percentage change in the lengths of the P-paths
ranged from 8% t0 27% with an average of 14%.

The M-nodes, M-paths, and P-path links for tcapot #5 are shown in figurc 8-16 below. Teapot
#5 is scaled larger than tecapot #1 by approximately 1.14 and rotated in the image plane by
approximatcly -15°. This teapot was supposed to have been a rotation of teapot #2. However, the
lighting was changed between the photographing of teapot image #2 and teapot image #5. As a
result the shadow on the right side of tcapot #5 appears to be slightly larger than that of tcapot #2.
This slight increase in size is sufficient to cause the M-node in the upper left corner to appear at level
8. and to shift the M* node from level 8 to level 9. It also causcs an additional M-node (value 32) to
appear along P-path number 5. Despite these changes, the P-paths which were identified in the
carlicr cxamples are still detectable in teapot #5. The attributes for the P-paths of teapot #5 are
shown in table 8-9. These attributes are comparced to those of tcapot #1 in table 8-10 and to those of
tcapot #2 in table 8-11.

The average values for the comparison of the lengths and orientations of the P-paths from teapot
#5 to those of teapot # 1 are very closc to the expected values. As shown in table 8-10, the difference
in orientation ranges from 4° to 26°, with an average value of 14.22 °, which is very close to the 15°
difference of oricntation that was measured from the photographs. The ratio of the lengths of P-paths
range from 0.93 to 1.45, with an average valuc of 1.13. This is also very close to the change in size of a
factor of 1.14 which was estimated from the photographs.

The results of comparing the lengths and oricntations of P-path links from teapot #5 to those of
teapot #2, shown in table 8-11, arc also rcasonably close to the expected values. Teapot #5 is
approximatcly the same size as teapot # 2, but rotated by approximatcly -15°. The ratio of the lengths
of the P-paths ranged from 0.77 to 1.34 with an average value of 0.96. The difference in orientation
of the P-paths ranged from -13° t0 32 ° with an average value of 10.34°. The match of P-path 6
stands out in this table as having the largest difference-in orientation ( 32° ) as well as the smallest
ratio of lengths ( 0.77 ). P-path 7 scems to corrcst for this aberration by having a ratio of lengths of
1.34 and an difference of oricntation of 9°. The causc of this aberration seems to be that the M-node
to which P-path 6 points in tcapot .mage #2 is "out of place” by 1 or 2 samp'~s. Checking back to
the comparison of teapot # 1 to tcapot #2, shown in tablc 8-8. shows that this su.nc P-path was the
largest source of crror in both oricntation and length in that tabic also. Our conclusion is that
becausc of a change in shading, this M-nodc secems to have been shified in position in the image of
teapot #2. This aberration illustrates that when an M-nodec is slightly shifted in position, the crror is
averaged out by the lengths and oricntations of the P-paths going to the M-node and those coming
from it. The conclusion is that the average ratio of lengths and the average orientation of P-paths is a
rcasonable feature to usc in determining the best correspondence of a set of M-nodcs from a level of
the descriptions of two images.
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Figure 8-15: M-nodcs and P-Paths for Levels 12 to 6 of Teapot #2
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P-Path Level dx dy D [/}

1 7 -7 2 7.28 164°
2 7 -6 1 6.08 189°
3(1&2) 7 -14 2 14.14 188°
4 6 -45V2 25V2 728 151°
5 6 -4.0V2 1.0vV2 5.83 194°
6 6 -4.0V2 1.0V2 5.83 194°
7 6 0.5V2 35V2 5.0 262°
8 (4&S5) 6 -8.5V2 15V2 122 170°
9 (4&5&6&7) 6 130V 3.0V2 18.6 193°

Table 8-7: P-Path Links for Levels 7 and 6 of Teapot #2

Teapot 1 Teapot 2 Differcnce

PPah D, 6, D, 68, 676, DyD, D,sD, 100x(D,D)/D,

6.3 161° 728 164
5.8 211° 60 189° 2
110 185° 1414 188° -3
6.3 153° 728 151° 2 116 098  13.4%
5.1 206° 583 194 1143 073 12%
42 180° 583 194° -14° 1388 163 27.9%
46 265° 50 61° 4 1.087 04 8%
102 176° 122 170° 6 1196 20 16.4%
146 195° 188 193 1.287 42 2.2%
Average Error 311° 119 157 141%

Table 8-8: Comparison 6f D and @ attributes for Tcapots # 1 and #2

1.16 0.98 13.4%
1048 0.2 3.2%
1285 3.0 21.2%

N GO~ AW N -

8.4.6 Summary of Teapot Matching Examples

The examples shown above illustrate that the graphs of M-nodes connected by P-path links from
two images of similar objects can be matched despite changes in the size and orientation of the object
between the two images. Before advancing to a simple exampic of how the representation can be
used to find sterco correspondcence, let us summarize the examples that have been presented.

This scction began with an example of how the graph of M-nodcs. connected by P-paths, is formed
from a level of the description. This oxample showed how the M-nodes and P-path links are
abstracted from level 7 of wcapot image #1.

Next, it was shown how M-nodes from scveral adjacent levels form M-paths that give a
increasingly detailed description of structurcs in an image. The M-nodces from levels 12 through 6 of
teapot image # 1 were presented. with the P-path links that conncct M-nodes at cach level. ‘The table
of attributes for cach P-path link was also presented.

—
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Figure 8-16:  M-nodcs and P-Paths for Levels 12 to 6 of Teapot #5




P-Path 1evel dx dy D N

1 7 -7 -3 7.61 157°
2 7 -5 2 5.39 202°
3(1&2) 7 -12 -1 120 175°
4 6 -3.5V2 -3.5v2 70 135°
5 6 -4.0V2 0 5.65 180°
6 6 -3.0V2 -1.0V2 447 162°
7 .6 -1.5V2 45V2 6.70 252°
8 (4&5) 6 1.5V2 25V2 11.18 162°
9 (485&6&7) 6 -1202 0 16.97 180°
10 6 3.0V2 3.0V2 6.0 315°
11 6 2.0V2 50V2 16 248°
12 6 -10V2 -1.5 10.12 168°
Table 8-9: P-Path Links for Levels 7 and 6 of Teapot #5
Teapot 1 Teapot S Difference
P-Path D, 6, D, 2 8,4, DyYD, D-D; 100x(DgD,)/D;

6.3 161°  7.62 157° 4 1.21 132 17.3%
5.8 211° 539 22°  9° 093  -041 -7.6%
110 185 1204 175° 10° 109 104 86

6.3 153° 7.0 135° 18
5.1 206° 565  180°
4.2 186° 447 162

L11 070 10.0%
LI0 055 97%
18° 106 027 60%

O 00 N B W N e

44 265 670 252 13 145 2.1 31.3%
102 176° 112 162°  14° 109 10 8.9%
146  195° 1697 180° 15° L6 237 13.9%

Average Error 1422° 113 099  109%
Table 8-10: Comparison of 1 and @ attributes for Teapots #1 and #5

Teapot 2 Tcapot § Difference

PPah D, 6, D, @ 6,6, DD, DD, 100 x(D-DVD;

2 5 275

-

728 164° 762  157° 7
6.0 189° 539 202°  -13
1414 188° 1204 175° 13°
728 151° 70 135° 16
583  194° 565  180° 14
583  194° 447  162° 3 077 -136  -304%
5.0 261° 670 252° 9° 134 17 25.4%
122 170° 112 162° 8° 092 -10 -89%
188 193° 1697 180° 13° 090 -1.83  -108%
Average Error 1034° 096  -0.591 -6.2%

‘Table 8-11; Comparison of 1) and @ attributes for Teapots 2 and §

1.05 0.34 4.5%
0.90 061 -11.3%
0.85 2210 -174%
0.96 028 -4.0%
097 018 -3.0%

o

O 00 ) ON N B N

‘The use of the principal M-path and highest level M*-node was then shown for aligning two
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descriptions to get an initial estimate of the difference in size and position. “In this subscction a
comparison was made of the M-node graphs from teapot #1 to the M-node graphs of tcapot #3. It
was shown that the correspondence could be found despite a change in size of approximately 1.36 by
shifting the M-node graph from the larger image down by one level. It was also shown that this shift
was dictated by the difference in the level at which the highest M*-node occurred in the two
descriptions.

An cxample was then given of the correspondence that occurs when the object has been rotated.
The P-path links from teapot # 1 were compared to those of teapot #4, which is of the same size, but
rotated by = -14°. Further examples were then presented which showed how the matching is
affected by changes of size which arc less than a factor of V2.

The next scction illustrates how this representation can be used to determine the correspondence
from a stereo pair of images.

8.4.7 Stereo Matching Example

A sterco pair of images was formed of a paper-wad to test the use of the representation for
determining the correspondence between structural components in a sterco pair of images. The
original images arc shown with the output from the low pass filters in figures 8-19 and 8-21. The
format of the low-pass images is shown in figurc 8-18. Unlike the band-pass images, it is the odd
numbered low-pass images which are defined on a V2 sample grid. In forming these low-pass
imagges, the undcfined pixels were left with a value of zero. Thus the odd numbered low-pass levels
appear with much lcss intensity than the cven numbered low-pass images. In each of the low-pass
figures, the original image appcars in the lower right corner.

The resulting band-pass images arc shown in figurcs 8-20 and 8-22. The format for these band-
pass images is the same as shown in figurc 8-6 in section 8.2.

The scenc was formed by placing the paper wad on a dark lab bench under a desk lamp. A vidicon
camera, mounted on a tripod, was placed approximately 14 inches from the paper wad, and the left
image was digitized using the Grinnell digitizer. The camcra was then moved to the right
approximately 6 inchces and tilted so that the paper wad was located in roughly the same part of the
image. This tilt angle was approximatcly 20°. The right imagc was then digitized.

The purpose of this cxperiment was to test the use of the representation for determining the
correspondence of parts of the two images. No attempt was planned or made to use this
correspondence to determine the actual distances o surface points on the paper wad.

The M-nodes for Levels 13 through 9 of the two paper wads are shown in figurce 8-17 below. Then
correspondence between M-nodes was assigned by hand. ‘T'his correspondence is illustrated by the
dashed arrows in figurc 8-17. Each correspondence is labeled with the displacement, dx, dy. between
the actual positions of the M-nodes in the two images. Assigning these correspondences was a trivial
task because of the small number of M-nodes at cach level. Even when the number of M-nodes
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increascd at the levels below level 9, the correspondences at the previous level constrain the possible
correspondences so that there is often no choice as to which M-nodes correspond.

Noite that at level 10, two M-nodes occur in the right image, while only a single M-node occurs in
the left image. This difference in structure is the result of the parallax created by the difference in
perspective.  This illustrates one of the problems in determining stereo correspondence: shape
changes when scen from different perspectives. Thus a sterco correspondence algorithm must be
capable of assigning a sample from one image to more than one sample in the second.

The conclusion from this experiment is that the represcntation can provide an cfficient technique
for determining the correspondence of structural components in a stereo pair of images.
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Figure 8-17: Sterco Correspondence of M-nodes for Paper Wads, Levels 13 through 9
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Figure 8-18: Format for Paper Wad Low-Pass Images




Figure §-19: Left Paper Wad and Low-Pass Images
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Figure 8-20: Band-Pass images for Left Paper Wad







Figure 8-22: Band-Pass images for Right Paper Wad
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8.5 Matching L-Paths

When a gray scale form has components which are long and thin, ridges. or P-paths occur along
this component in several adjacent levels in the Sampled DOLP (or SDOG) transform. This
information is encoded by finding the level where the response is of the DOLP filter is strongest
along the path followed by the ridges. These strongest P-nodes are labeled as L-nodes by a process
described in the previous chapter and connected together to form an L-path. In some situations,
particularly in structural pattern recognition, identifying or discriminating objccts requires being able
to measure the similarity of L-paths from two representations. This section is concerned with this
problem.

8.5.1 Two stages of Matching

As with any curve matching problem, there are two stages to matching L-paths:

1. An alignment stage: In this stage thce L-path from the reference representation is
positioned, oriented, and scaled so that will be in its closest correspondence with the
measured L-path.

2. A Similarity Measure: In this stage, some measure of the "goodness of fit” is calculated
beiween the two L-paths.

8.5.2 L-Path Alignment

The previous scction concerned the problem of determining the correspondence between the
representations of two gray-scale forms. which are at different positions, scales, and/or orientations.
These techniques employed M-nodes and M*-nodes as landmarks which are brought into
correspondence. In most cases, I.-paths are terminated at cach end by an M*-node. Two L-paths are
aligned by aligning their terminating M*-nodes. This section shows how the correspondence of the
terminating M*-nodes is used to scale, shift and rotate the reference L-path so that it is in
correspondence with the measured [-path.

8.5.2.1 L-Path Notation and Attributes

Let us define the valucs along an I.-path as a sequence: L. Each L-node has attributes of filter
value and location as well as a set of pointers to adjacent L-nodes or M-nodces on the L-path. The
location of the i™ 1.-nodc in the I.-path before applying these lincar transformations is (%, ¥ ki).
This location is in terms of pixcls from the original image.

One of the two M*-nodes must be sclected as a "distinguished” for the orientation attribute, for
indexing and for computing the lincar transforms, If one M*-node is at a higher level than the other,
this is chosen as the distinguished M*-node, Otherwise, the choicc is arbitrary.
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h The entire L-path also has a set of attributes which are similar to those described for P-paths in the
. previous scction. The attributes of an L-path are determined by the relative positions in the SDOG
[ space!® of the terminating M*-nodes. The L-path attributes are:
w e AL: The diffcrence in levels hetween two terminating M*-nodes. This is computed as the
level of the distinguished M*-nodc minus the level of the other M*-node.
f : . DL: The cartesian distance between the M*-nodes measured in pixels from the original
image.
. 0L: The orientation of the vector from the distinguished M*-node to the other M*-node.

8.5.2.2 Alignment Parameters:

Matching occurs by aligning a reference representation to a measured representation. Finding the
correspondence between the terminating M*-nodes of the reference L-path and the M*-nodes of the
mcasured L-path gives the parameters for position, scale, and orientation for aligning the reference
L-path W the measurcd data. These parameters are uscd by a set of lincar transforms that are applied
to the reference |.-path to bring it to correspondence with the measured L-path. These transforms
and their parametcrs are as follows:

e 1k: the change in level that must be applied to one L-path so that it may match a second
L-path. Fach increment of | m ak scales the [.-path by a factor of V2 in size.

o ad: A small scalc change determinced by the correspondence of the terminating M*-nodes
aflcr they have hoen shiificd o the same levels. ad = l)m/Dr where D m is the length
attnbutc of the »>:amured !-path and D s the length attnbute of the reference L-path
aficr 1 has been waled w account for shifting by Ak levels. This small scaling accounts
for minor devatons 1n the total length of the L-path. This scale change is applied to the
distancc between cach | .-node and the M*-nodc which is used as a starting point for the

maiching.

¢ A@: The rotation of the L-path. The L-paths are originally encoded on cartesian and
V2 sample gnids. a# rotatcs onc of the L-paths so that its L-nodes occur at real valued
{or high resolution integer valucd) points. The result is a requircment for a rule which
relates the value at such a real-valued point to the values at nearby discrete sample points.
A ncarest-neighbor rule is described below for this.

® (x.y ): This is the location of the distinguished M*-node.

"‘nuc SHOG space is the sct of points defined by the st of band-pass images (x. y. k).
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8.5.2.3 Alignment Function:

Let us call the composite of these linear transformations the "alignment function”, A(x,, y,, ki; Ak,
A@. ad. x, y,). The result of this alignment function is a real valued location expressed in terms of
pixels from the measurcd image. Real valued variables will be denoted by a tilde, " ~ . The aligned
locations will be denoted by a prime ('). Thus the alignment function, A(x;, v, k;: ak, Ad, Ad, X, yr)

produccs the real valucd location: X 0 y ;at level k..

Each L-node has been initially recorded at some location, x;, y,, k. The correspcndence process
has placed the distinguished M*-node at some discrete point in the SDOG space, (x. ¥, k). The
alignment function opcrates on the displacement of the L-node at ax, Ay from the distinguished
M*-node. Thus the procedure starts by computing this dis; -lacement:

AX, Ay = X =X, ¥ =X

Level shift: Shifting the L-node by Ak levels scales Ax, Ay by a power of V2 10 form a% r Ay,.

AR, 4, = ax 28V, 4y 2012 3.1

Small Scaling: These distances are then scaled a second time by the small scale change Ad.

8%,, 8, = A%,ad.a¥,ad (8.2

Rotation: The resulting values are then rotated an angle of A8 by computing:

ax, = ax,Cos(ad) + Ay .Sin(a@) 8.3)
Ay, = -ax,Sin(ad) + A)'2COS(A0)

The resulting displaccments arc then added to the location of the distinguished M*-node to
produce the real valued location X o y jat level ki

(%, 75, K) = Ax, y;. k;: 8k, A8, ad, x,y)) (8.4)
=x + AiS,yr+ Ais,ki+ Ak

The aligned position of cach L-node must then be compared with the measured 1.-path to compute
an crror measure. The similarity function is a function of the crror measurc ac cach L-node in the
reference L-path. -

8.5.3 Similarity Measure

An 1-Path is a curve in a discrete 3-D space (the DOLP transform spacc). ‘There are several
functions which can be used to measure the similzirity between two such curves. In this section we
give cxamples of similarity measures based on the cuclidean distance between cach L-node in the
reference L-path (which has been scaled and rotated) and the ncarcst 1.-node in the measured L-path.

The measure that we have chosen for the cxamples in this scction is based on the following
principles:
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1. There is not necessarily a one to one correspondence between L-nodes in an L-path. This
is because of of the distance between samples at different orientations. Thus the measure
should not penalize for a lack of one to one correspondence.

2. Similarity should not depend on the value attribute of the L-nodes. The value attribute is
sensitive to the image gain.

3. The similarity measure should be composcd of a sum of similarity measures which tell the
mismatch at cach L-node in the reference L-path.

4. The similarity measure for an entire 1.-path should be indcpendent of the length of an
L-path. :

Thesc principles lead to the following similarity measure:

After each L-node from the reference I-path has been aligned, it is associated to the necarest
L-node from the mcasured data. The ncarcst node may be determined by the "brute force™ approach
of computing the cartesian distance in the SDOG space to several or all of the L-nodes in the
measured [-path. Alternatively, more cfficient techniques, such as "chamfer matching™ may be used
{Barrow cd]. In the following cxamples a difference in levels is treated as a distance equal to the
sample rate at the level to which the L-node was aligned. This distance may be adjusted to make
matches across levels more or less likely according to the application.

" The cartesian distances are initially computed in terms of pixels (samples from the original image).
This distance is then divided by the sample rate at the level to which the reference 1.-node was
transformed, to compensase for the difference in sample rates at each level. This division normalizes
the distance so that a mismatch by one sample gives the same error at each level.

Thus the crror measure, Ei. at each refercnce node, Li. is obtained by finding the nearcst measured
node, Ln = (x. y k) computing the cartesian distance in pixcls, and dividing by the sample rate at

level ki'

_ [ax® + dy? + dx¥12

F‘i z(ki-l)lf 8.5)
where:

dx -_: 5‘:: - X

dy =y, -y,

Either the average of these distances or the largest such distance may be used as a mcasure of how
well the transformed reference L-path matched the measured L-path,

Notice that this similarity mcasurc is not commutative. It is possible for an L-node in the
measured [.-path to be far from any I.-node in the reference 1.-path. and thus not be found as a

* pearcst neighbor by any of the transformed L-nodes from the reference |-path.  If the roles of

measurcd and reference are reversed this 1.-node might contribute a much larger distance than any
distance observed when the roles were not reversed.
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8.5.4 Examples of L-path Alignment and Matching

This subsection gives examples of the use of the alignment function and the similarity measure,
The L-path that describes the shadow on the right side of cach teapot is used in these examples. This
shadow docs not have a well defined shapc.” At the upper right corner of the teapot, the shadow
merges with the darkly glazed upper half of the tcapot. In the lower half of the teapot, the lcft edge
of the shadow is very hard to discern. As is often the casc in a cylindrical shaped object, the intensity
falls gradually as the surface orientation moves away from the light source. Visually determining the
edge of the shadow is further complicated by the surface texturc of the teapot. ‘Thus this shadow is a
good example of the description by an [.-path of a form without distinct boundarics.

Figure 8-23 shows this L.-path for teapot #1.20 In this figure, cach node is represented by two
lincs of letters and numbers. The top line consists of the SDOG transform value, the node type ( M*,
M. or L), and the level (in angle brackets). For example, 75 M* <8>, refers to an M*-nodc of value 75
at level 8. The second line gives the relative position of the node with respect to the distinguished
M*-node in pixels from the original image. These numbers arc (ax, Ay). In the distinguished node,
the sccond line gives the actual position of the node. Also shown are the attributes of the entire
L-path:

e AL: (written as dl.) the change in levels between the M*-nodes;
o D: the length of the L-path in pixcls; and,

e §: (writtcn as Angle) the orientation of the vector from the distinguished M*-node to the
other M*-node.

Each L-nodc has a circled number beside it. These numbers serves as an identifier in the tables
that illustrated 1.-node correspondence and distance.

Figure 8-24 shows the ] .-path which dcsi<hes the same shadow in teapot #3. The correspondence
between L-nodes afier the L.-path from teapot #3 has been rotated and scaled to match the 1.-path
from tcapot # 1. js shown in figure 8-25 and tabic 8-12. The correspondence in figure 8-25 is shown
with dashed arrows, ‘Table 8-12 lists the locations to which the l.-nodes from tecapot #3 were
transformed and the closest L-node from tcapot #1. The column labeled distance is the cartesian
distance between the transformed reference node and the nearest measured node expressed in pixels
(samplcs in the original image). The column labeled "error” shows the result of dividing this distance
by the sample rate at the level of to which the reference node was transformed. At the bottom of the
tablc is the average crror and the largest error.

19S(:c figures 8-1 through 8-5

20'Nolc: the sign of the "y” term is reversed in afl of the figures and tables i this section  “This has the effect of making
angles mcrease positively in the counter-clockwise dircction. ‘Thus v and 8 arc consistient with the right-handed coordinate
system usually used by humans instcad of the left-handed coordinate system usually used in image processing. ‘This also keeps
the angles used in this section consistent with those given in the examples in scction 8.4
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Figure 8-23: L-path from Teapot #1

The top linc of table 8-12 shows the change in attributes between the two L-paths. AL is the
difference in levels between the distinguished M*-nodcs. Dm/Dr is the ratio of the lengths of the
mcasurcd (m) to the reference (r) 1-paths. This ratio is computed with length measurcd in pixels
before the reference L-path is shifted by Ak levels. Thus this ratio is the product of the match
paramcters Ad and 28%2 that were described above. A is the difference in anglcs. The program that
matched these two LL-paths transformed the reference L-path by dividing cach distance by the ratio of
the Iengths and rotating by the difference in angles. Tablc 8-13 shows the results of transforming the
L-path from T'capot #1 to match that of ‘Tcapot # 3. In both tablc 8-12 and table 8-13 a onc-to-one
correspondence was found between l-nodes and the error is always less than onc sample.
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Figure 8-24: [-path from Tcapot #3

Transforming the L-path from tcapot #3 to be in correspondence with the smaller 1.-path from
teapot # 1 gave a worst casc crror is 0.824 samplcs and the average error is 0.32. Matching the .-path
from the larger teapot # 1 to the larger teapot #3 gave a worst case crror of 0.648 samples and an
average crror of 0.30 samples. ‘Thus. despite a scale change of = 1.36 between the two images,
aligning the terminating M*-nodcs brought the L.-path from the cach image into a reasonably close
correspondence with the L-path from the other image.

Figurc 8-26 shows the L-path from the shadow in tcapot image #4. 'The correspondence of
transformed L-nodes from tcapot #4 to the L-nodcs of tcapot #1 is shown in figure 8-27. The
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Figure 8-25: L-path Correspondence:
I.-Path from Teapot # 3 Transformed to Match I.-path from Teapot #1

correspondence of L-nodes and their distances arc shown in table 8-14. L-nodc number 3 in the
1.-path from tcapot #4 might be considered spurious. ‘This 1.-node is stightly to the lcft of the rest of
the L-path and without it, the two L-paths would have the same number of L-nodes. None-the-less,

-it matches I.-node 3 from teapot 1 to within 0.55 of a sample while I.-nodes 2 and 4 are off by more

than a sampie. Note also that duc to the change in oricntation of these two L-paths there is not a
one-to-onc correspondence.  Both 1.-nodes 2 and 3 of teapot #4 match to 1.-node 3 of Teapot #1
and both 1.-nodes 5 and 6 of tedpot #4 match to L-node 5 of tcapot #1. L-node 2 of tcapot #1 is
not found to be the nearcst neighbor by any L-node from tcapot #4.
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Transform of Teapot # 3 to Match Teapot # 1
AL=-1,D_/D = 089, 48 = -9.18°

Nodes from teapot # 3 Nodes from teapot #1

Transform of Reference Node  Closest Measured Node

Node X AY Ak Node  ax Ay Ak distance error
1 000 000 O 1 000 000 O 0.000 0.000
2 115 1433 0 2 -800 800 0 9329 0.824
3 230 2867 O 3 -800 2400 0 7.366 0.651
4 428 3641 -1 4 000 3199 -1 6.155 0.769
5 428 3641 -2 5 400 3599 -2 0.505 0.089
6 400 4000 -3 6 400 4000 -3 0.000 0.000

Average Error = 0.38
Worst Error = (.82

Table 8-12: Correspondence and Distance for Transform of
L-path from Teapot # 3 to Match L-path from Teapot #1

Transform of Teapot # 1 to Match Teapot # 3
AL= LD, /D = 111, 4@ = 9.18°

Nodes from teapot #1 Nodes from teapot #3

Transform of Refercnce Node  Closest Mcasured Node

Node  ax AV ak Node  ax Ay Ak distance error
1 000 000 O 1 000 000 O 0.000 0.000
2 -815 958 0 2 0.00 1599 0 10.378 0.648
3 673 27132 O 3 000 3199 0 8.195 0512
4 285 3548 -1 4 800 4000 -1 6.847 0.605
5 764 39.56 -2 S 800 4000 -2 0.562 0.070
6 799 4400 -3 6 800 4399 -3 0.000 0.000

Average Error = 0.30
Worst Error = 0.64

Table 8-13: Correspondence and Distances for Transform of
L-path from Teapot # 1 to Match Teapot #3

Table 8-15 shows the result of transforming and matching the L-nodes from the 1.-path in teapot
#1 to the L-path from tcapot #4. The correspondence between L-nodes in this table is different
than those for the match from teapot #4 to teapot #1. In this casc the worst case error was 0.901,
which is less than a sample. The average crror, (.48 is also smaller in this case. Nodc 2 from tcapot
# 1, which gave the largest worst casc distance in table 8-14 was not found to be a closest neighbor to
any of the 1.-nodes form teapot 4. Node 3 from tcapot #4, which appcarcd to be spurious, actually
fell within 0.552 samples of a L-nodc 3 from tcapot #1.

The 1.-path for the right shadow in teapot #2 is shown in figure 8-28. The result of matching this
].-path to that of teapot # 1 is shown in table 8-16. Despite the change in scale of 1.14 between these
two images these two L-paths have exactly the same lengths and orientations. Differences in position




198

' IR N €)

(145, 81)
Teapot #4
dL =3
D = 362
Angle = 264 68L <8 ©)
(0, 16, 0)

/
@ sL@ — 5L @)

(8,240)  (0,24,-1)
|
45 <6 6]

(0, 32! '2)
S0 M<6>
('4! 36 '2) @
52 M* <&>
(-4, 36, -3) @

Figure 8-26: L-path from Teapot #4

relative to the samplc, however, cause L-nodes 4 and § in these L-paths to cach be off by 1 sample at
their levels.

Figure 8-29 shows the [.-path from teapot #5. This image is scaled by a factor of 1.14 and rotated
by ~15° from tcapot #1. The M*-nodes in the 1.-paths occur such that there is an angle of 37.4°
between them. The reader may recall that teapot # 5 had an M*-node that occured at level 9, when it
was cxpected to occur at level 8. As a result, this L-path spans 4 levels. This 1.-path also has two
L-nodes that are -2 levels below the root M*-node. ‘The results which this had on finding the
correspondence is shown in table 8-17.
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Figure 8-27:  1.-path Correspondence:
L-Path from Tcapot #4 Transformed to Match I.-path from Teapot #1

As can be scen from table 8-17, the alignment of the highest level M*-node from teapot #1 with
that of tcapot #5 caused scveral of the 1.-nodes from tcapot # to find their nearest neighbor at a
lower Ievel. Such “across Ievel” matches add a weight of 1 sample to the crror distance. Both
I.-nodces 2 and 3 from teapot # found 1.-node 3 of teapot S to be the closest ncighbor after alignment,
L-node 3 from teapot # 1 had to look up onc level to find this match, with an crror of 1.090 samples.
Node 4 from teapot #1 also found its closest neighbor from teapot #5 in an upper level, giving an
error of 1.269 samples. Partly as a result of all the across level matches, the average crror was 0.85
samples and the worst case crror was 1.37 samples.
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Transform of Teapot # 4 to Match Teapot # 1
aL= 0,D_/D = 110. 48 = 24.10°

Nodes from teapot #4 Nodes from teapot # 1

Transform of Reference Node  Closest Mcasured Node

Node AX  av sk Node  ax Ay Ak distance error
1 000 000 O 1 000 000 O 0.000 0.000
2 370 1736 0 3 -800 2400 0 13.456 1.189
3 -312 279 0 3 -800 2400 0 6.246 0.552
4 556 2604 -1 4 000 3199 -1 8.145 1018
5 741 3473 -2 5 400 3599 -2 3642 0.643
6 400 3999 -2 5 400 3599 -2 3999 0.707
7 400 3999 -3 6 400 4000 -3 0.000 0.000

Average Error = (.58
Worst Error = 118

Table 8-14: Correspondence of Transformed L-nodes from Teapot #4
to L-nodcs from Teapot #1
Transform of Teapot # 1 to Match Teapot # 4
AL = 0,D_/D, = 090, a8 = -24.10°

Nodes from tcapot #1 Nodes from tcapot #4
Transform of Reference Node  Closest Measured Node
Node A% AV ak Node  ax Ay Ak distance error

1 000 000 O 1 000 000 O 0.000 0.000
2 855 554 0 1 000 000 O 10.194 0901 .
3 -11.56 1964 0 3 800 2400 O 5628 0497
4 601 2819 -1 4 000 2400 -1 1339 0917
5 -324 3247 . -2 5 000 3199 -2 3.282 0.580
6 400 3600 -3 7 400 3599 -3 0.000 0.000

Average Error = 0.48
Worst Erstor = 091

Table 8-15: Correspondence of Transformed L-nodes from Teapot #1
to L-nodcs from Teapot #4

8.5.5 Summary of L-path Matching Examples

The first example presented above was the match of the L-paths between teapot #1 to tecapot #3.
This illustrated matching between images when the object has been scaled by close to V2 insize. In
this example, there was a one-to-onc correspondence between the 1.-nodes from the two images, for
both the casc when the [.-path from tcapot #1 was scaled and rotated and the nearest ncighbor was
sought from teapot #3 and when the L-path from teapot #3 was scaled and the ncarest neighbor
from teapot # 1 was sought. In bath cascs all of the correspondences were found within one sample.
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Figurc 8-28: 1.-path from Teapot #2

In the third and fourth cxamplcs, the L-path from tcapot #1 was matched to that of tcapot #4.
Teapot #4 is of the same scale as tcapot #1, but rotated by approximatcly -15°. The difference in
position of the terminating M*-nodes Ied to a difference of angle between the two .-paths of
approximately 24°. Also. the |.-path from tcapot #4 was 0.90 the length of the one from tcapot #1.
This difference in length and orientation led to a difference in the number of L-nodes in the two
i.-paths. ‘There was not a one-to-one correspondence in the matches of the two L-paths. When the
1.-path from tcapot #4 was scaled and rotated to match the one from teapot #1, two of the 1.-nodes
found their ncarest match more than one sumple away, with the worst being 1.189 samples away. The
average distance was 0.58 samples. When the [.-nodes from teapot #1 were compared to those of
tcapot #4, the worst casc matches was 0.91 samplcs and the average error was 0.48 samples.
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Transform of Teapot # 2 to Match Teapot # 1
AL = 0,D_/D = 100. 48 = 0.00°

Nodes from teapot #2 Nodes from teapot #1
Transform of Reference Node  Closest Mcasured Node

Node _aX AV Ak Node  ax av__ak distance error

1 000 000 O 1 000 000 O 0.000 0.000
2 800 800 O 2 -800 800 O 0.000 0.000
3 800 2400 O 3 -800 2400 O 0.000 0.000
4 -800 3199 -1 4 000 3199 -1 8.000 1.000
5 000 4000 -2 5 400 3599 -2 5656 1.000
6 400 4000 -3 6 400 4000 -3 0.000 0.000

Average Error = 0,33
Worst Error = 1.00

Table 8-16: Correspondence of L-nodes and Distances for Transform of
L-path from Teapot # 2 to Match Teapot # 1

In the next matching cxample the L-path from teapot #2 was matched to that of teapot #1.
Teapot #2 is 1.15 larger than teapot #1. The two L-paths had exactly the same length and
oricntation. All of the L-nndes except two found their nearcst ncighbor at a distance of 0.0 samples.
These two L.-nodes found their nearest neighbor 1.0 samples away.

In the final example, the L-path from tcapot #5 was compared to that of tcapot #1. Teapot #5 is
rotated by -15° and scaled by 1.15 from teapot #1. The principal M*-node in teapot #5 was one
level higher than expected, and this had a big effect on the matching of these two L-paths. Many of
the nearest neighbors in thios cxample were found across level.

Our conclusion from these experiments is that the L-path matching procedure and similarity
measure described above gives a recasonable estimate of the of the similarity of I.-paths from two
images. The worst mismatch between individual L-nodes in all of these examples was 1.37 samples
while the worst average crror distance was 0.85. This matching procedure gives the ability to
compare L-paths from any oricntation and Iength, and spanning any number of levels. The simple
similarity measures of worst distance and avcrage distance provide a uscful measure of the similarity
of L-paths from two images.
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Figure 8-29: L-path from Teapot #5




Transform of Teapot # 5 to Match Teapot # 1
AL=-1.D /D = 109, a6 = 3742°

0.000
1371
1.090
1.269
0.191
1.035

Nodes from teapot #5 Nodes from teapot #1
Transform of Reference Node  Closest Mcasured Node
Node  aX AV Ak Node  Ax Ay Ak distance error
1 000 000 O 1 000 000 O 0.000
2 559 1652 0 3 800 2400 O 15.516
3 -10.92 2211 -1 3 -800 2400 O 8.723
4 013 2758 -2 4 000 3199 -1 7.178
5 293 3584 -2 5 400 3599 -2 1.080
6 293 3584 -3 5 400 3599 -2 4,143
7 432 3997 -4 6 400 4000 -3 2.847

Average Error = 085
Worst Error = 137

1.006

Table 8-17:  Transform of L-path from Teapot # 1 to Match Teapot #5
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Chapter 9
Discussion

This chapter presents a discussion of applications of the DOLP transform and a discussion of how
the properties of the representation for gray scale shape could be proven with experiments.

9.1 Apptlications of the DOLP Transform

The DOLP transform, in both its 1-D and 2-D form, can be useful as a representation for a variety
of applications requiring signal detection or signal description. Characteristics of the DOLP
transform that make it uscful in signal detection situations are:

o [t provides a function for detccting pulses that is not dependent on the sharpness of the
boundary or the uniqueness of the amplitude of the pulse;

o [t separates pulses of different durations so that they may be detected independently;
o It provides a way of detecting a pulse whose width is not known a priori;

o It provides a way to find the resolution at which some desired signal occurs;

The following paragraphs claborate on these characteristics.

9.1.1 Detecting lli-defined Pulses

The DOL.P transform provides a technique for detecting pulscs in 1-D signals and regions in 2-D
signals which is not dcpendent on the sharpness of the boundary of the pulse or region. Indeed,
within the DOLP transform the boundary is a scparate signal at a higher resolution. In a I-1 signal
this ability can be uscd to find blurred pulscs of a particular frequency. cven in the presence of noise.
For a 2-1J signal the DOL.P transform provides a simple technique for detecting and describing small
2-D regions. A 2-D region will appear as a local maxima in the DOLP transfrom. This maxima may
be tracked in consccutive frames without a scarch process.

The DOLP transform is also useful for detecting the orientation of a surface from texture cucs. An
image texture is usually composed of clements at a particular set of sizes. In many natural textures,
the shapes of the individual clements may be random. If the size of the physical objects which
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correspond to the regions is known, the distance to the surface may be inferred from the size of the
texture clements. Furthur-more the orientation of the surface may be inferred from the gradient of
the size. For cither process, the size of the the texture clements may be measured by detecting local
maxima in the 3-space of the DOLP transfrom. The level at which the maxima occurs gives an
estimate of the size of the clement. This simple detection scheme will even work when the shapes of
the individual clements vary randomly.

9.1.2 Detecting Pulses of Different Durations

‘The DOLP transfrom scparates a signal into band-pass components. Each band-pass channel
responds to signals of a particular range of durations ( in 1-D') or widths (in 2-D ). This property can
be used to detect overlapping signals of different durations which are superimposed in the same
image. For example, consider printing on a texturcd or nonuniform surface, such that the patterns or
blotches on the surface arc much larger than the printed ietters. A DOLP transform of the image will
separate the characters of the writing from the pattern on the papers, allow either the pattern or the
writing to be detected by thresholding.

9.1.3 When Width is not known A-Priori

The DOLP transform channels are scnsitive to frequency ranges which arc exponentially spaced
and cover the range from the smallest to the largest signal representable in the image. This property
can be uscful for detecting a signal whose width ( ¢r duration ) is not known a-priori. Such a signal
will result in a local maximum in at least one of the DOLP channels.

9.1.4 Automatic Focus

When a camera is out of focus the cffect is the same as convolving a low-pass blurring function
with the image. It is possible to mecasure whether a lense is moving toward or away from correct
focus by dctecting the change amplitude with which a high frequency pattern ( ¢.g. a thin bar ) is
detected by a DOLP transform channel. In the case where the scene docs not contain an artificial
focusing pattern of known spatial frequency it is possible to servo the focus from the highest
frequency level at which significant signal cnergy is observed in a DOLP transfrom. '

9.2 Evaluating Claims

This rescarch was undertaken to show that it was possible to respresent an image with a set of
band- »ass filters and to determine the propertics of such a representation.  This rescarch was
undertaken with very limited resources. This resource limitation has restricted the investigation to
forming the representation of only a few images.

The rescarch has gone well heyond its original goals; we have shown that it is not computationaily
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prohibitive to ~ompute the convolution of an image with an expontially spaced set of band-pass
filters; we have shown that such a sct of convolutions can be organized into a reversible transform;
we have shown that the image shapes can then be representaed by detecting peaks and ridges in the
band-pass images; We have shown that these peaks and ridges can be detected by local processes.

9.2.1 Claims Concerning the Representation for Shape

The primary claim of this dissertation is that the representation of a shape based on the 2-D
Sampled DOLP transfrom which is described in chapters 6 and 7 can be matched efficiently. A
sccondary claim is that this representation can be matched regardless of changes in the size, position,
or 2-space orientation of the shape.

The ability to match hierarchically from global to local is intrinsic to the structure of the
representation.  In chapter 8 we have demonstrated how this matching is done. Having such a
represcntation does not completely solve the problem of how to best do such matching. Issucs of
how to organize the search for a match and what criteria to use to measure the over all goodness of
the match must also be settled. This representation presents the data in a structure that allows a
matching proccdure to procede hicrarchically, and to use the results of a cach match to constrain the
scarch for maiching features at a more local level.

The hicrarchical nature of the representation is intrinsic to the DOLP transfrom; it can not be
disputed. To prove the uscfuilness of such a representation for matching, it is necesary to develop a
matching algorithm bascd on the representation. The ability of the algorithm to produce correct
results must be demonstrated in a large number of different images. This will provide proof *at the
technique works.

The computational complexity of the matching algorithm must then be analyzed. The resuiting
measure of computational complexity should then be compared to the complexity of other matching
algorithms.

9.2.1.1 Invariance to Size and Rotation

Expcriments have shown that the representation composed of M-nodes. M*-nodes, 1.-nodes and
P-nodes is subject to cylic distortions when a pattern shifts in position, size or oricntation. As a shape
increascs in size, the M-nodes, L-nodes, and M*-nodcs must make the transition to a higher level in
discrete steps.  Since these transitions arc not constrained to occur simultancously, the specific
configuration of nodes does change. This is a cyclic distortion; after the change in scale has advanced
by a factor of V2 , the pattern will have returned to its starting configuration. The cffects of change
in position arc similar; as a pattcrn moves over a distance which is one samplc rate at the level of its
highest M*-node. the M-nodes, 1.-nodes, M*-nodes and P-nodces in the representation move to the
next sample at in discrete steps that are not constrained to occur simultancously. However, afier the
pattern has shifted by the distance of one sample at any level, all of the nodes at the level and lower
will have returned to the same configuraton. ‘This bchaviour is suggested by rcasening and
confirmed with experiments with squarcs and rectangles. The exception to the cyclic degradation
from a position shift occurs when a pattern shifts closer ( less than its diameter) to a second pat-ern.
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It is possible to construct a second. more abstract, description which compensates for the cyclic
distortions. This description, described in chapter 8, is composcd of M-paths, M*-nodes, and L-
paths. While this representation is not subject to the cyclic distortions, there remain certain illusions
which can alter the representation of a shape as it undergoes a transformation in size, position, or
oricntation. So far all of the illusions which have such an cffect also cause distortions in the
perception of the form by the human visual system.
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Chapter 10
Summary and Conclusions

This chapter presents a summary of the contents of the preceding chapters, a discussion of the
results presented in cach chapter, and the salient conclusions that can be drawn from these results.

10.1 Major Results of this Dissertation

This dissertation presents results in three areas.

1. A reversible transform ( The Difference of Low Pass or DOLP transform ) for detecting
and mathematically representing signals of any number of dimensions. Signals are
filtered into cxponcntially-spaced spatial frequency bins by convolution with circularly
symmetric band-pass filters. The filters arc sizc-scaled copics of a low-pass filter minus
the same filter scaled larger by a scaling factor, S (typically V2). This transform resolves
a signal into components of different spatial frequencies.

2. Techniques for greatly speeding up the calculation of a DOLP transform using
resampling and cascaded filtering with expansion.

3. A representation for 2-D gray-scale pictures, based on the sampled DOG transform,

which greatly simplifies matching of picture information for structural pattern
recognition and stereo interpretation.

This dissertation may be divided into the following sections:
o Background Material (Chapters 1, 2 and 3);

e Mcasurement, detection and mathematical representation of nonperiodic signals (
Chapters 4 and 5);

o Fast computation techniques for the detection technique (Chapter 6);

» Converting the mathematical representation to a symbolic representation which describes
gray-scalc shape heirarchically by spatial frequency ( Chapter 7 );

 Examplcs of the representation and its usce for matching, including demonstrations of the
invariance of the structure of a description (o the sizc and oricntation of the pattern
(Chapter 8).
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10.2 Summary of Background Chapters

Chapter 1 introduced the problem context for this rescarch: modecl based recognition of 2-D
patterns and 3-D objects by matching structural descriptions to prototypes. ‘This chapter also
contains a discussion of the methodologics used in this research and a summary of the results.

Chapter 2 reviewed related work on the probiems of measuring and representing 2-1) signals. This
chapter began with a discussion of the two popular approaches to image description: edge detection
and region segmentation. Both approaches are based on the assumption that an image is composed
of approximatcly uniform regions. Carcful cxamination of most images of "rcal world objects” in
unconstrained lighting shows this assumption to be inaccurate. This chapter also described
inadcquacies in the representations produced by both of these approaches:

o the description of shape in terms of small events,
o the inability to describe gradual transitions in intensity, and

« the inability to describe textured regions.

A number of detection functions for edges are then described. Thwas was followed by a review of
scveral multi-resolution algorithms that have been used to solve various problems involving two
dimensional signals. The chapier cnded with a review of two representation technigues which give
object-centered descriptions of shape.

Chapter 3 provided a brief review of mathematics and terminology from the ficld of digital signal
processing which are employed in later chapters. Decfinitions were presented for convolution and
correlation, the two operations were shown to be the same for a symmetric filter, and corrclation was
shown to be equivalent to a sequence of inner products. The transfer function of a lincar operator
was derived based on the propertics of the cigenfunctions of lincar systems. Resampling, aliasing,
and the 2-D Nyquist boundary were then described. The V72 resampling operation was defined and
its effects on the frequency content of an image were described. Chapter 3 ended with a review of the
paramcters that are commonly used to specify a digital filter.

10.3 Measurement, Detection and Mathematical Representation of
Non-Periodic Signals

Chapter 4 described the foundation on which the techniques described in the later chapters are
bascd. Chapter 4 began by describing the concept of a parameterized family of detection functions.
'This idca was conceived carly in this rescarch and led to the development of the DOLP transform.

Chapter 4 then reviewed principles for the design of detection functions which arc to be used to
detect and describe non-periodic signals using ridge and peak detection.  These principles were
conccived carly in this rescarch and played a key role in the development of the DOLP transform;
they served as a guide which directed the rescarch. ‘These principles also show the assumptions on
which the rescarch proceeded.

| 1
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One of the major innovations resulting from this research is the Difference of Low-Pass (DOLP)
transform, described in chapter 5. The DOLP transform consists of a set of exponentially size-scaled
band-pass filters which are formed by subtracting a sequence of size-scaled low-pass filters. The
DOLP transform cxpands an N point signal into Log o N) band-pass signals, where N is the number
of samples in the signal, and S is the scale factor for size scaling the filters (typically V2). The
band-pass signals, and a convolution of the largest low-pass filter with the signal may be added
together to recover the original signal. Thus the DOLP transform is reversible; it preserves all of the
information in a signal. The DOLP transform scparates a signal into overlapping frequency channels.
This has the cffect of decomposing a signal into components of different sizes, even if the boundaries
of the components are poorly defined. The configuration of peaks in the DOLP transform of a signal
describes its components in a tree whose structure is invariant to the scale of the signal.

The DOLP transform may be defined for signals of any dimensionality, and may be computed by
analog filters as well as digital filters. Based on this disscrtation, a 1-D form of DOLP transform has
been recently used to detect and discriminate defects in the coatings of florescent light bulbs
{Handelsman81]. An investigation is being launched into the use of a form of DOLP transform for
tracking formants in spcech spectograms. Another cffort is being started to investigate the use of a
form of DOLP transform to describe range data from a depth sensor, Also, we have recently
proposed the use of a 3-D form of DOLP transform to represent 3-D shape in terms of primitives
which are fuzzy spheres.

As the band-pass impulse responses are scaled larger in size it becomes possible to resample the
band-pass signals at a rate proportional to the scaling of the band-pass filter. This resampling can
greatly reduce the complexity of computing the DOLP transform as well as the amount of storage
required. Resampling at a rate proportional to the scaling of the band-pass impulse response can be
designed so that the no information is lost to the description from aliasing, while the computational
cost is reduced from O( Nz) to O(N Log N) and the storage requirements are reduced from O(N Log
N) to 3N. (N is the number of sample points in the image.) The resampled DOLP transform was also
defined and described in chapter S.

10.4 Techniques for Fast Computation of a DOLP Transform: The
DOG and Sampled DOG Transforms

Chapter 6 concerned techniques for which were developed in this rescarch to greatly reduce the
cost and spced of computing a 2-1D DOL.P transform. Two propertics of the Gaussian function can
be used to obtain substanual decreases in the cost of computing a DOLP and a sampled DOLP
transform:

1. the Gaussian auto-convolution scaling property, and
2. The separability of the circularly symmetric 2-D Gaussian function.

The Gaussian auto-convolution scaling property provides that when a Gaussian function is convolved
with itsclf, the result is the Gaussian function scaled larger in standard deviation by a factor of V2.
This suggests that the DOLP transform may be speeded up by producing cach low-pass image from
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the previous low-pass image by convolving by the appropriate Gaussian function. In fact, the DOLP
transform may be reduced in cost from O( N?) multiplics to O(N Log N) multiplics by using an
addiuional technique for scaling a Gaussian function by V2: The V2 expansion function. The
V2 cxpansion operation maps cach row of a function on a cartesian sample grid onto cach diagonal
of a V2 sample grid. The expanded function is zero or undefined for points between thosc on the
V2 grid. This expanded Gaussian filter has a wansfer function with a Gaussian center-lobe which is
scaled smaller (in frequency) by a factor of V2. There are also reflections of this center lobe in the
four corners of the (. v) Nyquist plane. By proper choice of filter parameters, these reflections can be
formed such that they fall over a region of the auto-convolved Gaussian’s transfer function where the
response is very smali (i. ¢. < -70 dB). Thus. when the two functions are convolved, the center lobes
are attenuated to a very small response ( < -100 dB in our examples).

By repeated V2 cxpansion the original filter may be scaled to the same size as the cumnulative
low-pass impulsc response at cach level. Thus cach low-pass image for level k+1 can be formed by
convolving the low-pass image at level k with a copy of the low-pass filter that has been expanded k
times.

An algorithm for computing a DOLP transform using Gaussian filters, auto-convolution, and
expansion was described in scction 6.2.  This algorithm, called “Cascaded Convolution with
Expansion”, produces a form of DOLP transform ( the DOG transform) in O(N Log N) multiplies.

Further spced-up, and a reduction in storage requircments arce possible by including
V2 resampling in the algorithm. This algorithm, called "Cascaded Convolution with Resampling”,
gives a form of sampled DOLP transform, the SDOG transform, in 3 X, N multiplics, where X, is
the number of coefficients in the kernel Gaussian filter. As with the Sampied DOLP transform, 3N
storage cells are required.

Chapter 6 defined:
e The Gaussian function
e ‘The 2-1) Circularly Symmetric Gaussian filter
o The Gaussian auto-convolution scaling property
o the V2 cxpansion operation
o Cascaded convolution with expansion and the DOG transform

¢ Cascaded convolution with resampling and the SIDOG transform

In this chapter the complexity of the cascaded convolution with resampling was derived.  This
complexity was compared Lo that of computing a SDOG transform using FFI' convolution, Cascaded
convolution with resampling was shown to be more cfficient whenever the image signal s larger than
65 x 65 samples.
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Chapter 6 also cxamined the attenuation of the reflections that result from the expansion operator,
and the accuracy of the auto-convolution scaling property when used with a finite Gaussian filter
with a circular support. At the end of chapter 6, the impulse responses of the level 0 and level 1
r‘ band-pass filters were shown. and lincar and log plots were shown of the transfer functions of the

level 1 and level 2 band-pass filters.

10.4.0.1 Conclusions Concerning Signal Detection

The principal conclusions to draw from chapter 6 are that:

e A DOLP transform is not prohibitively expensive to compute.

¢ A DOLP uansform can be implemented using Gaussian filters and cascaded convolution
with cxpansion such that the computational cost is less than that of a Fast Fourier
Transform. '

¢ Cascaded convolution with expansion can be used to produce a sequence of low-pass
images such that the impulsc response with which the images are convolved have
standard deviations which form an cxponcntial scquence, o, = o,V2 k

o Cascaded convolution with expansion can be implemented such that the impulse
responscs have stop bands which are kept very small, (i. e. < -80 dB).

The work described in chapter 6 could be extended in several ways.

e A substantial speedup ( a factor of 49/18) can be achicved by using the separability
property of the circularly symmetric Gaussian function. Howcever this technique will
result in a slightly higher worst-case stop-band ripple because a square support is nceded
for separable filtering. An investigation into the extent of the degrading of the stop band
rejection from this method would be uscful. Such an investigation is to be carricd out in
the ncar future.

e The cascadced-filtcring-with-cxpansion algorithm approximates the Gaussian low-pass
filters with an auto-convolved Gaussian convolved repeatedly with expanded Gaussians.
This is illustrated in figurce 6-9. The measurcs which were used to determinc the accuracy
of this approximation are somewhat crude. It would be interesting to compute the
standard deviations of the sequence of filters produced in this manner, 1t would also be
interesting to find a measure for how closcly these composite filters approximate true
Gaussian functions.

e The cffects of the Gaussian filter paramcters R and a have only been examined over a
limited region of the R, a space. 'This examination showed that for R=4.0 and @ = 4.0
the transfer function tapers monotonically along the u and v axcs of the spatial frequency
planc to a response of approximately zcro at the Nyquist boundary pointsu = +9¢ v =
0.2) An cxhaustive cxploration of the cffects of R and a would be interesting. However

2]'l'hc: function is symmetric and 5o u and v arc intcerchangeable.




on the basis of the experiments that were carried out, it does not appear that such an
exploration would contribute anything to the tcchniques used elsewhere in this thesis.

10.5 Transforming the SDOG Transform of an Image into A Symbolic
Description

Chapter 7 described a scquence of processes which produce a structural description of the
information in an image. based on a SDOG transform of the image. These processes are:

o the detection of local peaks in each band-pass image,
o the detection and linking of ridge points in each band-pass image,

o linking of peaks between levels to form a tree, and detection of the peaks which are a
local maximum in the SDOG transform.

There arc four types of symbols that are assigned to sample points in the SDOG transform by this
process. These symbols are:

P-nodes: Ridge points within a band-pass level.
M-nodes: Local positive maxima or negative minima within a band pass level.
L-nodes: Ridge points in all three dimensions of the SDOG transform. These are detected

by comparing the values of ridge points at adjacent levels.

M*-nodes: Local positive maxima and ncgative minima in all ihree dimensions of the SDOG
transform. These are detected by comparing the values of adjacent M-nodes in
adjacent band-pass levels.

A local, two-pass pcak and ridge detection algorithm is executed for cach band-pass level. The
result of this algorithm is sct of points marked as P-nodes or M-nodces. P-nodces and M-nodes which
arc 8-neighbor adjacent. are linked by two-way pointers. The result is a sct of M-nodes which are
conncected together by chains of P-nodes. These chains of P-nodes are called P-paths. Processes are
then run at cach level which remove small loops and fill in short gaps in the P-paths.

The P-paths at cach level serve two purposes:
1. They provide candidate points for L-node detection; and

2. They link together M-nodes which are part of' the same visual form.

Scctions 8.3 and 8.4 described how the P-path attributes of oricntation and length are used to
match small graphs of M-nodcs a band-pass level from two images. The purposc of this matching is
to obtain a onc-to-onc correspondence between the M-nodes.
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M-nodes scrve as markers for distinct features in visual forms. M-nodcs occur at several levels for
forms such as corners, cnds of bars, and other convex and concave parts in a visual form. They also
denote the presence of forms which are not clongated. Exampiles of the forms that cause M-nodes are
given in scction 7.1 and 7.3. Because M-nodces denote distinct visual features they provide excellent
tokens for matching images. Correspondence matching in an SDOG transform is a process of
determining the correspondence between M-nodes, M*-nodes, and L-nodes in the descriptions from
two images.

The fact that each band-pass impulse response is a copy of the impulse response from the next
lower level scaled larger by V2 provides that the M-nodes from adjacent levels occur within two
sample distances of cach other. Thus it is possible to connect M-nodes between the band-pass levels
by having each M-nodcs scarch for M-nodes in a small neighborhood in the band-pass image above
it. Such adjacent M-nodcs form a two-way pointer between themselves. Scquences of M-nodes at
several levels such that each M-node is connected to one M-node above it and/or one M-node below
it are called M-paths. M-paths that describe a visual form give a tree. At the top levels of the tree
there are M*-nodes that provide an estimate of the size of the visual form. Aligning the M*-nodes
from two images gives an initial estimate of the relative position and size of the two visual forms. The
relative oricntation is provided by dctermining the correspondence of the M-nodes. M*-nodes and
L-nodes in lower levels of the tree. Such matching is described in Chapier 8.

Forms that arc long and thin result in ridges at scveral adjacént band-pass levels. Comparing the
values of ridge points at adjacent levels gives ridge points in the three dimensional SDOG transform.
The 3-space ridge points are labeled as L-nodes. L-nodes are linked to adjacent L-nodes with
two-way pointers to form an l.-path. Except for certain degencrate forms, L-paths begin and end at
M*-nodes. An L-path describes the points along the center of an clongated form. ‘The level of each
L-node gives an cstimate of the width of the form at that point along the center of the form. The
alignment of the M*-nodes at cach end of an L-path provides an initial estimate of the best alignment
of the L-paths from two images. A nearest neighbor matching rule was described for comparing two
1.-paths in scction 8.5.

A conclusion that can be drawn from the algorithms described in chapter 7 is that a a structural
description of an image can he constructed without the usc of explicit measurces of dircctionality. The
issuc of whether a measure for directionality was nceded to detect ( or cven define what is mcant by)
ridges in cach band-pass image was raiscd at the outsct of our investigation into techniques for
constructing a description of an image from a DOL.P transform. The outcome was that such a
mcasure is not necessary: a two pass process can be used to detect ridges. In the first pass of this
process samples arc linked to their largest neighbors. In the sccond pass. samples which link to each
other are marked as ridge nodes. This process was found to be sufficient for detecting ridges.

A fundamcntal rcason why the processes described in chapter 7 work is the smoothness of cach
band-pass image. “This smoothness is a result of the band-pass characteristics of the filters used in the
DOLP transform. 'The DOLP band-pass filters sufficicntly constrain the spatial frequency content of
cach band-pass image so that relatively simple processes may be used to detect peaks and ridges in
cach image. The V2 scaling between filters constrains the changes between adjacent band-pass
images so that ncarest neighbor comparisons may be used 1o detect the local peaks and ridges among
the band-pass images in the transform space.
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10.6 Examples of Matching

Chapter 8 demonstrated how the representation may be used to determine the correspondence of
forms in two images, even when a form has been rotated and/or scaled from one image to the next.

This chapter started with a discussion of the use of correspondence matching for structural pattern
recognition and for depth measurement from stereo pairs of images.

A procedure for determining the correspondence of M-nodes and L-nodes in the descriptions of
two images of similar objects was then summarized. A set of test images of teapots were then
presented. These test images were formed at 3 distances and 2 image-planc orientations. They were
formed to test and demonstrate the invariance of the representation to changes of scale and image
planc oricntation.

A discussion of determining the correspondence by matching M*-nodes and M-paths was then
presenied. This discussion described how the highest level M*-nodes may be used to obtain an initial
estimate of the relative position and size of the form in the two images. It then described how the set
of M-nodes which are connected by P-paths at each level may be matched. This matching cmploys
the distance and relative orientations between the connected M-nodes as the principal feature in the
matching. The process appears to exhibit only a lincar growth in complexity as the number of
M-nodes at each lower level increases, because the matches at each level constrain the matches at the
next lower level.

Examples were then presented which show matching of the tcapot images from 3 distances (sizes)
and 2 oricntations. These examples showed the cyclic degrading of the description that occurs as
scale is incrcased by a factor of V2. The examples also showed that matching is possible despite this
degradation.

This section closed with an example of matching between a pair of sterco images. The
correspondence of M-nodes in the upper levels of a pair of images of a paper wad was shown.

The last section of chapter 8 described a process for aligning 1.-paths. based on the correspondence
of their terminating M*-nodes. and a simple mcasure for the similarity of |-paths. ‘The alignment
function is a simplc lincar scaling and rotation of the cntire 1.-path, bascd on the rclative distances
and oricntations between the M*-nodes at cach end of the L-paths. ‘T'he similarity measure is based
on the principle that for cach 1.-node in the scaled and rotated 1.-path, the nearest 1.-node in the
second I.-path is determined. The L-path similarity is then measurced by the average and the worst
case distances between L-nodes. Example of this matching were given using an [.-path that describes
a shadow from $ of the tcapot images.

Much work is nceded in refining and developing the matching processes described in chapter 8. A
thorough development of matching techniques using descriptions based on the DOLP transform is
much too large a problem 1o be encompassed under the limited scope of this disscrtation. It is
however a timely and very important problem.




»‘ : N 217

) The matching examples that were shown in chapter 8 were intended to both illustrate the size and
4 rotation invariance of a structural description based on a DOLP transform, and to show kinds of
3 matching which can be done with such descriptions. In some sensc these were the results of a
preliminary investigation. These preliminary results were promising. M*-nodes and M-paths were
found o be particularly uscful in finding the correspondence of components in two descriptions. We
are preparing to launch a thorough development of matching techniques for descriptions based on
the DOLP transform within the problem domains of structural pattern recognition and sterco image
correspondence. This promises o be an exciting and fruitful investigation.




Apnendix A
n ot Filter Parameters

Selection

This appendix describes the choice of filter parameters, R = 4.0 and a = 4.0, for the experimental
implementation of the SDOG transform which was used to develop the structural representation.

The choice of R and a must balance two opposing constraints. On one hand, the low pass filters
must sufficicntly attenuate response at frequencies outside of the Nyquist boundary at cach low-pass
level 10 avoid aliasing from resampling. Such aliassing would result in random crrors in the position
of pcaks and ridges as well as the detection of spurious peaks and ridges. The filter response can be
madec arbitrarily small outside the Nyquist boundary by increasing the number of coefficients of the
filter, (i.c. by incrcasing R ). It is also possible to adjust the position of the stop band towards the
origin, at the expense of increasing the stop-band ripple, by decreasing the parameter, a

~On the other hand it is desirable to keep the number of cocfficicnts and thus the computational
cost of the SDOG transform as small as possible.

The R parameter determines the cost of a DOLP transform ( Given the size of the image, and the
scaling value S = V2 ). R should be chosen to be the smallest value which gives accepiable low
levels of aliasing when the low pass images are sampled. The meaning of acceprable remains a topic
of debate. We have suggesied that the stop band ripple is acceptable if the magnitude of the worst
casc stop-band crror is Iess than the quantization resolution used to represent the samples. In our
actual choice of R and a we were much more conservative than this guidcline.

The a parameter specifics the standard deviation of the fiiter for a given R. Since a controls the
tapering of the cocfficients at the boundary of the filter support. it gives a trade-off between the
transition width (AF) and the magnitude of the ripples (8) in the stop band. Increasing a decreases
the size of the ripples in the stop band region while mmaking the transition region wider and moving
the edge of the stop band away from the origin. For any value of R, a should be choscen as large as
possible, so that the stop band ripple is as small as possible. 'The upper limit for a is the value at
which the largest filter response at the Nvquist boundary is of the same magnitude as the stop-band

ripple.
The first re-sampling occurs at the level 1 low pass image. where the impulse response of the
low-pass filter is the kernel filter. g(x,y;R,a) convolved with itsclf. Thus the transfer function of the

composite filter at level 1 is the square of the transfer function of the the kernel filter.

It was decided to design the kernel filter so that the outer cdge of its transition region would just
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touch the new nyquist boundary for V2 sampiing. This meant that the samp]ing distance at each
level would be approximately V2 smaller than needed to minimize aliasing. This provides a factor
of V2 better positional accuracy in the description, although it tends to make peaks and ridges less
sharp. This also mcant that the worst case stop-band ripple would be the square of the ripple in the
kernel filter.

Paramcters for the kernel filter were tested to determine:
1. The worst case ripple outside the Nyquist boundary for V2 sampling.

2. The values at u,v = *#/2, the four points on the new nyquist boundary that are closest
to the origin.

As a first pass. filters and their transfer functions were computed at cach of the 9 points given by
all combinations of:

Re{345}
ac{345}

These starting values were chosen from carlier experience with circularly symmetric Gaussian filters.
The values obtained for maximum amplitude of stop band ripple (8) and for Glu=a/2.v=n/2)
(This is for the real part of the transfer function) are shown below in table A-1. The symbol N/A is
given for § when the ripple did not come to a peak inside the u,v plane.

a=30 a =40 a=150
8.CG(n/2m/2) 8.G(w/2.4/2) 6.G(n/2.w/2)

0.031, 0.025 N/A, 0.063 N/A, 0.109
-0.018,0.013  -0.008,0.011  0.003, 0.021
- -0.003,0.0111  -0.006,-0.006 -0.002, 0.002

A AR
]
W bW

Table A-1: Rcsults of Initial Parameter Trial

From this experiment it was learned that R=3 was not not quite adegquatc to keep the transition
region within the Nyquist boundary for V2 sampling. R=35 was rcjected because R =4 was judged
to be adequate. The value of @ = 4.0 was judged 1o be the best of these three trial points duc to the
closeness of the stop band ripple magnitude and the maximum stop band crror. The transfer
functions were then computed for R = 4and a = 3.80t0 a = 420 in steps of 0.05 . ‘The valuc a =
4.0 was found 1o put the first zero crossing at the points (u.v) = (£9.0) and (0.27) ., and thus was
selected for usc in developing the symbolic description technique described in the chapters 7 through
9.

From the table of values givén above it can be scen that the worst case aliasing when the level 1
low pass image is sampled, occurs at (u,v) = (£w/2.2%/2). ‘These points arc on the Nyquist
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boundary, and for them the filter response is 0.0112 = .000121 or -78.34 dB down from the maximum
response ( 1.0 at DC). All other aliased frequencies are less than or equal to -.008% = 0.000064 or
-83.8 dB or smaller. This was judged to be adequate and attention was turned to vther matters.
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