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Abstract

-his dissertation presents a new technique for representing digital pictures. The principal benefit

of this representation is that it greatly simplifies the problem of finding the correspondence between

components in the dscription of two pictures.

This representation technique is based on a new class of reversible transforms (the Difference ofIl Low Pass ur DOLP transform). ,A DOLP transform separates a signal into a set of band-pass

components. "lhe set of band-pasi filters used in a DOLP transform arc defined by subtracting

adjacent members of a sequence/of low-pass filters. This sequence of low-pass filters is formed by

scaling a low-pass filter in size Jy an exponential set of scale factors. The result of these subtractions is

a set of band-pass filters wl ic are all scaled copies of a smallest band-pass filter.

Several techniques are presented for reducing the complexity of computing a DOLP transform. It

is shown that as the each band-pass image can be resampled at a sample rate proportional to the scale
of the band-pass image. This is called a Sampled DOLP transform. Res.mpling reduces the cost of

computing a DOILP transform from O(N 2) multiplies' to O(N Log N) multiplies and reduces the

memory requirements from O(N Log N) storage elements to = 3 N storage elements.

A fasi algorithm for computing the DOLP transform is then presented. This algorithm, called

cascade convolution with expansion' is based on the auto-convolution scaling property of Gaussian
functions. Cascaded convolution with expansion also reduces the cost of computing a DOLP

transform to O(N Log N) multiplies. When combined with resampling, this fast algorithm can

compute a Sampled I)OLP transform in 3 X, N multiplies.2

Techniques are then described for constructing a structural description of an image from its

Sampled D01.11 transform. The symbols in this description are detected by detecting local peaks and

ridges in each band-pass image, and among all of the band-pass image. This description has the form

of a tree of peaks, with the peaks interconnected by chains of symbols from the ridges. The tree of

peaks has a structure which can be matched despite changes in size, orientation, or position of the

gray scale shape that is described..,

The tree of peaks permits the global shape of a gray-scale form to be matched independently of the

N is the number of .ample points in an image or signal

2X, is the number of acficients in the smallest low-pass filler.
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hich resolution details of the form. Thus it can be used for rapidly searching through a data base of

prototype descriptions for potential matches. This representation is very efficient for finding the

correspondence of components of forms from two hnagcs. In such matching the peaks serves as the

tokens for which correpondcnce is detennined. I'he correspondcnce of peaks at each band-pass level

constrain the possible matches at the ncxt. higher resolution imagc. This representation can also be

used to describe forms which are textured or have blurry boundaries. Examples are presented in

which the descriptions of images of the same object arc matched despite changes in the size and

image plane orientation of the object.
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Chapter 1
Introduction

This dissertation describes a representation for visual information. l'his representation is not
specific to a particular visual domain: it can he applied to any problem in which a two dimensional
sampled function Must bc represented with symbols. It is particularly appropriate for images where
the picture elements have many values, where the objects reprcscnted in the picture have blurred or
fu 7-7y boundaries, or have textured surfaces, and where objects occur at unknown sizes and

orientations.

Interpreting an image requires assertions about regions of the image whose sizes may span the
range from a few picture elements to the entire image. The representation developed below provides
visual primitives which span this range of sizes. The position of these primitives are encoded as nodes
in a graph. Th'le result is a data structure which is relatively invariant to the actual size, orientation

and position of the gray scale form in the image.

1.1 The Problem Context: Machine Vision

This Section describes the general vision problem and how this dissertation relates to it.

This thesis addresses the problem of representing two dimensional (2-D) visual information. The-
visual world in which humans function is a three dimensional 0-3-) world. Understanding this 3-D
visual world requires representation of the 3-D form of objects. Thei representation described in this

thesis does not, by itself, provide this capability; it is inherently 2-D.

The human visual system receives as raw data a stereo pair of 2-D images. Each of these images
must be represented as a 2-D signal and the pair matched against each other to receive 3-D
information. Tlhe representation described here is well suited for the analysis of stereo pairs. It is also
well suited for the interpretation of images from some domains which are inherently two
dimensional, such as many classes of biomedical images, aerial and satellite photography, and also

terrain data (where depth is represented as intensity).

Test data for this research has been acquired from diverse domains. Many of the images were
digitived from photographs of 3-I) objects. such as the cup image shown as figure 1-1 below. The cup
image is placed here to illustrate a point about 2-1) images of 3-1) objects. Careful viewing of a 2-D
image of a 3-1) object will usually show that the light and dark regions in the image do not directly
correspond to our ideas of the object's shape.
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Figure 1-1: Test Image of a Cup. Note Shape of Dark Regions.

Note the shape of the dark regions of the cup. Thcre is a dark handle which one might expect.
There is also a dark region at the top where the cup is open, and there is a dark region on the right
side. The shape of these regions are not at all like what an untrained person would draw if asked to
draw a cup. "he human visual system takes the shading, highlights, and textural information, from
such an image and uses them to reconstruct or recall a model of a 3-1) object. 'Ilis process is
unconscious. and these visual cues arc often not noticed by an untrained observer unless they are
explicitly looked for. Although interpreting shading, highlights and texture is an important and
timely problem in machine vision, it is not the problem addressed by this thesis. Rather, this research
will provide a new foundation for such interpretation.

Figure 1-1 also provides an opportunity to define an important term. The dark regions in the cup
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image arc examples of "ray scale forms". The representation describes the shape of both individual

forms dad the shape produced by a configuration of forms. The word "form" is borrowed from the

art community. It refers to a pattern of any shape which is not necessarily uniform in intensity. It is

used in place of image ohject. because image objects could be confused with real world objects. The

words shape and blob were a'oided because they carry connotations of uniibrm-intcnsity connected

patterns.

1.1.1 Role of Representation in 2-D Visual Domains

In a 2-1) visual domain, such as aerial photography. many assembly and inspection applications,

some classes of biomedical images, or terrain data. recognition of objects requires the following

components:

1. A representation technique which compresses the information and expresses it in a useful
and efficient form for recognition;

2. A set of object models (or perhaps in the case of terrain data a model of the terrain of a

very large region). These models should be expressed in a representation which can be
processed efficiently for recognition, or any representation which is easily converted to

such a representation.

3. A matching procedure which compares observed data to stored models, gives some
measure of similarity, and. if desired, a description of where the observed data matches

and does not match a specific object model.

Interpretation is then a matter of encoding the observed data and applying the matching procedure

between it and the object models (or regions of the terrain data base). This sounds simple enough,
but in fact finding an efficient procedure for such matching can be very difficult. A crucial aspect of

the matching problem is finding the correct representation for both die observed data and the object

models. The main contribution of this thesis is the development of such a representation.

In statistical pattern recognition, a pattern is represented by a set of measurements called features.

The set of features comprise a multi-dimensional space called a "feature space". 'The features are

chosen so that each class of pattern produces a vectors of features that reside in a unique region of the

feature space. A pattern is assigned to the class which occupies the region of the feature space into

which its vector of feature measurements falls.

Recently there has been interest in a different approach to recognizing 2-I) patterns: so called
"structural pattern recognition". A structural pattern recognition algorithm employs a proto-type

representation for each pattern class. 'Ihis prototype consists of symbols for certain structural

elements, such as edges or corners, which are linked together into a spatial relationship. A pattern is

classified by constructing a correspondence between elements of the pattern and elements of the

prototypes. A 2-I) pattern is assigned the class label for the prototype whose elements most closely

correspond to those of the pattern. 'llie representation developed below may be used for structural

pattern recognition. although this is not the only application to which it may be applied.
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1.1.2 Representation in 3-D Visual Domains

In a 3-1) visual world in which input data consists of stereo pairs of 2-1) images. interpretation

requires the following components:

1. A representation for tie 2-D images which may be efficiently used for depth detection by
stereo matching.

2. A procedure for obtaining depth information by detecting corresponding objects in the
two images and obser ing their relative shift. This procedure should also make use of

information in shading, highlights, texture. and other visual cues.

3. A representation for the 3-D form of objects.

4. A repertoire of models for the 3-D form of objects.

5. A matching procedure to identify which 3-D object model(s) correspond to the observed

3-D input data.

Although this dissertation is primarily concerned with 2-D representation, some suggestions will be

made as to how this representation may be used for interpretation of stereo pairs. The other

components remain as timely and important research topics.

1.2 Thesis Summary and Background

This Section presents the thesis of this dissertation, describes the methodology for demonstrating

this thesis, and reviews the major results of the research.

1.2.1 The Thesis

This research began as an investigation of the use of a set of band-pass spatial frequency channels

for representing visual information. This topic was inspired by psycho-physical theories of human

visual perception that hypothesize a set of "spatial frequency channels" in the human visual system

[Campbell 681. These theories are summarized in an appendix to [Crowley 76].

Early in this research principles (referred to as postulates) were formed to guide and constrain !he

design of band-pa s filters for representing images. These principles were refined in the course of

experiments in which filters were designed and convolved with test patterns. Some of the results

from these experiments are described in [Crowley 78a and [Crowley 78b]. A refined version of these

principles is given in Section 4.2 below.

These principles and experiments led to the development of the reversible l)ifference of Low-Pass

(DOLP) Transform. The DOLP transform is based on a set of scaled copies of a circularly symmetric

low pass filter. 'Te scale factors for these filters form an exponential sequence. Flich low-pass filter is
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subtracted from the previous low-pass filter to form an exponential sequence of band-pass filters.

These band-pass filters may bc convolved with the image to form a set of band-pass images. The set

of band-pass images is %ery similar to tie images which would be produced by the set of spatial

frequency channels which have been hypothesized to exist in the human visual system.

The set of band-pass filters and the largest low-pass filter sum to form a single coefficient whose

value is 1. Another way to say this is that the sum of all of the band-pass images and the low-pass
image produced by filtering with the largest low-pass filter can be added together to form the original

image. This property demonstrates that no information is lost by the DOLP transform.

The low-pass filters are each a scaled (in size) copy of the same function. Thus the band-pass filters

formed from their difference are also scaled (in size) copies of the same function. This gives the

property that scaling a 2-1) pattern shifts the pattern in each band-pass image to a new band-pass

image. 'Thus a representation based on peaks and ridges in the band-pass images is invariant to

changes of scale of the pattern. ''he scale information is preserved by noting which band-pass image

the peaks and ridges actually exist at. It is the network of symbols which is not changed by scaling

the 2-D image. Note that in fact d-eir are small cyclic distortions that occur during scaling, but these

can be obviated during matching.

A straightforward implementation of a DOLP transform for an N point signal requires O(N 2)
multiplies and produces O(N Log(N) ) samples. 'ibis can be quite expensive on a general purpose

computer. In an effort to reduce this complexity the concept of re-sampling each band-pass image
was investigated. Re-sampling at a rate proportional to the scale of the band-pass filter provides the

benefits of:

* making the representation size invariant,

* reducing the computational complexity, and

e reducing the storage requirements

for the DOLP transform. Re-sampling creates a class of DOLP transforms referred to as "the

Sampled DOLP transform". The rc-sampling operation is described in Section 3.3 and the re-
sampled DOLP transform is defined in Section 5.5.

Seeking to further reduce the computational complexity of the I)OLP transform we investigated
the use of repeatedly convolving an image with a Gaussian low-pass filter and re-sampling. This

'algorithm. referred to as cascaded filtering %ith sampling, produces a set of low-pass images with

impulse responses which arc scaled in standard deviation by a factor of V2 for each convolution.

Subtracting each low-pass image from the previous low-pass image gives a set of band-pass images.

Cascaded convolution with Gaussian filters can produce a set of low-pass images whose impulse

responses are arc scalcd exponentially in standard deviation. Thbis is a consequence of the Gaussian

Scaling property, discussed in Section 6.1. 'l'lc Gaussian scaling property shows that convolving a

Gaussian function with itself produces a new Gaussian function which is larger in standard deviation

by a factor of V2. Cascaded Convolution with sampling using a Gaussian filter may be used to

eI
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compute a subclass of the Sampled l)OIP transform called the "Sampled l)iffcrcncc of Gaussian"

(SDOG) Transform. Storage efticicncy and size invariance result from rc-sampling, %hilc the

computational efficiency is the result of both re-sampling and an auto-convolution scaling property

of Gaussian functions.

Both the DOLP transform and the SDOG transform expand a 2-1) (x.y) image into a 3-1) discrete

space (x,y,k). The new dimension of this space is k, the filter index. For an N point image, the

SDOG transform has 3N samples and requires 3 N X. multiplies, where X. is the number of'

coefficients in the smallest low-pass filter. This computational complexity. derived in Section 6.3. is

less than that of an FF' for most signals.

Because the filters implemented by the SDOG transform satisfy the criteria establishea in Chapter

4 it is possible to construct a structural representation of an image Ahich has certain desirable

properties for matching object descriptions. This representation is created by detecting peaks and

ridges in the (x,y.k) space given by the SDOG transform.

Let u- elaborate on the terms "peak" and "ridge" and on the role of peaks and ridges in this

structural representation. At each band-pass image, or level, of the SDOG Transform, there are

points where the band-pass impulse response is a "best match" to one of the gray scale forms in the

picture. At these points, the filtered picture has a local positive maximum or negative minimum;

such points are called peaks. Because the filter size at any level, k, is /2 larger than the filter at level

k-I. there is a connectivity between between peaks at adjacent levels. Connecting adjacent peaks

between all of the levels gives a tree (or set of trees under some conditions) in which the path of the

branches describes the location. size,. orientation and shape of objects in the picture. In fact, it is

necessary to compare the values along each branch to detect local maxima along he branch. These

points serve as landmarks for determining the size, position, and orientation of gray-scale forms.

When an object has an elongated shape, it will give rise to a path of values which are larger than

any adjacent values, that is. a "ridge". Ridges tend to begin and end at branches in the tree, and

follow a path which can travel both between and along a level. The paths of the ridges gives further

information about the shape of objects in the image.

Figure 1-2 shows an example of a graph composed of peaks (M*s) 3 and ridges (L's) which

represents a rhomboid form. This figure is taken from Chapter 7 where it illustrates the sequence of

ridge points that represent an elongated form which changes width.

This tree and its ridges describes a gray scale form with symbols which represent circular regions.

The size of these regions span the range from radius = 4 to the size of the image. The tree and

graphs for a particular gray scale form will have the same structure regardless of the gray scale form's

size, position. or orientation. Because this representation spans from global to local, it may be used to

align the representations of a pair of forms which are to be matched, even if they are of different

b3

31:our types of symbols are used in the representation. These symbols arc labeled with the letters M, M. 1, P). These

symbols arc bricfly defincd in cction 1.3. and discu,,cd at length in chapters 7 and 8.

....-.
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sizes. The correct scale. orientation, and position of one form to the other may be determined by

making a correspondence between the few "distinguished nodes" in the tree. Similarity in shape

between two forms is readily apparent from the few symbols at die most global level. IThus if the
identity of a form requires matching to a large set of prototypcs. the search may be pruned based on
the few most global symbols in the representation.

The representation produced by linking peaks and ridges in the 3-space function given by a SDOG

Transform of an image:

1. is invariant (except for the effects of a discrete space) to changes in the size or position of

a gray scale form (the effects of 2-D orientation can be easily compensated for);

2. provides a structure which may be used to determine the relative size. orientation, and

position of two gray scale forms from two images;

3. permits the global shape of two gray scale forms to be compared without the cost of

comparing details;

4. is not seriously degraded by textured regions, and degrades gracefully with image noise,or

blurry edges.

The invariance to changes in size and position is qualified because there are small cyclic distortions

which occur when an oIbject is moved or scaled in size. These distortions are the result of the discrete

nature of the 3-D space given by the SDOG transform.

1.2.2 Demonstrating the Properties of the Representation

The validity of the claims made above should become apparent as the reader absorbs the material

presented in Chapters 3 through 8. These claims have been verified by experiments and are

demonstrated with examples. 'rest images were taken from local data bases, in particular, from a

copy of test images from GM for the "bin of parts" problem [Baird 771, and from a terrain data base

of the Washington DC area. Six test images were digitized from 35 mm Black and white negatives by

SRI International. In the last year. the CM U image understanding group has permitted access to the

image digitizer on its Grinnell Display system. This has been used to make stereo pair images of a

paper wad and a paint stirrer.

The partial invariance to size of the representation is illustrated by the representations from five

teapot images. These images were formed from photographs of a teapot taken at three distances with

two orientations at each distance. The change in size from the smallest teapot to the largest teapot

spans a factor of approximately VT-. The distortion of the representation from changes in scale is

cyclic as scale changes by a factor of V2. The effects of this distortion are illustrate with the teapot

images in chapter 8.

The effects of orientation are cyclic over a rotation of 900. Rotating an object has only minor

effects on the tree of peaks. "lic major effect of rotation is to change the density of the symbols along
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a ridge path. This effect can also be compensated for in a matching rule. This effect is illustrated by

two teapot oricntations that differ in orientation by approximately 30°.

Thc use of the rcp-csentation to determine the relative size and orientation of two images of an

object is illustrated with the teapot images. It has also been demonstrated %ith the stereo pair of

images of the paint stirrer.

Graceful degradation of the representation with noise, and the ability to represent both surface

texture and the shape of a textured object have been demonstrated with the stereo pair of images of a

paper wad. A portion of one of the paper wad images was degraded by substantial high frequency

noise during digitization. This high frequency noise is almost entirely confined to the most local level

of the representation. Ihe paper wads also have surface texture which is represented in the lower

(more local) levels of the representation while the shape of the paper wads is represented in the

higher (more global) levels.

A simple explanation can obviate concern about blurry eges. A blur is the result of a convolution

with a low-pass "blurring function" which occurs optically in the imaging system, usually from poor

focus, dirty lenses, or motion. Only the highest frequency filters used in the representation are

sensitive to such a distortion. Thus blurring affects only the most local levels of the representation.

h'lhc same can be said for other high frequency noise, and for textured surfaces.

1.2.3 Research Methodology

There are both analytic and experimental aspects to this research. The nature of image signals and

the desired properties of the representation are used to synthesize a set of constraints for the filter

design. This is an informal analysis. A more rigorous analysis is used to demonstrate that the

sequence of band-pass filters formed by subtracting a sequence of low-pass filters formed a class of

reversible transforms (the Difference of low-pass (DOLP) Transform). Mathematics are also

employed to derive a "fast" or O(n) form of DOLP transform using Gaussian filters (The sampled

DOG transform).

On the other hand, the techniques for detecting peak and ridge points, and the rules for describing

their behavior have been developed by trial and error. Most importantly, experimental tasks were

performed demonstrating that the representation is not corrupted by certain visual phenomena such

as blurry edges, surface texture, and image noise, and demonstrating the degree of invariance of the

representation to object size. orientation, and position.

This empirical stage of the research was undertaken to demonstrate that the DOLP and Sampled

DOG Transforms had the properties which they were derived to have, and that uey could be applied

to the problem of representing visual information whose structure must be compared to other visual

information (As in stereo matching) or prototype representation of classes of visual objects (as in

structural pattern matching). Of course. the empirical stage o' the investigation yielded important

principles and techniques for describing visual information with band-pass filters.
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1.3 Results

This Section describes the major innovations developed in this rescarch. New techniques were

dcvelopcd in three related problem domains:

1. The detection and mcasuremcnt of gray scale forms in 2-D images:

2. Computational techniques for such measurement; and,

3. The representation of 2-D gray scale information.

The following three Sections summarize the results in each of these problem domains. The first of

these Sections describes the new representation. In particular it describes the set of symbols used in

this representation, the meaning of these symbols, and how thcy are interconnected. Some of the

novel and important properties of this representation arc also described. The second Section

describes die measurements on which this representation is based. The final Subsection describes

new computational techniques which were developed to reduce the time required to compute these

measurements.

1.3.1 The Representation

This research produced a representation for two dimensional gray-scale signals. The
representation is composed of a tree-like network of symbols which may exist at discrete locations in

the three space (x.,k). The x and y dimensions of this space represents spatial po;ition, while the k

variable references a spatial frequency band.

This representation may be used for 2-D object class prototypes as well as image data. A

representation computed from image data may be matched to a prototype despite changes in size,

orientation or position. This matching may proceed from a few symbols which describe global form

to more detailed local form. In this process, the matching process may be terminated if the global

form is a poor match. Also, when matching stereo pairs, the correspondence between points in the

two imagcs may be easily determined by tracking through the representation.

There are four types of symbols in the representation:

* M*: Peak points (positive maxima and negative minima) in the 3-space

e L: Ridge points in the 3-space

e M: Peak points at a given k (frequency band)

* P: Ridge points at a given k.

Each point in the 3-space, (x.yk). contains the inner product of a neighborhood of the image

centered at (x.y) and a circularly symmetric filter impulse response of a radius selected by k. Peak and
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Figure 1-2: A Rhomboidal Form and its Representation

(Reproduced from Chapter 7. figure 7-19)

ridge points (M*'s and L's) in the 3-space mark the best fit of the primitive over a range of scales to a

local set of image neighborhoods. Peak and ridge points ( M's and P's )at a particular level (or
band-pass image), k, mark the best fit of a particular fixed scale version of the primitive to a local set

of image neighborhoods.

M* points are particularly significant. These mark distinct visual landmarks or regions. The level,

k. of an M* symbol gives an estimate of ie size of the visual landmark. More detailed information

about the shape of the landmark is given by the linked paths of Ls (l-paths) and M's (M-paths) that

are connected to the M*. TI'he filters adhere to smoothness constraints which provide a continuity to

the L's, to the Ms. and between the L's and M's. The continuity permits paths in the 3-space to be
formed by connecting adjacent L's and adjacent M's.

The shape of a form is represented by the network of L-paths and M-paths which result from it. If
the form increases in size. the entire network moves in the k direction in the 3-space. but maintains its
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connectivitv and structure. Note, however, that since the components of the net~orks exist at
discrete points in the 3-space. the inotion occurs as discrete jumps of pieces of the net%% ork. Similarly,

if the shape rotatc., its network rotates, and if the shape moves. its network moves. The scale,
orientation, and position quasi-invariance that is spoken of in this dissertation refers to the network.
The size, orientation, and position in formation is aailable from the position (and oricntation) of the

network in the 3-space. The modifier "quasi-" is used because the individual symbols may only exist

at discrete points, and make discrete jumps as the form changes smoothly in size, orientation, or

position.

Figure 1-2 shows an example of the use of peaks and ridges for representing the shape of a

gray-scale form. This figure. which appears in Chapter 7, shows a rhomboid shape. Circles over this
form illustrate the position and radii of band-pass filters whose positive center lobes best fit the

rhomboid. Below the rhomboid is part of the graph which is produced by detecting and linking peaks
and ridges in the SDOG transform. [he meaning of these symbols is described in Chapter 7.

1.3.2 Measurement Technique

This research produced two results which pertain to the problem of sensing (or measuring) the
presence of gray scale forms in two dimensional data:

1. Design criteria for band-pass filters required to describe non-periodic data by means of
peak and ridge detection.

2. A reversible transform (The DOLP Transform) that separates image signals into spatial
frequency channels that meet the criteria for describing non-periodic data with peak and
ridge detection.

The DOLP transform provides an ordered sequence of band-pass filtered versions of the input
image. The impulse response of each band-pass image is a finite circularly symmetric function

formed from the difference of two low-pass filters. The radii of the impulse responses form an

exponential sequence of the form:

ROSk

where R. is an initial radius ( typically 4.0 ), S is a scale factor (typically V), and k is an index that

ranges from 0 to K (K is 16 for a 256 by 256 image).

One of :he principal characteristics of the 1)OLP transform is that it is reversible. The impulse
responses may be thought of as a set of primitive functions from which pictures may be constructed.

This primitive looks like a fuzzy disk on an inversely shaded background. The two dimensional

convolution of the picture with each impulse response is equivalent to a sequence of inner products
(see Section 3.1.3). Tlhis result facilitates an intuitive understanding of the filtering process. Each
sample from the convolution indicates the proportion of signal energy within the neighborhood

over-lapped by the impulse response which is identical to the impulse response. In other words it is a
measure of similarity between the impulse response and the image signal centered at that sample

point.



Because these primitive functions are band-pass. they are sensitive to patterns over a narrow range

oi'sizes. Thus for a textured region, the shape of die texture elements is dcscribcd by a configuration

of high frequency (smallcr) impulse responses, while the shape of die entire region is described by a

separate configuration of lower frequency (larger) impulse responses.

1.3.3 Computational Techniques

There are two computational techniques which resulted from this research:

1. The use of re-sampling in computing the Difference of Low Pass transform, and

2. A fast 0(n) implementation of the transform (the Sampled Difference of Gaussian

Transform) that uses a novel technique: "Cascade filtering with re-sampling"

A consequence of the use of band-pass impulse responses is that the the cost of the convolution

can be reduced by computing only at sample points. The distance between re-sample points has a

lower bound which is a proportional to the size of the impulse response. Thus as the impulse

response grows in size, the number of points at which the convolution must be computed decreases.

If the convolution is done in the usual manner the increase in size of the impulse response is exactly

balanced by the decrease (due to sampling) in the number of points at which the convolution is

computed [Crowley 78a]. In addition to reducing the complexity and storage requirements of the

filtering operation, re-sampling also contributes to the size invariance of the reprcsentation.

The Sampled DOG Transform, described in Chapter 6, is hoed er oroperty of Gaussian

functions. Whereas, with re-sampling, a DOLP transform of an NA4 mage ti;res O(N logN)

steps, the Sampled DOG Transform produces the same result r r (vN) steps. A step may be a

multiply or an inner producL
4

1.4 Organization of this Dissertation

This dissertation may be divided into the following sections:

e Background Matcrial (Chapters 1, 2 and 3);

9 Measurement, detection and mathematical representation of nonperiodic signals (
Chapters 4 and 5);

e Fast computation techniques for the DOLP transform (Chapter 6);

* Converting die mathematical representation to a symbolic representation which describes

gray-scale shape heirarchically by spatial frequency ( Chapter 7 );

4
Thc symbol "O(.)". is pronounced order and used to indicate that the number or sicps in the nroccss urnca' discussion is

less than or equal to (bounded by)a linear function of Ihc argument.
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Examples of tie representation and its use for matching. including demonstrations of the

invariance of the structure of a description to the size and orientation of the pattern

(Chapter 8).

Chapter 2 describes related work by other researchers in sensing and reprcsenting forms in 2-D

grey scale images. Chapter three provides a quick review of signal processing techniques and terms

which were appear in this dissertation.

In Chapter 4, a set of criteria for designing band-pass filters for detecting and describing non-

periodic signals is described. The criteria described in this Chapter defines a broad class of filters

which may be used for detecting the presence of non-resonant signals of particular sizes (durations).

In Chapter 5. a rcvcrsible transform is defined which separates a signal into a set of short duration

spatial frequency channels. The filters used in this transform satisfy the criteria established in

Chapter 4. This transform employs a sequence of low-pass filters which are scale copies of a single

function. Yhe subtraction of adjacent low-pass filters gives a sequence of band-pass filters. These

band-pass filters and the lowest frequency low-pass filter define the reversible DOLP transform.

When an image has been convolved with these filters, the band-pass images may be added together to

recover the original signal. lle DOLP transform is shown to require SN2 multiplies and N

Logs(N/X,) + N storage cells for an image with N sample points, a base filter of X. coefficients,

and a scale iactor between filters of S. ilie technique of computing the convolutions at re-sample

points spaced proportiotaly to the scale of the filters is then introduced. The rc-sampled DOLP

transform is shown to require S X, N Logs(N/X . ) + X. N multiplies and require =3N storage cells.

In Chapter 6 a fast version of this transform is defined which employs rc-sampling and Gaussian

filters to reduce the computational complexity to 3 X. N multiplies. This fast transform employs

repeated convolution with a small filter, and yet gives measurements which span the range of

neighborhood sizes from a pixel to the size of the image.

In Chapter 7. techniques are described for detecting peaks and ridges within this three-

dimensional transform space, and connecting these to form the representation. The structure of this

tree represents a gray scale shape independent of its size, position or orientation.

Chapter 8 provides examples of the usefulness of the representation for matching as well as
examples of the size. rotation and position quasi-invariance of the representation. 'his chapter

describes the matching (or correspondence) problem in the domains of structural pattern recognition

and stereo image interpretation. Examples are then presented in which the tree of peaks from the

teapot images are matched despite changes of size and image plane orientation. A alignment

procedure and similarity measure is then presented for ridge paths in the 3-space.
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Chapter 2
Background: Related Techniques

This chapter reviews existing techniques for detecting and represcnting gray-scale forms in 2-D
images. The first section discusses detecting and representing forms by their boundaries or as

regions. Both region shape and boundaries are encoded in the representation developed in this

research.

The second section covers popular techniques for detecting the presence of uniform regions using

some form of linear detection function followed by a nonlinear decision rule. These techniques

attempt to find edges which are then used to locate the boundaries of a region. The techniques

described in this section range from very local edge detectors, such as Roberts' gradient [Roberts 651,

to detectors which cover large areas, such as David Mar.'s Laplacian of Gaussians [Marr 79a].

The third section describes representation techniques. The problem here is to develop a

representation for gray-scale forms or uniform regions which permits a fast search, alignment, and

similarity measure. Techniques in this section include representations that are produced by

segmentation programs. Blum's medial axis transform [Blum 67], and Marrs primal sketch.

2.1 Boundaries vs. Regions

At present there are two popular approaches to image representation: boundary representation

and region representation. Pioneering work with the boundary description approach was done by

Roberts' [Roberts 651. The literature is full of recent work with this approach. Notable examples are

[McKee 771 and [Perkins 781. Fstimates of the boundary position are usually obtained by convolving

the picture with one or more small local edge detector followed by a non-linear decision function

such as Roberts' gradient, the Sobel operator [Duda 731, or the Hueckel operator[Hueckel 711,

[Hucckel 73J. See Crowley 78b] for a list of many popular small edge detection functions and their

transfer function. Some further encoding of boundary points is usually made to yield a

representation which may be matched against stored models. McKee's paper [McKee 771 is a good

example of this approach.

The primary advantage of most boundary detection schemes is that the description may be

computed by a small, fast operator. However, a small operator can be a disadvantage, since the

boundaries that are to be detected can be much larger (in width) than the operator. Also, a small

operators tend to be sensitive to image noise, which is small and high frequency. Also, such a
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description is cxpressed as many symbols which stand fir very local events. It is can be more efficient

to represent the imagc as fewer symbols which rcpresent more global (larger) events.

Region description is based on detecting regions of uniform intensity or color. This step is oftcn
referred to as segmentation. The usual approatch is to compute a histogram of image intensities or

histograms of color featurcs which is(are) then scanncd for well defined valleys. A threshold is set at
the value in the valley. This technique can separate object from background nicely under proper

lighting conditions. Regions are thcn rcprcscnted by a binary bit map. or by measuring a set of
features about the binary shape. This approach was pioneered by Prcwitt [Prewitt 661. and Rosenfeid

[Rosenfeld 691. A good example of applying this approach to color features is described in

Ohlander's Thesis [Ohlander 751.

Neither of these approaches arc sufficient for an image which contains surface texture or weak and
b)urry boundaries. With both approaches there are problems in how the image stnicture is measured
and in how the representation presents the information to later recognition processes.

2.1.1 Measurement Problems

Consider an image containing gradual intensity transitions. Such an image could be said to have

blurry edges. If a local edge detector is used it will respond weakly over the entire large transition
regions and the response will be so weak in some places that it will be lost. Increasing the gain will
increase the sensitivity to noise. Similarly a region detection process will run into problems defining
where such a region stops and starts. In such regions it is difficult to even define what is meant by an

edge or a uniform region.

In images of real-world scenes, some boundaries between genuine objects are very weak. In a
boundary description produced from local edge detectors, this usually results in missing boundaries
and/or a failure of boundaries to form a closed loop.

In a threshold-based region segmenter regions which should be distinct turn up joined. Also,

Unless a region has sharp boundaried and its intensities are distinct from those of the background,
the 2-D shape of a region will be v'cry dependent on the threshold.

One of the biggest trouble areas for both of these approaches is image texture. Texture here refers

to regions of an image containing many small forms which have random gray level shapes. Often in
natural textures these small gray level forms arc not uniform in intensity. Such textures may appear as

many small hills and valleys in a terrain map. If the size of these "hills" is approximately uniform

across the object. the way in which the size varies in the image may be used to infer information

about the depth of the object surface [Kender 80].

A texture composed of randomly shaped nonuniform elements will swamp a threshold-based
region segmenter with many small randomly shaped regions. The shape of any given element can

depend on the threshold. lhie region segmenter will spend a large amount of time and memory
representing each element, when what is nccded is the shape of the whole textured region. Rosenfeld
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[Rosenfeld 691 has noted that successively blurring such regions until the elements merge can be

used to segment adjacent regions of different textures. This technique is based on tie same principle

as the representation developed in this dissertation.

With a natural texture. a local edge detector % ill respond sporadically oer a large area with the

result that there is no clear boundary. However, local edge detectors have been used to detect

textured regions tbr region segmenters [Ohlander 751.

2.1.2 Representation Problems

A boundary description attempts to draw a closed boundary around regions which correspond to

unique objects. Encoding the boundary with a chain code [Freeman 611, [McKee 771. for example.

provides a representation which can be matched to a prototype to identify each closed region. There

is a problem if the boundary does not close. In this case the interpretation program will not know

which set of boundaries to attempt to identify. If there are many adjacent closed boundaries, there

can be a problem knowing which corresponds to a genuine object, and %hich are artifacts. Also the

entire boundary must be matched to identify an object. That is. if half of the outline of a region

corresponds roughly to a prototype, but the other half is grossly different, the matching program may

not discover the problem until it has attempted to match most of the boundary. The main problem is

that in many situations edge detectors will report boundaries that do not correspond to an object's

actual shape.

In a similar manner a region segmenter may produce erroneous data because of measurement

problems, particularly when applied to images with weak or blurry boundaries.

Finally, with both techniques the resulting representation is dependent on the specific size of the

objects in the image when what is desired is to recognize a shape independent of its size.

Furthermore, a good representation should make available both the global shape of a form as well as

local details. In this way a 2-D matching procedure can begin by matching the global form, and

proceed to finer detail only if necessary.

2.2 Edge Detection Techniques for Boundary Representation

In this section we will review several measurement techniques which are related to the techniques

described in this dissertation. "lhe techniques described in this section have in common the goal of

detecting edge segments for use as primitive symbols in a boundary representation of the forms in an

image. As with the representation developed in this dissertation. most of these techniques are based

on some linear measurement of image intensity, and seek to provide a description of the 2-D shapes

in an image.
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2.2.1 Local Edge Detectors

Many local operators have been proposed for detecting edges elements. A survey of such

operators is included in [Crowley 80] along with the formula and plots of their transfer functions.
The earliest such operator is Roberts' Gradient [Roberts 0S. This operator consists of a pair of first
difference masks oriented at t450. Ihese masks are shown below in figure 2-1.5 Let the output of

the convolution of the two masks at point (x.y) in the image be defined as c1(xy) and c,(x,y). The

estimate of the boundary at point x,y, denoted exy), is then formed as the square root of the sum of
the squares. as shown in the following equation.

e(x,y) (2.1)

Since Roberts' first defined this operator many researchers have observed that equation (2.1) may

be approximated by the maximum of the absolute values or the sum of the absolute values as shown
in equations (2.2) and equation (2.3).

e(x.v) = Max( Ic1(x,y)l + Ic2(xy)l) (2.2)

(2.3)
e(xy) = Ici(xly)l + Ic2(xy)I

0 1 -1 0
-1 0 0 1

Figure 2-1: Masks Used in Roberts' Gradient

Probably the most popular local edge detector has been the Sobel operator (Duda 731. Like

Roberts' gradient, the Sobel operator consist of two small masks that are 900 orientations from each

other. These masks are shown in figure 2-2.

1 2 1 -1 0 1
0 0 0 -2 0 2

-1 -2 -1 -1 0 1

Figure 2-2: Masks Used in Sobel Operator

As with Roberts' Gradient the results of the convolution may be combined by either equation

(2.1), (2.2), or (2.3).

The [aplacian operator, V2p(x.y), has often been suggested as an ideal edge operator. The
Laplacian, and its Fourier transform, are given in the following equations.

v2 p(XY) = a2 rgxy) a2p(x,y)

51.igurcs 2-I through 2-3 show the masks for local edge detectors. lThcsc masks arc shown as an array of coefficients which

arc convolved with an image.

I,
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if{ V2p(x,y) } = -( u2 + v) p(xy)

where u and v are the spatial frequency variables and 'J{j is

the Fourier Transform Operator.

Prewitt [Prewitt 701 designed two different two-dimcnsional difference equations which

approximate the Laplacian operator. These masks are shown in figure 2-3 below.

0 -1 0 -1 -1 -1
-1 4 -1 -1 8 -1

0 -1 0 -1 -1 -1

Figure 2-3: Two Discrete Approximations To the Laplacian from [Prcwitt 701

As with the Roherts' Gradient Edge Detector, these masks are convolved with an image. The result

of the convolutions are then combined using equations 2.1, 2.2, or 2.3 to produce a map of edges in

an image.

2.2.2 The Hueckel Edge and Bar Detector

Hueckel developed a function for detecting edges and bars that partially compensates for the fact

that edges are not always very local discontinuities in an image. Thz2 Hueckel edge and bar detector

[Hueckel 711 and [Hueckel 731 is based on a model of an edge as a step function, F, within a circular

neighborhood. This step function has a number of parameters as shown in the following equation.

F(x,y,CS~p,b,d) =fb for Cx +Sy :5p

b + d forCx + Sy>p

The parameters C, S. and p describe the direction of an edge or line. The parameters b and d

describe the average grey level on either side of the edge. The Hueckel operator approximates the

pixel values within a circular neighborhood,6 F(x,y), by finding the parameters for which F is a

minimum distance from E as shown in the following equation.

J J[E(x,y) - F(x.y,C.S.p,b,d)j2 dx dx

The Hucckel operator solves this minimization problem by multiplying the neighborhood, E(x,y),

and the ideal step, F, by a set of eight basis functions. Hi(x,y) for i = {0, 1, 2. 3,.... 7), as shown in the

equations below. These basis functions, which are separable into a product of angular and radial

components. are referred to as Hilbert functions. The interested reader should see Il-lueckel 711 for a

discussion, definition, and drawings of the zero crossings of these basis functions.

ai = ff Hi(x.y) E(x,y) dx dy

6
Although llueckel defines these functions using integrals they are evaluated as a discrete summation over a circular

neighborhood.
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si= f f Hi(x.y) F(xy,C,S.p,b.d) dx dy

In these equations. the si's arc variables and the ai's are constants. Finding the parameters of F

then becomes a matter of minimiring the following equation.

7
I (ai - Si)2

i=O

This minimization produces the parameters for the closest fit of an edge and an estimate of the
likelihood that an edge is present.

All of the techniques described above detect and encode small sharp discontinuities in image
intensity. As we discussed in section 2.1, such a representation does not capture all of the information

in an image that is needed for matching to an object model. Such a representation is also inherently
inefficient because it describes only very local detail and does not describe the global shape of

regions.

2.2.3 Kelly's Use of Planning

One of the first researchers who attempted to use information from more than the most local
resolution for finding boundaries was Kelly [Kelly 71]. Kelly called his technique "planning".

Planning is a problem-solving technique for reducing the search space for a possible solution.
Planning is the use of the solution to a simplified version of a problem as a guide to the solution of

the original (more complex) problem [Minsky 631. Planning was first employed by Newell, Shaw and

Simon in the General Problem Solver [Newell 591.

Planning was applied to boundary detection by Kelly as part of his system for classifying images of

faces [Kelly 71]. In this form of planning, edges are first detected in a reduced resolution version of
an image. These edges are then used to guide the detection of edges in the original image.

Kelly's system operated on images composed of 250 by 330 pictures elements. A 28 by 40 plan was
prepared by dividing the image into disjoint 8 by 8 segments and calculating the average intensity

within each segment. This operation is equivalent to a form of low-pass filtering followed by re-

sampling. The low-pass filter fbr this application is an 8 by 8 array of coefficients of value 1/64. The

re-sample distance is 8 picture elements. Serious aliasing can occur when the sample rate is the same
size as the window. Tlhis can be seen by deriving the transfer function of the uniform square low-pass
window [Crowley 78a]. (ile transfer function is defined in section 3.3.)
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2.2.4 Cones and Pyramids

In this section we will describe several recent research efforts which employ multiple-resolution

versions of an image.

2.2.4.1 Uhr's Recognition Cones

Uhr has investigated the use of "recognition cones" for the low level processes of a machine vision

system [Uhr 72]. [Uhr 781. A recognition cone is a multilayer array of micro-processors which execute

the same instructions in "luck-step" fashion. Each processor in the lowest layer covers and operates

on a disjoint region of an image. Successive layers of the cone see the output of the processors

directly below. With each layer. the size of the image is reduced by averaging disjoint regions so that

the cone converges to a single processor at the apex. Uhr has investigated the use of averaging and

differencing on such a processor structure. He also suggests that such a structure may be used to

assign symbols to regions of the image.

2.2.4.2 Hanson and Risenan's Preprocessing Cones

Hanson and Riseman have also investigated segmentation procedures which may be implemented

on a recognition cone [Hanson and Riseman 74] and [Hanson and Riseman 781. However. they

prefer the term "pre-processing cone" rather than "recognition cone" because the processes

performed are pre-recognition. In their system, the pre-processing cone serves as the front end of a

general purpose color vision system. The system builds a structural description of a scene using

multiple knowledge sources and threshold based segmentation.

Hanson and Riseman have categorized the operations which may be computed on a pre-processing

cone into the following classes:

9 Data Reduction: Operations such as averaging which pass information up to the next

higher level.

e Data Projection: Operations in which image data and interpretations are passed down to

lower levels.

e Iterative (or Lateral): Operations which are based solely on the neighboring processors at

the same level.

2.2.4.3 Pyramid Data Structures

A recognition or pre-processing cone is a form of parallel Single Instruction-Multiple Data

(SIMD) Processor. The data structure which it contains is sometimes referred to as a "pyramid data

structure". The low-pass images on which the DOLl' transform is based can be considered as a form

of pyramid data structure. While some researchers lump together the characteristics of the processor

and the data structure it builds, others have made a distinction in order to study the properties of the

data structure.

4
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Tanimoto has defined a pyramid data structure as "a series of digitizations of the same image at

increasingly higher degrces of spatial rcsolution" [rianimoto 78). A standard relationship between a

given level of a pyramid and the level under it is that a local property (such as edge intensity, color, or

intensity) at the given level is ohtained hy averaging the local property over some neighborhood in

the level under it. In virtually evc' systcm these averagcs arc formed over disjoint regions, which

can cause a randomness due to aliasing [Crowley 78al as noted above in the description of Kelly's

planning technique.

Tanimoto has suggested that the sequence of reduced resolution images need not be obtained by

averaging nor even based on powers of 2. but can be obtained by a specially designed digitizer and

computer controlled optics capable of providing magnification of the image over a continuous range.

Levine [Levine and Leemet 76] has investigated a system in which a a pyramid data structure is

used for bottom-up and top-down segmentation. His algorithm constructs five pyramids from the

original image: one for each of the following local properties: intensity, a texture measure, hue,

saturation. and edges. 'IThese pyramids contain outlines of segmented regions which are then passed

to an intermediate level process for interpretation.

2.2.5 Other Work with Multiple Resolution Representations

Kelly is most frequently cited in the image processing literature for pioneering the use of multiple

resolution versions of an image. However, similar ideas appeared in other literature at about the

sane time.

The use of a reduced resolution "plan" for space planning (i.e. arranging 2-D shapes in an area) is

discussed in a 1970 paper by Eastman [Eastman 70]. Eastman credits work conducted at SRI on

trajectory planning and on reconnaissance for the idea [Nilsson 691 and [Rosen and Nilsson 69].

Fastman referred to this data structure as a "Hierarchical Data Structure" but it has since come to be

known as a quad tree [Klinger and Dyer 761. [Horowitz. 76]. Quad trees represent binary shapes in an

image by recursively dividing the picture into a 2 x 2 set of sub pictures. If any subpicture is

completely filled or completely empty, it is marked as such and not divided further. If a subpicture is

only partially filled it is further divided. This process continues until either all the subpictures are

uniform or the individual pixels arc reached. The result is a tree which can be traced to determine if

any point in the picture is filled or empty. This algorithm can be very efficient in terms of the storage
required for pictures that have large uniform regions. However, the description of a region which

this representation gives can vary drastically in its structure if the region is translated in position or

rotated.

Warnock [Warnock 671 devised a similar algorithm for computing the hidden surfaces in two-

dimensional views of three-dimensional polyhedra. In Warnock's algorithm, a two dimensional

picture or subpicture is recursively divided into four squares if it contains a boundary between two

faces of polyhedra or a boundary between a face and the background.

A pyramid data structure has been used by to speed up correlation template matching of aerial
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imagery using hierarchical search [Hall et. al. 761. Two-stage hierarchical template ,matching has also

been reported for image feature detection [Rosenfeld and Vanderbrug 771.

2.2.6 Marr's Laplacian of Gaussians

Probably the work most similar to that described in this dissertation is that of David Marr. Marr

sought to understand the information processing problems inherent in vision. He was interested in

both the mechanisms to visual stimuli in the human visual system and in the computational problems

of implementing such processes in machines.

[Marr 79a] presents a theory of edge detection which recognizes that the information in visual

stimuli occurs at many scales (or resolutions). To detect these stimuli at different scales he employs

band-pass filters which are formed from a Laplacian of Gaussian low-pass filters (V g(x.y)). Marr

forms these filters using a difference of Gaussian low-pass filters whose standard deviations have a

ratio of 1.6. He uses an informal argument to show that such a ratio gives an optimum narrow band

width. (The implementation described in this dissertation employs a ratio of \F arrived at by a very

different line of reasoning.)

A set of such filters (4 in [Marr 79a] ) are convolved with an image. The results are encoded by

detecting the presence of zero crossing segments and the directional derivative perpendicular to the

zero crossing at each segment (called the amplitude of the segment). This set of zero crossing images

is referred to as the "raw primal sketch". Marr speculated that if filters were used at a sufficient

number of scales, the raw primal sketch would be reversible. Th1at is, the original image could be

recovered from the raw primal sketch.

Zero crossing elements from several scales are collapsed into a single boundary estimate called the

"primal sketch". 'Ibis is done by comparing zero crossing segments from adjacent spatial frequency

levels, to test for similar directions and amplitudes. The zero crossing segment from the highest

resolution raw primal sketch is encoded in the primal sketch. Closed boundaries are labeled as blobs

and assigned attributes of length. orientation, and average contrast. Terminations are assigned a

position and orientation. We shall have more to says about Marr's work in the section on

representation below.

2.3 Representation Techniques

2.3.1 Blum's Medial Axis Transform

r

Blum developed a representation for binary shapes called the "Medial Axis Transform" (MAT)

Il3lum 671. 'Ibis representation is interesting because it is object centered: that is. components of a

shape are defined relative to a central (or medial) axis. This region representation bears some

similarity to the representation developed in this dissertation.
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The medial axis transform produces a form of skeleton for a binary shape defined on a continuous

medium. The MAT may be defined by the following process. 'ach point on the boundary of a

binary region transmits a circular wavefront on both sides of the boundary. These wavefionts

propagate until they reach another hou1ndary point or until they meet a waefrvnt traveling in exactly

the opposite direction. When two wave fronts meet traveling in oppos ite directions. they cancel each

other, and the point where thcy meet is marked as belonging to the medial axis. Such points

correspond to the center of circles which are fit tangent to two or more points on dhe boundary of the

shape.

The collection of medial axis points defines a set of connected spines (or center axes) describing

the form of the shape. Where a shape contains a concavity, spines occur outside the binary shape as

well. Similarly, spines occur for the space between shapes. (This is the negative shape which occurs

between two positive shapes.) Spine points can be encoded with the distance to the boundary from

which they propagated. This gives a reversible representation of the binary shape as these distances

correspond to the radii of discs that must be placed overlapping on the spine to reconstruct the binary

shape.

Unfortunately there are several problems with the medial axis transform. For one thing, the

transform operates only on binary shapes which introduces all of the problems attendant to

thresholding techniques. Also the transform is only defined for a continuous medium. Propagating

circular wavefronts on a discrete grid is a difficult and costly process. Perhaps most troublesome is

that the structure of the inedial axes are altered drastically by minor nicks and protrusions on the

boundary of the shape.

There is some similarity between the MAT and the representation described in this dissertation.

The path of the spines for a simple object resemble the paths of peaks and ridges from our

representation projected onto the original picture. Our representation also produces a description of

the negative shapes outside a gray scale form when there is a concavity and when two shapes are

nearby. However. nicks or protrusions narrower than half the width of the gray scale form do not

affect the overall path of ridges and peaks. The biggest difference is that our representation is

computed for discrete gray scale forms, while the MAT is defined for continuous binary forms.

2.3.2 Marr's Three Levels

David Marr has developed a framework for visual information processing that includes

representations at three levels (Marr 781. The first such representation is the primal sketch which is

described above. The primal sketch encodes information about the boundaries of forms in an image

from different resolutions.

'The second representation is referred to as the 2 1/2-1) sketch [Marr 7%]. This is a form of depth

map of surfaces as seen by the viewer. Var.ous processes that interpret depth cues from such

phenomena as texture, shading, and stereo p, ,ption contribute information to form the 2 1/2 I)

sketch.
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Marr asserts that an object centcred representation is also rcquired for gencral purpose % ision and

that this 3-I) representatioln should include shape primitives from many resolutions. Furthermore he

asserts that this rcprcscntation should take advantage of axes of symncry which are intrinsic to the

object. Hc cites the generalized cylinder representation [Agin and Binford 731, [Nevadia and Binford

741 and de Medial Axis Transfonm [Blum 67] as examples of representations that have these

properties.

L
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Chapter 3
Signal Processing Background

Digital signal processing is an engineering discipline which. like image understanding, has been

made possible by the widespread use of digital computers since the early 1960's. It's theoretical

foundation is linear systems theory, a body of continuous mathematics which is fundamental to

electrical engineering.

Since many persons interested in image understanding lack training in digital signal processing,

this chapter provides some detinitions and intuitive explanations for techniques from digital signal

processing which are necessary in later chapters. Most of the material in sections 3.1, 3.2 and 3.4 is

available in widely used references. The text [Oppenhcim 751 is particularly relevant. A very readable

inuoduction to digital signal processing for non-electrical engineers is [Hamming 77]. The transfer

function derivation given in section 3.2 is from this book.

3.1 Convolution, Correlation, and Inner Products

This section provides the formulae for the 2-D convolution and 2-D cross-correlation of a finite

2-D filter with a 2-D signal. These formulae are shown to be identical for filters which are symmetric

about both axes. as is the case with the circular symmetric filters discussed in chapters 5 and 6. The

2-D cross-correlation is then shown to he equivalent to a 2-1) sequence (or array) of inner products.

This equivalence gives a heuristic for interpreting the results of the cross-correlation. This heuristic

leads to the use of peak and ridge detection for converting the filtered signals into symbols, as

described in chapter 7.

This research has concentrated on the use of non-recursive finite impulse response (FIR) filters:

we have avoided the design problems involved in 2-D recursive filters. It is impossible for a causal

recursive filter to have zero or linear phase. Furthurmore, dere is no known design procedure for

genc'-ating a stable 2-D recursive filter which would satisfy the constraints developed below.

3.1.1 Convolution

A 2-D finite impulse response digital filter may be defined by specifying its impulse response. For

discussion, let us define a 2-1) discrete impulse response:

g(x,y) for lxi < X and jyj <Y

lhe variables x and y arc, of course, integers.
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The filtering operation is usually expressed as a convolution, denoted "*". let us also define a 2-D

discrete input signal:

p(xy) for lxi _<X P and Iyl _ YP

The convolution of g(x,y) with p(xy) is given by the formula:

X Y
g g

g(x,y) * p(x,y) = p(x-k, y-) g(k,)

k=-Xg I=-Yg

3.1.2 Correlation

In this work we have preferred ;o express th filtering operation as a cross-correlation. The reason
will be explained below. We shall dcnote cross correlation with the symbol "*" for lack of a better

symbol. The formula for a 2-D cross-correlation is:

xg Yg

g(xy) * p(x,y) = p(x+k, y+Dg(k,)

k = -X 1= -Y 9

The difference between correlation and convolution is the presence of the minus sign in the term
p(x-k, y-I). These minus signs have the effect of rotating the impulse response about both axes. This

rotation describes the behavior of a continuous linear filter, qs implemented, for example, in a circuit.
If the impulse response is symmetric about both axes, as in the case of the circularly symmetric filters

described below, there is no difference.

3.1.3 Inner Products

In this research we are interested in expressing an image as a configuration of primitive signals.

These primitives were referred to as a family of "detection functions" in ,our early work, [Crowley
78a]. We have since developed a class of families of detection functions such that an image signal can
be expressed uniquely as a weighted, displaced sum of detection functions. A method for computirg

the weights, which is reversible, has come to be known as the DOLP transform, and is defined in

chapter 5.

The wcight tells how strongly the primitive matches the image signal at a particular point. This
weight may be determined by computing an inner product of the primitive (which is an impulse

response) and the signal within a finite neighborhood centered at the sample point. 1 e size of the

neighborhood is the same as the size of the primitive.

An inner product at some sample point x., y. is given by the formula:

x Y

(g.p(x.Yo)> = f p(xo+k, y. + ) g(k.)
k = -Xl = -Y$

This formula is identical with the formula for each point in the cross-correlation.

I
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The point here is that the filtering operation, or cross-correlation is a sequence of inner products.

This notion of the filtering operation as a sequence of inner-products leads to an important

heuristic for converting the filtered signal into a network of symbols. Those points at which the

correlation of a particular filter and the input signal are at a 2-D local positivC maximum or negative

minimum are de points at which that filter most strongly resembles the input signal. If the inner-

product at that point is also larger than inner-products from filters which arc similar in size, then that

filter at that point is the best approximation of the image signal centered at that point. Such points

form an important class of symbols in our repiv-,ntation. 'llicy are labeled M* and serve as

landmarks in the representation, as well as the root for subgraphs.

In summary, the view of the filtering operation as a sequence of inner-products leads to the use of

peaks (and ridges) in the filtered signals to construct the representation of the image. This is in

qcontrast to the more popular approach of using zero-crossings as pursued by Marr in his related work

[Marr 781.

3.1.4 Boundary Values

The DOLP transform employs circularly symmetric low pass filters whose radii range from 4 pixels

to the size of the image. In each correlation there is a strip along the border of the filtered image
whose width is the same as the filter's, along which the filtered signal is corrupted because the filter

only partially overlapped the image. These points could be discarded, but this would lead to an

inability to detect any object closer than its own width to the border of the image. Our solution was

to provide a default border value, given by the mean of the image pixel values. This has the desirable

effects of allowing description of objects near the border of the image. and keeping the filtered image

sizes as powers of 2. It has the undesirable affect of causing a ripple along the border whenever the

pixels at the border are not close in value to the mean.

3.2 The Transfer Function

The transfer function is an important tool for the design and analysis of discrete linear functions.

In this section we will define the transfer function for the case of a two dimensional discrete linear

function. We will then show that any discrete 2-1) function has a transfer function which is

continuous and periodic in two dimensions. The boundary of the region over which the transfer

function is unique is called the Nyquist Boundary. The shape and size of this boundary is determined

by the pattern of sample points used in filtering. The Nyquist Boundary is the primary tool for

selecting the density of sample points for a filter or designing a filter for a given sampling density.
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3.2.1 Eigenfunctions

One of the properties which make linear systems so mathematically tractable is the existence of a

class of well behaved cigenfunctions (also known as characteristic functions). The cigcnfunctions of a

discrete 2-D linear system are the sct of sampled 2-1) exponentials given in equation (3.1)

exu +yv) = Cos(xu + yv) t jSin(xu +yv) (3.1)

lle variables u and v are continuous and often referred to as spatial frequencies. The cigcnfunctions

for a given discrete 2-1) linear system are those complex exponentials for which u and v fall within a

bounded region in the center of the u.v plane. Ilic boundary of this region is known as the Nyquist

Boundary. Its shape is determined by the pattern of sample points used in the filter operation. We

shall return to the Nyquist boundary in the next section.

3.2.2 Derivation of the Transfer Function

When a linear function is convolved with an eigenfunction the result is the same cigenfunction

shifted in space (or phase) and scaled in amplitude. The phase shift, 0(uv), and the amplitude

attenuation, A(u,v), are position invariant. They are a function of only the spatial frequencies of the

cigen function.

We can express this phase shift and amplitude attenuation as a complex function, H(u,v), known as

the transfer function. Its relation to 0(u.v) and A(uv) is given by the following equations:

A(uv) = I H(uv) I

0(uv) = ArcTan[lm{H(uv)}]/Re{H(u,v)}]

H(u,v) = A(uv) e(u.v)

Where Il{.} gives the imaginary part of a complex function and Re{.} gives the real part.

The effect of convolving a discrete 2-D finite impulse response filter,

h(xy) for Ixj < Xh and lyl < Yh

with an cigenfunction may be expressed as a multiplication with the transfer function in the spatial

frequency plane as shown in equation (3.2).

Xh Yh

H(u,v) eux+ vy) = 7 E h(k)e j (x+k)u +(Y+'N ]  (3.2)

k =-Xh I=-Yh

We can easily derive the formula for computing the transfer function from the impulse response by

factoring out the cigenfunction from both sides of equation (3.2). 'his formula is given in equation

(3.3).

Xh Yh

1l(u'v) = h(k,)eku+N) (3.3)
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k=-Xh  -Yh

3.3 Two Dimensional Re-Sampling

In this section we examine in more detail what the Nyquist Boundary tells us about the pattern of

sample points. In this discussion it is assumed that the input image and the impulse response are

given as discrete 2-I) sequences. We are concerned with reducing the number of sample points. We

use the term "re-sampling" to distinguish this from the related problem of sampling a continuous

function to produce a discrete sequence. Sampling a continuous function is amply treated in many

digital signal processing texts. We recommend [Oppenheim 75] which has come to be recognized as

the classic text book for digital signal processing. Re-sampling a 1-D sequence will be discussed first

and then the results extended to 2-D.

3.3.1 Re-Sampling a One Dimensional Filtered Sequence

For a one dimensional linear function, the eigen-functions are the complex exponentials, eI J 'x for

which the continuous frequency variable. w. is within the bounded region I W 1 _< v/SR, where SR is

the distance between samples, and must be an integer. Complex exponentials for which w is outside

this ranged are aliased by the sampling. That is. they appear in the sampled sequence as one of the

complex exponentials from within the interval. Complex exponentials from outside the Nyquist

boundary are, in effect, rotated about the interval boundary.

3.3.2 Two-Dimensional Nyquist Boundary

The extension to two dimensions is straight-forward if the samples arc taken at points along axes

which are aligned with the original sample axes. That is, if every S Xth point in the x direction on every

S Yth row in the y direction are chosen as sample points, then the transfer function of the sampled

sequence will be defined within the rectangular boundary:

Iu IVt/Sx and I v I _ r/SY.

In the techniques developed in chapter 5 we employ a type of sampling in which the sampies are

along the diagonals, ±450*. We refer to this form of sampling as VT resampling, because this is the

minimum distance between sample points. l'he V2 resampling operation, SV-( ) may be defined

as:

Sv.-[p(x,y) = ,p(x.y) for x mod 2 = mod 2

tundefined otherwise

When applied to a cartesian grid with axes at 00 and 900 it yields a new grid where the unit

sampling distance axes are at ±450 as shown by the circles in the figure 3-1 below. When applied to a

grid where the axes arc at ±450 it produces a new sampling grid with a unit distance of 2 and unit

distance axes at 00 and 90* as shown by the squares in figure 3-1.
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70- [0-. 0 -. 1 (75-.®.®.®

Figure 3-1: Example of Sv-Lp(x,y)J and S2[p(x.y) ]

In the frequency domain. each application of V2 sampling introduces a new Nyquist boundary

which is skewed by 450 from the previous Nyquist boundary, and just fits inside it, as shown in figure

3-2.

V
Original Nyquist Boundary

After Sqrt(2) Sampling

After Sqrt(2) Sampling Twice

Figure 3-2: Nyquist 1oundaries for Successive Application of Vi Sampling

Aliassing is minimized by designing the filters so that there is a large attenuation for all points

outside of the new Nyquist boundary.
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3.4 Design Parameters for Digital Filters

In this section we will dcfine some of the terms that are commonly used in the design of finite

impulse response digital filters. [here is nothing original in this section. It is included so that when

these terms are used in later sections and chapters the reader will know what they mean.

Digital filter design is an optimization problem. Digital filters are generally designed by specifying

a set of constraints on the transfer function and then allowing a linear optimization program, such as

the Parks-McClellan algorithm [Parks 721 to find the coefficients for the best solution. The

constraints that are commonly used for designing a low pass filter are illustrated below in figure 3-3.

II

(S2I-

CO= OS

Figure 3-3: Transfer Function Constraints for a Low-Pass Filter

The symbols for the constraints are:

a1: The pass band ripple peak amplitude

8,: The stop band ripple peak amplitude

WC: The pass-hand cut-off frequency where response falls below 1-81.

W.:The stop-band frequency edge where response falls below 8,
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.iF: The transition width. or Width of the transition region, givcn by w -We

W 13dB: The frequency where rcsponse falls helow 1/2 (-3dB).

The usual goal is to find the shortest filter which has a sufficiently flat pass and stop band and a

sufficiently narrow transition width. 51 and 62 can be traded off against cach othcr. 'hcir product

can be traded off against aF. The product of all thrcc can be traded off against the number of

coefficients.

q
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Chapter 4
Criteria for the Design of

Band-Pass Filters for Detecting
Non-periodic Signals

In this capter we devclop several ideas which are fundamental to the results describcd in later

chapters. Section 4.1 describes the concept of a family of detection functions which are scaled copies

of a single prototype function. This concept leads to a reversible transform based on the difference of

size scaled copies of a low-pass filter, which is described in the next chapter. Such a family of

detection functions are convolved with a signal or image to separate the information into spatial

frequency channels. This provides an ability to discriminate the size of a gray-scale form by detecting

the frequency at which the maximum response occurs. This transform also provides the basis for the

representation described in chapters 7.

Section 4.2 establishes a set of design criteria for band pass filters that are to be used with peak

(and ridge) detection to construct a scale invariant representation of non-periodic signals. These

criteria are general; there are many methods by which a band-pass filter may be designed to meet

them. Our early work with this criteria used filters which were designed by a quite different

technique than the difference of low-pass filters that is described in chapters 5 and 6 [Crowley 78a],

[Crowley 78b].

In section 4.3 we consider the problem of selecting the set of scale factors for a family of detection

functions. We show that the criteria of size invariance constrains the filter radii to be members of an

exponential sequence. Size invariance also dictates re-sampling at a rate proportional to the radius of

each filter. Unless we interpolate and then decimate, the resampling distances must be members of

the set of distances that occur between points on the sample grid on which the picture (or signal) has

been digitized. 'Tlie smallest base for such a sequence which occurs on the 2-D cartesian sample grid

isV'.

4.1 Family of Detection Functions

In this section we define the term "detection function" and then introduce the concept of a

parameterized family of detection functions. Some of the possible approaches for designing a family

of detection functions are then examined.
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4.1.1 Detection Functions

The term "detection function" was coined early in this research. A detection function is a linear

function (impulse response) followed by some non-linear decision rule. Most of the edge detectors

described in section 3.2 are examples of detection functions.

The techniques developed below extend the concept of a detection function beyond the detection

of local sharp transitions in gray level.

The linear function part of a detection function is typically designed as a matched filter for the

pattern which it is to detect. See [Wozencraft 651 for a discussion of matched filter design. The

obvious example are the plethora of edge detectors in the literature, but there are other examples
such as the GM system for IC chip alignment in which corners are detected. In some systems, such as

the GM system. the image domain can be sufficiently constrained and the problem structured so that
a specialized detection function is quite reliable. However for general purpose vision, where there
are few constraints on image quality or content there are serious problems. For example, what

pattern should be detected? We have already discussed in section 2.1 some of the problems with

detecting edges and interpreting them as boundaries. Another problem is that patterns can occur over

a range of neighborhood sizes. If the pattern is blurred or noisy or the contrast is low, a larger

neighborhood must be examined. But then it becomes easy to miss the edges of small patterns.
Textured regions arc particularly troublesome because it may be desirable to detect information at
many neighborhood sizes. In the following sections we shall describe a solution that employs a set of

functions whose sizes range from very local to global.

4.1.2 A Family of Detection Functions Which Provide Spatial Frequency Channels

This research began as an effort to demonstrate the following idea [Crowley 78b]:

A robust (in the sense of able to handle blurry or textured images) and efficient (in the
sense of representing global shape of an object in a few symbols) structural description of
an image can be formed by filtering the image into a set of spatial frequency channels and
then representing peak points and ridge points with symbols.

A principle on which much of this work is based is that a class of band pass filters can be defined

such that each filter is sensitive to sigr. Is of a particular range of widths. Furthermore the width of a
signal can be determined, within some tolerance, by determini~g which filter gives the largest peak

response. In section 4.2 we develop a set of constraints for designing detection functions for this

purpose.

Investigating the design of the spatial frequency channels led to the concept of a parameterized

"family of detection functions". A family of detection functions is defined by a closed form
expression which includes one or more independent parameters. The independent parameters

determine the coefficients of the linear part of a particular detection function. Initial experiments
4l were conducted with a family of detection functions formed by the product of a circularly symmetric

low-pass window and a 1-1) cosine fCrowlcy 78a. The independent parameters were the frequency

and orientation of the cosine.

r'
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Ideally we would like to convolve the image with a continuum of filters such that if a test pattern

(say a solid disc) of a particular size is the input signal. onfltilter from the continuum will have a peak

response which is larger than all of the others. Furthermore. it should be possible to determine the

( size of the test pattern (within some tolerance) from the identity of the filter with the largest peak

response.

A number of experiments were reported in the proposal for this dissertation in which band-pass

detection functions were convolved with uniform intensity circles and squares of different sizes and

with uniform intensity bars of different widths and orientations. These experiments demonstrated

that the Size of the circles and squares. and the width and orientation of the bars could be determined

by observing which detection function produced thc largest peak in the convolution. We also

observed that certain structural elements such as edges and corners resulted in easily detected

patterns of peaks and/or ridges when convolved with each of the detection functions smaller than the

object. Thus it is possible to detect these structural elements at many neighborhood sizes and

q sampling densities. Also it was noted that a configuration of test patterns forms a shape which is

independent of the test patterns (a textured shape). The size and structural features of this textured

shape are apparent in the convolution with detection functions which arc larger then the individual

test patterns.

4.1.3 The Goal of Size invariance

The three dimensional shape of an object is intrinsic to the object. The two dimensional image of

an object should depend only on the objects 3-D shape. the viewing angle. and the lighting

conditions. A description of the 2-1) gray scale shape of an object should not depend on the size at

which the object is imaged.

Early in this research we decided to pursue a representation for.2-D form that has the property of

being independent of the scale at which the object is imaged. Thlat is, suppose an object is in the field

of view of a television camera, and a representation is constantly being constructed of how the object

appears in a sampled, digitized image from the camera. If the object is moved toward the camera, the

representation should shift in size but retain its structure. Also, as additional information about the

object's surface texture and edges becomes available it should be appenided to the representation, but

this should not alter the part of the representation that denotes the global shape of the object. In this

research we pursued the goal of producing a size invariant representation using detection functions

that are size scaled copies of the same function.
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4.2 Linear Functions for Describing Non-Periodic Signals with Peak

and Ridge Detection

( In this section we develop a set of constraints for the space domain coefficients and the frequency

domain (transfcr tiunction) for the design of a SE of 2-1) lincar functions. These functions arc to be

used with peak and ridge detection to construct a reprcscntation for the non-pcriodic signals which

occur in imagcs. We are not able to provide a rigorous proof that all of these constraints are

necessary. We only make the claim that these constraints are sufficient.

The following subsection will develop the reason why the detection functions arc constrained to

be:

1. Zero Phase

2. Finite Impulse Response,

3. Circularly Symmetric, and

4. Band Pass Filters.

We will then develop the more complex criteria that the functions:

1. Must have 3 peaks (5 alternations) in the coefficients, and

2. Must have a pass band which rises monotonically to a single peak.

4.2.1 Zero Phase

'he transfer function of the linear function must be zero or linear phase. A non-zero phase will

shift the position of the response. If the phase is linear the shift is the same for all frequencies. If the

phase is non-linear, the shift will vary with spatial frequency. The position of the signal is important

to the structure of the representation. We cannot permit unpredictable shifts in the reported position

of a signal because of a slight uncertainty in its width (frequency content).

4.2.2 Finite Impulse Response

The impulse response must be finite. The reason is that infinite impulse rcsponse filters can only

4 be implemented by recursive filters. There is no design process for a 2-1) recursive filter that will

guarantee a zero or linear phase. T'here are also problems with designing 2-1) recursive filters which

arc stable. We have limited our inquiry to finite impulse response filters to avoid these problems.
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4.2.3 Circular Symmetric

The impulse response must be circularly symmetric. This is because the representation should be

as invariant to orientation as possible. We cannot allow the detected size and position of a peak to be

affected by the oricntaton of a signal.

4.2.4 Band Pass

The impulse response coefficients must sum to zero. This will assure that if thc function is

convolved with a uniform signal, the response will be zero. Another way to say this is that the DC

response must be zero.

The transfer function must also have a high frequency stop band. This will allow the convolution

to be computed at re-sample points without aliasing. The net effect of these two constraints is that

the function will be a band pass filter.

4.2.5 Constraining Alternation (Peaks) in the Space Domain Coefficients

In this section we will show that the linear function must have 3 peaks (5 alternations) in its

coefficients. This constraint is necessary when the detection functions are to be used with peak and

ridge detection (detecting local positive maxima and negative minima). Without this constraint, other

constraints such as the need tr a narrow pass-band and sharp transition band would drive the design

to a function which had many ripples (alternations) in its impulse response. To see why this is a

problem, consider the case where a detection function is convolved with a bar which is smaller than

half the width of the detection function. Each peak in the detection function coefficients will result in

a peak in the convolution output. Since the presence and shape of the bar is to be encoded from the

peaks and ridges in the convolution, the result will appear to be many bars.

We can determine the smallest number of peaks which the detection functions can have by

enumerating the possibilities and examining the function which results from each. For convenience

this discussion will consider 1-1) functions. The results must apply to 2-1) circularly symmetric

functions. "lhe results will only apply to a circularly symmetric function if the 1-1) function is

symmetric, i.e. if g(x) = g(-x). 'lus the 1-1) functions discussed below are constrained to be

symmetric. Also, we are only interested in finite zero-phase functions for the reasons explained

above.

Let us define the temi "alternation" to refer to a change in sign in the first diiorence, dig(x)] of the

function, where first difference of a discrete function g(x) is defined by:

d[g(x)] -- g(x) - g(x-1)

Let us make the arbitrary definition that when the first difference is /cro. its sign is the same as the

point to the right. With this definition functions which have a constant interval can be considered in

this discussion. Also, to keep things tidy, let us define the boundaries of the support for a finite
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discrete function to be alternations. Thus all finite 1-D functions automaticAlly have at least two

alternations.

A1  A 2

0

Figure 4-1: The Only Possible Symmetric 1-D Function with Two Altcrnations

Two Alternations: (see figure 4-1 above.) In order to be symmetric such a function must be
constant. It is thus a low pass function.

4A2 A2
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Figure 4-2: Two Possible Symmetric I-D functions with 3 Alternations

Three Alternations: The third alternation must be in the center for the function to be symmetric.

There arc two cases (see figure 4-2 ): ' he coefficients can be all of the same sign. or of different signs.

If the coefficients arc all of the same sign, then the filter will have a non-zero DC response ( sum of

the coefficients) and will not be band-pass. If the coefficients are of both signs and sum to zero, then

the function can be band pass. However. if it is band-pass, the negative side-lobes will be
monotonically decreasing. This results in sharp discontinuities at the boundaries. These

discontinuities cause large ripples in the high-frequency response which makes the function

unsuitable for use with re-sampling.

I
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A A3

Al A4

Figure 4-3: A Symmetric 1-D Band-Pass Function with 4 Alternations

Four Alternations: If the function is finite, then two altet nations are at the support boundaries.

'he remaining two alternations must be placed symmetrically for the function to be symmetric. Since

there can be no alternation at the origin, in order to be symmetric the function must be constant

between the two inner alternations. In order for our function to be band-pass, its coefficients must

sum to zero. The function shown in Figure 4-3 is such a function. TIlhis particular function is the

difference of two constant windows. For 2-D images, convolution with this function can be

implemented as a difference of square uniform windows, for which there is a fast convolution

algorithm [Price 761. However, the sharp transitions cause large ripples in the stop band which can

cause aliasing when used with rc-sampling.

A 3

A2  A4

Figure 4-4: A Symmetric 1-1) Band-Pass Function with 5 Alternations

Five Alternations: (Sec figure 4-4) Five alternations is the minimum which a symmetric band pass
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function with a well behaved stop-band can have. This is one of the constraints which is used in the

detection function dcsign. Note that the coefficients must sum to zero in order for the function to

have a zero DC response. Note also that the coefficients must taper to zero at the boundaries in order

for the stop-band ripples to be small.

4.2.6 Monotonic Pass Band with a Single Peak in the Transfer Function

The constraint of five alternations in the detection function coefficients severely limits the form of

the transfer function. In particular, it limits the flatness of the pass band and the width of the

transition region.

'fThe ideal situation would be to have a family of filters in which the peak frequencies give a

continuum. However, this would require an infinite set of convolutions, and so we are forced to

choose a finite set of filters, with the peaks staggered dtroughout the frequency domain. This is, in

effect. sampling in frequency. For detection functions which are size scaled copies of a closed form

expression, the peak frequency for a given family of detection functions may be determined by the

radius of the function. For reasons explained below, we end up constraining the filter radii to be

members of an exponential sequence:

R E { R., S RoS2, ...R.SK}

This gives an a sequence of pass bands whose center frequencies are an exponential sequence of the

form w.S - k.

Let us define a 3 space, (xy,k), such that each point contains the value of the inner product of the
filter of radius R.Sk with the image neighborhood centered at x,y. Furthermore, let us specify that

for each increment in k. the points in the image are resampled so that the minimum distance between

samples will increase by a scale factor. S. A representation can be constructed by detecting peak and

ridge points in this three space and linking them together to form a graph. In order for the structure

of this graph to be invariant to the size of a grey-scale form we must constrain the transfer function of

the filters to rise monotonically to a peak and then fall monotonically as spatial frequency increases.

To see why this is so, consider the following situation.

Suppose we have a test pattern which is a uniform intensity square. It will result in a distinct

inter-connection of peak and ridge points. An example of such a graph is shown as figure 7-21 in

chapter 7. A Uniform intensity rectangle with an aspect ratio between 2 and 1/2 will result in a peak

at the top of this graph whose value is significantly larger than any other peak in the graph. TIis peak

is labeled as an M* and forms the root of the graph which describes the square. It should be possible

to determine the size of the square from the level. k, at which this root peak occurs.

If the test pattern is gradually increased in size the graph which represents it must move upward (in

the k dimension). This movement must be monotonic with size in order for the size invariance of the

description to hold. As a sufficient condition for this movement in the k direction to be monotonic

we make the following constraint on the transfer function of the detection functions.
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Transfer Function Constraint

The transfer function must rise monotonically from a response of zero at DC to a peak response at

some frequency. It must then Call monotonically until it has entered the stop band. Within the stop
band it is permitted to ripple with a magnitude less than or equal to some value S.

This constraint is illustrated by figure 4-5.

-T-" 0

Figure 4-5: Monotonic Pass Band with Single Peak

4.3 Selecting the Sequence of Radii and Re-Sample Distances

In this section we will address the problem of choosing the sequence of radii which the family of

detections functions should have. We also address the problem of choosing the set of re-sampling

distances. The two problems are intimately related because the representation can only be quasi-size

invariant if the re-sample distance is the same fraction of the filter radius for all of the filters.

4.3.1 Filter Radius

Scaling the size of a gray scale form is a multiplicative operation. iliat is if a form is scaled in size

by some factor. F. all of its dimensions are multiplied by F. The ideal situation would be to have a

sequence of radii and re-samnpling distances which includes all possible scaling factors. Ibis is
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impossible, because the set of such factors that can occur is infinite. It is the set of real numbers,

which even over a closed interval is infinite. Thus we must choose a sequence which gives a

reasonable approximation.

Suppose there are two instances of a form such that the second is a copy of the first scaled in size

by F. For size invariancc, we require that the representation of both forms be composed of the same

intcrconnection of symbo:, albeit from different size detection functions. Each structural component

of tie forni must be shifted in the size dimension (k in our earlier discussion) by tie same amount.

Also the sampling distance (measured in terms of pixels in the original image) must be scaled by the

same amount as the filter radius. That is, a configuration of peak and ridge points from the filters of

radius 8 must correspond to a configuration of peak and ridge points at radius 8F in the second

image. Similarly, a configuration from radius 4 in the first image must match a configuration at 4F in

the second.

If we employed a non-exponential sequence such as tie fibonacci sequence. si + -si +Si-I, or the

set of integers, the number of detection functions between radius 8 and radius 8F would be different

from the number of functions between radius 4 and radius 4F. As a consequence, the representation

of the scaled form would not contain the same configuration of symbols as the original. An

exponential sequence allows us to approximate the scalc change. F. by some factor of the form Sk,
where S is the base scale factor, and k is an index. Scaling by Sk then shifts all configurations of peak

and ridges by k levels in the representation, thus preserving the interconnection of the symbols in the

representation. It is also necessary to have re-sampled the image by the same factor, Sk, so that the

density of symbols is the same.

4.3.2 Re-Sampling Distances

'ihe accuracy of the size invariance is determined by how closely the change in scale, F, can be

Ad approximated by Sk. If not constrained by sampling, the value of S would provide a trade off

between the accuracy of the size invariance and the cost in terms of computation and storage.

However. S is constrained by the requirement that the sample distance be a fixed proportion of the

filter radius. There is only a small finite set of re-sampling distances that can be used without

interpolating the image sample points. If we are to avoid the great increase in processing cost which

would come from interpolation we must use one of the naturally occuring sample distances as the

scale factor. S. The set of distances to neighboring points for a cartesian grid is shown in figure 4-6.

Each number in this figure is the cartesian distance to the point on the lower left of the figure.

sv5
552

1 2 3 4 5

Figure 4-6: The Set of Naturally Occurring Sample Distances

For a Cartesian Plane
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Let us define the set of distances between points on any grid as the set of "natural re-sample

distances". Within this set wc can choose subsets which are members of exponcntial sequences, i.e.

have the form Sk. In fact, each natural re-sample distance provides the base, S, for such a subset.

In the following chapters we will define a process in which the image is repeatedly filtered and

then re-sampled at some base distance, S. The smallest such S which naturally occurs on a cartcsian

grid (greater than 1, of course) is the value \/'. This is the base value which is used for scaling both

the re-sampling distance and the filter size.

In summary for reasons of size invariance a family of detection functions whose radii are an

exponential scquence must be used to filter the image. The set of rc-s.ample distances must also be

from the same exponential scquence, although smaller by a constant fraction. A great savings in

computational cost is possible if the base number of the exponential sequence is a natural re-sample

distance. Thus the experimcntal implementation is constructed using the smallest such resample

distance for a cartesian grid. V2.
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Chapter 5
A Reversible DOLP Transform

W'hich Resolves Mon-Periodic Data
into Short-term Frequency Components

This chapter introduces tie Difference of Low Pass (DOLP) transform which is designed to

q separate a signal into short-term frequency components. 'Ihis transform was devised to be used with

peak detection to represent non-periodic 2-D signals as a first step in stereo matching or determining

object identity. Th( DOLP transform is reversible and thus preserves the information in a signal.

The DOIP transform is defined in the first section of this chapter so that the reader is aware of the

motivation for the problems addressed in later sections. After the transform has been defined and its

reversibility demonstrated, the form of the band-pass impulse response that results at many sizes will

be described. The computational requirements of thie DOL.P transform will then he examined. The

DOLP transform is shown to require O(N 2) multiplies for an N point signal of one or two dimensions

and produces O( N Log(N) ) result data points. It is then shown that the I)OLP transform can be

computed using resampling with a reduction to O(N Log(N) ) multiplies and O(N) result data points.

This is followed by a discussion of the degradations in frequency and position resolution that result

from such resampling. Chapter 6 will present the sampled r)ifference of Gaussian (DOG) transform,

a two dimensional implementation of the DOLP transform that exploits , property of Gaussian

functions to produce a form of sampled DOL.P transform in O(n) computations.

Notation:

The set of symbols which are defined below are uhcd extensively in the next two chapters. Filters

have an index variable. k. The filter's radius is determined by the product of the smallest radius, R.,

multiplied by a scale factor. S, raised to the kth power. Thus the radius of the kth filter Rk is given by

Rk = RO Sk

Low-pass and band-pass signals also have this subscript, k. which denotes the filter with which the

signal has been convolved. "he kth low-pass signal and hand-pass signal are sometimes referred to as

being from "level" k.

The DOLP transform definition applies to signals and filters of any dimensionality. The space

variables (x.y). for signals and filtcrs are ommitted in some sections to simplify notation. This

simplification also illustrates the point that this transform is not specific to signals of a particular

dimensionality.

4
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Let us start with the definitions:

p(x.y): The input signal defined for 0 < x < N, 0 < y At. In all the examples below N = M.

gk(X'y): A finite low-pass filter of radius Rk which has been normalized so that the sum of its

coefficients is 1.0. For a I-D filter, radius is the half width.

R.: The radius of the smallest filter with a useful frequency reponse, g.(xy).

S: A Scaling Factor: typically V " or 2.

Lk(x.y): low-pass signal at level k.

k(x.y): band-pass signal at level k.

bk(x.y): The band-pass impulse response (f ter) of radius Rk.

Xk: The number of coefficients in the kt band-pass filter.

K: The le',e; t which the size of bAlx.y) exceeds the size of p(x.y). (Xi> N2 for two dimensions)

Size Scaling:

The DOIP transform is based on a set of filters which are size scaled copies of a discrete function.

For purposes of the following discussion, assume that the low-pass filter is defined by a continuous

function that has infinite duration and approaches zero asymptotically. Furthur-more, assume that

this function is sampled over a fixed interval of its range. Thus the radius of each scaled copy, Rk.,
actually defines the number of discrete samples which are obtained over the finite interval. This

permits us to discuss the scale of a filter in terms of the filters' radius.

5.1 The DOLP Transform

This section defines the DOLP transform. The DOLP transform separates a signal into a set of

band-pass components with exponentially spaced center frequencies. These band-pass components
may be formed by convolving the signal with a set of band-pass filters which are size scaled copies of

a single prototype filter. I'hesc filters are all formed by subtracting a low-pass filter from a copy of

itself which is smaller in size by a factor of S.

The operations of convolution and subtraction are commutative. Because each band-pass filter is a

difference of two low-pass filters, there are two obvious equvalent methods for computing a DOLP

transform:

1. (Ohe )irect Method) Form the set of band-pass filters by subtracting each pair of low-

pass filters. and then convolve each of these band-pass filters with the signal. iliis method
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is illustrated in figure 5-1 below. If rcvcrsibility is desired the signal must also be

convolvcd with the largest low-pass filter.

2. (The )ifference Method) Convolve the signal with each low-pass filter, and then subtract

each low-pass filtered signal from the low-pass signal formed from the next larger low-
pass filter. This technique is illustrated in figure 5-2.

p "*b.(x,y) > Bo(x,y)

b (x,y) > B, (x,y)

* ba(x,y) > B.(x,y)

*b3 (x,y) > B (x,y)

b*b (x,y) > B(x,y)

Figure 5-I: Direct Method for Computing a DOLP Transform

The direct method is the simplest to describe. For the DOIP transform as described in this section

it is also the most efficient to compute. as it avoids the subtraction step required by the difference

method. With the difference method, however, it is easier to illustrate the reversibility of the DOLP

transform. Furthurmore. in the next section we describe a fast algorithm for computing the

convolution with the sequence of low-pass signals. The following is a definition "by construction" of

the I)OIP transform. For each level, we define the band-pass filter. describe the direct method, and

then define the difference method. Reversibility is shown at each level using the low-pass signals.

Iq
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++

P + B0(x'Y)

*g(x,y) + -B,(x,y)

*g(x,y) + B(x,y)

*g.(x,y) + + B3(x,y)

,g3(x,y) B(x,y)

Figure 5-2: Difference Method for Computing a DOLP Transform

Level 0

The impulse response (cocfficient array) for the level 0 low pass filter is g. by definition. The level

0 band pass filter. bo, has an impulse response of

bo = 1-go

The level 0 band-pass signal, S., also known as the high-pass residue. is computed by the

convolution
7

so = p * be

With the difference method, the level 0 low-pass signal, L., is computed by

7In this and all subequent convolutions we assume that some boundary value is supplied so that every .k and k Will

have the same duration as p.
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LOA P go

The level 0 band-pass signal. S., is then formed by the subtraction

so -p- . 0 = P - (p * g.)= (1 - g. ) * p

Note that p may be recovered from So and L0 by

P= S 0 + LO =p-(p*g.)+(p*g )

Some readers may note that for two dimensional signals, the operation producing the high pass

residue is known as unsharp masking. and is sometimes used for edge detection.

Level I

The level 1 low-pass signal, L1 is obtained by convolving low-pass filter g, with p. The low-pass

filter g, is defined as a copy of filter g. scaled larger in size by a factor of S.

The impulse response for the level 1 band-pass filter, b1, is

b,= g.-g

In the direct method, the level 1 band pass signal, %1, is formed by the convolution

1 =p* b1

The difference method requires computing the level 1 low-pass signal, Lr

L 1 Ap* g,

The level 1 band-pass signal may then be formed by subtracting the level 1 low-pass signal from

the level 0 low-pass signal.

S 1 -A L 0 - L i

Note that the original signal may still be recovered by

P = SO + S1 + L1

= p-..(p *g + (p *g-(p * g,)+(p *g 1)

Levels 2 Through K

SiThe low-pass filter at any level. k. is a copy of the level 0 low pass filter, g., scaled larger by a factor

of v k. As with level 1, the band-pass filter for level k is the difference of two low-pass filters

bk = 9-I 9k

Thus for any level, k. the band-pass signal, 6 ,k' may be computed by

Sk p * bk
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With the difference method, low-pass and band-pass signals at level k may be formed by

I =P g(5.1

and

Lk = Lk-1- Lk (5.2)

As with level 1, for any K the original signal may be recovered by
K

p = LK + F,, . k(5.3)
k=0

At some level (value of k) the size of the low-pass filter will exceed the size of the finite signal.

Beyond this value of k the band-pass signals contain no new information about the signal. This level,

K. is thus chosen as the level at which the transform is halted. Thus the DOLP transform produces:

SO: The high pass residue.

S k for I < k < K: The band-pass signals

and

L - A low-pass residue.

Reversibility proves that no information is lost by the DOLP transform.

5.2 The DOLP Transform Parameters

Implementation of this transform requires choosing:

g(x.y): The low-pass filter and its parameters

RO: 'he radius for the smallest filter, go(xj); and

S: The scale factor.

The low-pass filter g(xy) and its initial radius R. must be chosen with regard to how well the

band-pass filters. b k - 
9k-I - 9k meet the requirements for describing non-periodic signals, described

in chapter 4. If rc-sampling is uscd in the DOLP transform, the low pass filter and its parameters

must also be chosen so that a minimum of aliasing results from the re-sampling. 'his generally

involves trading off transition width (AF) and stop band ripple (8) against processing time.

The scale factor, S, governs the bandwidth of b,(x.y) and the frequency resolution of the
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transform. Since maximizing the frequency resolution also minimizes the degradations to the size

invariance (see section 4.3), the choice of S governs the trade-off between degradations to size

invariancc and the cost in terms of processing steps and memory. However, if re-sampling is used. S

must be one of the naturally occuring re-sample distances on the original sample grid, as was

aescribed in section 4.3.

5.3 Complexity of the DOLP Transform

In this section we examine the computational complexity of computing a DOIP transform with

the direct method. This analysis shows that the direct method requires 2 N2 multiplies and adds to

produce the N l-ogs(N/X.) + N samples in the DOLP transform.

Th1ie DOLP transform is based on a set of size scaled copies of a low-pass filter gk(x) (or in the 2-D
case gk(x.y) ). The scaling relationship between the filters is defined by an exponential relationship

for the radii, Rk.

Rk = R0 Sk (5.4)

where R. is the radius of the smallest low-pass filter. This relationship may also be expressed

recursively as:

Rk = Rk. 1 S (5.5)

The band-pass filters, bk(x) or bk(X,y), are defined by the difference of two low pass filters.

bk(X) = gk-1 (X) - gk(X) for k e 10, 1, 2 ... , K}
where g_,(x) = 1

Thus the radius for each band-pass filter is given by equation (5.4) or equation (5.5).

5.3.1 Number of Coefficients for Each Filter

As the first step of complexity analysis, let us examine the number of coefficients in the band-pass

filters used in a 1-D DOiP transform and in a 2-Dl DOLP transform.

5.3.1.1 One Dimensional l)OLP Transform

Let S1 be the scale factor used in 1-D DOLP transform. A typical value for S1 would be 2. The

number of coefficients, Xk' for the kth bandpass filter is given by:

4 Xk = 2 Rk + 1 (5.6)

By substituting equation (5.4) into equation (5.6) we get the exponential relationship:

X 2 R. S, + 1 (5.7)
k = 1

l This sequence can be solved to arrive at the relationship:

I
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X= (X0 - 1)S + 1 (5.8)

For all k such that Sk > Xo we can simplify the mathematics by replacing equation (5.8) with the

approximation:

Xk X0 Sk (5.9)

5.3.1.2 Two Dimensional DOLP Transform

Let us denote the scale factor for a two dimensional DOLP transform by S2. When resampling is

used a typical value is S2 = Vr" (See section 4.3).

As with the 1-1) filters, the 2-1) filters are defined to have dhe relationship between radii given by

equations (5.4) and (5.5).

The 2-D band-pass filter, bk(x,y). is defined to have non-zero coefficients over the disc:

x2 + y2  2

This disc is bounded by a square of sides 2 Rk + 1. The number of non-zero coefficients, Xk, may be

approximated by

X lip R 2  (.0k k (5.10)

Plugging equation (5.4) into equation (5.10) gives:

Xk=R R 2s2k (5.11)

This can be solved to yield:

Xk = X s2 (5.12)

Thus for each increment in k, the number of coefficients of the filter increases by a factor of S for

a one dimensional filter or a factor of S2 for a two dimensional filter.
2

5.3.2 Computational Complexity

This analysis of computational complexity and memory requirements applies to both the 1-D and

2-1) DOP transforms. In the 1-d case, let:

S=S 1 and Xo=2R,+1

For the 2-D case let:

S = S2 and X.= R2

Assume that we have a signal with N samples, (1-r) or 2-1)) and that one convolution inner-

product step is to be computed fir the filter centered over each of the N samples. This assumes that a

default boundary value is supplied when the filter coefficients fall over the edge of the signal. Thus
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each convolution produces N samplc values as its result. Also, assume that the smallest low pass filter

with a rcasonable stop band has X. coefficients.

The first filter, which produces the levcl 0 or high pass residue has Xo coefficients. Thus there are

N inncr product stcps. with each requiring X. muliplies, for a total of X0 N multiplies.

For cach level, k, from 0 through K, the filter has: XoSk coefficients. Thus the total number of

multiplics, dcnotcd C (for cost), is given by:

C = XON(1 + S + S2 + ..+ SK)

= XoN( " ( Sk)

= XoN(SK+l_1)/(S - 1)

For the typical values ofS 1 = 2 and S2 = \/2, S will have a value of 2.

For S =2, we can make the approximation:

sK+I-1 = S K + I

S-I

Thus our cost becomes:

C z Xo N SK+l (5.13)

The largest filter in this sequence has an index, K, chosen such that it is the smallest integer for

which:

XoSK > N

Plugging this into our cost formula for S = 2 gives:

CzSN
2

Since there are K+ 1 filters and each filter produces N sample values, the total memory

requirement, M, is:

M = (K + 1)N

Since X. Sk = N then the number of levels, K, is:

K = Logs(N/Xo)

Thus our total memory cost is:

M = N l.ogs(N/X°) + N (5.14)
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5.4 The Form of the Band-Pass Filters

Section 5.1.1 described forming band-pass signals by subtraction of two low-pass signals. Because

convolution and subtraction are both linear operations, they are associative. Thus in the case of the

band-pass images:

(P * 9k- )- (P * gk) P * (9k-1 - 9k)

Thus the DOLP transform may be computed as either a difference of low pass images as described
above, or by precomputing the coefficients of each band-pass filter and then convolving each band-

pass filter with the signal. In fact, the latter process saves the subtraction step, and so is less

expensive. However in chapter 6 we describe a fast version of the DOIP transform in which the

computational complexity is reduced by using each low pass signal Lk to produce the next low pass

signal Lk+ 1"

In chapter 7 a description technique which uses peak detection will be described. The use of peak

detection for describing band-pass signals requires a constraint on the smoothness of the band-pass

impulse response (as described in section 4.2) as well as on its transfer function. In this section we

show how the low-pass filter employed by the l)OLP transform must be constrained to produce a

band-pass filter which meets the constraints described in section 4.2.

This discussion is illustrated with one dimensional filters: b(x) and g(x). For two dimensions, the

filters should be circularly symmetric, so that response is not dependent on orientation. The variable
x may then be replaced by a radial distance to the center, r, at any orientation. The transfer functions

of the filters are denoted as:

B(w) A {tb(x)) and

SG(w) =16Fgx)

5.4.1 Space Domain Constraints

The smoothness of the band-pass impulse response is obtained by constraining the low-pass

impulse response to three alternations, or changes in sign of its first difference. The reasons for this

constraint are described in section 4.2.5. These alternations should occur only at the boundaries of

the low-pass impulse response and at its center as shown in the following figure.

The band-pass impulse response,

bk+X) A-" - gk+ /x)

which has a radius of Rk+I = RkS = R.Sk+I" will then have 5 alternations as shown below. Two

of these are at the outer edges, x = RS. labeled A, and A. Two alternations. A2 and A4, will be at

approximately x Rk ' where the first difference
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A2

Figure 5-3: Permissable Alternations in Low-pass Filter

P- gk(- )

first becomes larger than

9k+(X) - gkx) -I

and of course. one at the center, A3. where x=O.

3'&

A1

A2  A4

Figure 5-4: Permissable Alternations in Band-pass Filter

5.4.2 Transfer Function Constraints

The size invariance of the final description requires that as a gray scale form (or signal) increases its

size. the position of the signals in the transform move up through the levels smoothly. his requires

that the pass region of the transfer function (if the band-pass filter have a single peak, and be

monotonic on either side of that peak.

"
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Both low-pass filters are normalized so that they have a gain of 1.0 at DC (W=O). Since
subtraction and the transfer function are both linear operations, they are associative. That is:

7{h} - 7{g} = 7{h- g}

Thus the difference of such normalized filters will have a DC response of 0. This will guarantee

that there is no reponse by a filter when it covers a region which is entirely uniform. Both low-pass
filters should have a single peak at DC and monotonically falling pass and transition regions, as

shown below in figure 5-5.

Single Peak

-rr 0

Figure 5-5: Transfer Function G(w)

This will guarantee that the low-frequency side of the band-pass filter transfer-function pass band
is monotonically increasing. The peak frequency of the pass band, w,, will occur somewhere before

the negative minimum of the first ripple of the larger low-pass filter's transfer function. It occurs at
this minimum for large values of S ( S > 2 ) and at lower frequencies for smaller S. Since this should
be the first alternation in either low-pass transfer function (after the DC alternation) there should be

no problem maintaining monotonically increasing response on the low frequency side of the peak

frequency.

A local peak will occur in Bk+ ,(W) for each interval in which

a Gk>+ a Gk(t)
Gk+/ak

(a ag

This is the source of the peak response of Bk+1( ) at w.. However such a peak must not be
permitted any where else in the pass or transition regions ofb k + I M. Otherwise, the siue invariance

of the description will be corrupted as a result of the filter having more than one peak responsc as the
size of an object increases. The regions where this could happen arc where the ripples in Gk+ l(C) go

through a zero crossing from positive to negative. Thus we must guarcntec either:
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1 G 2

G(I-

Figure 5-6: Difference of Low-Pass Transfer Functions

' [hat the second zero crossing from positive to negative at Gk+ 1(w) occurs outside the

transition region of Bk+ 1() or.

* That the derivativc a Gk+ 1(w)/8w near this zero crossing is smaller than a Gk(w)! aw at

the same w.

For S < 2. the first criterion is met for most low-pass filters that meet the space domain criteria.

For larger values of S, if the first criterion is not met, the second may be achieved by adjusting the

stop band ripple magnitude, S.

5.5 The Re-Sampled DOLP Transform

In this section we describe the re-sampled DOLP transform. In this version of the DOLP

transform the convolution "inner product steps" are computed at a set of re-sample points.8 The

distance between these re-sample points is a fixed fraction of the filter impulse response.

In this section we show that such rc-sampling cancels the growth in computational cost that occurs

in the l)OAP transform as a result of the exponential growth of the number of filter coefficients as k

increases. 'his occurs bccause the distance between samples grows by the same scale factor as the

impulse response size. The result is a form of DOLP transform which may be computed in O( N

Logs(N) ) multiplies. We also show that the storage cost is reduced by re-sampling to O(N) (For

S2 = V2 =, M = 3N).

Ibiss L% equivalent to rmampling thc iltcrcd imagc that results from each convolution.
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5.5.1 Re-Sampling

The family of band-pass functions employed in the DOLP transform have a high frequency stop

band. For caich increment in the filter index, k, the low frequency edge of the stop band moves lower

in frequency by a factor S1 for a l-D signal or S2 for a 2-D signal.

Because each filter has a high-frequency stop band it is possible to save a significant amount of

storage and processing cost by computing each convolution at a set of resample points. That is, when

computing the convolution

Stwn) =b(x~y) *p j4 in)

the inner product step of the convolution need only be computed for the filter centered over the

points along every other diagonal as shown by the boxes in figure 5-7 which is a reproduction of

figure 3-1 of chapter 3. A tvo dimensional form of the Nyquist sampling thereom can be used to

show that virtually no information is lost; The value of the convolution at the omitted sample points

can be recovered by interpolation.

O.e-e.S.

Figure 5-7: Example of S./2-[p(xy) ] and S21p(x,y)I
From Figure 3-1 of Chapter 3

In addition to the savings in computational cost and storage, the re-sampling used in the DOLP

transform is fundamental to the quasi-size invariance of the representation for images based on the

Sampled DOLP transform described in chapter 7.

5.5.2 Complexity of the Sampled DOLP Transform

In this subsection we describe the re-sampling in the sampled I)IOLP transform, and derive its

computational cost and memory requirements.

As before, assume that we have a one or two dimensional sirnal composed of N samples, and that

default boundary value is provided fr the case when the iter coeff icienL % fall over the edge of the
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signal. Also. assume that the smallest band-pass filter has X. cocfficicnts and that the filter sizcs are

related by a scaling factor, S. by:

Xk = SXkt  SkX*

As in section 5.4. this analysis of computational complexity and memory requirements applies to

both the I-D and 2-1) DOLP transforms. In the 1-d case, let:

S=S1 and X,=2R,+ 1

For the 2-D case let:

S= S and X, =wR2.

The filter for k = 0, b,(x) or b.(x,v), is a high-pass filter. Convolution with this filter can not be

resampled. This filter has X. coefficients and so requires XN multiplies and produces N result

sample points.

'[he filter for k = 1 is a band-pass filter. Its pass band is contained in the original Nyquist boundary

of the signal, and so its convolution with te image also cannot be resampled without causing

distortion due to aliasing. This filter has SX, coefficients so its convolution requires SXN multiplies

and produces N result sample points.

The filter for k = 2 is a scaled copy of the filter for k = 1. Its pass-band is within a new Nyquist

boundary scaled lower in frequency by a factor of S, or S. The convolution of this filter with the

image can be resampled at points separated by a distance of S1 or S2 . Note that in de 2-D case.

re-sampling at a distance of S2 reduces the number of samples by a factor of S = S2. lhcre are thus

N/S points at which the convolution inner product steps must be computed. Since this filter has

S2X, coefficients, the convolution requires SXN multiplies and produces N/S sample values.

As described in section 4.3. the smallest naturally occuring resamplc distance for a 2-D cartesian

grid is V . Unless the signal is interpolated before the convolution. S, is constrained to be one of

the naturally occuring resample distances. Thus in the absence of interpolation, the smallest possible

S2 for a 2-1) Sampled DOL.P is \/21. For S2 = V2. this resampling consists of computing the

convolution inner products with the filter centered at points along every other diagonal as shown by

the squares in figure 5-5.

Similarly, the filter for k = 3 has S3X, coefficients and is a copy of the filter for k= 1 scaled lower

in frequency by a factor of S2 or S2. 'l'hus the convolution with this filter may be computed at
1 2 fS Iresample points which are separated by a distance of S2 or S-. Ths yields resampled convolution

requires S3XN/S = S2XN multiplies. T[he result requires N/S2 storage elements.

For the 2-D cartesian grid. with S2 = /' this re-sampling amounts to computing an inner

product convolution step at every other column of every other row.

In general, for each filter, k. the increase in the number of coefficients from scaling is exactly offset

by the increase in distance between sample points [Crowley 78a]. 'he computational cost is thus the
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same for every band-pass filter for k c {1.2,3...,K). Given that there are K = L.og(N/X o) band-pass

filters that require SXo multiplies, and one high pass level, k=O. that requires XN multiplies, the

total Cost. C. of the Sampled DOLP transform is:

C = S XO N Log s (N/X O) + X.N

The number of sample points produced by each convolution decreases by a factor of S for each

increment of k from k=1 to k= K. Thlus the storage requirement. M. for the Sampled DOLP

transform is:

M =N(1+ 1+I/S+ l/S2+ 1/S3+...+ 1/SK)

= N ( 1 + ) Storage elements.
(1-S-)

Note that for S = 2,

M=N+N1-0M N+N

1 - 1/2

N (1 + 2)

3 N storage elements.

5.5.3 The Effects of Re-sampling on the Representation

As described in section 3.3, the distortion from re-sampling (and subsequent loss of information in

the description) may be minimized by minimizing the signal energy outside of the nyquist boundary
defined by I u, v 1 .5 W/SR' where u and v are the spatial frequency variables and SR is the distance in

pixels between the new sample points. This analysis tells what information could be recovered by

interpolation. Howcer, a peak detection algorithm will be employed to describe the transform.

Re-sampling introduces an uncertainty in the location of peak. That is. when a peak is detected in a

re-sampled signal it may actually have occurred anywhere in the interval bounded by ( x+SR. y±SR).
If the sample interval is a constant fraction of the size of the impulse response at each level then the

uncerainty of a signal's position will always be the same fraction of its size. More accurate position

information may be obtained from the description of the object's boundaries, which is at lower levels

in the transform.

Ideally we would like the configuration of peaks that describes a signal to be invariant to the

signal's position. However, as a peak moves from one sample to the next there is a point at which

two adjacent samples will have the same peak value as shown here in 5-8.

The frequency of occurcnce of such double peaks is dependent on the number of bits used to

represent each sample and on the signal amplitude. Double peaks occur most frequently when the

signal amplitude is small.

This randomness is als) present in the relative position of peaks at adjacent levels as shown in

figure 5-9.
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Peak Double Peak Peak

Peak Makes Discrete Jumps as Object Moves to Right

Figure 5-8: Location of Peak Sample as Signal Moves to the Right

M 
Level k

. . . . * Level k-1

Figure 5-9: Uncertainty of Position of Peaks at Adjacent Levels

A peak could occur with equal likelihood at any of the positions directly under the higher level

peak. Thus any matching rule for graphs of pcaks from this transform must accept a peak at any of

tie three positions as a match.

5.5.4 Sampling in Frequency

Each levcl of the DOIP transform represents an ensemble of samples at a particular spatial

frequency range. The center frequencies of the band-pass levels are at discrcte. exponentially spaced

intervals. 'thc problem of choosing the step size for thc center frequencies is discussed in section 4.3.

As with spatial sampling, this frequency sampling defines the resolution in frequency of the DOLP

transform. This translates into the changes in the size of signals that the transform can resolve. The

inerval between center frequencies is given by the scale parameter, S. 'Ibis parameter also defines the

band width of the individual filters. The smaller S is, the better the resolution in size (frequency).

A roughly uniform region with a background of a different intensity results in a local maximum in

the three space, (x,y.k), dcfined by the transform. '"e level at which this peak occurs gives an
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estimate of the sizC of the region. Peak detection between levels produces an uncertainty in a signal's

size which is analgous to the uncertainty in the signal's position. That is. as a signal's size increases,

the level at which the largest peak occurs will make di, -rcte jumps. In this case, the size uncertainly is

bounded by the scale factor, S. That is, a peak at !I k places the signal duration somewhere

between

RSk-1/
2  R Sk+I

/ 2

<Signal Duration <
2 2

The result may be compensated for in a matching rule by permitting a stretching or contraction of

one of the signals by a factor limited by S1/2 and S31/ . Thc particular stretching may be determined

for a given signal by observing the distance betwecen landmarks in the description such as two peaks

at some level. Such landmarks for two dimensional patterns are discussed in chapters 7 and 8.

q ~ mn m.rmua" Nm " ,,,h ,--,lulm - ~ i ~ . .... .
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Chapter 6
The Sarnpled

Difference of Gaussian Transform

An Efficient I)OLP Transform
Based on Gaussian Filters and ReSampling

This chapter develops an algorithm for computing the two dimensional form of the DOLP

transform in O(N) steps (where n is the number of picture points). This algorithm employs a property

of Gaussian low-pass fliters to obtain a drastic reduction in the number of computations needed to

compute the sequence of low-pass images. This property is: when a Gaussian is convolved with itself

the result is the same Gaussian scaled larger in standard deviation by a factor of V'.

The previous chapter defined a class of reversible transforms referred to as the I)OLP transform.

It described how the 2-I) DOLP transform could be speeded up from O(N 2) multiplies to O(N Log

N) multiplies, and its memory requirements reduced from 0( N Log N ) cells to 3N cells by using

Vr" resampling. This subclass of the DOLP transform is referred to as the Sampled DOLP

transform.

It is also possible to speed up the DOLP transform by using an algorithm referred to as "Cascade

Convolution with Fxpansion" 'Ibis algorithm exploits the Gaussian auto-convolution scaling-

property and an operation referred to as N/_ expansion. The "NIT expansion" operator is a mapping

of a function from a Cartesian sample grid to a vl5 sample grid. Cascaded convolution with

expansion reduces the computational cost of a I)OLP transform from O(N 2) multiplies to O(N log N)

multiplies. icausc this algorithm is based on properties of the Gaussian function the DOLP

transform which it produces is referred to as the Difference of Gaussian (D)G) transform.

Combining resampling and cascaded convolution with expansion gives a form of I)OLP transform

which may be computed in O(N) multiplies. 'Ibis transform is referred to as the Sampled Difference

of Gaussian (SDOG) transform.

Chapter 7 shows how to construct a structural description of the contents of a grey-scale image by

detecting and linking peaks and ridges in the S1)0G transform of the image.

The Sampled Difference of Gaussian (SDOG) Transform is defined in this chapter. The Gaussian

function and its use as a finite impulse response low-pass filter arc examined. lle computational

complexity of the SDOG transform is analyzed and shown to be O(N). Two approximations for

4
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scaling the standard deviation of a finite Gaussian filter by /2 in standard deviation are introduced:

The use of the auto-convolution of a finite Gaussian. and the use of an "expanded" Gaussian.

Section 6.1 describes Gaussian functions and filters and proves the the scaling property. Section 6.2

describes cascaded convolution with expansion. It then examines the effects of the expansion

operation on a low-pass filter. Section 6.3 defines the Sampled DOG transform by construction, and

shows that this transform requires 3XoN multiplies and produces 3N samples for an N sample

picture. Section 6.4 describes an experiment that gives the accuracy of the scaling obtained by

multiple convolution with a Gaussian kernel. Section 6.5 presents the impulse responses for the level

0 and 1 band-pass filters, and the transfer functions of the level I and 2 band-pass filters.

6.1 Gaussian Functions
q

Even with re-sampling, the DOIP transform of an image is a very costly process in terms of the

number of computations that are required. It is possible to reduce the computational complexity by

several orders of magnitude by exploiting the properties of Gaussian filters. In this section, the

Gaussian function and its properties are reviewed and the construction of 1-D and 2-D low-pass and

band-pass filters using Gaussian functions is described.

The Gaussian function is most commonly known in its one dimensional form

g(t:.) (t)2/2 a
2

where: ju A The mean and

A - The standard deviation

The term l/a v scales the infinite Gaussian so that it has unit area.

For the discussion that follows, the mean will always occur at the origin (.=0, and so will be

omitted from the notation. In some of the discusion values such as a. which determine the specific

function. are used as variables. In these cases these values are included wiihin the parenthesis to

simplify the notation. 'lliey are separated from the independent parameters of the function, such as x"

and w, by a semicolon.

The standard deviation, a, is the square root of the second central moment of the Gaussian

function, and thus defines its width. The zero mean Gaussian

g~t: r - 1 .- t2/2a2
g(t; 0) e

has a Fourier transform

G(w#) = e- 02w2/2
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6.1.1 Scaling by Auto-Convolution

The scaling property is easily deduced from the formula of a Gaussian function. It has been

observed by statisticians, and is used in Communications theory and Linear Systems theory to

describe the effect of repeated convolution. In this section it is employed to dcscribe the eftects of a

finite impulse response Gaussian filter as a kernel for cascaded filtering. This scaling property is only

strictly true for the infinite Gaussian function. For a finite Gaussian low-pass filter this scaling

property is only an approximation. The accuracy of this approximation is examined in section 6.3.4

and 6.4.

The fast algorithm described in this chapter is based on the following property of Gaussian

functions:

Gaussian Scaling Property:

A Gaussian function convolved with itself yields a Gaussian function whose standard
deviation (width) is VT larger than the original function.

Proof:

The convolution:

1 et 2/2a2 1 e-t2/262

may also be expressed as the product of Fourier transforms

e - 2 2/2 e - a 2 2/2 = e-a
2

-
2

whose inverse Fourier transform is

1 -t2/4 2

To get back to standard form then requires the substitution

02= 2a2 ora 1 = vfo.

Thus the standard deviation, and hence the function width, have been expanded by a factor of

VT. 13

Note also that the amplitude has been multiplied by a factor of I/V('. Auto-convolution

preserves the unit area normalization.

- ~ . . -
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6.1.2 Discrete Gaussian Filter

The Gaussian function may be used as a low-pass digital filter. When used as a filter the variance

o2 is replaced by the ratio of a shape parameter, a. to the support radius squarcd, Rt2. This gives a

family of finite functions with different standard deviations for a particular radius. Adjusting the

parameter a permits a trade-off between stop-band ripple. S. an transition width, AF, for the filter.

An experiment to determine the effect of a on this trade-off is described in appendix A.

''he Gaussian is converted to discrete form by

a2 =R
2

1. Making the substitution a and
2a

2. Sampling the continuous function at 2R+ I points given by the discrete variable x. Ixi <
R.

Implicit in this form is a multiplication by a 2R + I point uniform window (or aperture or support)

RectR + I(x) " for lxi < R
0 otherwise.

This gives a space domain formula.

g(x;a,R) = Rect 2R+ (x) e-a x2/R2

whose transfer function is

G( ;,a.R) = Sin((2R+ 1)/2) ' V*a/Rvy eR ,/4.
Sin(w/2)

Where the first term in the convolution is the Fourier transform of the support

{Rect(X)1 = Sin(w(2R + 1)/2))
Sin(w/2)

6.1.3 Two Dimensional Digital Gaussian Filter

Generalizing the Gaussian low-pass digital filter to two dimensi(,,; :an be accomplished by

substituting the radial formula, x-+y-, for the distance variable x2 . In addition, the finite support

must also be generalized to two dimensions, which presents a choice. The two dimensional support

may be the square

s(x.y:R) I lfor lxl R, iyl S R

0 otherwise

which is separable and has a transfer function [Oppenheim 75]

S(u.v:R) = Sin(u(2R + 1)/2) Sin(v(2R + 1)/2)

Sin(u/2) Sin(v/2)

Or it may be the disc

I
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c(x.y;R) -A I for x2 +y 2 < R 2

1 0 Otherwise

which is circularly symmetric and has a transfer function [Papoulis 681

C(u,v;R) = 2,,RJ(RV 777)

where J is the first order Bessel function.

The Gaussian is the only two-dimensional function which is both circularly symmetric and
separable into onc-dimensional components. This property can be used to speed up two-dimensional

filtering with a Gaussian by replacing convolution with a (2R+ 1)x(2R + l) filter by two convolutions
with 2R+1 point one-dimensional filters ( one for each dimcnsion). 'his requires 4R+2

multiplications for each picture point instead of 4R2+4R +1 multiplications. However, this savings

can only be obtained by defining the Gaussian over a separable support, such as s(x,y;R). 9

Unfortunately, the square support focuses the stop-band ripple of the filter along the u and v axes.
This gives a non-circularly symmetric transfer function and a larger worst case stop-band ripple than

for the circular support. The stop-band ripple must be minimized if the filter is to be used with

re-sampling in order to minimize the maximum aliasing error.

For the experiments described in this dissertation, circular symmetry and the best possible stop-
band performance were judged to be more important than the computational savings. However, in a
real system, it may be worthwhile to accept some degradation in order to gain a significant savings in

processing speed.

The implementation described in this chapter and used for experiments in constructing a
representation is based on the Gaussian filter with circular support:

g(x,y) = c(xy:R) e-a(x2 +y
/ R2

Whose Transfer function is

2 rRJ (RV ) vW(/aa e-R(2v)4

G,(u.v) = 2 % R J (R V ....... * (-) e-R 2(u2 +V)/a

In the examples given in this dissertation, the parameters R=4.0 and a = 4.0 were used for the
Gaussian filter. These values were obtained by an experimental procedure described below in

Appendix A.

ro control the filter gain, the filter coefficients are normalized so that they sum to 1.0. This is done
by summing the coefficients and then dividing each coefficient by the sum.

9Although any uniform rectangle is a %cparablc suppon, the uniform square has the least cffect on the circular symmetry of
the filer. Section 4.2 dccribe the need for circular symmetry in the filters used in a I)Ol .P transform
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The following figures show the impulse response. go(x.y) for R=4, a= 4 .0 and a plot of its transfer

function.

.001488

.003150 .006669 .008564 .006669 .003150
.003150 .010996 .023278 .029890 .023278 .010996 .003150
.006669 .023478 .049280 .063276 .049280 .023478 .006669

.001488 .008564 .029890 .063276 .081248 .063276 .029890 .008564 .001488
.006669 .023478 .049280 .063276 .049280 .023478 .006669
.003150 .010996 .023278 .029890 .023278 .010996 .003150

.003150 .006669 .008564 .006669 .003150
.001488

Figure 6-1: Normalized Impulse Response go(x,y) for R =4, a =4.0

Figure 6-2: Transfer Function Go(u,v) for R=4, a=4

In figure 6-2 and all other transfer function plots, the transfer function was evaluated over a 64x64

floating point array representing the Nyquist region -v _< uv < -ff. Becausc the filters have zero

phase. the imaginary part of the function is identically zero. Thus only the real part is plotted. The
values were scaled so that the maximum would extend full scale or. the plot. L.inear interpolation was

used to obtain the value between sample points. The range from 0 to maximum response (1.0 for

low-pass filters. =0.25 for band-pass filters) is represented by 4096 increments at 2045 dots/inch.
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6.2 Cascaded Convolution with Expansion and Resampling

In this section we introduce a fast algorithm for computing the 2-D Sampled DOLP transform

with Gaussian low-pass filters. This algorithm. referred to as "Cascaded Convolution with

Sampling", is based on the convolution scaling property of Gaussian filters, de VT expansion

operation and resampiing. In this algorithm, the image is filtered. re-sampled at Ni., and then

filtered again with a filter that has been expanded out to the sample grid of the re-sampled image.

In chapter 5 it was shown that a DOLP transform could be computed by 2 methods:

1. Convolution of the image signal with a sequence of size-scaled low-pass filters followed
by a subtraction of each low-pass signal from the next. i. e.

Lk = gk* P

Sk = Lk-1- k

2. Convolution with an exponentially size-scaled set of band-pass filters which are formed
by subtracting size scaled low-pass filters. i. e.

bk= gk- - gk

k= p * bk

This fast algorithm is based on the first of these two approaches. That is the computation cost is

reduced by computing each Lk from L k t. As is shown below this computation may be done by

convolving the filter g, with L k times, or by a single convolution with a version of the filter g.
which has been expanded by V2 k-I times. That is,

L k = L k 1 * E,/2-k{g.}

Although this expanded filter covers an area which is \/ k larger than g., it has X. cocficients just as

g0 does. Thus a set of low-pass signals with an exponential series of impulse response sizes can be

formed with cost which is the same for each low-pass signal.

This section is mainly concerned with the effects of the VT expansion operator. A form of DOLP
transform based on cascaded convolution with expansion is first introduced to isolate the effects of

cascaded convolution and expansion from those of resampling. 'Me effects of the expansion

operation are then examined.

The impulse response of the level 0 low-pass signal. L., is g,(x.y) by definition. At level I the

desired impulse response is gl(x.y) as described in section 5.1. The Gaussian scaling property,

described in section 6.1, shows that if g.(x.y) is a Gaussian filtcr, the level I low-pass filter impulse

rcponse can be approximated by

gl(x.y) = go(x.y) * go(x,y).

In a Sampled I)OL.P trnsform, for each level above level 1, both the impulse response and the
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unit sample distance, SR , arc to be scaled in size by an additional factor of VT. This section

describcs how this sequcnce of low-pass Sinal, can be formed by repeatedly re-sampling and then
convolh ing with the same filter expanded out to the proper sample grid. The motivation for this

( algoridm is a great reduction in computtional complexity in acquiring thc sequence of sampled
low-pass signals needed to form a Sampled 1)01P transform and its description.

6.2.1 Cascaded Filtering and the V2 Expansion Operation

The cost of computing the DOI-1 transform without resampling can be reduced from O(N 2)
multiplications to O(N log N) by using the Gaussian scaling property and the VW expansion

operation (defined below).

Lct us consider the us(, of the Gaussian scaling property for forming a DOLP transform without
the use of VY expansion or resampling. In this version of the DOLP transform the low pass image at
level k is formed by 2k-1' ) convolutions of the low pass image at level k-1 with the kernel low pass
filter g.. Thus the level 1 low-pass tilter impulse response, gj, is approximated by

g = g. * g.

and the level 2 low-pass filter, g, is approximated by

g2Z * g. * g. * g.

For each additional level, the number of convolutions with go doubles.

6.2.2 Cascaded Convolution with Expansion

The exponential growth that results from cascaded filtering can be averted by expanding each
low-pass filter onto a sample grid which is a V larger before the convolution to produce the next
low-pass level. This expansion operation scales the low-pass filter impulse response larger in
standard deviation by V2. but it also introduces reflections of the low-pass transfer function in the
corners of the Nyquist plane, -v < u. v < w. The kernel filter can be formed so that these
reflections fall over the stop region of the kernel filter and are thus greatly attenuated, as shown in

section 6.2.4 below.

Cascaded convolution with expansion can be used to compute a 1)01P transform that is not
resampled in O(N log N) multiplies. *Ibis complexity may be arrived at by the following reasoning.

The V2_ expansion operation does not change the number of coefficients in the filter. Thus each
low-pass image may be formed from the previous low pass image with the same cost in multiplies.
The cost of each convolution is X. N multiplies where X. is the number of coefficients in the kernel
filter and N is the number of samples in the image. Since the impulse response scale grows

exponentially, there are O(Log N) low-pass images. Hence the cost of cascaded convolution with
expansion is 0( N L.og N ) multiplies. This expansion operation and its effect on the transfer
function of a Gaussian low-pass filter is examined in de following Subsections.
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6.2.3 V2 Expansion and Resampling

In this section we consider the expansion operation in the context of the use of cascaded

convolution and resampling. The \2 expansion operator is a convenient way of scaling a Gaussian

low-pass filter by a factor of VT. When images are resampled, expanding the filter onto the same

sample grid automatically gives the expansion operation.

The V21 expansion operation maps each row from a filter on a cartesian sample grid into every

other diagonal. This mapping takes each coefficient from point (x,y) of a filter g(x.y) and places it at
point (x-y,x + y) of a filter g2(x,Y 2). Points of g2(x2 ,y2) which receive no coefficient under this

mapping are declared to be undefined.

Let us define this mapping as the function EV-[ Since

Y2 = x + y
we get

-x 2 Y

2

and

yX+ 

2

So that this function may be defined by

E, -[g(x,y)] A Y2) = ' g-x,+Y2 )/2, (x2 +Y2)/2) For x, Mod 2 Y2 Mod2

Undcfined otherwise

Where A Mod B is the remainder of A/B. This mapping is illustrated by figure 6-3. This figure

shows the correpondence between points in the mapping. The dashes ("-") illustrate the points which

are not defined in the new filter.

The algorithm for cascaded filtering with sampling involves repeatedly re-sampling. Fach re-

sampling enlarges the actual smallest distance between samples by VT and alternates the direction of

that smallest distance between ±450 and 00.900. For each convolution the distance between filter

coefficients must be expanded by VT as man) times as the image has been re-sampled. For this, a

more general expansion operator is needed: E E.,-I{.}. This more general operator expands the filter

to the same grid as an image which has been v2 sampled I times.

When I is odd, the filter is mapped onto a grid whose axes are ±45*. and whose smallest distance

between samples is 21/2. The points on this grid are those at which

x1 Mod 2(1+ I)/2= Yl Mod 2(1+ 0/2 = o.

For even I. the expanded filter will be mapped onto a grid whose axes arc at 00 and 900. The distance

between samples along these axes will also be 21/2. The mapping I-.\-/ may be defined as:
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.(OJ) .(2,2) .(2.1)

.(0.0) .(1,0) .(2.0)

.(0.- 1).(1.- 1).(2,- 1)

maps into

.(2.1)
.(0,1) .(2,0)

.(0,0) .(1,-1)

.(0,-1)

Figure 6-3: Example of mapping given by FV/["]

For even 1:

g(x'y) = L ) For x1 Mod 2 = 0 and y, Mod 2 =0

Undefined otherwise

For odd I:

gl(x'Y) = { g('Y)/ 2(1+1)/2 ForX Mod 21+1) / 2 =y Mod 2(1+1) / 2

Undefined Otherwise

For a circularly symmetric filter this mapping is equivalent to applying the following procedure

recursively I times:

EV-I{.} Procedure:

For each point (xy) at which the filter g,1 (x
'y) is defined. dcfine a new point in gxy)

at (x-y, x+y) and copy the value from g,.(x.y) into the poinL

This is the procedure which was used for the experimental implementation.

6.2.4 Frequency Domain Effects of V Expansion

"l11e VT expansion operator has a well defined effect on the transfer function of its argument As

with OF sampling a new Nyquist boundary is created which is a 450 rotation and a % shrinking of

the old boundary. Inside this new Nyquist boundary is a copy of the old transfer function scaled

down in size by a factor of VT. Outside this new Nyquist boundary is a reflection of the scaled

transfer function. This is illustrated by figure 6-4 below, which shows the 3dil contour of a low-pass

filter before and after the expansion operation. Figures 6-5 and 6-6 show actial plots of a Gaussian
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low-pass filter (R=4. a=4). before and after the expansion operation. Noic the 4 lobes in the

corners of figure 6-6. Thcsc arc the reflections of the pass region. If these wcre to show up in the

composite filter they could cause a large stop-band response, which would add aliasing to the

transform because of re-sampling.

3dB Contour

U U

Figure 6-4: Effect on Transfcr Function of EV,- Expansion

Operator

EV-{.} scales the size of the transfer function by Vr so that it fits into the new smaller Nyquist

boundary. That is

j{EV2[g.(x,y)]j = '{gj(x,y)}

within v < I u+v v - (The new Nyquist boundary)

Because the expansion operation introduces a reflection about the new Nyquist boundary, there is

reason to be concerned about Lhe stop-band error introduced by this technique. The stop-band error

is not a serious problem for the parameter values R =4, a= 4 . 'Ilic reflected energy from expansion

fails into the stop-hand of the previous filter. 'lihat is, outside of the new Nyquist boundary,

.{g,(x.y) * g°(x,y)}

will be very small (i.e. < -60 dB' 0 for R =4. a=4) and thus the product

{Er/FV-[go(xy)]} 7{g°(x,y) * g(X,y)}

lORcspon. is < 95 dB in thc area of the corner where the relccted nodc are present
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Figure 6-5: Filter G*(u~v) for R =4.0, a =4.0 Before V2_ E-xpansion

Figure 6-6: Filter G.(u,v) Aftecr VTi Expansion

will be very very small outside thc ncw Nyquist boundary. Thus thc impulse response at low-pass
level 2. L2. which is desired to bc g(x.y; a2= 2o) that is, g,(x.y) with its standard deviation scaled
larger by a fiactor of 2. is actually approximated by
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g(x,y: a2=2ao) = S.,-[g.(xy) * g.(x.y)] * Ev2[g.(x.Y)]

Where SV.() is the V" resampling operation which was defined in section 3.3 as

Svr[P(x.y)] = , p(xy) for x mod 2 = y mod 2

' undefined othcrwise

Figure 6-7 is a plot of the transfer function of the level 2 low-pass filter. As can be seen the

response in the corners is so small that it does not register in this ploL

!V

Figure 6-7: Filter G2(uv) for R 4.0, a = 4.0
g2 (x,y) -- Sv~.2go(x'Y) * g0 (x'y)l * EV.- g-(x,y)l

A logarithmic plot of the amplitude of G,(u.v) is shown in figure 6-8. This plot spans -120 db in

amplitude. The scale on the left marks off drops of -10 db. Note that the response in the comer

region is well below -100 dB.

6.3 The Sampled DOG Transform

In this section we definc the Sampled DOG transform by construction and examine the

computational complexity and memory requirements. Unlike the similar sections in chapter 5 on the
DOLP transform and the Sampled DOIP transform, in this section we are concerned with only the

two-dimensional version of this transform. Also, because we use the Gaussian scaling property and

resampling, we are concerned only with a scale factor of, S2 = VT.

As in the similar sections in chapter 5. the number of filter coefficients for the level 0 band-pass

filter. X ., is related to the radius by:

X0 = v Re 2

Also, as before, the 2-D image signal is assumed to have N samples. The convolutions arc computed

for the filter centered over each sample point, with a default boundary value supplied as needed.

i .
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Figure 6-8: Plot of 20 Logj 0[G 2(u'v)J
Scale (show n at IC ft) spans -120 dB.
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6.3.1 Construction of a Sampled DOG Transform

*rhe sampled DOG transform may be expressed by the data flow graph shown below as figure 6-9.

i'hc number of points ( for an N point image) produced by each step are given in square brackets to

the right of each band-pass level.

As with the DOLP and Sampled DOLP transforms the high-pass residue. S o, is formed by

convolving g, with the image, p. to form L. and then subtracting the convolution output at each

point from the sample under the center of the filter as it is computed. That is, the low-pass level 0

signal is given by:

Lo = g0 * p

and the level 0 band-pass signal is given by:

so = p - L.

The level 0 impulse response is:

b. = 1- g

Note that when filters of different sizes are subtracted, it is implied that their centers are aligned,

and that undefined coeficients are treated as having the value zero. The filter, b., defined above is

die same as that given in figure 6.12 below.

Computing So requires X0 N multiplies and produces N sample points.

The low-pass level I signal is then formed by convolving go with the low-pass level 0 signal. Thus

LI = go Lo

and

gl = 9 " go

During the convolution, the level I band-pass signal 1 is formed by subtracting each sample

point ofL 1 from the corresponding point of L..

GI = L.
o -L1

and

b= go -(g o * g o )

This operation also requires X0 N multiplies and produces N sample points.

Since the level I low-pass filter transfer fu.iction has a pass and transition band that has been

designed to be inside a \2 shrinking of the Nyquist boundary, it can be re-sampled at V'. Thus,

only the samples along every other diagonal are stored. The result is a low-pass signal, Sv\.{L}

which has N/2 sample points.
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+
P + b.(X,y) (N)

* g (x,y) ++ bl(X,Y) (N)

* g (x,y)

Sb,(X,Y) (N/2)

Ejg~(x9y))

b(xy (N/4)

*; ~g (x, y)1

S - b(x (N/8)

*EP~(x,y))

Figure 69: Data F-low Graph for Sampled DOG Transform
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This sampled low-pass level 1 signal is then convolved with an expanded version of go to produce

L"2 Thus:

L2 
= SV,-{ L1 } *

and

g2 = EV'2{gj * SVe'{g. * g}

During this convolution, the level 2 band-pass filter is formed by subtracting each low-pass sample,

L2 from the sampled version of L1.

%2 = S/2'{l} - L2

Thus the level 2 band-pass filter is given by:

b2 = SV2"{g11 - g2"

Since SV -{"i} has N/2 samples, this operation requires XN/2 multiplies and produces N/2

samples.

The Sampled DOG process continues in this manner until the Kth level. Thus the level 2 low-pass

signal. L, is again sampled at a distance of xi2, corresponding to a sample for every other column of

every other row of the original picture. p. This is a total of N/4 sample points. This rcsampled

low-pass signal is convolved with a twice expanded low-pass filter:

E2{g°} = EV-2{g,} = E,-F{E-Ig°}}

to form the level 3 low-pass signal,

L"3 = E2 {go} * S'/{72 2}

and

93 = E2 {g.} * S.'{ EV-2'{g} * SV,2,'{g. g.} }

Thus band-pass level 3 is formed by:

% 3 = SV2""2} - "3

and the level 3 band-pass impulse response is:

b3 = SV2{ g2 ) - ( E2{g°} * SV2"{ 2 )

Since SVI{L 2} has N/4 samples, producing the level 3 band-pass signal requires X.N/4

multiplies and produces N/4 sample points.

In summary, for levels 2 through K we can state the following recursive formulae:

zLk = EV2'(k'l){g1 *SV1{"k-l} (6.1)

g= E,/'(k'u){g.} * SV 2"{gk- (6.2)
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(6.3)

' = SVT'{Lk1}) Lk

bk = -V1 -
( k'){g.} (6.4)

6.3.2 Computational Complexity and Memory Requirements

Producing each band-pass level, k, for the k-ith low-pass level requires X. N/2k1l multiplies, and

produces N/2kl samples. Thus the cost. C SDOG, of computing a Sampled DOG transform of an

image signal with N samples is:

CSDOG = X, ( N + N + N/2 + N/4 + N/8 +...)
--3 X. N multiplies

The total number of band-pass samples produced. M, is:

M = N + N + N/2 + N/4 + N/8 +

=3N samples

6.3.3 Comparison of Complexity with Filtering Using FFT

The Sampled L 'I Transform is based on a filtering algorithm which we have named "Cascade

Convolution with Sampling". Any sampled 1)O1P transform could alternatively be computed using
the Fast Fourier Transform (FF1') algorithm. A Sampled I)OLP Transform of an N point signal

(1-D or 2-1)) could be computed using the FFT algorithm by the following steps:

1. Precompute the coefficients of the level 0 band-pass filter (high-pass residue) and the
level 1 band-pass filter, Evaluate the transfer functions of these two filters over N equally

spaced points in the nyquist interval. Since the level 2 through K band-pass filters are
size scaled copies of the level I filter, their transfer functions can be obtained from the
level I band-pass transfer-function by resampling. as described below. The cost of
computing these transfer functions will not be included in this complexity analysis.

2. Compute the Discrete Fourier Transform (DFI') of the signal using the FF' algorithm.

This requires N Log, N multiplies for an N point 1-D signal or IM I.og) M12 multiplies

for an N = M x M 2-1) signal. Note that for this step alone is more expensive for:

Log2 N>3X. inthel-D case,and

[11 og2 M 2 > 3 X. in the 2-D case

3. For band-pass levels 0 and 1. multiply the DI-T of the signal by the transfer function of
each filter. Each product costs N multiplies. For band-pass levels k = 2 through k = K,
both the transfir functions and de I)FI of' the signal must be re-,sampled to N/2k'-
evenly spaced points. tFAch re-sampled uansfcr function is then multiplied by the
corresponding rc-samplcd I)Fl'. for a cost of N/2k" multiplies at each le.el. Ilie total

cost of these multiplies is then:
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N +N+N[1/2+ 1/4+1/8+...]=3N multiplies

4. Computc the inverse FFI" of each array. This requires

N Log2 N + t (N / 2 k-1 ) Log 2(N / 2k'l) multiplies

k=1

2 2N Log2(N) + N/2 log2(N/2, + N/4 log2(N/4) +...

- 2N Log,(N) + N/2[Log 2(N) - 1] + N/4 [log2(N) - 21

+ N/S [Log2(N) - 31 + ...

= 2N Log,(N) + log2( N/2 + N/4 + N/8 + k N/2'
k=1

'ic final series tenn at dhe end converges to approximately 2N. The middle series, as we
have seen before converges to N, so that the cost of the inverse FFrs is approximately:

3N Log2(N) - 2N multiplies

Thus the total cost of using the FFT algorithm is:

CFI T =N Log2(N) + 3N + 3N L.og 2(N) - 2N
4N l.og 2(N) + N Multiplies

Recall that the Sampled l)OG transform requires approximately:

CSDOG = 3 X0 N multiplies

lbus the Sampled DOG algorithm costs less whenever:

3 X0 < 4 Log2(N) + 1

For the 1-D case, X0 has a typical value of 9. Thus the Sampled DOG Transform is cheaper

whenever:

N > 26.5 =90.5

For Circularly Symmetric filters in the 2-1) case, X. is typically 49. Also the cost of a FI-T for an N

= M x M signal is [ M og2 MI2 multiplies, so that the Sampled l)OG Transform is cheaper in terms

of multiplies whenever:

4 1 Log,.(M)1 2 + 1 > 3 (49)
or
[)og2(M)1 2 > 36.5

or

log2(M) > 6.04
or
M > 26.04 = 65.86
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6.3.4 The Size of Cascasded Filter Impulse Response

As discussed above, the sampled DOG transform employs cascaded convolution with sampling to

produce a set of low-pass images %hose Gaussian impulse responses arc scaled larger in standard

deviation by a tfctor of /2' from each level to the next. In chapter 5 this scaling was discussed in

terms of the filter radius. Cascaded filtering produces a set of impulse responses whose radii grow

faster than a factor of VT.

The le\el 0 low-pass filter is defined over a disc of radius R. =4. When convolved with itself to

produce the level 1 low-pass filter it produces an impulse response which is non-zero over a disc of

radius 2Ro. This is a property of the convoultion operation. At the same time, the standard

deviation of this impulse response has only grown by V2.

The convolution of two functions which are normalized to sum to one produces a function whose

values also sum to one. Thus the autoconvoltion of the Gaussian preserves its normalization to unit

sum. Since the auto-convolution has its unit sum spread ott over a larger area, the coefficient values

are slightly s..,aller than the same coeficients for a unit-sum Gaussian filter which is computed by

scaling the R parameter by VT." The auto-convolved Gaussian filter has a larger tail and is thus a

closer approximation to the infinite 2-1) Gaussian function.

The level 1 low-pass image is sampled at VT and so the low-pass filter must be expanded to the

same sample grid by the EV,-,{1 operator defined above. From a filter defined over a disc of radius

R.. the expansion operator [-./-2 j} produces a filter whose furthest coefficient from the origin is at

VT R1. "l1at is. for a radius 4 filter, the coefficient from (4.0) is mapped into the point at (4,4).

When this filter is convolved with the level I low-pas37 filter, the result is a filter whose radius is R. +

R.V2'.

Fach additional expansion of the filter will enlarge it in radius by a factor of VT and will add its

size to that of the cumulative impulse rcsponse. "Ilius the radius of the cumulative impulse response,

R k' for the level k low-pass filter is given hy the following formula:

Rk= R.EVTI

n=0

This support radius grows much faster than the support radius

Rk = R.I[V]k

for a simple scaling of the function. This faster growth in support radius is advantageous: it provides

a low-pass impulse response at each level which is a closer approximation to the infinite Gaussian

function. Thus at each level the error in the auto-convolution scaling that results from the finite

duration of the C iussian filter is reduced.

Note that the two funcuoins do ha~c the .imc standard dcviaton.

.'

I
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6.4 Verification of Scaling Approximation

Because the discrete two dimensional Gaussian filter defined in section 6.1 is defined over a finite

window, the scaling relation described in section 6.1.1 is only approximate for g.(x.y). Described

below are three measures for the accuracy of this scaling for the approximation:

g(R =4N/2,a =4.0) = g(R =4,a =4) * g(R=4,a =4)

6.4.1 Diagonal Method in Space Domain:

The easiest measure of the accuracy of scaling by auto-convolution is to compare the coefficients of
g,(x,y) along the axis x=y to the coefficients of g.(x,y) + g.(x,y) along the x axis. These sample

points have the same ratio of distance from the center to total radius, and thus will have the same
value if the filter is exacdy expanded by V2_ and is circularly symmetric. These data are shown in
table 6-1 below. The coefficients of g.(x,y) are generated normalized to a dc response of 1.0. Their
auto-convolution also has a dc response of 1.0. llc effects of this normalitation were removed by

dividing each coeficient by the coefficient at 0,0, and this could be a source of small inaccuracy.

x 1 2 3
g 0.7788 0.3678 0.1054
g * g 0.7768 0.3607 0.0952

%error 0.25% 1.9% 9.6%

'rabic 6-1: Comparison of Filter Coefficients

It should be noted that the auto-convolution, g.(x,y) * go(xy), has a finite support that is a disc
with a radius of =2R, as opposed to g,(x,y) which is defined over a disc of radius V1'R. Yet both
filters are normalized so that their sum is 1.0. For this reason the autoconvolution should be expected
to taper slightly faster than the scaled filter. The auto-convolved filter will actually be a closer

approximation to a Gaussian function.

6.4.2 Diagonal Method in Frequency Domain:

This method involves comparing values in the real part of the transfer function G(u, v; R=4,
a=4) along the diagonal axis u=v to values of 7{ g(R=4,a=4) * g(R=4.a=4)} along the axis
v=0. 'The distance to the origin is uV" for the points from the first transfer function and u for the

second. The values arc shown for distances of u = nw/32 where n ranges from I to 16.

The maximum error shown by this method is 0.011 and it occurs at n = 9 and 10 or frequencies of

u = 9w/32 and u = 1Ow/32. As with the diagonal method in the space domain this comparison may

be sensitive to any circular non-symmetry in the filter. A larger source of error would be the

difference in normalization that occurs because of the larger support for the auto-convolved filter.
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n 1 2 3 4 5 6 7 8

G(u.v) 0.982 0.931 0.852 0.750 0.636 0.518 0.414 0.302

G(u,v) * G(u,v) 0.982 0.932 0.852 0.752 0.639 0.523 0.412 0.312
error 0.000 0.001 0.000 0.002 0.003 0.005 0.008 0.010

% error 0.00 0.10 0.00 0.26 0.46 0.95 1.94 3.20

n 9 10 11 12 13 14 15 16

G(u,v) 0.215 0.146 0.095 0.060 0.037 0.024 0.016 0.012

G(u,v) * G(u,v) 0.226 0.157 0.104 0.066 0.040 0.023 0.013 0.007

error 0.011 0.011 0.009 0.006 0.003 0.001 0.003 0.005
% error 4.86 7.00 8.65 9.09 7.50 4.34 23.07 71.42

Trable 6-2: Diagonal Comparison Of Transfer Function Samples

6.4.3 Expansion Method:

The third technique for measuring the accuracy of the approximation was to form the two filters

g.(x.y) * g.(x.y) and E,q.{g.(xy)} , subtract the expanded filter from the auto-convolved filter, and

then compute the transfer function of this difference. A plot -of this difference is shown below as

figure 6-10. This plot is dominated by the reflection of the center lobe from the expanded filter,
which is not present in the auto convolved filter. The idea behind this method is that within the

diamond shaped region. Iu + v 1 :r the expanded filter should be identical to a \2 scaling in size of

the original filter. 12 'I'he transfer function to the third decimal place shows a number of circular
ripples within the region where the two filters should be the same. The largest ripple has a peak of

-0.012 which occurs over an arc of constant radius, spanning u,v = -99r/32, -3w/32 to -3w/32,

-9w/32.

Table 6-3 below shows the error values along the diagonal u = v for u = nV/32 for n E {1,2,3,...,16}.

The errors shown by this method are of the same magnitude, but not identical to those found by

the diagonal frequency domain method. In both measures involving transfer functions the error in

the approximation was found to be at most 0.012 ( out of 1.000) and this maximum error tended to be
at or near u2 +v2 = 8w/32, which is also the peak frequency, wir of the band-pass filter at band-pass

level 1.

The conclusion formed from these experiments was that the scaling approximation was accurate

enough for the finite filters formed using R = 4, a = 4.0, to permit its use in developing a

description technique based on the Sampled I)OG transform.

12 Outside this region the reflection of the center lobe in the auto-convolved filter will dominate the differene as seen in

figure 6-10.
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Figure 6-O: Transfer Function of EV2-{g 0 (xy)} - g.(xy) g.(xy)

n 1 2 3 4 5 6 7 8
{EV-f{g} - (g * g )} 0.000 0.001 0.002 0.005 0.008 0.011 0.012 0.010

9 10 11 12 13 14 15 16

.7{EV,-{g} - (g * g)} 0.005 0.001 -0.005 -0.007 -0.007 -0.004 -0.001 0.000

Ta51c 6-3: Values Along Line u=v in Transfer Function ofEr, {g } -
(g* g)

6.5 The Band-Pass Filters

This chapter comes to a close by showing the impulse responses and transfer functions for the

smaller filters. Given below are the coefficicnts for the band-pass filters at levels 0 and 1. and plots of

the transfer functions of the level 1 and level 2 band-pass filters.

6.5.1 Size of Positive Center Radius

The scale or size of forms to which each filter in a sampled DOG transform is sensitive depends on

the size of the positive center lobe of the impulse response. We have observed by examining the

coefficients of the impulse responses that for the Sampled D)G transform based on a Gaussian low

pass filter with a radius, R. = 4.0. and a shape parameter of a = 4.0. the radius of the zero crossing

of this positive center lobe, Rk+' at a level, k, may be predicted by the following formula.
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k (6.5)
R k+ = V ' (V 2 ) 

This formula is based on the observations given in table 6-4 below. The radii of the positive center

lobes in this table were measured by finding the distance from the centcr point to the furthcst ( and

smallest ) positive coefficient. The filters tend to be most sensitive to objccts whose width is
2 Rk+ + 1. Note that as the radius increases there are more coefficients near the zero crossing, and

thus the accuracy to which thc zero-crossing radius can bc determined increases.

Level Radius of Center Lobe

1 V5 = 2.23606

2 VIO = 3.1622

3 V = 4.4721

4 v = 6.4031

Table 6-4: Radii of Center Lobes
As measured by Distance to Furthest Positive Coefficient

6.5.2 Relative Size of Filters and Their Transfer Functions

Since the filters are circularly symmetric, it is possible to visualize each filter impulse response and

transfer function from the values along a line which passes through the center of the filter or its

transfer function. Figure 6-11 shows plots of the coefficient values along the X axis of the band-pass

filters for levels 1 through 4. Note that the size of each filter increases by a factor of V-" from the

previous filter and that the maximum response (at the center) decreases by a factor of 2 from the

previous filter.

The following figure shows the transfer functions for the band-pass filters from levels 1 through 4.

The transfer function values from the u axis ( v = 0 ) from 0:< u < wr arc shown. The spatial

frequency values are shown as integers from 0 to 32 because the transfer function was evaluated over

a 64 x 64 grid. (Note that u = 2rf = 21rk/64).

6.5.3 Filter at Band-Pass Level 0

We start with figure 6-13 which shows the filter which gives the high pass residue, S.. This filter is

the lowpass filter g,(xy) with its center coefficient subtracted from 1 and all other coeficients

subtracted from zero.
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~R (Radius)

Figure 6-11: Cocfficients Along X Axis for Filters from Levels 1 Through 4

6.5.4 Filter at Band-Pass Level I

Next is figure 6-14 which gives the coeficients for the band-pass filter at level 1. The formula for

this filter is:

bl(x,y) -- g(x,y) - ( go(x.y) * g(x,y))

The values for this filter are shown in two sections so that they fit on a page. The first section is

columns -8 to 0. and the second is columns 1 to S.

[, Figure 6-15 shows the transfer function. B11(u~v)" for the level I band-pass filter. 'Me peak response

is 0.250 at Vr' v- = w14.

Figure 6-16 shows a logarithmic plot of B,(u,v). This plot spans -40 dB. "lbe scale at the left marks

off drops of -10 dil in response. This relatively large ipple is not a concern because the level 1

band-pass image is not resampled.
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Figure 6-13: Filter for High Pass Residue,%,
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-.000002

-.000009 -.000020 -.000025

-.000010 -.000051 -.000131 -.000226 -.000271

-.000020 -.000111 -.000367 -.000799 -.001257 -.001460

-.000010 -.000111 -.000508 -.001461 -.002978 -.004512 -.005172

-.000051 -.000367 -.001461 -.003949 -.004609 -.004849 -.004560

-.000009 -.000131 -.000798 -.002978 -.004609 -.003962 .001282 .004904

-.000020 -.000226 -.001257 -.004512 -.004849 .01282 .017072 .026734

-.000002 -.000025 -.000271 -.001460 -.003684 -.004560 .004904 .026734 .039788

-.000020 -.000226 -.00] 257 -.004512 -.004849 .001282 .017072 .026734

-.000009 -.000131 -.000798 -.002978 -.004609 -.003962 .001282 .004904

-.000051 -.000367 -.001461 -.003949 -.004609 -.004849 -.004560

-. 000010 -.000111 -.000508 -.001461 -.002978 -.004512 -.005172

-.000020 -.000111 -.000367 -.0%0798 -.001257 -.001460

-.000010 -.000051 -.00013 -.000226 -.000271

-.000009 -.000020 -.000025

-.000002

4 -.000020 -.000009

-.000226 -.000131 -.000051 -.000010
-.001257 -.000798 -.000367 -.000111 -.000020

-.004512 -.002978 -.001461 -.000508 -.000111 -.000010

-.004849 -.004609 -.003949 -.001461 -.000367 -.000051

.001282 -.003962 -.004609 -.002978 -.000798 -.000131 -.000009

.017072 .001282 -.004849 -.004512 -.001257 -.000226 -.000020

.026734 .004904 -.004560 -.003684 -.001460 -.000271 -.000025 -.000002

.017072 .001282 -.004849 -.004512 -.001257 -.000226 -.000020

.001282 -.003962 -.004609 -.002978 -.000798 -.000131 -.0000

-.004849 -.004609 -.003949 -.001461 -.000367 -.000051

-.004512 -.002978 -.001461 -.000508 -.000111 -.000010

-.001257 -.000798 -.000367 -.000111 -.000020

-.000226 -.000131 -.000051 -.000010

-.000020 -.000009

Figure 6-14: Impulse Response of Level 1 Band-Pass Filter
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Figure 6-15: B (usv), The Transfer Function
oi the Level 1 band-pass Filter
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Figure 6-16: 20 Log10[BI(u.v)j, The Transfer Function

of the Level I Band-Pass Filter Plotted in dB

Scale. shown ac lcft in increments of -10 db, spans -40 dB
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6.5.5 Filter at Band-Pass Level 2

The impulse response of the filter at band-pass level 2 requires a 32 column by 32 row table to
enumerate. Rather than fill two pages with these coefficients we show its transfer function in figure
6-17 below. Tlhe formula for this filter is

b1(x,y) = g.(XY) * g0(x,y) - E,,r2{g.(x~y)} * g.(x,y) * g.(x,y)]

Figure 6-18 shows a plot of B2(u,v) in dB, with a scale spanning -80 dB.

Figure 6-17: B2(u,v), Thc Transfer Function of the Level 2 band-pass Filter
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Figure 6-18: 20 Log10[B,(u.v)]. The Transfer Function
of the Level 2 band-pass Filter Plotted in dB

Scale, shown at left marks increments of -10 dBi to -80 dB
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Chapter 7
A Symbolic Representation Based

on the Sampled
Difference of Gaussian Transform

The previous two chapters described techniques which could bc considered within the domain of

digital signal processing. In order to demonstrate the usefulness of these techniques. it is necessary to

show that the filtercd image signals can be used to construct a structural representation of an image.

This chapter will describe such a technique. These algorithms were developed to demonstrate the

usefulness of the sampled DOG transform, and to explore and develop the principles for using the

transform to form a structural representation of gray scale images for object recognition and stereo

matching.

The algorithms described below were designed to be local. As with the transform itself, they can

be implemented in parallel. Rather than try to develop a single monolithic process that would

construct the description, the process was broken down into a series of stages, and a number of

competing ideas were evaluated for each stage.

The process was broken into the following stages:

1. Identify and link ridge points (P-nodes) and local peaks (M-nodes) at each band-pass
level;

2. Remove small loops and fix short broken connections in the P-paths at each level;

3. Connect together peaks at adjacent levels (M-paths);

4. Use 2-D ridge points (P-nodes) as candidates to find 3-D ridge points (L-nodes) in the

three dimensions (x,y,k);

The iesult of this process is a tree-like graph which contains four classes of symbols:

* P: Points which are on a ridge at a level.

e M: Points which are local maxima at a level.

e L: Points which are on a ridge across levels (i.e. in the three space (x,y,k)).

a M*: Points which arc local maxima in the three space.
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Every uniform (or approximately uniform) region will have one or more M*'s as a root in its

description. These are connected to paths of L's (L-Paths) which describe the general form of the

region, and paths of M's (M-Paths) which brarch into the concavities and convexities. The shape of

the boundaries arc described in multiple resolutions by the paths of P's (P-Paths). If a boundary is

blurry, then the highest resolution (lowest level) P-Paths are lost, but the boundary is still described

by the lower resolution P-Paths.

Before launching into a discussion of how the values from the Sampled Difference of Gaussian

(SDOG) transform may be mapped into symbols. a word about one of the terms used below. The

SDOG transform produces values at discrete points in a finite space (x,y.k). Each point in this space

has the potential to contain a symbol. When a symbol is assigned to a point, a certain amount of

additional state information is encoded at the point. To avoid confusion between the words point

and pointer, each point in the space (x,y,k) will be referred to as a sample, when speaking of only the

band-pass value, or as a "node" when describing the various labels, flags and pointers assigned at a

sample point.

7.0.1 Information Stored at Each Node

In the implementation that is described in this chapter, nodes were subdivided into the fields

shown in table

Filter Value 8 bits

Direction 8 bits

E,B,S,*,LM,P 1 bit flags

P Pointers 8 one bit pointers

Ubel, U, D 6 bit Smbol ID,
Pointer bits Straight up and down

UP ( to k+ 1 level) pointers For L and M paths

(8 Bits, 1 for each neighbor)

Pointers to SAME level For L and M paths

DOWN (to k-1 level) For L and M paths

Table 7-1: Fields of a 64 Bit Node

The first 8 bit sub-field holds the value from the Sampled DOG transform. Thc direction sub-field

contains the result of a directionality measure that was employed in early versions of the

representation. This number is between 0 and 179 degrees. Next are seven 1-bit flags whose

meanings arc discussed in the sections 7.2, 7.4. and 7.5. 'The next sublield contains the 8 pointer bits

for connecting P nodes. iach pointer corresponds to one of the adjacent 8 neighbors. 111c neighbor to

the right is pointed to by the pointer at bit 0. Neighbor numbers increase in a counter-clockwise

direction. ( A number of the algorithms below do modulo 8 arithmetic on the P pointers.) The next
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subfield is a 6 bit symbol ID that is assigned based on the configuration of ridges around the node.

There are then two 1-bit fields which act as pointers for the L and M paths. The U field can be set to
point to the neighbor directly above if that neighbor exists. The D bit can be set to point to the
neighbor directly below (at the k-1t level). The "UP" field contains the pointers for the L and M

paths that can point to the 8 neighbors at the k + 1st level. The "SAME" field contains pointers for L

paths that can point to any of the adjacent 8 neighbors at the kth lcvel. The "DOWN" subfield points

to the 8 neighbors below (at the k-lst level) for rcpresentng L and M paths.

7.0.2 Meaning and Purpose of Peaks and Ridges

Section 3.1 showed that a 2-D sampled correlation is equivalent to a 2-D sequence of inner
products between the filter and the neighborhoods centered at the sample points. An inner product

has its largest possible value when the two functions are identical. It is also a good measure of how

similar two functions are. For example. in communications theory an inner product is used to tell

how much of the energy in a received signal is described by a basis function [Wozencraft 65]. Thus a
local peak in a band-pass image indicates a local point where the image signal most resembles the

impulse response of the band-pass filter.

It is possible for a two dimensional signal to maintain a large amplitude along a line or a curved
path such that all of the neighboring values are smaller. When this happens in the band-pass images

from a DOIP or SDOG transform it means that the impulse response of the band-pass filters are a

best fit to the gray-scale form in the image at a sequence of points. Such a sequence of points is
called a ridge. A ridge could be loosely defined as a 1-D sequence of points in a 2-D signal along
which the function value is larger than any neighboring points.

Both ridges and peaks occur in each of the band-pass signals produced by a DOLP transform. This

chapter shows that the appearance of an object in an image can be represented by encoding the ridges

and peaks from all of the band-pass images from a SDOG transform. To the extent to which the

band-pass signal can be reconstructed from knowledge of the position and magnitude of the peaks
and ridge paths, this encoding is approximately reversible. This chapter also shows that the concepts

of peak points and ridge paths can be extended to the third (or k) dimension, that is between
band-pass levels. These peak points and ridge paths in the (x,y,k) space provide sufficient
information to uniquely represent descriptions of the 2-I) appearances of objects. Chapter 8 shows

how this a representation can be used to efficiently match 2-1) appearances, despite changes in size,

2-D orientation, or position of the object relative to the camera.
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7.1 Phenomena in Each Band-Pass Image

This section describes the manner in which peaks and ridges occur in each band-pass image of a

SDOG transform. Section 7.4 describes peaks and ridges in the 3-D space (xy.k). The phenomena

described in these sections are illustrated with filter output from uniform intensity rectangles. These
artificial shapes have simple descriptions and yet illustrate the principles on which this representation

is based. Examples of the descriptions of the images of real objects are presented in later sections and

in the next chapter.

7.1.1 The SDOG Band-Pass Impulse Response

In the following discussions, it is helpful to recall the form of the impulse response of the band-

pass filters implemented by the sampled DOG transform. The zero crossings and the center row of
this impulse response are illustrated below in figure 7-1. The impulse response is circularly

symmetric. The coefficient along any line passing through the origin will resemble the cross-section
shown on the right in figure 7-1. The impulse response consists of a positive center lobe, surrounded

by a negative side lobe. The sum of the coefficients is zero. The response at any point may be

thought of as the sum of the weighted points under the center lobe minus the sum of the weighted

points under the outside side lobe.

0.039

Zero Crossings Impulse Response

(Center Row)

Figure 7-1: Impulse Rcsponsc of Band-Pass Filter
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7.1.2 Edges of Large Regions

Let us start by considering the response of the band-pass filters at the boundary of a much larger
uniform region. Consider a square whose side length is much larger than thc diameter of the
band-pass filter, and whose picture elements arc of a larger value than the surrounding background.

Let us examine the response of the filter along a line which is perpendicular to the side of the square

and passes through the center. Tihis response is illustrated in figure 7-2.

20

10

-o 0
-10

11 -4 -4-20

Response
Path Across Square (Level 1)

Figure 7-2: Response Across Center of a Square

When the filter support is totally in the uniform background region die response is zero. As the

filter's negative side lobe begins to overlap with the square, the inner-product becomes negative. As
the edge of the positive center lobe reaches the edge of the square, the inner-product reaches a
negativc minima. 'he response climbs through zero as the positive center lobe overlaps with more of

the square. Just before the positive center lobe completely overlaps the square. the response will
reach a positive maximum and begin to drop. The drop continues until die filter is completely within
the square and the response hits tapered to zero. Thus the edges of the square result in a pair of peaks
of opposite sign, on either side of the edge. Th'lc distance of die peaks from the edge can depend on
how sharp the edge is, and will occur at approximately 2/3 the filter radius on either side of the edge.
If the edges are blurred at the resolution described by the filter, the amplitude of the peaks will be
decreased, the width will be increased, and the peaks will tend to be a little further apart.

The fact that a negative response occurs outside of the square is interesting. Any approximately

uniform region will have a negative ridge surrounding it. Artists refer to a similar phenomenon in the
human visual system as "negative shape".
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7.1.3 Convex Protrusions: The Corner

The filters tend to respond to concave and convex protrusions by producing a peak. When linked

bctwccn levcls, these peaks form an M-path which describes the shape of the protrusion. As an

example of a convex protrusion, consider thc uniform square described in the previous section.

Consider the response along a line which is parallel to and about half the filter radius below the

upper edge of the square as shown in figure 7-3.

40

30

20

10jj
0

-10

Path Across Square -30 Response

(Level 1)

Figure 7-3: Response at Comer of a Square

As before, the filter response is initially zero. As the negative sidelobe moves over the corner of

the square, the response will go negative until a minimum is reached. The amplitude of this negative

peak will be smaller than for the negativc edge at the center of the square. This is because less of the

negative side lobe is overlapping with the square. As the positive center lobe comes over the square,
the response will rise through zero to a positive maximum. The amplitude of this peak will be

approximately twice the amplitude of the positive peak at the center of the square. Again, this is

because less of the negative side lobe overlaps with the square. To the right of the positive maximum,
the response will decrease to about half of its maximum value. These points are along the positive

ridge that is inside the boundary of the square. 'he response is symmetric about the middle of the

square.

Peaks, such as the one described above, will occur whenever there is a protrusion. Protrusions
which have sharp straight edges appear the same over a range of scales. For such protrusions the

height of the peaks at several adjacent band-pass levels will be approximately the same. If the
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protrusion does not have sharp straight edges, then there will exist levels at which the pcak is larger

than the peak at adjacent levels. An example of such a shape would be a square in which C c corners

are rounded.

7.1.4 Across a Long Thin Rectangle

Let us consider the response of a filter along a line crossing a rectangle (or bar) whose width is

approximately the same as the radius of the filter's positive center lobe. This situation is illustrated in

figure 7-4.
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20

10-o 0
-10

-20

5 Response

Path Across Rectangle (Level 1)

Figure 7-4: Response of Filter Across a Rectangle

As with the first square example, the response starts out as 7.cro. and falls to a negative peak as the

side lobe overlaps with the rectangle. Howcver, since the side lobe passes beyond the rectangle as the

center lobe comes over the bar, the positive response will rise faster and reach a peak which is

approximately twice that of the positive edge of the square. Ilhc response is symmetric about the

center of the rectangle. What is important about this example is that the response of the filter whose

positive inner lobe is the same width as the rectangle will be larger than the response for filters which

are largcr or smaller. Such a ridge results in a path of L-nodcs:, that is, a ridge between band-pass

levels. 'Ihe index of the level at which the L path occurs gives an estimate of the width of the

rectangle.
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7.1.5 At the Ends of the Rectangle

Let us now consider the response of the same filter along the long axis of the same rectangle. This
is illustrated by figure 7-5.

Path Across Rectangle

50

40

30--

20

10

0

-10

-20
Response (level 1)

Figure 7-5: Response of Filter Along a Rectangle

The negative minimum that occurs as the filter comes over the end of the rectangle will be smaller

than the the negative minimum beside the rectangle, because less of the negative side lobe will be
over lapping with the rectangle. As the positive center lobe comes over the end of the rectangle, the
response will rise to a positive maximum which is even larger than for the center of the rectangle.

'This is because at the end of the rectangle, only about a quarter of the ncgativc side lobe overlaps

with the rectangle. whereas in the center almost half of the negative side lobe overlaps. Thus at the

ends of a rectangle, a local peak occurs. For the filter whose center lobe most closely fits the

- - - - -
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rectangc. the amplitude of this peak will be larger than for filters that are smaller or larger. Such a

peak will be detected as a peak between levels, and labeled as an M*. The levels below it will contain

an M path which splits into two parts. one for each corner. Above it another M-path will lead to the

center of the rectangle. This M-Path may or may not join with one from the other end of the

rectangle, depending on both the length to width ratio. and the difference in gray level between the

rectangle and the background.

7.1.6 A Square Which is Smaller Than the Filter

As a final illustration, let us consider the response of a filter to a square whose size is approximately

the same as the positive center lobe of the filter. This is illustrated by figure 7-6.

60--

40--

" '°0--o

-10

Path Across Square - Response
(Level 4)

Figure 7-6: Response of Filter To a Square

As with the earlier examples, there is a negative ridge surrounding the square. As the center of the

filter moves over the square the response rises to a strong peak. The height of the peak will be

approximately four times the amplitude of the negative ridge outside the square. l]be peak that

occurs for the filter whose center lobe just covers the square is the largest response to the square

which any of the filters will have. 'I'his peak is detected as an M* point, and serves as a root for the

graph which represents the square. An M Path will extend above this peak for several levels. Below

the peak an M Path will split into four parts, one for each corner.
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7.2 Peak and Ridge Path Detection at Each Band-Pass Level

Detecting a local peak in a band-pass level from the SDOG transform is simple because of dhe

smoothness given by the band-pass impulse response. Unambiguous detection of the path of a ridge
with an algorithm that may be implemented in parallel has proved to be a more difficult problem.

It was originally believed that the detection of points on a ridge would require measuring the

direction of least change (local directionality) and then finding the local ridge by scanning
perpendicular to that direction. Several techniques for measuring local directionality were

investigated. A particularly reliable and efficient measure based on a 4 point DF of the inner-

product from 1-D filters at four directions will be described in a separate report.

'The simplest measure of local directionality at a point is to compare the filter output at each of the

8 neighbors. At any point. the directions at which the largest neighbors exist is the most likely

direction of the nearest ridge. By definition. the largest neighibors of points on a ridge are also points

on a ridge. TIhis simple principle serves as a basis for the ridge detection algorithm described below.
Because it is not based on a costly directionality measurement function, this algorithm is simpler to
program and executes faster than any of the other algorithms for ridge detection that were

investigated.

None of the algorithms that were developed for detecting and linking ridge path points always

produced unbroken pathj. The problems with these algorithms is that the data consists of fixed point

numbers which exist at discrete locations. While the algorithm described below was sufficient for the

purpose of' demonstrating this thesis, there is room for further research.

7.2.1 Detecting Local Peaks

Local peaks ( positive maxima and negative minima) at a band-pass level are easy to detect. A local

peak (M) is defined as any sample in a band-pass level for which none of the adjacent 8 neighbor

samples has a value of the same sign and larger magnitude. Note that this definition allows adjacent

samples with the same value to both be detected as peaks. This situation occurs because of the fixed

point quantizition and is handled by interpreting adjacent peak points as part of a single peak. If two

samples have the same value, and only one of them has an adjacent neighbor with a larger value, then

neither sample is labeled as a peak.

By this definition, an area of uniform filter output is composed of all peaks. Only a constant signal

will produce a uniform response over an area in a band pass image. and the values in this response
are zero. Such areas are easily detected and excluded. It is possible to have small regions of width <4

which have a constant value if the amplitude is very small (e.g. < 3). This is because of quantization

with fixed point numbers. '1Iis problem is avoided by not allowing a point where the magnitude is

less than 10 to be labelcd as a peak.

It is mentioned above that a situation can occur where two adjacent samples have the same value,
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and only one of the samples has a larger neighbor. An example of this occurs in figures 7-8 and

7-9 below at row 54 column 142. Such false peaks are eliminated by setting the E flag for any
M-node which has an equal valued neighbor. A second pass is made through the image during which
the M and E flags are cleared for any M-node which has its E flag set and is not adjacent to another

M-node.

Thus peaks are detected by comparing a value to its neighbors, and to the quantization threshold.
If implemented by itself, this algorithm requires 8 references to the image array for each sample. This
simple detection procedure is easily implemented as part of the more complex ridge path detection
procedure described below.

7.2.2 Detecting Ridge Paths at a Band-Pass Level

This section describes an algorithm for detecting samples which are on a ridge in a 2-D band-pass
image. This algorithm is based on the principle that the largest neighbors of a point on a ridge are

also on the same ridge. Thus any pair of samples which point to each other as largest neighbors are

on a ridge ( detected as P-nodes).

The algorithm for detecting ridge path nodes consists of two stages and requires 8 "pointer" bits.
The following is an informal explanation of this algorithm: The eight neighbors of a point are
assembled into a circular list. with the nodes of the opposite sign marked as zero. This list is then
scanned looking for local maxima. For each local maxima, the corresponding pointer bit is set. After

this process has been executed for every node in the level the second stage commences. At this stage,
at each node, any neighbor for which the pointer has been set is tested. If the neighbor has its
corresponding pointer (pointing back) set, then both points are labeled as ridge nodes, and marked
by setting a P flag. By deleting all unanswered pointers, the ridge nodes are left with a two way linked

list giving the path of the ridge.

This algorithm consists of the following steps:

" Stage 1: At each node:

1. Make a circular list of the absolute value of the 8 neighbors.

2. For any neighbor where the sign of the value is different then the center node, enter

a zero.

3. Scan the list (A finite state process works nicely here). For any list element for
which there is no larger adjacent value, set a pointer for that neighbor.

4. Store the pointers for the next stage.

* Stage 2: For each point:

1. Scan the pointers. For each pointer that is seC. get the pointer of that neighbor that

points back.
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2. If this pointer is also set, mark the node as a P. Otherwise delete the pointer.

The two way linked li:,t of pointers is used in later processes.

This process is illust-ated by the examples shown in figures 7-7 through 7-9 below. Figure

7-7 shows the raw values filter values from level 2 of the piston rod test image, columns 141 through

152, rows 47 through 57. Note that this data is on a NF2 sample grid.

Values for nodes - Level 2 rod.dat raw data
141 142 143 144 145 146 147 148 149 150 151 152

47 13 7 -3 -6 -11 -12
48 -2 -9 -15 -18 -20 -19
49 -5 -18 -19 -17 -18 -18
50 -18 -14 -7 -3 -1 -3
51 -16 -11 1 11 14 14
52 -3 8 13 1s 17 15
53 0 14 15 8 1 I
54 14 7 -9 -18 -19 -16
55 12 1 -20 -29 -36 -38
56 0 -26 -38 -38 -39 -43
57 0 -27 -37 -29 -24 -23

Figure 7-7: Values at Level 2 of rod.swf

Figure 7-8 shows the pointers that are created by the first stage of the ridge path detection process.

The pointers are marked by the symbols {f ! \- }. Also shown is the symbol M wherever a peak has

been detected.

The result of the second stage is shown in figure 7-9 below. At this stage the ridge path points have

been marked with a P and only answered pointers are not deleted.

7.2.3 Eliminating Small Loops

In most cases the algorithm described above produces a unique path of largest values.

Occasionally two points occur with the same value such that the direction between them is

perpendicular to the ridge path. This occurs because a continuous ridge is represented by fixed point

numbers at discrete sample points. This phenomenon becomes more likely as the signal intensity

becomes weaker.

Such small loops complicate the programming for later stages of the process. Fortunately, they are

easily detected and eliminated by deleting one of the sub-paths.

The set of all such loops involving 3 or 4 points may be divided into three classes by groupinf

together those that are rotational equivalents. These classes are listed in figure 7-10 with the equal

samples shown as "E" and the other samples as P". Note that in classes I and 2 the loop on the right

is on a Vi sample grid.
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Values for nodes - Level 2 rod.swf pointers
141 142 143 144 145 146 147 148 149 150 151 162

47
47 13 7 -3 -6 -11 -12
47
47 / \ / \
48
48 -2 -9 -15 -18 -20 -19
48 - - -- -
48 / \ / / /

49 / \ / \ /

49 -5 -18 -t9 -17 -18 -18
49 - -M - -

49 /

50 / \ / \ /
50 E-18 -14 -7 -3 -1 -3
50 M
50 /

51 /

51 -16 -11 1 11 14 14
51
51 / \ / \ / \

52
62 -3 8 13 15 17 15
52
52 / \ /

53 / /
53 0 14 15 8 1
53 - - M
53 /

54 / \ /

54 E 14 7 -9 -18 -19 -16
54 M
54 1 t f !

55 I

55 12 1 -20 -29 -36 -38
55
56 / / \ / \ / '
56.

56 0 -26 E -38 -38 -39 -43
56 14- .. M -
56 
57 / \ / \ / \ /
57 0 -27 -37 -29 -24 -23
67
57 I /

Figure 7-8: Pointers From First Stage of Ridge Path Detection Procedure

The possible presence of such a loop is signaled by a sample having a pair of pointers in adjacent

directions. When such an adjacent pair of pointers is detected the node is marked by setting its S

flag. A second stage process then makes a test of the directions of the pointers in the next sample in

the path. Loops are broken by deleting the P flag and the pointers of one of the equal valued

samples. The sample that is deleted is chosen such that path length is kept as short as possible and as

straight as possible. When these two criteria are not sufficient to choose an equal valued point to be

removed, the more clock-wise sample is chosen arbitrarily.

Figure 7-11 shows a path that includes a small loop. The nodes with adjacent pointers are marked
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Values for nodes - Level 2 rod.swf Ridge Paths

141 142 143 144 145 146 147 148 149 150 151 152

47

47 13 7 -3 -6 -11 -12

47

47

48

48 -2 -9 -15 -18 -20 -19
48 P- -NP- - P
48 / /

49 / /

49 -5 -18 -19 -17 -18 -18
49 P- -MP- P PB
49 /

50 /

50 -18 -14 -7 -3 -1 -3
50 P
50 /

51 /

51 -16 -11 1 11 14 14

51 P
51 /

52
52 -3 8 13 15 17 15
52 P - P - - MP -P
52 /

53 /

53 0 14 16 8 1 1
53 P- -MP
53 /

54 /

54 14 7 -9 -18 -19 -16
54 P

55 /

55 12 1 -20 -29 -36 -38
55 P
55 /

56
56 0 -26 -38 -38 -39 -43

56 P - P- - P- MP -

56 /

57 /

57 0 -27 -37 -29 -24 -23
57 P
57 /

Figure 7-9: Ridge Paths After Stage 2 of Procedure

with an "S". Figure 7-12 shows the same path after it has been processed the procedure that

eliminates small loops. This ridge path is from the lcft most piston rod in the Piston Rods test image

which is shown in figure 7-25. The ridge is a negative ridge that occurs outside the oval shaped

region within each piston rod.

4I

q , -m~m .. ala lli ln iBi a
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Class 1:

E E

P- E- P P-E

Class 2:
E P

/ I I

P-E E I
/

P - E

.lass 3:
E -P

/ /

P -E

Figure 7-10: Classes of Small Loops

Values for nodes - Level 3 rod.swf Ridge Path

49 51 53 55 57 59 61

61
61 -26 -22 -16 -6 8 24 37
61 P

61 I

63 \

63 -29 -28 -24 -18 -7 11 23
63 P -- P P
63
66
65 -18 -25 -29 -24 -15 1 15
66 S P PB
65 ! \
67 I \

67 2 -17 -29 -29 -20 -4 10
67 P P
67 \ I

69 !

69 20 -4 -26 -33 -22 -6 9
69 S MP
69 1
71 !

71 26 3 -23 -32 -25 -8 8
71 P
71 t

Figure 7-11: Ridge Path Containing Small Loop

7.2.4 Unterminated Ridge Paths

In most cases a ridge path will terminate at both ends at an M node. Thcre arc, however, several

situations where this does not occur. In the following sections we describc these situations and how

they arc treated.

Whencver a node has only one P pointer, a flag, called the B flag (for Broken) is set. A B node can

occur for the following reasons:



Values fo. nodes - Level 3 rod.swf Small Loops Removed
49 51 53 55 57 59 61

61
61 -26 -22 -16 -5 8 24 37
61 P
61
63 \
63 -29 -28 -24 -18 -7 11 23
63 P-- P P
63
65
65 -18 -25 -29 -24 -15 1 15
65 P Pe
65
67
67 2 -17 -29 -29 -20 -4 10
67 P
67
69
69 20 -4 -25 -33 -22 -6 9
69 HP
69
71
71 26 3 -23 -32 -25 -8 8
71 P
71

Figure 7-12: Path After Removal of Small Loop

1. When a ridge path is broken, usually because of an abrupt change in the ridge amplitude.

Such cases are an error and are handled by attemrting to extend the path as described in

section 7.2.5 below.

2. A "Spur": This is an extra point which occurs to the side of a ridge pi-, us,, 1
connected to an M node. Spurs arc deleted only when they are a single ,i.'% ,-id not

connected to an M node, as described by section 7.2.7.

3. A Fading Ridge: This can legitimately occur for some patterns. For example, when a bar
ends by fading into the background, or when a large area has squ-re wave "tccth" that are
longer than they are wide.

4. An Isolated Pair. This is the case when two P nodes are connected to each other and only
each other. This can be the result of a small region which is described at lower levels and

should be ignored at this level, or it can occur at a saddle point along a ridge.

The action which is taken at a B node is first determined by the number of pointers which the

connected neighbor of the B node has. 'Te following situations occur:

1. One pointer: 'his signals an Isolated Pair.

2. Two pointers: This usually indicates a break along a ridge path. although a fading path or
a long spur might be the cause. Which of these is the case is determined by attempting to
extend the path as described in section 7.2.5 below.

3. Three (or more) pointers: hc H3 node is a spur.
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7.2.5 Repairing Broken Paths

Under some conditions the amplitude of a ridge can make a sharp increase or decrease. Such a

rapid transition can result in a ridge path point not being detected or in a pair of pointers not being

formed along a ridge. An example in which this occurs in 4 places is shown in figure 7-13. The

pointers are used in the process for detecting the L-nodes. Thus it is necessary to correct such broken

paths.

A one pass process is executed for each node with its B flag set which is connected to a node with 2

pointers. This process attempts to extend the ridge path for up to 2 samples. If it is possible to close

the path with samples of the same sign. and without creating an adjacent pointer condition (as

defined above), then the path is closed. The algorithm runs as follows:

1. Determine the direction of the single pointer.

2. For the opposite direction. and the two directions adjacent to the opposite direction, get

the neighbor node.

3. If any of these neighbors are also a P-node and have the same sign, and linking to that

node will not create an "adjacent pointers" condition (see exception below), link to the

P-node with the largest magnitude and qui.

4. If none of these three nodes are P nodes, choose the largest of them (with the same sign)

and repeat steps 2 and 3. Use the direction between the starting point and the chosen

neighbor for choosing the next set of three neighbors.

5. Steps 2 and 3 are repeated twice if the largest neighboring node is always found in the

same direction. Otherwisesteps 2 and 3 are only repeated once to avoid creating small

loops.

Exception: At step 3. an adjacent pointer condition does not inhibit linking to a node if the

adjacent pointer points to a B-node. In such 1 case the the link is made and the B-node is deleted.

Figure 7-13 shows the inner oval region from a piston rod at band-pass level 3 before it is

processed by the algorithm to connect broken ridge paths. Figure 7-14 show the result'aftcr the

extension algorithm. This figure also illustrates that the extension algonthm has a preference for

connecting to the adjacent node that has the largest value. The procedure also deleted the B-nodes

that remained as spurs after the linking.

7.2.6 Isolated Pairs

The configuration of two P nodes with only I pointer (i.e. connected only to each other) is a rare

but troublesome one. It usually occurs in areas where the signal is weak. and if extended can often

cause a spur of length 2 or 3. It has been observed that when the amplitude of a ridge makes a dip

this configuration will occur. In this case, the broken path on either side of the pair of isolated

W ON
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Values for nodes - Level 3 rod.swf Ridge Paths
39 41 43 45 47 49

67
67 2 20 29 28 22 2
67 PB

67
69
69 16 35 39 38 34 20
69 PB--NP -- P-- PB
69
71
71 20 32 30 31 32 26
71 PB PB
71 ! !
73 ! !

73 16 27 21 22 26 24
73 p P
73
75 I

75 15 21 19 16 25 23
75 P P
75 i
77 I

77 15 22 20 21 22 20
77 P P
77 1 !

79 t !

79 21 29 27 25 31 24
79 PB PB
79
81
81 19 34 38 36 33 21
81 PB--NP-- P-- PBlq 81

83 !
83 5 26 37 36 27 10
83 P
83 f
q5 I

85 -14 3 16 15 7 -11
85 PB

,qg- 86

Figure 7-13: Example of Broken Ridge Paths Before Extension

P-nodes will extend to the P-nodes, thus connecting the broken path. Thus these points are not

extended. If they both remain as B nodes after the extension process they are deleted.

7.2.7 Deleting Spurs

Occasionally the algorithm for detecting ridge nodes will leave a node which is adjacent to, but not

on the path of. the ridge marked as a P-node. Such P-nodes, which are referred to as "spurs" are

easily detected. Spur nodes have only one pointer, and they are connected to a node with 3 pointers.
When a spur P-node is detected, if the node to which it points is not an M node, it's P flag and

pointer are deleted. A spur which points to an M point is retained as a potential point on an L-path.

I'II
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Values fo, nodes - Level- 3 Ridge Paths After Extension
39 41 43 46 47 49

67
67 2 20 29 28 22 2
67 Pe
67
69
69 16 35 39 38 34 20
69 NP-- P

69 /
71 /

71 20 32 30 31 32 26
71 P P
71
73 I
73 16 27 21 22 26 24
73 P P
73 I !

75 ! !
75 15 21 19 16 25 23
75 P P
75
77 I !
77 15 22 20 21 22 20
77 P P
77 I f
79 I !
79 21 29 27 25 31 24
79 P P
79 I
81 /

81" 19 34 38 36 33 21
81 MP-- P

. 81!

83 !
83 5 26 37 36 27 10
83 P
83 !
85 !
85. -14 3 15 15 7 -11
85 P8
85

Figure 7-14: Example of Repaired Ridge Paths After Extension

7.3 Phenomena Between Levels in the Transform Space

In this section we review some of the structures that occur in the sampled DOG transform of some

common forms. We first describe the chain of M-nodes (the M-path) that result from non-elongated

forms. ends of elongated forms and corners. We then describe the chains of L-nodes (the L-path)

that result from elongated forms and edges. 'his section describes the purpose and principles behind

the algorithms for forming M-paths and L-paths that arc described in the next section.
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7.3.1 Connectivity of Peaks: M-Paths

In our first experiments with the band-pass detection functions [Crowley 78b] we observed a

phenomenon which has proved fundamental to constructing a size invariant representation of gray

scale forms from a SDOG Transform. This phenomenon is: Any non-clongated gray scale form will

cause a peak at approximately the same location in several adjacent band-pass levels. Furthermore,

except for certain degenerate cases, the magnitude of the peaks will rise monotonically across levels to

a maximum and then decrease.

These peaks may be detected individually at each level as described above in section 7.1. The

peaks may then be linked by starting at each and examining its neighbors in the next upper level for a

peak of the same sign. The largest peak may be found during this linking process by comparing the

values of the peaks as they are linked. This process, which is called "flag stealing", is described in

section 7.4.

To see why this connectivity occurs, let us consider the Sampled DOG Transform of a uniform

intensity 11 x 11 square. Each band-pass filter will respond most strongly to a uniform region which

just fills it positive center lobe. However the response of a filter falls off gradually as the size of a

uniform region grows larger or smaller. We have observed dhat the response will decrease by about a

factor of 2 for a factor of 2 increase or decrease in the widtd of a square. Since the filters are scaled by

a factor of VT a local peak occurs within several adjacent band-pass levels. The band-pass signals for

an 11 x 11 square are shown below in figure 7-15. In this figure we have plotted the values along a

line which pass through two corners of the square for the band-pass levels 6 through 1. The largest

peak occurs for the filter at level 4, which has a positive center region of diameter 2 V20 + 1 (See

equation (6.5)) or diameter of approximately 9.9 samples.

In fact there are distinct types of M-paths that occur in a DOLP transform. The following three

sub-sections examine the three most common classes of M paths. Fach of these classes has been

given a name. hliese names, "spots", "bar-ends", and "corners", are not intended to imply that these

peaks only occur in patterns which an English speaking human would call a spot, bar, or corner.

These are merely labels with which we can refer to these classes. These labels could just as easily be

labeled with numbers (as indeed they are in our programs).

In this subsection we are concerned with regions of pixels in which the values are approximately

uniform. These regions must have a background which is predominantly darker or lighter than the

region for these results to hold.

7.3.1.1 "Spots" or Non-Elongated Forms

let us consider such a region which is not more than twice as long as it is wide. We refer to this

class of gray scale forms as "spots". 'The square in figure 7-15 is an example of a form that includes a

spot M-path.

A spot will result in M-nodes at a set of adjacent levels of a DOLP transform. These M-nodes will

i, .-. - .,,.m=.mmmmmmm mim M iw...
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be located at the sample at each'level closest to the center of the form. As a result these M's will tend

to be almost directly under one another. An example of such a sequence of peaks is shown in levels 7

through 3 in figure 7-15.

Thse M-nodcs may be detected individually at each level. They may then be linked together by a

quite simple process to form a two-way linked list. We call such a linked list of M nodes an M-path.

The magnitude of the values of the M nodes along such an M-path will rise to a maximum and then

drop off. The level at which the maximum occurs provides an estimate of the size of the spot. This

estimate may be obtained from the formula for the radius of the positive center lobe of the level k

band-pass filter. This formula is given as equation (6.5) in chapter 6.

In most cases each peak in the spot M-path will be surrounded by a ridge path of the opposite sign

at a distance of 3 to 5 samples. One way to classify a peak as part of a spot M-path is to detect such an

opposite signed ridge at all directions within a distance of 6 samples. We have employed a process

which scans at multiples of 450 searching for such opposite signed ridges to classify individual peaks

with satisfying results. "he classification accuracy can be improved by combining the result of such a

scan from the peaks within several levels of the largest, or M* peak. This provides a label for the M*

peak.

7.3.1.2 "Bar-end": T'he Ends of an Elongated Form

If a gray scale fonn is more than twice as long as it is wide, a sequence of peaks will occur at several

adjacent levels at the ends of the form. This is illustrated by figure 7-16. This figure shows one end

of a uniform intensity rectangle. Circles are drawn over this rectangle to represent the locations

where difference of gaussian filters from an SDOG transform best fit the rectangle. Each circle has a

radius which is that of the zero crossing of the inner positive center lobe of the corresponding filter.

The circles are centered at legal sample points from the level of the SDOG transform of the filter

which they represent.

To the right of the partial rectangle is a tree of M-nodes. Each symbols corresponds to one of the

circles on the left and represents the location of a peak in the SDOG transform of the partial

rectangle. The largest circle corresponds to the top symbol, the second largest circle corresponds to

the second symbol, etc. The labels "Bar-End" and "Corner" are those which were assigned on the

basis of the out side negative ridge. The labeling process employed a search scan in 8 directions that

returned one of three states: no ridge, same-signed ridge, or opposite-signed ridge. The base three

number was then used to index into a table of labels. The table was constructed by a training process.

T'his labeling procedure will be described in a report.

The position of these peaks will move from the center toward the ends of the form as the level

index, k, decreases. As with a spot M-path, the magnitude of the peaks will rise to a largest value and

then fall off. This largest value, which is labeled an M*, corresponds to the filter whose positive

center lobe best fits the ends of the form.

At each level, the peaks at the end will be connected by a ridge path of the same sign. 'he entire

configuration will be surrounded by a ridge of the opposite sign. For bar-end M-Paths a scan of its
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Figure 7-16: Examples of Bar-End M-Paths

neighbors to a distance of 6 samples will show this opposite signed ridge spanning an angle of

approximately 2700. This fact, and the presence of the single ridge of the same sign can be used to

label the peaks as "bar-ends". As before, a label may be assigned to the M* peak on the basis of the

labels of the other M's in the M-Path.

7.3.1.3 "Corners" and Other Protrusions

A corner or a sharp protrusion will also result in a sequence of peaks at several adjacent levels.

However, if the edges of this comer or protrusion are straight. then we have a shape which is the

same at several resolutions. In this case the magnitude of the peaks will tend to be constant. ( In fact,

small fluctuations can cause spurious M*'s to be detected.) If the protrusion is rounded, the value of

the peaks will rise to a maximum and then diminish as k decreases. The M-Path may even end before
the lowest (k = 1) level. In this case there will likely be a largest M node. For a peninsula that is

more than twice as long as it is wide, this M-path will be a bar-end. Both of these situations are

illustrated in figure 7-17.

In most cases, corners will have two ridges (P-paths) of the same sign connected to them, usually at
right angles. Also, within a distance of 6 samples there will be an ridge of opposite sign spanning an

arc of about 1800.
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Figure 7-17: Two Forms that Causc "Cormr" M-Paths

7.3.2 3-0 Ridges: L Paths

Whenever an elongated gray scale form occurs, the DOLP transform of the form will contain a

ridge at several adjacent levels. The samplc points along these ridges correspond to points in (x,y,k)
whcre the positive center lobe of a band-pass filter is a close fit to the width of the gray scale form.

These points are detected by the ridge detection process described above and labeled as P nodes. As
with M nodes, P nodes will occur at approximately the same xy locations in several adjacent levels.

At the level where the filter center lobe is the closest fit to the gray scale form, the magnitude of the

filter output (along the ridge) will have a larger value than at adjacent levels.
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Thcse largest ridge nodes ( called l-nodes ) can be detected from the ridge nodes ( P-nodes ) at
each level by a process which is similar to the "flag stealing" process used for detecting the largest

M-nodc on an M path. Unfortunately this detection process is somewhat more complex because of

the directional nature of ridges and the difference of sample rates at different levels. Once the

[.-nodes have been dctected they can be linked into a two-way linked list call an L-path.

In the following paragraphs we will examine the patterns of ridges that occur for uniform width

bars, bars of changing width , and edges of regions.

7.3.2.1 Ridge Paths for a Uniform Bar

Consider the uniform rectangle which was used as an example in figure 7-5 above. hlie response at

levels 6 through I of the Sampled DOG transform along a line through the center of the rectangle is

shown in figure 7-18 below. At level 2, an M* occurs at both ends of this rectangle. Between these

M*-nodes there is a ridge node that is larger than the ridge nodes above and below it. This ridge

node is detected as an L node by the process described in the next section. This rectangle produces a

graph as shown in figure 7-18. We can abstract all of the M* nodes and L-paths in this graph to

obtain a description of a class of forms that resemble this bar. This class of forms is defined by the

presence of die symbols:

M* - L - M*

If we held the width of the rectangle constant and increased its length the number of L-nodes

between the M* nodes would increase. We can define the class of bars as those forms which have a

pair of M* nodes connected by some number of L-nodes between them, and then encode the

cartesian distance between the M* nodes (measured in samples at some reference level) as an

attribute of the form.

7.3.2.2 Bars of Changing Width

Suppose. instead of a rectangle, we have a four-sided form which changes in width by a factor of 2

along its length. Such a form is shown in figure 7-19. As the width of the form decreases, the level of

the filter which best fits the form decreases. As a result the M* nodes occur at different levels, and

the i.-Path changes levels. We can define a class of bars that includes bars that change width, by

collapsing the l-path into a single symbol. The L-path should retain the attributes of its length

(Measured in number of samples at some reference level) and the change in levels between the M*

nodes that it connects (Ak).

7.3.2.3 Fdges of Regions

A straight line edge of a uniform region will result in a set of ridge paths at several levels in which

the values are approximately the same. If the edge is blurry, then the value along these ridge path will

decrease with decreasing k. If. on the other hand, die figure is washed out, the values along the ridge

path will be largest at some level, and will be detected as L-nodes.
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Figure 7-19: An Elongated Form That Changes Width

The fact that an L node is part of an edge can be detected by the same scan procedure described

above for labeling M-nodcs. An L node or P-node which is part of an edge will have a single ridge of

opposite sign running parallel to it within.a distance of 6 samples. It may or may not have a same

signed ridge parallel to it in the opposite direction within 6 samples, depending on how wide the form

is. An L-path which is part of a "bar" or other elongated form will have opposite signed ridges
running parallel to it on two sides. Figures 7-2 through 7-6 show examples of the ridge points and

opposite signed ridge points that occur for an edge. These figures show the response along a line at

one level. Figure 7-4 shows an example of a ridge point which is an 1. node and detected as a bar
with ridge points of the opposite sign on both sides. Both of these cases are illustrated with a piston

rod image shown in figures 7-26(a) through 7-26(h) and 7-27(a) through 7-27(h) at the end of this

chapter. Figure 7-27(h) is a good 2-1) example of the ridges that occur on both side of an edge.
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7.3.3 Connectivity of L-Paths and M-Paths

One of the properties that permits us to construct a representation of an image using only local

operations is the property that L-paths will almost always terminate at an M-path.

An L-path follows the length of an elongated form. As the form widens, the L-path moves

upwards in the k dimension. As the form narrows, the L-path moves downward in the k dimension.

At the ends of an elongated form the response of a DOLP (or SI)OG) transform increases due to the

presence of more background area in the negative side-lobe of the band-pass filter. This increase

results in an M-node. Unless the form fades into the background very gradually there will be an

M-node at its end, and thus the L-path will terminate at an M-path. Because the same band-pass

filter will best respond to the width of a form both along the form and at its ends, an L-path will

usually terminate within one level of an M* node.

7.4 Connecting Peaks Between Levels

This section describes a process which links peaks (M nodes) which are at adjacent levels in the
DOG transform to form M-paths. This process also detects the largest M nodes in a path and labels

these as M* nodes. An M* node is an M node which is pan of an M-path and which has a larger

value than the adjacent M nodes in the M-path.

7.4.1 Linking M's

The principle behind the process for linking M nodes is simple. Starting at the highest level, K, at

each level k each M node looks at the nodes withkn a local neighborhood above it, at level k+1. A

2-way pointer is made to all M nodes that arc found within this neighborhood.

This process proceeds as follows: For each level k, from K through 1, each M node at level k

examines the nodes which are adjacent to it at level k+ 1. There may be either 4 or 9 such adjacent

nodes due to the V2 sampling. The nodes which are adjacent to these nodes at level k +1 are also

examined. Thus either 25 or 16 total nodes are examined. If any of the adjacent 4 or 9 nodes at level

k + I are M nodes and have a value of the same sign. then a 2-way pointer is formed. 'Ibis pointer is

formed by setting the appropriate down pointer of the node at level k + I and setting the up pointer

corresponding to that upper neighbor in the node at level k. See table 7-1 and section 7.1 for an

explanation of the up and down pointer bytes.

If any of the neighbors of the neighbors at level. k + I ai e an M node an indirect 2-way pointer is

made. An indirect pointer goes through the adjacent neighbor's pointer. Die set of possible indirect

paths are illustrated in figure 7-20. The fact that a pointer is indirect may be determined by

examining the I. and M flags of a node. If both these are zero then any pointers for I. and M paths are

indirect pointers.

I
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Figure 7-20: Possible Set of Indirect 2-Way Pointers for M-Paths

7.4.2 Detecting M"s

M* nodes arc detected by a process which we refer to as "flag stealing". When an M node detects

another M node at level k + 1, it compares values. If the M node at level k has a value of smaller
magnitude it clears its own * bit. If the M node at level k has a value of larger magnitude it clears the
* flag of the node at level k+ 1 and sets its own * flag. If more than one M node is detected at level
k + 1 they must all be smaller for the node at level k to set it's * flag. If no M nodes are found at level
k+ I then the * flag is cleared: This prevents any isolated M nodes from becoming M* nodes. If

more than one node at level k link to an M node at k+ I any of them will clear the * flag of the node
at level k +1 if they have a larger value. 'Ihus * flags propagate down an M-path until they reach a
node with the largest magnitude.

7.4.3 Example

Figure 7-21 shows the M-paths and the M* node that occur at level 7 through 1 for a uniform
intensity square of width 11 pixels, and grey level 96 on a background of 32.

7.5 Detecting Ridge Nodes in (x,y,k) Space

This section describes the processes for detecting ridge nodes (.-nodes) in the 3-D SDOG
transform space. The section starts with a discussion of the approach which is used and a description

of some of the problems that complicate such detection. A description of the search procedure for

P-nodes within two neighborhood sizes above each P-node is then given. A discussion of the "flag
stealing" process that is used and modifications to this process is then presented.
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Figure 7-21: M Paths For Square of Size 11 Pixels

7.5.1 Problems and Approach

Ridge nodes in the (x.y k) space produced by the SDOG transform are detected with a form of flag

stealing process. As with detection of M*-nodes from M-nodes. thc P-nodes which have been
detected as ridge points at each level are used as candidates for L-nodes.

These P-nodes examine the P-nodes within a neighborhood at the level above them. This
examination occurs during a two stage search procedure. Initially a small neighborhood at level k+ 1

is examined above each P-node at level k. If no P-nodes are found in this small neighborhood, then

the nodes within a larger neighborhood are searched for P-nodes. This second search is inhibited for

directions within 45° of any P-path pointers in the P-nodes at level k to prevent a P-node at level k

from stealing the L-flag from a P-node at level k + 1 over a different part of the ridge.

The situation is more complicated than with detection of M*-nodes, because:

* Ridge paths (L-paths) are directional and may travel through as well as along the levels.

* Ridge paths that describe an edge tend to move sideways toward the edge as the level
decreases. This creates situations where each P-node at level k + 1 is examined by several
P-nodes at level k.

4 ,i
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e Two connected P-nodes at level k may, because of / resampling. have a P-node at level
k-1 between them, as illustrated by upper part of figure 7-22. in this figure. the larger

squares represent the P-nodcs at level k + 1. and the smaller squares represent the P-nodes

at level k. Which of the nodes at level k +1 should the node in the center at level k

compare its value to?

The problem illustrated by figure 7-22 is even more severe when the P paths at adjacent levels are

displaced side-ways as shown in the lower part of figure 7-22. This situation is handled by a

modification to the flag stealing process described in section 75.3 This modification is based on the

principle that an L-flag is stolen only if all its lower P-node neighbors have a larger value.

Overlapping Ridges at Adjacent Levels

P P

Displaced Ridges at Adjacent Levels

Figure 7-22: Two Configurations of Ridge Paths at Adjacent Levels

7.5.2 Search Paths

At each P-node at a level k, the upper neighborhood at level k + I is searched for P-nodes. The

P-node at level k from which the search originates is refered to as the "source" node.

A source node at (x, y, k) can have two possible neighborhoods at level k+ 1 depending on

whether a sample exists at (x, y. k+ I). Thcse two ncighborhoo~ds are illustrated in figure 7-23. In

... .............~~~~M.M 
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l 
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i
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this figure. circles represent sample points at level k while boxes represent sample points at level

k + 1. The source node has a cross through it. If k is even (i.e. on a Of sample grid), these two

neighborhoods are rotated by 45*

Upper oeigh o E o Upo N i Exi
9

Upper Neighbor Exists No Upper Neighbor Exists

Figure 7-23: Two Possible Upper Neighborhoods

There are two search procedures that are used to detect P-nodes at an upper level, depending on

whether the source node at (x, y. k) has a sample directly above it, i. e. at (x, y, k + 1). The test which

tells whether a sample exists at (x. y, k + 1) is used to determine which search procedure is used. That

is, if:

xmod 2k = ymod 2k = 1

is true then the source node at (x, y, k) has a sample direcly above it.

If a sample exists above the source node, then it is tested to see if it is a P-node. If it is a P-node,

then only this node is examined.

If no sample exists above the source node. or the sample above the source node is not a P-node,

then a two stage search procedure is employed. The first stage examines the nearest 4 upper

neighbors. If no P-nodc is found in this first stage. a second stage searches for P-nodes in an enlarged

neighborhood. The neighborhoods examined by these search algorithms are illustrated in figure

7-24. In this figurc the sample points at level k which have no neighbor arc illustrated with a circle.

Points where samples exist at both levels are indicated by a 1. or a 2. "lliose points with a I are

examined in the first stage, those with a 2 are examined in the second stage if no P-nodes are found in

the first stage.

The second stage search does not occur for any direction within 45 of a P-path pointer in the

source node. 'Ibis helps prevent nodes from interfering with the flag stealing process at other points

on the P-path.

I ... ,w q, .,, wlm i ... l mi m _mi i mli l i fa b . ....
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Figure 7-2.4: Upper Seaich Neighborhoods for Stage I and Stage 2

7.5.3 The Modified Flag Stealing Process

'Me principles of "flag stealing" were described during the discussion of detection of M*-nodes
given in section 7.4.2. This process must I- modified to use with detecting I--nodes, because each
L-node at level k +I1 is likely to be examined by several P-nodes at level k, some of which may be
displaced along the P-path ridge. Since the value can change along a 3-D ridge, nodes further along
the ridge might improperly clear the L-flag of nodes above them, breaking the L-path. The
modification is based on the principal that all of the lower neighbors must have a larger value, before
the upper P-nodes L flag will be reset.

Modified flag stealing employs two temporary bits at each node which denote whether any lower
neighbors have a smaller value ( flag 71) or a larger (or equal) value (flag i2). After flag stealing is

executed at level k, the L-nodes at level k +Il are examined, and any with node which has its P. flag

set and its T1 flag clear has its L flag cleared.

A search neighborhoo which is of restricted duration along a ridge is also isd. A larger

neighborhood is needed for directions perpendicular to the ridge because o)f the lateral drift that can

occur with P-paths as the level decreases.

7 5.3.1 Modified Flag Stealing

Iv a source P-node at (x, y, k) has an upper neighbo: at (x. y, k+ ) which is also a P-noe then
only this neighbor is examined by this so y rce node.

Icthe aource P-nodp at (x. y, k) has e upper neighbor. cr the pper neighbor is not a P-node. then

th ig ih mrpryccrteLfa fndsaoetebekn h -ah h
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this process is applied to the nearest upper 4 neighbors. If no P-nodes are found in the nearest upper

neighbors. the search is applied to an enlarged upper neighborhood. As mentioned above, the second

stage search is inhibited for all samples within 458 of a P-path pointer in the source node.

When a P-node is found at levcl k+ 1, its value is compared to that of the source node. If the value

of the upper neighbor is larger and the upper neighbor has its L flag set. then the T2 flag of the upper

neighbor is set to indicate that the upper neighbor has a lower neighbor with a smaller value. If the

value of the source node is larger, then the L flag of die source node is set. Also, if the L flag of the

upper neighbor is set, then the TI flag of the upper neighbor is set to indicate that the upper neighbor

has a lower neighbor which attempted to steal its flag.

7.5.3.2 Resolving the TI and T2 Flags

After the L node detection process has been run at level k, the l,-nodcs at level k + I are processed

to resolve the TI and T2 flags. At each L-node at level k + 1. if its TI flag is set and its T2 flag is not

set, then all of its neighbors at level k are larger. In this case, its L flag is cleared.

This modified flag stealing process will permit two or more P-nodes at the same location in

adjacent levels to be L-nodes. This can occur when an elongated form has a sudden decrease in
width. For such a form, the L-path can travel straight down through the levels. An example of this

occurs with in the Piston Rod images and can be seen at column 41, rows 97 to 109 in levels 7 and 6

of the Piston Rod description shown in figures 7-27(d) and 7-27(e). The L-nodes at the upper level

are inhibited from losing their [,-flags. because other P-nodes at in the lower level P-path have

smaller values, and thus set their T1 flag.

7.5.3.3 Linking L-nodes

After the TI and T2 flags have been resolved, a process is executed to form two way pointers

between all adjacent L-nodes. This process runs as follows. Each I.-node at level k + 1 examines all of

its neighbors at level k + 2 within its 2nd stage neighborhood and all neighbors at level k + 1 for which

it has a P-path pointer but no 1.-path pointer. If any of these neighbors are an [-node, an M-node, or

an M*-node a two way pointer is made by setting the appropriate pointers in the UP. SAME and

DOWN pointer bytes of the neighbor and the source L-node.

7.6 Examples

This section shows some examples of M's. M Paths. I. Paths and P Paths. These examples are

from levels 10 through 3 of the right most piston rod in the image shown in figure 7-25 below. This

image is fr,)m the GM "IBin of Parts" data base [B1aird 771.

Figure, 7-26(a) through 7-26(f show the upper third of the left most piston rod. These figures are

shown with nodes spaced at 4 pixels, which is the sample rate at level 5. Figures 7-26(g) and

7-26(h) show a smaller window which is from the upper left corner of the window shown in parts a

through f. In parts g and h the sample rate is 2V2 and 2 respectively.

II
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Figure 7-25: Piston Rod Image. Sampled at 256 by 256.
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Figui'e 7-26(a) is from level 10 of the DOG transform. At this level the data has been sampled at

16V2 and so this figure is very sparse. Note the M node at row 81, col 49. This is the start of an M

path that leads into the piston rod.

Figure 7-26(b) shows the same window at level 9. As is often the case there are short spurs hanging

off of the M node at row 81, col 33.

Figure 7-26(c) shows the same window at level 8. At row 73, col 41 is the M* node which serves as

a landmark for the upper part of any piston rod. The two L nodes at row 65 are spurs: they do not

connect to anything else. The L node at row 89 is part of an L path that travels down through the

levels and down through the rows to become the long part of the piston rod.

Figure 7-26(d) shows a phenomenon which is very rare: 'This is the only instance that we have

observed. On rows 73 and 81, The values in columns 41, 49, and 57 are the same. The result is a pair

of parallel adjacent ridges of the same sign. Thbis is not a serious problem as these points are not

strong enough to be 1. nodes. Note also that the M path has split into two parts. Both parts have two

way pointers to the M* node at level 8.

In figure 7-26(e) the shape of the upper part of the piston rod begins to become apparent. Note

that an M node has appeared in the middle, at row 77, col 45. This M node is attached by P paths to

nearby M nodes in 4 directions. These paths resulted when the spurs attached to this central M nod
were extended. This central M node evolves at lower levels into the oval shaped region which occurs

i in the center of the top of the piston rod.

Figure 7-26(t) shows level 5 of the description. Note the M* node on row49, column 45. This

marks the large region at the top of the piston rod. Notice also that two L paths extend from this M*

node. These L paths drop down to lower levels as that part of the piston rod narrows. Also note that

at this level the negative ridge surrounding the inner oval has appeared. The oval is not connected to

the rest of the piston rod in this or any of the lower levels.

Figure 7-26(g) shows the upper right comer of the window from the previous subfigures, as scene

in level 4. At this level the da,. is sampled at 2V2. Note that the I. path begun in level 5 continues

into this level. Note also that at this level the negative ridge which surrounds the oval also forms a

part of an 1, path.

Figure 7-26(h) shows the transform at level 3. The L path that describes the ring of the upper part

of the piston rod dips into this level in its narrow parts. The P path for this form is broken at this

level. Ibis is an artifact of the ridge deection process. The negative ridge outside of the piston rod

has an M* at this level. Ibis indicates that a rounded corner occurs in the background (A negative

comer!) The M* occurs because this corner is not sharp. lie negative ridge between the outer
positive ring, and the inner oval also contains two M*'s at this level. These correspond to negative

corners in the inside of the ring. The 1. path attached to these negative M's extends up to level 4.
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Figurc 7-263: Top Of Piston Rod at Level 10
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49 PB
49

53
53
53
53
57
57

q 57
57
61

61
61

61
65
65 14 36 30
65 P
65
69
69
69
69
73
73
73
73
77
77
77
77
81
81 18 36 29

81 PB- - MP
81
85
85

85

89
89
89
89
93
93
93
93

Figure 7-26b: Top oi Piston Rod at Level 9
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Values for nodes - Level 8 rod.swf L Paths and M Paths

17 21 25 29 33 37 41 45 49 53 57 61
45

45

45~45
49

49 -2 20 20

49

49

53
53
53
53
57
57 18 34 14

57
57
61
61
61
61
65
65 10 37 35
65 L PO L PB
65
69
69
69
69
73
73 29 44 24

73 OLMP

73
77
77
77
77
81
8t 13 37 34

81
81
85
85
85
85
89 1
89 21 36 11
89 L P
89
93
93
93
93

Figure 7-26c: Top of Piston Rod at Level 8
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Values for nodes - Level 7 rod.swf L Paths and M Paths

46 17 21 25 29 33 37 41 45 49 53 57 61

45

45
45

49

49 -10 2 17 28 25 7

49 P P

49 /

53

53
53
53

57
57 -2 14 29 34 29 14

57 MP- - PO
67
61
61
61
61
65
65 6 21 30 30 26 20

65 P

66 /

69
69
69
69
73 /

73 12 26 34 30 26 21

73 PB- P- -S MP- - P - - P- -

73
77
77
77

77
81
81 8 26 30 30 26 21

81 P P - PB

811
85
85
86
85
89

89 0 16 23 28 24 15
89 L P
89 I
93

93
93
93

Figure 7-26d: Top of Piston Rod at Lcvcl 7
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Values for nodes - Level 6 rod.swf L Paths and M Paths

17 21 25 29 33 37 41 45 49 3 57 61
45 /

46 -16 -11 16 33 12 -18
46 P PB PB

45 /

49 /

49 . -15 -11 12 39 36 r

49 L P MP
49 I / \

53 /

53 -6 11 27 38 24 0
53 P L P - P
53 / !
57 /

57 -7 13 25 24 19 15
57 PB P P
57 /

61 \ / !
61 13 26 15 10 9 18
61 PB MP P P
61 I !

65 \ /

65 4 26 18 6 6 12

65 MP
65
69
69 22 19 10 11 7 20

69 P. P
69 I
73
73 9 26 13 19 14 10
73 S MP P- -P

73 t \ I

77 \ I

77 23 21 16 21 9 20

77 P - P- -MP P
77 t
81
81 10 25 16 16 11 16
81 P
81
85
85 17 24 12 12 8 22

85 P P MP
8

89
89 -2 16 19 8 11 15
89 P P
89 /

93 I /

93 -2 12 14 15 15 11

93 P P P
93 1 I

Figure 7-26e: Top of Piston Rod at Level 6
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Values for nodes - Level 5 rod.swf L Paths and N Paths

17 21 25 29 33 37 41 46 49 53 57 61

45 -9 -15 -22 -28 -12 13 33 41 34 14 -11 -26

45 P -- MP L P P
45 / \

49 I

49 -12 -18 -21 -17 0 24 45 54 45 23 -8 -26
49 L P L P --LMPO--L P
49 / / \

53 / / \

53 -13 -11 -2 8 2j 30 33 37 31 24 9 -7
53 P L P P L P
53 I \

57 /

57 -12 5 22 30 25 17 8 3 6 12 20 20

57 P P
57 /

61 /

61 -11 13 33 33 16 -5 -13 -16 -15 -6 17 29

61 MP -- MP P -- MP-- P P
61 I /

65 ! I
65 -3 18 29 17 -3 -14 -10 -9 -15 -16 -1 26

65 L P MP MP
65 I /

69 ! I

69 3 25 26 6 -13 -6 12 19 3 -16 -8 16
69 P P P MP
69 I ! !
73 I t \

73 10 29 28 2 -14 3 29 40 17 -10 -14 14

73 P MP P P
73 t I
77 I "
77 11 30 26 4 -12 4 34 41 18 -9 -12 13
77 LP P P -- MP-- P P
77, t t /

81 . ! I I
81 3 27 30 10 -10 0 20 27 6 -11 -7 15
81 L P P P P
81 1 1
85 I \

85 -2 19 32 21 -1 -9 -2 1 -10 -14 2 21

85 MP P MP
85 \
89 /

89 -6 10 26 26 13 -1 -10 -11 -11 0 18 31
89 P P-- P-- P MP
89 /

93 \ I

93 -16 -5 11 23 22 11 -1 -3 6 17 26 21

93 P P P
93 \

Figure 7-26f. Top of Piston Rod at Level 5
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Values for nodes - Level 4 rod.swf L Paths and M Paths

25 27 29 31 33 36 37 39 41 43 45 47

456

45 -15 -30 -23 12 38 38
45 P P
45
47

47 -29 -33 -6 33 44 46

47 MP L - -LMP

47 I \ /

49 / /

49 -25 -32 -19 18 43 44

49 LP- - P P L P
49 / /

51 /

51 -18 -15 7 34 39 38
51 L P

51 /

53 1

53 -5 3 13 29 30 25
53 L P
53 /

55 /

55 20 30 28 21 11 11
55 P
56 /

57 /

57 27 42 34 12 -4 -9
57 P P- -L P
57 /

59 \ /

59 43 38 10 -12 -27 -27
59 LMP
59 /

61 /

61 36 37 9 -18 -28 -31
61 L P P -MP -
61 /

63 /

63 31 8 -22 -27 -22 -28

63 P
63 /
65 I /

65 26 7 -20 -26 -10 -2

65 P L P
65 1 /

67 /

67 14 -15 -27 -6 20 9
67 L P
67 /

69 /

69 26 -5 -29 -11 26 35
69 P LMP* P
69 /

Figure 7-26g: Top L.cft Corner of Piston Rod at Lcvcl 4
(Note that Sample Rate is 2v')
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Values for nodes - Level 3 rod swf L Paths and M Paths

25 Z7 29 31 33 35 37 39 41 43 45 47

45

45 -5 -9 -14 -22 -24 -7 18 38 41 33 29 31
45 L P P -- P -- LMP-- P-- P-- P-

45 /

47 I /
47 -7 -18 -27 -35 -33 -16 14 30 34 30 24 27
47 P P
47

49

49 -14 -23 -33 -40 -36 -17 8 25 23 20 16 15
49 L --LMPO-- P-- P
49 /

51 /

51 -22 -24 -24 -25 -21 -6 13 24 26 23 17 17
51 -L P-- P L P

51
53
53 -15 -5 2 6 10 19 25 30 27 22 18 17
53 LMP-- P

53 /

55 /

55 2 18 33 35 35 32 28 19 14 11 4

55 L P --L P --L P
55 /

57 /

57 23 39 46 42 32 20 10 1 -6 -9 -11 -13
57 LMPO--L P

57 /

59 I

59 32 42 42 33 18 4 -10 -19 -23 -26 -25 -22

59 L P-- P

59 I

61
61 30 31 25 13 -3 -13 -19 -27 -31 -29 -32 -31
61 P LMPO--L P -- LMPO--L P

61 I I

63 / /

63 23 21 11 -3 -13 -22 -23 -28 -24 -23 -23 -26

63 P L P
63 F I

65 ! /

65 16 9 3 -12 -20 -25 -25 -18 -5 2 1 -5
65 P P -- P
65 F

67 1 I

67 14 7 -3 -16 -23 -24 -20 2 20 29 28 22

67 P P P
67 ! ! !

69 ? I
69 21 8 -6 -18 -25 -26 -12 16 35 39 38 34

69 P P LMP -- L P

69 / / /

Figure 7-26h: Top Left Comer of Piston Rod at Level 3

(Note that Sample Rate is 2)

Figures 7-27(a) through 7-27(h) show the description for the middle of the same piston rod. The

window within which these points arc shown is immediately below that for figures 7-26() through

7-26(h).
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Figure 7-27(a) shows this window at level 10. Because of zhe sparse sampliig, there are only 2 P
nodes, which arc an extension of thc ridge path for the middle of the piston rod. The same is true for

levels 9 and 8, although one can see the values increasing as the level decreases.

At level 7, figure 7-27(d) shows this P path with two L nodes at rows 97 and 105. These L nodes are

part of the L path that started with the M* node at row 73, col 41 of level 8 shown in figure 7-27(c).
This L path continues into level 6. as shown in figure 7-27(c) as the upper part of the piston rod
narrows. Note, also, how the negative ridges move closer to ie positive ridge as the filter radius

becomes smaller. This is a classic example of the configuration of ridges that occurs for a uniform

width longish object.

The L path finally settles into level 5, as shown in figure 7-27(0. This L path connects to the M*

node at row 133 col 41, and then continues down the piston rod.

Figures 7-27(g) and 7-27(h) show blown up versions from the middle of the window shown in the

previous figures. In these two figures. the nodes arc printed with a spacing of two columns; the
sample rates are 2V T and 2, respectively. Figure 7-27(g) shows this smaller window at level 4. The
positive ridge at this level has a lower value than at level 5. Figure 7-27(h) shows this smaller window
at level 3. At this level the positive ridge has split into two ridges, representing the edges of the piston
rod. The spurs attached to the M nodes at this level extended to reach each other, giving an
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occasional path between the two positive ridges.
Values for nodes - Level 10 rod.swf L Paths and M Paths

17 21 25 29 33 37 41 45 49 53 57 61

97
97 20

97
97

101

101
101

101
105
105
105
105

109

109
109
109

113
113 6 13
113 P
113
117
117
117
117
121

121

121

121

125
125
125
125

129

129 9
129

129

133
133
133
133
137
137
137
137
141

141

141

141

145 t
145 4 11
145 P

145

Figure 7-27a: Middle of Piston Rod at Level 10

- -.. - - -"'"' i "- -i m - -l - -/i - - - I - -
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Values for nodes - Level 9 rod.swf L Paths and 14 Paths
17 21 25 29 33 37 41 45 49 53 57 61

97 !

97 9 21 17
97 L P

97 i

101
101
101
101
105
105
105
105
109
109
109
109

113
113 3 11 4

113 P
113
117
117
117
117
121

121

121

121

125

125
125
125
129
129 0 8 -2
129 p
129

133
133
133
133
137
137

137
137
141

141

141

141

146 1
145 4 10 2

145 P
146 1

Figure 7-27b: Middle of Piston Rod at icvcl 9
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Values for nodes - Level 8 rod.swf L Paths and 14 Paths

17 21 25 29 33 37 41 45 49 53 57 61

97

97 0 22 19
97

97
101

101

101

101
105 I

105 5 18 -8
105 P
105
109
109
109
109
113
113 -7 12 5

113
113
117
117
117
117
121

121 1 13 -18
121 P
121 I

125
125
125
125
129

129 -4 t3 4

129.

129

133
133

133
133
137 !
137 9 16 -17
137 P
137

141

141

141

141

146 /

145 1 17 4

145 MP
145 1

Figure 7-27c: Middle of Piston Rod at Level 8
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Values for nodes - Level 7 rod.swf L Paths and N Paths

17 21 25 29 33 37 41 45 49 53 57 61

97
97 -9 2 15 23 19 2

97 L P
97
101
101
101
101
105 I

105 -15 -9 9 22 15 -10
105 P L P

105 !
109
109

109
109
113 \ t !
113 -16 -12 7 25 15 -14

113 MP- P P
113 !

117
117
117
117
121 t I

121 -11 -9 7 26 13 -17
121 P P

121 t I
125

125
126
125
129 1
129 -9 -7 15 31 13 -14

129 p p
129 t
133
133
133
133
137 1 t
137 -9 -3 15 32 14 -20
137 P MP- - P
137
141

141

141

141

145

145 -5 -3 19 32 9 -22

146 MP
145 t

Figure 7-27d: MiddIc of Piston Rod at Level 7
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Values for nodes - Level 6 rodswf L Paths and M Paths

17 21 25 29 33 37 41 45 49 53 57 61

97 \ /

97 -12 -7 11 18 18 6
97 p P - P
97
101 \

101 -21 -8 15 25 9 -14

101 P P L P
101 I

105 \ /

105 -16 -23 1 27 15 -14

105 MP
105
109 I
109 -21 -18 18 28 -6 -27
109 L P P
109 /

113 ! I

113 -g -20 0 33 13 -20

113 P P
113
117
117 -18 -16 20 32 -6 -26
117 P
117
121 I

121 -7 -20 2 36 15 -22

121 P P
121
125

125 -13 -14 23 33 -8 -21

125 P

125
129 1

129 -4 -16 5 37 15 -19

129 P p
129 !
133
133 -15 -13 29 34 -9 -20

133 P

133
137 I f
137 -5 -19 6 41 12 -21

137 MP MP P
137 I !
141

141 -13 -12 31 35 -11 -27
141

141

145 I I

145 -7 -18 11 40 10 -27
146 p p P
145 I I

Figure 7-27e: Middle of Piston Rod at Levcl 6
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Values for nodes - Level 5 rod.suf L Paths and M Paths

17 21 25 29 33 37 41 45 49 53 57 61

p7-9 -2 1 16 16e 14 16 21 19 12 -3
.97 P L P P -- P

97
101 \l

101 -15 -28 -28 -13 2 10 15 21 19 5 -10 -23
101 LMPO LMPO P P
101
105
105 -8 -18 -26 -24 -8 11 20 23 14 -4 -24 -29
106 LMPO-- P -- P p LMP
105 / f
109 \ I
109 -3 -13 -21 -22 -s 12 28 27 12 -10 -28 -24
109 P p LP
109 1 1

113 ! f 1
113 0 -9 -19 -22 -8 18 37 34 14 -13 -27 -19
113 P L P L P
113 I 1 1
117 ! t
117 -2 -6 -19 -22 -8 18 37 36 10 -16 -27 -17
117 P L P LMP
117 f !
121
121 0 -9 -17 -23 -9 20 40 33 9 -21 -25 -17
121 mP-- P P -- LMP P
121 ! 1
125 ! I
125 0 -8 -16 -22 -8 18 38 32 5 -20 -26 -15
125 P L P NP
125 !
129 ! I !
129 1 -7 -15 -22 -8 22 43 34 4 -17 -23 -13
129. P L P P
129 !
133 I t
133 2 -6 -19 -22 -9 25 43 36 7 -18 -20 -11
133 L P L P P
133 ! t
137 I I
137 0 -8 -18 -22 -6 24 43 34 6 -18 -21 -12
137 P L P P
137
141 t I
141 -2 -11 -21 -22 -2 28 44 33 2 -22 -24 -12
141 P L P P
141 I I
145 ! I
145 -1 -10 -20 -22 -3 28 46 32 -1 -21 -24 -14

145 P L P P
145 1 ! 1

Figure 7-27f. Middle of Piston Rod at Lcvcl 5
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Values for nodes - Level 4 rod.swf L Paths and M Paths
29 31 33 35 37 39 41 43 45 47 49 51 53

117 ! / \ /

117 -24 -13 18 30 29 10 -20

117 LMP MP
117
119
119 -22 2 24 29 20 -12

119
119
121 1 1

121 -24 -1/ 17 29 27 1 -26
121 mP P
121

123
123 -24 0 22 28 15 -16
123 NP
123 /!

125 / /

125 -23 -15 14 30 27 -1 -25
125 P P P
125 1 1
127 \

127 -23 0 26 33 18 -15
127 P P
127 1 I
129 I

129 -23 -16 18 33 31 2 -23
129 P P
129

131 1

131 -24 2 27 36 19 -17
131 MP LMP
131 / 1
133 /

133 -23 -14 17 36 32 0 -24

133 P MP
133 f
135
135 -22 3 29 36 18 -17
135 LNP
135 /

137 1 /

137 -23 -9 18 34 30 -3 -23
137 L P P L P
137 t !

139
139 -23 8 31 33 15 -19
139 P

139

Figure 7-27g: Middle of Piston Rod at Level 4
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Values for nodes - Level 3 rod.swf L Paths and M Paths
29 31 33 35 37 39 41 43 45 47 49 51 53

117 /I
117 -20 -28 -17 9 20 15 13 15 19 21 15 -7 -24

117 LMP P P-- P-- P P
117 ! !

119 / 1 I I
119. -20 -27 -19 3 21 15 13 15 15 19 7 -14 -26
119 - P P MP- P -- P -- P P P
119 I I /

121 ! ! \ I

121 -16 -27 -18 4 17 15 9 12 17 16 2 -19 -26
121 P P " P. L P
121 1 ! !
123 1 !

123 -14 -24 -19 4 20 14 8 12 18 15 2 -20 -28
123 P HP P P -- LMP
123 I 1
125 ! !

125 -16 -25 -16 6 18 15 13 13 20 18 2 -20 -26
125 L P L P
125 1 ! !

127 1 !

127 -18 -27 -19 3 19 16 13 17 21 20 1 -20 -22

127 LMP-- P MP -- P P P
127 ! ! 1 1
129 ! 1 1 .

129 -20 -26 -18 4 16 16 17 21 25 22 0 -17 -24

129 P P p-- P -- MP -- P L P
129 1 1 !
131 1 I I !
131 -18 -25 -14 4 15 15 16 21 22 20 -1 -22 -25
131 L P P P P --LMPO

131 ! I I !
133 ! 1 1
133 -16 -26 -14 7 15 15 17 22 25 20 -1 -22 -25
133 L P P P-- P- MP-- P LMPO-
133 1 1 1
135 I ! / ! I!
136 -18 -24 -11 10 18 16 14 20 24 20 -4 -21 -21

136 L P P -- P P P P P
135 ! I / 1 I I
137 1 / I I I
137 -20 -23 -11 9 18 16 15 19 24 17 -2 -20 -20

137 P HP P P P
137 1 1 1 ! !

139 1 1 I I 1
139 -18 -22 -11 9 18 17 17 22 24 16 -4 -22 -22

139 P mP -- P P P p
139 I I / ! £

Figure 7-27h: Middle of Piston Rod at Level 3
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Chapter 8
Matching the Representation

This chapter concerns matching the representations of pairs of gray scale forms, particularly in

situations where:

* the two forms are in digitized images of the same object (or very similar objects), and

* one of the objects was at a different distance and/or 2-D image plane orientation from the

camera than the other at the time of digitization.

* This chapter provides examples of the rotational quasi-invariance and the size quasi-invariance of

the representation developed in the previous chapters. However the techniques involved in such
matching can also be used for stereo image interpretation and object recognition. Thus, it is worth

while to develop principles and approaches to such matching while demonstrating the properties of

the representation.

The remainder of this section discusses the role which correspondence plays in stereo

interpretation and structural pattern recognition. Section 8.2 summarizes the matching techniques

which are illustrated in this chapter. These techniques are preliminary; matching was not within the

domain c? this research. These techniques were explored to assist in demonstrating the usefulness of

the representation and as a preliminary look at an important problem which we will address when
this dissertation is complete. This is followed by a section which presents the test data (section 8.2)

which was used to verify the size and rotational invariance of the representation.

Sections 8.3 and 8.4 concern the use of M-nodes (local peaks at a level), M*-nodes (local peaks

among the levels), and P-paths (ridges at a level) for determining the relative position, orientation
and size of two representations of the same (or similar) gray scale forms. In section 8.3. the concept

of connected M-nodes is defined and an example is presented. Section 8.4 illustrates the

correspondence of M-nodes and M*-nodes in rotated and scaled images of an object using the teapot
images. This section ends by showing the correspondence of the M-nodes in a stereo pair of paper

wad images. Section 8.5 discusses the use of the M*-node correspondence to align L-paths (ridges

among the levels) from rotated and scaled images of an object and describes a simple similarity

measure for aligned L-paths. This section ends with examples of matching the L-paths from the

right-side shadow of the teapot image.

4

I t
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8.0.1 Applications of Correspondence Matching

This Subsection briefly introduces the matching problem in the domains of stereo matching and

structural pattern recognition. It also describes the properties of the representation that make it
useful in these domains.

In image understanding there are several problem domains where it is desirable to determine the

correspondence between parts of two representations. One such problem domain is interpretation of

pairs of stereo images to obtain depth information. Depth information is obtained from a stereo pair

of images by triangulation. Triangulation dcpcnds on knowledge of the reladve positions and

orientations of two cameras, the so-called "camera parameters" [l)uda 731. The "stereo

correspondence" of surface points in the images is also required. This is the positions of pixels in the

two images that correspond to the same point on the surface of an object. It is then possible to set up

the projective geometry that relates the two cameras to points on the surface of objects. Given this

geometry, the distance may be computed from one of the cameras to each surface point for which

correspondence is known. These distances provide a map of the 3-D form of a scene.

Before the depth to a surface point can be computed, it is necessary to determine the location of

the pixels which correspond to that surface point in each of the images This stereo correspondence

problem is the most difficult problem in stereo image interpretation. The usual approach to this

problem is io correlate patches in the two images. But this is an expensive process, and there are

problems with determining how large a neighborhood to correlate.

The representation developed in the previous chapters has properties which greatly simplify the

process of determining the correspondence of patterns of pixels in two images.

1. Only peaks correspond to peaks. The existence of peaks or M-nodes provides a set of

landmarks which can be used as tokens in the matching process.

2. The multi-resolution hierarchical structure of the representation permits the

correspondence process to commence with the most global M* nodes for each form.

Since very few such symbols exist at the coarsest resolution, the complexity of this process

is kept small.

3. The connectivity of M-paths permits the match information from a coarse resolution to

constrain the possible set of matches at the next higher-resolution level. Thus what could

be a very large graph matching problem is repeatedly partitioned into several small

problems.

Another important problem domain in image understanding is classifying two dimensional gray

scale forms. Tlhe representation developed in this dissertation can be used for a structural pattern

recognition approach to this problem. That is, a gray scale form may be classified by measuiing the

similarity of its representation to a number of prototype representations for object classes. This

approach was dcscribed briefly in chapter I for both 2-1) gray scale ormns and for 3-1) shapes.

The properties of the representation cited above facilitate its use for constructing object-class

I = - .. i l i . la mm i- li lI i l i...
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prototypes and for matching prototypes to object representations. An object class prototype may be

formed by constructing the representations of a training set of images. The configurations of M-

paths and L-paths that occur for a given class of objects can be determined by matching the

representations from this training set. Ihe prototype description can be composed of the M-paths

( and L-paths that occur in the majority of the descriptions. 13  This provides a simplified

rLpresentation which can serve as an object class prototype. The multi-resolution hierarchical

structure of the represcntation permits the set of possible matching prototypes to be reduced on the

basis of the few coarsest resolution symbols.

The study of creating and matching such prototypes could be a dissertation in itself. Only a few of

the more obvious principles and techniques are described below.

8.1 A Matching Procedure for Descriptions of Similar Grey Scale
Forms

This section describes a matching procedure for descriptions of the same or similar objects from

two images. The investigation of such matching is a research topic which we expect to pursue in the

near future. The procedures described below are very preliminary, matching techniques were not

within the scope of the research proposed for this dissertation. These techniques were investigated to

assist the demonstration of the usefulness of the representation for matching, and to show the

invariance of the representation to changes of the size and orientation of a gray-scale form.

Matching is treated as a problem of comparing a reference description to a measured description.

In this process the reference description is transformed in size. orientation, and position so as to bing

its components into correspondence with the measured data. The goal of this process is to determine:

" the overall relative position, orientation, and size of the of the forms represented in the

two descriptions,

" which M-nodes. M-nodes, and L-nodes in the reference description correspond to which

M*-nodes, M-nodes, and L-nodes in the measured description (the correspondence

mapping),

e local relative changes in position, orientation. and size between parts of the reference

description and the corresponding parts of the measured description,

" parts in either of the descriptions that do not occur in the other description.

Such matching consists of several steps:

1. Initial alignment: In this stage the most global M*-node(s) is(are) used to determine the
relative positions and sizes of de two descriptions.

13Although this technique has been tried for a few hand cxamples. we have not. as of this writing, tried to implement it in

code.
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2. Orientation: Given the relative positions and sizes, the correspondence of M-nodes and
L-nodes in the few levels below the most global M*-node(s) can be used to estimate the
relative orientations of the two descriptions. This correspondence can be found by the

same procedure used for the fellowing task.

3. Correspondence of M-nodcs: Each level in which there is more than one M-node in the
description of a form. gives a graph composed of M-nodes connected by ridges (P-paths).
Each P-path has the attributes of distance and orientation between the M-nodes at either
end. Techniques exist for determining the correspondence between nodes in such a pair
of graphs. Indeed, when the number of nodes is small it is not unreasonable to
exhaustively examine every possible correspondence. A similarity measure, such as the
average difference in the lengths and oricntations of the P-paths may be used to
determine the correspondence which is most likely. A fundamental principle in matching
descriptions from an SDOG transform is to use the correspondence at the previous (lower

frequency) level to constrain the set of possible correspondences at the next (higher
frequency and higher resolution) level. This prevents the computational complexity of
matching NI-nodes from growing exponentially as the number of M-nodes grows

exponentially with increasing resolution.

4. Correspondence of L-nodes: Forms which arc elongated can result in a description
which contains few M-nodes. The shape of such forms can be compared by comparing
the L-paths in their descriptions. Comparing L-paths consists of two stages:

* alignment of the L-paths by aligning the M*-nodes which terminate thee L-paths at
each end, and

" computing the distance of each L-node in the reference L-path to the nearest L-
node in the measured L-path.

Determining the correspondence of individual L-nodes in two descriptions is not a
reasonable approach because the distance between L-nodes in an t-path varies by as
much as a factor of x/2 with orientation. Measuring the distance from each L-node in

one description to the nearest L-node on the second description allows the measures of

maximum distance and average distance to be used to compare the entire L-path

8.2 Test Data

The matching techniques described in this chapter arc illustrated with representations from five

teapot images. 14 These images were formed by photographing a scene composed of a teapot flanked

on either side by a cup: all of these objects are on a white table cloth. The rhotographs were taken
with a 35 mm camera using a 55 mm lens and Pan-X black and white film. The negatives were

digitized by SRl-lntern.tiional to 512 by 512 by 8 bits. Test images of the teapots were formed by

cropping 256 by 256 pixel sections from each image. The pixel values in these cropped sections were

then normalized to have a mean of 128 and a standard deviation of 32.

14A sixth teapot image was also formed and processed but the tape on which the image was stored became unreadable
during preparation of this disscrtation
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Images were formed at three scales by moving the teapot away from the caficra. This movement

changed the position of the teapot and cups with respect to the lights, causing some changes in

shading and shadows among the images of different sizes. The distances are such that if the size of

the smallest teapot image is defined as 1.0, the middle scale images are larger by a factor of 1.14 and

the largest images are larger by a factor of 1.36.

At each distance, a second photograph was taken with the camera tilted by approximately -150.
Thus there were originally six teapot images. The scales and 2-D orientations of the five images

shown in this chapter are summarized in table 8-1.

Teapot Size Orientation

1 1.0 00

2 1.14 00

3 1.36 00

4 1.0 -150

5 1.14 -15"

Table 8-1: Size and Orientation of five Teapot Images

Reproductions of these five test images are displayed below in figures 8-1 through 8-5. To produce

these figures, the original digitized images were displayed with the Grinnell image display on the

C-MU Computer Science Dept. IUS VAX. Each display was zoomed by a factor of 2 to simulate the

cropping that produced the teapot image. The zoomed images were then photographed with the

Dunn film recorder attached to the Grinnell monitor. The resulting 8" by 10" glossy prints were then

half-toned to produce the images shown in figures 8-1 through 8-5.

Section 8.4 below describes the results of matching for teapot images # 1 through #5.

8.2.1 Example of Band-Pass Images of Teapot

Following the pictures of the test data is a picture showing the band-pass images for teapot #1.

The format for this band-pass image is shown in figure 8-6. The actual band-pass images for teapot

#1 are shown in figure 8-7. The level 0 band-pass image (also known as the high-pass residue) is

shown in the lower right corner. The upper left corner shows the level 1 band-pass image. The level 2

band-pass image is shown in the upper right corner. The level 3 and 4 band-pass images are shown

underneath the level 1 image and so on, down to level 13.

The even level images ( levels 2. 4. 6,...,12 ) are sampled at V2. In order to display these images

on a raster display, each pixel on an odd row is used to fill the undefined location to its right, and

each pixel on an even row is used to fill the undefined location on its left. 'Ibis creates an interlocking

brick-like texture in the display. This filling was done only for display purposes.

The band-pass levels 12 through 5 arc important to the examples given in section 8.4. Since these

levels are so hard to see in figure 8-7. they are shown enlarged in figure 8-9. [his figure was formed

by zooming the display of levels 12 through 5 by a factor of 4. [he format for this image is shown in
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Figure 8-5: Teapot #5. Size =1.14, Orientation =-15.0*
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figure 8-8. Because of the zoom, the brick-like display texture, and the individual pixels are much

more visible in figure 8-9. Ihe interested reader may wish to refer back to this figure while reading

the examples in section 8.4.

I

I

.. .. . .... . ,,-- ,, ,, J . ,, n a m ua nol lau i l i i m i I . . .
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Level I Level 2

Level 3 Level 4

Level 0
(High-Pass Residue)

Level 5 Level 6

7 8

Figure 8-6: Format for Display of Band-Pass Levels 13 through 0
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Figure 8-7: Band-Pass Images for Levels 13 Through 0 of Teapot #1
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S

Level 5 Level 6

Level7 Level8

Level 9 Level 10

11 12

Figure 8-8: Format fi)r Display of Zoomcd Band-Pass .cvels 13 through 5
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8.3 Matching M-Paths

This section describes how the M-paths from two representations may be matched to determine

the correspondence of M-nodes. The techniques described in this section employ only information

that is intrinsic to M-paths and P-paths. For clarity the section starts by describing how this

information is obtained from the representation. This additional information may be thought of as

either an abstraction from the representation, or as something that is computed from the

representation "on the fly". After this M-node representation is described, the process of obtaining

the initial alignment based on the highest level (lowest resolution) M* node is described. The

correspondence of lower level nodes in the test images is then shown.

The processes described in this section will not work for gray-scale forms which are very long and

thin (e.g. roads, rivers, bars, stripes etc.) and do not have ends within the image. These forms are

described primarily by L-Paths. Matching L-pahs is discussed in section 8.5.

8.3.1 Abstracting M-Paths from the Respresentation

Unless a gray scale form is a thin form with its end off of the image, it will have one or more

M-Paths in its representation. The M-nodes in these M-paths provide tokens for aligning pairs of
representations and determining whether structures that exist in one image also exist in another, as

well as determining how the structures differ in two images. Determining the correspondence of

M-Paths in two representations depends on information which is intrinsic to the M-nodes and the

P-paths that connect M-nodes. In order to illustrate M-path correspondence more clearly this section

describes this information and how it may be obtained from the representation. The first concept

that must be elucidated is that of connected M-nodes.

8.3.1.1 Strongly Connected M-Nodes

Definition: Two M-Nodes are said to be "strongly connected" if and only if:

1. They exist at the same level of the same representation,

2. They are not adjacent to each other (i.e. arc not part of the same M-path),

3. They are linked by a P-Path or sequence of P-Paths.

In most cases, M-nodes which are at the same level and of the same form will be strongly

connected. When two M-nodes are connected by a P-Path with no iitervcning M-Nodes along the
P-Path between them, they are said to be "directly" strongly connected. If a third M-Node occurs

along the P-Path between the two M-Nodes. then the two (outer) M-Nodes arc said to be "indirectly"

strongly connected. TIbis distinction will come in handy when discussing M-Path matching in the

presence of spurious or missing M-Nodes.
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8.3.1.2 Weakly Connected M-Nodes

Definition: Two M-Nodes are said to be "weakly connected" if and only if:

1. They exist at the same level of the same representation,

2. They are not adjacent.

3. 'hey are not linked by a P-Path at their level,

4. Other M-Nodes within one level in their M-Paths are strongly connected.

The concept of weakly connected M-Nodcs provides for the case where a P-Path has been broken

either for reasons intrinsic to the form or because of an error in the P-Path detection algorithm.

Weakly connected M-Nodes can be detected by examining the connectivity above or below them

in their M-Paths.

M-Nodes have certain attributes based on their position in the transform space (x,y,k). They also

have an attribute that is the value of the filter at that level and location. Also, if desired, they can be
assigned a label on the basis of the configuration of oppositely signed ridges around them. Such

labeling can simplify the correspondence proccssc.

Connected M-Paths are "linked" by two way pointers. Each half of a pointer may also be assigned

the attributes of distance (D) and orientation (0), which are defined as:

Distance: The distance between two M-nodes is the cartesian distance measured in terms of
the number of samples at that level. In levels with a V2 sample grid, the distance
along the x and y axes are in units of V-2.

Orientation: The orientation between two M-nodes is the angle between the line that connects
them and the x axis in the positive direction (right). For convention, this angle
ranges from 00 to 3590 in the counter-clockwise direction. Up is 900, left is 1800
and down is 2708.

8.3.1.3 Example of Abstracted M-nodes and P-Paths

Several figures are shown in the next sections to illustrate connected M-Nodes and M-Paths from

the upper levels of the teapot images. "lhe following example illustrates how these figures arc derived
from the representation.

Figure 8-10 shows the M-nodes and P-nodes from level 7 of teapot image #1. Level 7 is the

highest level with more than one M-nodc. Because of'space limitations this figure does not include

all of the negative ridges surrounding the teapot. 'lMis figure shows three positive M-nodcs,

connected by P-paths. Also present is the negative ridge above the teapot, the negative peak inside
the handle of the teapot, and a part of the negative ridge below and to the left of the teapot. The
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most important feature of this figure is the presence of the three connected pesitive M-nodes (peaks)

and the P-paths that connect them.

Values for nodes - Level 7 Potl7.swf L Paths and M Paths

73 81 89 97 105 113 121 129 137 145 153 161

73
73 -12 -19 -20 -24 -26 -28 -29 -28 -27 -31 -36 -36
73 P P -- MP -- L P-- P -- L P -- LP -- LMP

73 I \ I

81 \ I
81 -16 -18 -23 -26 -29 -24 -19 -16 -12 -19 -28 -34

81 P L P -- L P -- LMP

81

89
89 -10 -9 -11 -12 -7 -4 4 9 9 4 0 -10
89

89

97
97 0 0 2 9 14 17 16 20 21 23 31 30
97 P P -- P

97 I

105 /
105 3 5 6 11 18 19 16 10 20 32 52 63
105 P-- P-- P -- MP-- P P P
105 / 1
113 / I

113 7 6 -4 -1 10 11 6 1 13 35 57 73
113 P P P -- NP -

113 / I

121 "

121 12 8 -8 -10 -1 5 1 0 10 29 49 60
121 P P -- MP P
121 !

129 1
129 14 12 2 -6 -2 -2 -4 -4 4 17 34 46

129 MP-- P P P
129

137 !

137 7 10 4 1 -1 -2 -5 -9 -5 8 24 37
137 P
137

146
145 -3 0 3 4 3 0 -1 -4 -3 8 24 35
145 P
145
163

1M3 -8 -8 -5 -3 1 4 2 -1 2 11 24 29
153 P-- P P
153 1

181

161 -7 -5 -8 -5 0 1 -2 -1 0 3 10 12
1U1 P P
161

Figure 8-10: Level 7 from Teapot Image #1

The three positive peaks from level 7 of teapot # I arc shown abstracted from the band-pass data

in figure 8-11. The direct P-PaIh links between these M-nodes arc illustrated with solid arrows and

labeled with circled numbcrs. The indirect P-Path link between the right-most and left-most M-nodes

is shown as a dotted arrow labeled with the circled number 3. [he numbers are an index into a table
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19 M 1

73M Level 7

Figure 8-11: M-nodes and P-Paths for Level 7 of Teapot #1

of attributes. Thc attributes for these paricular links are given in table 8-2 in the next section. This

same set of links is included in figure 8-12. These numbers are also used to show the correspondence

which was assigned by hand matching between these links and ie same links in the other teapot

images.

4 8.4 Examples of M-node Correspondence

This section presents examples of M-node correspondence using the most global levels of the

teapot images. In each of the examples, the M-nodes from the most global level (level 12) to the

second highest level with more than one M-nodc are used.

'This section begins with the M-node graph for levels 12 through 6 of teapot image # 1. This is

followed by the results of hand matching this graph to teapot image #3 (scale = 1.36, orientation =

08) and to teapot image #4 (scale = 1.0, orientation = -15°). Other examples of M-node matching

for the teapot images are then presented and discussed. '"The section ends with M-node matching for

the upper levels of the stereo pair of paper wad images.

Figure 8-12 shows the upper M-nodes. M-Paths and P-path links for teapot image 1. In figures

8-12 and the other M-node graphs, the M-path links are shown as a dark line. lighter solid arrows

are shown between directly linked M-nodcs at each level. Dashed arrows are shown connecting some
indirectly linked M-nodes.

Each P-path link in the M-node graphs (such as figure 8-12) is labeled with a circled number.

hliese labels were assigned by hand on the basis of the length and relative orientations of the P-paths.

In the assignment of the labels in the second level with more than one M-node, the correspondence
of the M-nodes in the level above this level was used to constrain the possible set of correspondences.

As mentioned above, these numbers also serve as an index into a table of attributes for the links.

These attribute tables give die values for dx, dy. 1). and 0 for each P-path link. '[he positive

directions for dx and dy are the same as used in the image: +x points right, +y points down.
Il However. note that 8 increases in the coutiter-clockwise direction. In these tables. '- the levels which

V

6i
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are at a v " sample grid, the distances dx and dy are recorded in units of V'. In cases where an

M-node spans two adjacent samples. the M-nodes position is assigned at the mid-point between

them. 'his results in values of dx or dy that have fractional parts of .5 in the cartesian sampled levels.

and .25, .5 or .75 in the V2 sampled levels.

In these tables. orientation (0) is measured in degrees. On a cartesian grid, at distances that are

typically 5 to 10 pixels, angular resolution is typically 5 to 10 degrees. Of course, the longer the

distance, the more accirate the estimate of orientation.

8.4.1 M-nodes for Teapot Image # 1

The M-nodes for levels 12 through 6 of teapot image #1 are shown in figure 8-12. As shown in

table 8-1 this is the smallcst "non-rotated" teapot image. In levels 12 through 9 of figure 8-12 only a

single M-node occurs in the teapot. These M-nodes all occur within a distance of two samples of the

M-node above them, and are thus linked into a single M-Path. 15 This M-path is referred to as the

principal M-Path. The M-node at level 8 has the largest value along this M-path and is thus marked

as an M*-node. This M*-node corresponds to a filter with a positive center lobe of radius R = 18

pixels 6 ( see equation (6.5) ) or a diameter of 37 pixels. lhis corresponds to the form in the image

that results from the overlap of the shadow on the right side of the teapot and the darkly glazed upper

half of the teapot which appears as a light region in figure 8-1.17 At level 7, additional detail begins

to emerge. M-nodes occur over the upper right comer of the teapot and over the handle region.
These M-nodes are joined to the M-node on the principal M-path by a P-Path. These P-Paths are

illustrated by a solid arrow.

The indirect links between the M-node on the principal M-path and other M-nodes are shown as

uashed arrows. There are two reasons for showing the attributes of the indirect links between these

'.i nodes:

1. In some of the teapot images, the M-node corresponding to the M-node of value 19 at

level 7 does not occur. In such a case the indirect link labeled as 3 occurs as a direct link.

2. Quantization introduces an error into the attributes 1) and 0. The magnitude of the error

in the 1) term is independent of !). Thus the proportion of 1) dominated by the error

decreases as I) increases. The error in 0 decreases as I) increases. Thus longer links

provide a more accurate measure of the scale and orientation of the object.

Five M-nodes occur in level 6. 'hree of these M-nodes occur underneath (within 2 samples) of

M-nodcs from level 7. These three M-nodcs are thus part of three M-paths. The remaining two

15. M-path links appear a straight dark lines in figure 8-12 although in fact there can be a lateral shift of up to two

samples between their positions, M-pah linking was dcscribcd in section 7.4.

16
A pixcl is the sample rate in the original image

17,lbc teapot images were digiti/ed from negatiu-s Thus dark forms appear light in figures 8-1 through 116.

• • , ,,am i.liml .lll mim iilliiiil I ai- 
-m l l

d
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32 M Level 12
P-Path (intra-level)

M-Path (inter-level)

37 M Level 11

50 M Level 10

63 M Level 9

75 M* Level 8

19M 0

73 M Level 7

14 M -

@5 29 M

21M

Figure 8-12: M-nodcs and P-Paths for Levcls 12 to 6 of Tcapot #1
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P-Path Level dx dy D

1 7 -6 2 6.32 161.50

2 7 -5 3 5.83 210.90

3 (1&2) 7 -11 1 11.04 185.20

4 6 -4.0v'2 -2.0vr" 6.32 153.40

5 6 -3.25V- 1.5 VF 5.06 205.80

6 6 -3.0V2" 0.0 4.24 1800

7 6 0.250 3.25vf2" 4.6 265.60

8 (4&5) 6 -7.25V'" -0.5 V 10.2 176.10

9 (4&5&6&7) 6 -10V- 2.75V2" 14.6 195.30

Table 8-2: P-Path Links for Levels 7 and 6 of Teapot #1

M-nodes are in fact the highest levels of two more M-paths. For simplicity, this illustration shows

only the indirect links for the M-nodes that are part of established M-paths at level 6.

Note that one of the M-nodes at level 6 is an M* node. This M-nodc corresponds to the upper left

corner of the teapot. This M*-node marks the left end of the dark region of glaze on the upper half

of the teapot. The width of the positive center lobe of the filter which corresponds to this M*-node

gives an approximation of the width of the darkly glazed region.

8.4.2 Initial Alignment to Obtain Size and Position

An initial estimate of the alignment and relative sizes of two gray scale forms may be constructed

by making a correspondence between their highest level M*-nodes. This is illustrated by comparing

the M-nods and links in figure 8-12 to those in figure 8-13 shown below. Figure 8-13 shows the

M-nodes and P-Path links for teapot number #3. Recall from table 8-1 that teapot #3 has the same

orientation as teapot #1 and is scaled larger in size by a factor of 1.36 which is just less than V2-.

The distance and orientation for each P-Path link in teapot # 3 levels 12 through 7 is shown in table

8-3 below.

The highest level M*-node in teapot #3 occurs at level 9. The fact that this M*-node is one level

higher than the highest level M*-node for teapot #1 confirms that teapot #3 is approximately

V12 larger than teapot # 1.

The correspondence of the highest level M*-nods from these two teapots gives an estimate of the

alignment of the two teapots as well as the scaling. The correspondence tells us the position at which

teapot # 1. scaled by V2 in size will match teapot # 3. The tolerance of the initial alignment is

dependent on which of the teapots is designated as a reference pattern. The reference pattern is the

one which is scaled, rotated and translated so that its components arc brought into correspondence

with the second, observed pattern. In this matching (as well as with stereo interpretation) which

image is used as the reference image and which image is used as the data image is arbitrary. The

tolerance of the initial position alignment is ± the sample rate at the level of the M*-node in the data

image. If teapot #3 is designated as the data image. then the sample rate at level 9 determines the

tolerance. "1bc positioning tolerance at level 9 is 4-8V2 pixels.
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66 M Level 12

P-Path (intra-level)

M-Path (inter-level) 78 M Level 11
I

87 M Level 10

89 M* Level 9

83 M Level 8

16M 

18 M <n624 M 2 9 M

Level 7

4 -- 72M

26M <-

Figure 8-13: M-nodcs and P-Paths for Levels 12 to 7 of Teapot #3
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P-Path Level dx* dy 8

3 8 -7.5VT 1.5V1- 10.81 191.30

4 7 -3.5 -6.0 6.94 149.70

5 7 -4.0 1.0 4.12 194.00

6 7 -4.5 1.0 4.61 192.00

7 7 -0.5 5.0 5.02 264.3 °

8 (4&5) 7 -10.0 -1.5 10.11 171.5a

9 (4&5&6&7) 7 -15 3.5 15.4 193.1"

11 7 -1.5 6.5 6.67 257.00

Table 8-3: P-Path Links for Levels 8 and 7 of Teapot # 3

The tolerance of the size scaling is less than ± V2'. The correspondence of the highest level

M*-nodes provides an estimate of the size scaling factor which is a power of VT. Such an estimate is

sufficient to constrain the correspondence process. A more accurate estimate can be obtained from

the average of the ratio of D's for links whose correspondence has been found. An example of this

will be given in the next section.

8.4.3 Determining Further Correspondence and Orientation

The matching process starts by finding the correspondence for the highest level M*-nodes. This

provides the process with an initial estimates of the size and position of the two forms. The next step

is to find thc correspondence of lower level M-nodes to refine the estimates of relative size and

position, discover the relative orientations, and discover where one of the forms has been distorted by

parallax or other effects.

Let us continue with our example. An M-node for the upper left corner of teapot #3 does not

occur. The change in scale from teapot # 1 to teapot #3 was not enough to bring this M-node up to

level 8. This may also be a result of the slight difference in shading that resulted from moving the

teapot with respect to the lights and camera in order to size scale the object. The fact that the M-node

of value 16 in level 8 of teapot #3 corresponds to the M-node of value 13 in level 7 of teapot #1

must be discovered from the position relative to their principal M*-nods and the distance and

orientation from the M-node on the principal M-path at the same level.

The values for D and 8 for the link attributes in levels 7 and 6 of teapot 1 are compared to the

attributes in the corresponding links from levels 8 and 7 of teapot 3 in table 8-4. "lhe reader should

remember that all of these links arc constrained to begin and end at samples in their respective levels.

Because we arc dealing with distances of between 4 and 15 samples at arbitrary angles, there is

quantization noise in these attributes. The differences in orientation are shown in the column labeled

8,-8 3. Except for link 3, these values show a consistent small rotation in the counter-clockwise

direction for the links from teapot 3. In light of this. the image data was re-examined after compiling

this table. Landmarks were chosen at the base of the handle and the base of the spout in both images.

In teapot #1. this baseline had an angle of 3.80 relative to the raster line. In teapot #3, this baseline

I /-/ i tltI II I . .
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Teapot 1 Teapot 3 Difference

P-Path D1  81  D3  83 81-83 D3/D 1 D3-D1  100 x (D3-D1)/D 3

3 11.09 1850 10.8 1910 -6 0.974 -0.2 -1.8%

4 6.3 153 6.9 1480 50 1.095 0.6 8.7%

5 5.1 206 4.1 1940 120 0.804 1.0 24.4%

6 4.2 180 4.6 1920 120 1.09 0.4 8.7%

7 4.6 266 5.2 264°  20 1.13 -0.6 -11.5%b8 10.2 176 °  10.1 1710 50 0.99 -0.1 -1.0%

9 14.6 195 15.4 1930 20 1.05 0.8 5.2%
Average Error 4.57 1.020 0.257 4.3%

Table 8-4: Comparison of D and 0 attributes for Teapots 1 and 3

had an angle of 7.10. Thus it appears that the two teapots actually have a relative change in

orientation of approximately 3.30 . 'he actual values of 8 fluctuate more than this due to
quantization error from sampling and changes in shading.

The ratio D3/D 1 would show a factor by which the lengths consistently shift when the teapot is

scaled by 1.36. Since this shift in scale was enough to drive the corresponding P-paths in teapot #3
I up to a new level, but less than the V'" 1.41 scale change between levels, an average ratio of

D3/D 1 = 1.36/1.41 = 0.96 was anticipated, In table 8-4 we see that this average ratio worked out to

1.02. Our conclusion is that quantization noise and changes in shading accounted for most of this
difference. The actual differences in length. D3 - Dl, show that the lengths were always within one

sample. Except for link 5. the percentage differences. (D3- D,)/D, were generally small ( 510%).
, The conclusion from this experiment is that the correspondence between M-nodcs from similar

~gray-scale forms of different sizes can be found, provided that the matching tolerates variations of the

lengths of P-paths of up to 25% and variations in the relative angles of up to 120.

~8.4.4 Correspondence of M-nodes Under Rotation

Figure 8-14 shows the M-nodes, M-paths, and P-path links for levels 12 through 6 of teapot image

#4. This teapot image is the same size as teapot image #1, but rotated by approximately -15*.
~Figure 8-14 contains all of the M-nodes found in figure 8-12 (teapot #1I) plus one additional M-node

at level 6. Tlhe values for dx, dy, !), and 9 for the links in teapot 4 are shown in table 8-5. These

values are compared to those from teapot # 1 in table 8-6.

This comparison shows an average rotation for the P-Paths in teapot #4 of-13.7 ° with respect to

the P-Paths in teapot # 1. 'ihis is very close to the -150 which the rotation was estimated to be from

the photographs. As with the size scaling example in the previous section, all of the lengths match

within one sample. '[he percentage difference in the length of links ranges from -9% to 14%.

I

i
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62 M Level 12

P-Path (intra-level) I

M-Path (inter-level) 66 M Level 11

68 M Level 10

I
75 M Level 9

78 M* Level 8

0 Level 7

= ~13M --

-77M

19M

Z_37 M 02
7 > ,4Level 6

25M < -- 57 M

16 M

Figure 8-14: M-nodes and P-Paths for Levels 12 to 6 of Teapot #4
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P-Path Level dx dv D. 0,

1 7 -6 -3 6.71 153

2 7 -5 2 5.38 202

3(1&2) 7 -11 -1 11.04 185"

4 6 -2.5 -3.Ov2 5.52 130

5 6 -3.75v" 0.25 v 5.31 1840

6 6 -3.25 V2- -0.75V2" 4.72 1670
7 6 -0.75v2 3.75 V12 5.4 2560

8 (4&5) 6 -6.25 V2-  -2.75 v 9.65 1530

9 (4&5&6&7) 6 -10.25V2" 0.25VT" 14.50 1790

10 6 2.5v 2.5V2 5.0 3150

Table 8-5: P-Path Links for Levels 7 and 6 of Teapot #4

Teapot 1 Teapot 4 Difference

P-Path D1  81 D4  04 1-a4 D4/D 1 D4-D1  100 x (D4-D1)/D 4

1 6.3 161" 6.7 1530 80 1.06 0.388 5.7%

2 5.8 2110 5.3 2020 9 0.914 -0.5 -9.4%
3 11.0 185 11 1850 00 1.0 0.0 0.0%

4 6.3 153 5.52 1300 230 0.876 -0.7 -12.7%

5 5.1 206 5.3 184 °  220 1.039 0.2 3.7%
.6 4.2 180 4.7 1670 130 1.119 0.5 10.6%

7 4.6 265 0 5.4 2560 90 1.174 0.8 14.8%

8 10.2 176 9.6 1530 230 0.931 -0.7 -7.3%
9 14.6 1950 14.5 1790 160 0.992 -0.1 -0.72%
Average Error 13.70 1.012 -0.121 0.52%

Table 8.6: Comparison of D and 8 attributes for Teapots #1 and #4

8.4.5 Examples of Size Change Less than VI"

This subsection shows the result of hand matching the upper levels of teapots #2 and #5. Teapot
* #2 is the same orientation as teapot #1. but digitized approximately 1.14 larger. Teapot #5 is

approximately the same size as teapot #2, but oriented at -150. Because of the change in scale and

lighting, both of these teapot images contain additional M-nodes in their upper levels.

Figure 8-15 shows the M-nodes. M-pahs. and P-paths links for levels 12 through 6 of teapot image

#2. Level 7 of teapot #2 contains 3 additional M-nodes that did not occur in level 7 of Teapots #1

and #4, or level 8 of teapot #3. These M-nods are all at the top of M-paths that start at level 6 of

teapots #1 and #4 and level 7 of teapot #3. 1l'he small scale change between teapot # 1 and teapot

#2 was enough to bring these M-nodes up to the next level. These P-paths are not labeled in figure

8-15 and their attributes are not included in table 8-7.

4
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Table 8-7 shows the attributes of the P-paths in figure 8-15 which were matched by hand to the

P-paths from teapot # 1. These values are compared to those of teapot # 1 in table 8-8.

This comparison shows that each of the P-Paths links in teapot #2 are slightly larger than the

corresponding links in teapot # 1. with the average ratio of lengths being 1.19. This is slightly larger

than the 1.14 estimated from the photographs, but well within the expected range. The average

mismatch of P-path links was 1.57 samples. The percentage change in the lengths of the P-paths

ranged from 8% to 27% with an average of 14%.

The M-nodes, M-paths, and P-path links for teapot #5 are shown in figure 8-16 below. Teapot

#5 is scaled larger than teapot #1 by approximately 1.14 and rotated in the image plane by

approximately -15". This teapot was supposed to have been a rotation of teapot #2. However, the

lighting was changed between the photographing of teapot image #2 and teapot image #5. As a

result the shadow on the right side of teapot #5 appears to be slightly larger than that of teapot #2.

This slight increase in size is sufficient to cause the M-nodc in the upper left comer to appear at level

8, and to shift the M* node from level 8 to level 9. It also causes an additional M-nodc (value 32) to

appear along P-path number 5. Despite these changes, the P-paths which were identified in the

earlier examples are still detectable in teapot #5. The attributes for the P-paths of teapot #5 are

shown in table 8-9. These attributes are compared to those of teapot #1 in table 8-10 and to those of

teapot #2 in table 8-11.

The average values for the comparison of the lengths and orientations of the P-paths from teapot

#5 to those of'teapot #1 are very close to the expected values. As shown in table 8-10. the difference

in orientation ranges from 40 to 260, with an average value of 14.22 0. which is very close to the 150

difference of orientation that was measured from the photographs. The ratio of the lengths of P-paths

range from 0.93 to 1.45, with an average value of 1.13. This is also very close to the change in size of a

factor of 1.14 which was estimated from the photographs.

The results of comparing the lengths and orientations of P-path links from teapot # 5 to those of

teapot #2. shown in table 8-11, are also reasonably close to the expected values. Teapot #5 is

approximately the same size as teapot #2. but rotated by approximately -15 . The ratio of the lengths

of the P-paths ranged from 0.77 to 1.34 with an average value of 0.96. The difference in orientation

of the P-paths ranged from -13 to 32 * with an average value of 10.34a. The match of P-path 6

stands out in this table as having the largest difference-in orientation ( 32° ) as well as the smallest
ratio of lengths ( 0.77 ). P-path 7 seems to correct for this aberration by having a ratio of lengths of

1.34 and an difference of orientation of 9*. The cause of this aberration seems to he that the M-node

to which P-path 6 points in teapot mage #2 is "out of place" by 1 or 2 samp's. Checking back to

the comparison of teapot # I to teapot #2. shown in table 8-8. shows that this s.ne P-path was the

largest source of error in both orientation and length in that table also. Our conclusion is that

because of a change in shading, this M-nodc seems to have been shifted in position in the image of
teapot #2. Ihis aberration illustrates that when an M-nodc is slightly shifted in position, the error is

averaged out by the lengths and orientations of the P-paths going to the M-node and those coming

from it. "lic conclusion is tha tie average ratio (if lengths and the average orientation of P-paths is a

reasonable feature to use in determining the best correspondence of a set of M-nodes from a level of

the descriptions of two images.



177

35 M Level12

46 M Leveli11

P-Path (intra-level)

56 M Levell10
M-Path (inter-level)

64 M Level 9

1
70 M* Level 8

10 0

12 M < - 27 M

5 ~25 M

19M <25 M 4Level 6

18 M

13 M 34 M

Figure 8-15: M-nodcs and P-Paths for Levels 12 to 6 of Teapot #2
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P-Path Level dx dY D 0

1 7 7 -2 7.28 1640

2 7 -6 1 6.08 1890

3(1&2) 7 -14 2 14.14 188"

4 6 -4.5v" -2.5,2- 7.28 1510

5 6 -4.0VT 1. 0v" 5.83 194"

6 6 -4.OV2 1.0V'2 5.83 194"

7 6 0.5vr2 3.5v5" 5.0 262*
8 (4&5) 6 -8.5V2 -1.5V' 12.2 170
9 (4&5&6&7) 6 -13.0V 3.0OF 18.6 1930

Table 8-7: P-Path Links for Levels 7 and 6 of Teapot #2

Tcapot 1 Teapot 2 Difference

P-Path DI 81 D 2  62 81-82 D2/D 1 D2 -D 100 x (D 2-D1)/D 2

1 6.3 1610 7.28 1640 -3* 1.16 0.98 13.4%

2 5.8 2110 6.0 1890 220 1.048 0.2 3.2%

3 11.0 1850 14.14 1880 -30 1.285 3.0 21.2%

4 6.3 153 7.28 151a 20 1.16 0.98 13.4%

5 5.1 206 5.83 194" 120 1.143 0.73 1.2%

6 4.2 1800 5.83 1940 -140 1.388 1.63 27.9%

7 4.6 2650 5.0 2610 40 1.087 0.4 8%

8 10.2 1760 12.2 1700 60 1.196 2.0 16.4%

9 14.6 1950 18.8 1930 20 1.287 4.2 22.2%

Average Error 3.11" 1.19 1.57 14.1%

Table 8-8: Comparison of D and 8 attributes for Teapots # 1 and #2

8.4.6 Summary of Teapot Matching Examples

The examples showry above illustrate that the graphs of M-nodcs connected by P-path links from

two images of similar objects can be matched despite changes in the size and orientation of the object

between the two images. Before advancing to a simple example of how the representation can be

used to find stereo correspondence, let us summarize the examples that have been presented.

'his section began with an example of how the graph of M-nodes. connected by P-paths. is formed

from a level of the description. This example showed how the M-nodcs and P-path links are

abstracted from level 7 of teapot image # 1.

Next. it was shown how M-nodes from several adjacent levels form M-paths that give a

increasingly detailed description of structures in an image. The M-nodes from levels 12 through 6 of

teapot image # I were presented. with the P-path links that connect M-nodes at each level. The table

of attributes for each P-path !ink was also presented.

- " -- - ., ..- - - -m - -~~ -.. - i - l - m -- i ml -m lil l...
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45 M Levell12

P-Path (intra-level) 
4

M-Path (inter-level) 60 M Level 11

79 M Level 10

82 M* Level 9

11M < 77M Level8

28 MK -
71 M Level 7

21 M

~ 38 M
10 M

Z/,32 -Ze5"---.,7 MI

21 M @.1 M~~i
259 M Level 6

* 34 M-

14 M 38 M

Figure 8-16: M-nodes and P-Paths for Levels 12 to 6 of Teapot #5
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P-Path Level dx dy D
1 7 -7 -3 7.61 1570

2 7 -5 2 5.39 2020

3 (1&2) 7 -12 -1 12.0 175"

4 6 -3.5 V' -3.5V2 7.0 135

5 6 -4.0vF 0 5.65 1800

6 6 -3.0V2 "  -1.0V2" 4.47 1620

7 6 -1.5V'2" 4.5v'2" 6.70 2520

8 (4&5) 6 -7.5 V -2.SV'2 11.18 1620

9 (4&5&6&7) 6 -12.0V'" 0 16.97 1800

10 6 3.0V2" 3.0OF" 6.0 3150

11 6 2.0v2 " 5.0 V2 7.6 2480

12 6 -7.0V'2 -1.5 10.12 1680

Table 8-9: P-Path Links for L.evels 7 and 6 of Teapot #5

Teapot 1 Teapot 5 Difference

P-Path D1  81 D5  85 01-85 D5/D1 D5 -D1  I00 x(D5-D1)/D5

1 6.3 1610 7.62 1570 4* 1.21 1.32 17.3%

2 5.8 2110 5.39 2020 90 0.93 -0.41 -7.6%

3 11.0 1850 12.04 1750 100 1.09 1.04 8.6

4 6.3 153" 7.0 1350 18 1.11 0.70 10.0%

5 5.1 2060 5.65 1800 260 1.10 0.55 9.7%

6 4.2 1800 4.47 1620 180 1.06 0.27 6.0%
7 4.6 2650 6.70 2520 130 1.45 2.1 31.3%

8 10.2 1760 11.2 1620 140 1.09 1.0 8.9%

9 14.6 1950 16.97 1800 150 1.16 2.37 13.9%

Average Error 14.220 1.13 0.99 10.9%

Table 8-10: Comparison of ) and 0 attributes for Teapots #1 and #5

Teapot 2 Teapot 5 Difference

P-Path D2  0, 1)5 05 82-05 D5/D 2 D5-D2  100 x (D5-D,)/D 5

1 7.28 1640 7.62 1570 70 1.05 0.34 4.5%

2 6.0 1890 5.39 202* -130 0.90 -0.61 -11.3%

3 14.14 1880 12.04 1750 130 0.85 -2.10 -17.4%

4 7.28 151 0 7.0 1350 160 0.96 -0.28 -4.0%

5 5.83 1940 5.65 1800 140 0.97 -0.18 -3.0%

6 5.83 194" 4.47 1620 320 0.77 -1.36 -30.4%

7 5.0 2610 6.70 2520 90 1.34 1.7 25.4%

8 12.2 1700 11.2 1620 8 0.92 -1.0 -8.9%

9 18.8 193 16.97 180" 130 0.90 -1.83 -10.8%

Average Error 10.340 0.96 -0.591 -6.2%

Table 8-11: Comparison of I) and 8 attributes for Teapots 2 and 5

Ilie use of the principal M-path and highest level M*-node was then shown for aligning two
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descriptions to get an initial estimate of the difference in size and position. 'In this subsection a

comparison was made of the M-node graphs from teapot # 1 to the M-node graphs of teapot # 3. It

was shown that the correspondence could be found despite a change in size.of approximately 1.36 by

shifting the M-node graph from the larger image down by one level. It was also shown that this shift

was dictated by the difference in the level at which the highest M*-node occurred in the two

descriptions.

An example was then given of the correspondence that occurs when the object has been rotated.

The P-path links from teapot # 1 were compared to those of teapot #4, which is of the same size, but

rotated by = -140. Further examples were then presented which showed how the matching is

affected by changes of size which arc less than a factor of V 2.

The next section illustrates how this representation can be used to determine the correspondence

from a stereo pair of images.

8.4.7 Stereo Matching. Example

A stereo pair of images was formed of a paper-wad to test the use of the representation for

determining the correspondence between structural components in a stereo pair of images. The

original images are shown with the output from the low pass filters in figures 8-19 and 8-21. The

format of the low-pass images is shown in figure 8-18. Unlike the band-pass images, it is the odd

numbered low-pass images which are defined on a %/2 sample grid. In forming these low-pass

images, the undefined pixels were left with a value of zero. Thus the odd numbered low-pass levels

appear with much less intensity than the even numbered low-pass images. In each of the low-pass

figures. the original image appears in the lower right comer.

The resulting band-pass images are shown in figures 8-20 and 8-22. The format for these band-

pass images is the same as shown in figure 8-6 in section 8.2.

The scene was formed by placing the paper wad on a dark lab bench under a desk lamp. A vidicon

camera, mounted on a tripod, was placed approximately 14 inches from the paper wad, and the left

image was digitized using the Grinnell digitizer. The camera was then moved to the right

approximately 6 inches and tilted so that the paper wad was located in roughly the same part of the

image. This tilt angle was approximately 200. 11he right image was then digitized.

ie purpose of this experiment was to test the use of the representation for determining the

correspondence of parts of the two images. No attempt was planned or made to use this

correspondence to determine the actual distances to surface points on the paper wad.

'he M-nodes for Levels 13 through 9 of the two paper wads are shown in figure 8-17 below. Then

correspondence between M-nodes was assigned by hand. 'Ibis correspondence is illustrated by the

dashed arrows in figure 8-17. Fach correspondence is labeled with the displacement, dx. dy, between

the actual positions of the M-nodes in the two images. Assigning these correspondences was a trivial

task because of the small number of M-nodes at each level. Even when the number of M-nodes

I-
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increased at the levels below level 9, the correspondences at the previous level constrain the possible

correspondences so that there is often no choice as to which M-nodes correspond.

Note that at level 10, two M-nodes occur in the right image, while only a single M-node occurs in

thc lft image. This diffcrence in structure is the result of the parallax created by the difference in

perspective. This illustrates one of the problems in determining stereo correspondence: shape

changes when seen from different perspectives. Thus a stereo correspondence algorithm must be

capable of assigning a sample from one image to more than one sample in the second.

The conclusion from this experiment is that the representation can provide an efficient technique

for determining the correspondence of structural components in a stereo pair of images.
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Left Right
dx =0, dy =0

53 M - -> 47 M Level 13

dx=O, dy=O I
65 M - -> 58 M Level 12

I dx=-1, dy= I
65 M* - -> 59 M* Level 11

dx= 2.1, dy =0.7
1.._ - .. -- 48M

p Level 10

dx=-1.4,dy=O 49M

50M 44M d-.x=1l,dy=1

dx=-2,dy=i ) 50M - -> 71 M
50M m

_/ Level 9

dx =-1, dy= 1 53 M*

Figure 8-17: Sterco Corrcspondence of M-nodcs for Paper Wads, Lcvcls 13 through 9
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Level 0 Level 1

Level 2 Level 3

Original Image

Leve14 LeveI5

6 7

Figure 8-18: Format for Paper Wad Low-Pass Images



Figure8-1t~ Left Paper Wad and Low-Pass Images
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Figure 8-20: Band-Pass images for Lcft Paper Wad
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8.5 Matching L-Paths

When a gray scale form has components which arc long and thin, ridges, or P-paths occur along
this component in several adjacent levels in the Sampled DOLP (or SDOG) transform. This
information is encoded by finding the level where the response is of the DOLP filter is strongest

along the path followed by the ridges. These strongest P-nodes are labeled as L-nodes by a process
described in the previous chapter and connected together to form an L-path. In some situations.
particularly in structural pattern' recognition, identifying or discriminating objects requires being able
to measure the similarity of L-paths from two representations. 'his section is concerned with this

problem.

8.5.1 Two stages of Matching

I
As with any curve matching problem, there are two stages to matching L-paths:

1. An alignment stage: In this stage the L-path from the reference representation is
positioned, oriented, and scaled so that will be in its closest correspondence with the

• measured L-path.

2. A Similarity Measure: In this stage, some measure of the "goodness of fit" is calculated
between the two L-paths.

8.5.2 L-Path Alignment

The previous section concerned the problem of determining the correspondence between the
representations of two gray-scale forms, which are at different positions, scales, and/or orientations.
These techniques employed M-nodes and M*-nodes as landmarks which are brought into
correspondence. In most cases, L-paths are terminated at each end by an M*-node. Two L-paths are
aligned by aligning their terminating M-nodes. This section shows how the correspondence of the
terminating M*-nodes is used to scale, shift and rotate the reference L-path so that it is in
correspondence with the measured L-path.

8.5.2.1 L-Path Notation and Attributes

Let us define the values along an L-path as a sequence: L,. Each L-node has attributes of filter
value and location as well as a set of pointers to adjacent [.-nodes or M-nodes on the l-path. The

4I location of the ith [.-node in the l.-path before applying these linear transformations is (xi, yi, ki).
This location is in terms of pixels from the original image.

One of the two M*-nodes must be selected as a "distinguished" for the orientation attribute, for
indexing and for computing the linear transforms. Ifone M*-node is at a higher level than the other,

this is chosen as the distinguished M*-node. Otherwise, the choice is arbitrary.
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The entire L-path also has a set of attributes which are similar to those described for P-paths in the

previous section. The attributes of an L-path are determined by the relative positions in the SDOG

space 18 of the terminating M*-nodes. The L-path attributes are:

* L: The difference in levels between two terminating M-nodes. This is computed as the

level of the distinguished M*-node minus the level of the other M*-node.

e DL: The cartesian distance between the M*-nodes measured in pixels from the original

image.

* ?L: The orientation of the vector from the distinguished M*-node to the other M*-node.

85.2.2 Alignment Parameters:

Matching occurs by aligning a reference representation to a measured representation. Finding the

correspondence between the terminating M*-nods of the reference L-path and the M*-nodes of the

measured L-path gives the parameters for position, scale, and orientation for aligning the reference

L-path to the measured data. "Ihesc parameters are used by a set of linear transforms that are applied

to the reference [-path to bring it to correspondence with the measured L-path. These transforms

* and their parameters ar folows:

a .%k: the change in level that must be applied to one L-path so that it may match a second

L-path. 1-ach increment of i in Ak scales the l-path by a factor of V1" in size.

* ad: A small vcac chaWg determined by the correspondence of the terminating M*-nodes
&,tcr the) ha,* , SJafficd to the same levels. ad = Dm/Dr where Dm is the length

atinbute ti Ik- 'md I.-path and Dr S the length attribute of the reference L-path

after a has been vmw acont for shifting by &k levels. 'Ibis small scaling accounts
for mino d % witiu, in the total length of the L-path. This scale change is applied to the

dmance between each I.-noud and the MO-node which is used as a starting point for the
maw~hta

* .,: The rotatin of the L-path. The [-paths are originally encoded on cartesian and

vF %ample grds. A rotates one of the [-paths so that its L-nodes occur at real valued
(or high resolution integer valued) points. The result is a requirement for a rule which

relates the value at such a real-valued point to the values at nearby discrete sample points.

A nearest-neightv)r rule is described below for this.

0 (xryr): Ibis is the location of the distinguished M*-node.

rhc SOOG spacc is the .ct aopoinis defined by thse t ofband-pa.s images (x. y, k).
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8.5.2.3 Alignment Function:

Let us call the composite of these linear transformations the "alignment function", A(xi , yi, ki; Ak,

.ad, xr, yr
). The result of this alignment function is a real valued location expressed in terms of

pixels from the measured image. Real valued variables will be denoted by a tilde, '. The aligned

locations will be denoted by a prime ('). Thus the alignment function, A(xi, y, ki; ak, A0, ad, xr, Y)

produces the real valued location: i, at level k.

Each L-node has been initially recorded at some location, xi, Yi' ki" The correspondence process

has placed the distinguished M*-node at some discrete point in the SDOG space, (xr, Yr' kr)" The

alignment function operates on the displacement of the L-node at Ax, ay from the distinguished

M*-node. Thus the procedure starts by computing this displacement:

Ax, Ay = xr - xi, Yr -

Level shift: Shifting the L-node by Ak levels scales Ax, ay by a power of Vr" to form Ail, Ay.

Ai1, al = ax 2 
, Ay 2&k/2  (8.1)

Small Scaling: These distances are then scaled a second time by the small scale change Ad.

AX 2 AY2 = Ailad AyAd (8.2)

Rotation: The resulting values are then rotated an angle of AO by computing:

AX3 = ai§os(A0) + Ag2Sin(a8) (8.3)

=a3 -Ax2Sin(A0) + %y2Cos(Ad)

The resulting displacements are then added to the location of the distinguished M*-node to

produce the real valued location i', Y at level k':

(V, k) = A(x., y, ki; Ak, A8, Ad, xy Y (8.4)

= Xr + AX3, Yr + & 3, ki + &k

The aligned position of each L-node must then be compared with the measured l.-path to compute

an error measure. The similarity function is a function of the error measure ac each l.-node in the

reference L-path.

8.5.3 Similarity Measure

An l.-Path is a curve in a discrete 3-D space (the I)OI.P transform space). There are several

functions which can be used to measure the similarity between two such curves. In this section we

give examples of similarity measures based on the euclidean distance between each L-nodc in the

reference L-path (which has been scaled and rotated) and the nearest L-node in the measured L-path.

The measure that we have chosen for the examples in this section is based on the following

principles:

4e
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1. There is not necessarily a one to one correspondence between l-nodes in an l-path. This
is because of of dc distance between samples at different orientations. Thus the measure

should not penalize for a lack of one to one correspondence.

2. Similarity should not depend on the value attribute of the L-nodes. The value attribute is
sensitive to the image gain.

3. The similarity measure should be composed of a sum of similarity measures which tell the

mismatch at each L-node in the reference L-path.

4. The similarity measure for an entire [-path should be independent of the length of an

L-path.

These principles lead to the following similarity measure:

After each L-node from the reference L-path has been aligned, it is associated to the nearest

L-node from the measured data. The nearest node may be determined by the "brute force" approach

of computing dhe cartesian distance in the SDOG space to several or all of the L-nodes in the

measured L-path. Alternatively, more efficient techniques, such as "chamfer matching" may be used

[Barrow edl. In the following examples a difference in levels is treated as a distance equal to the

sample rate at the level to which the L-node was aligned. This distance may be adjusted to make

matches across levels more or less likely according to the application.

The cartesian distances are initially computed in terms of pixels (samples from the original image).

This distance is then divided by the sample rate at the level to which the reference L-node was

transformed, to compensate for the difference in sample rates at each level. This division normalizes

the distance so that a mismatch by one sample gives the same error at each level.

Thus the error measure, Ei, at each reference node, L, is obtained by finding the nearest measured

node, Ln = (xn , Yn,kn), computing the cartesian distance in pixels, and dividing by the sample rate at

level ki.

. [dx2 + dy2 + dk21l/2
Ft 2(ki-1)/2(85

where:

dx = i!- x
dy =Y- Yn
dk = (ki k) 2(ki-)/ 2

Either the average of these distances or the largest such distance may be used as a measure of how

well the transformed reference L-path matched the measured L-path.

Notice that this similarity measure is not commutative. It is possible for an L-node in the

measured l.-path to be far from any L-nodc in the reference l.-path. and thus not be found as a

nearest neighbor by any of the transformed [-nodes from the reference I.-path. If the roles of

measured and reference are reversed this l-node might contribute a much larger distance than any

distance observed when the roles were not reversed.
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8.5.4 Examples of L-path Alignment and Matching

This subsection gives examples of the use of the alignment function and the similarity measure.

The L-path that describes the shadow on the right side of each teapot is used in these examples. This

shadow does not have a well defined shape. 19 At the upper right corner of the teapot, the shadow

merges with the darkly glazed upper half of the teapot. In the lower half of the teapot, the left edge

of the shadow is very hard to discern. As is often the case in a cylindrical shaped object, the intensity

falls gradually as the surface orientation moves away from the light source. Visually determining the

edge of the shadow is further complicated by the surface texture of the teapot. Thus this shadow is a

good example of the description by an L-path of a form without distinct boundaries.

Figure 8-23 shows this L-path for teapot #1.20 In this figure, each node is represented by two

lines of letters and numbers. The top line consists of the SDOG transform value, the node type ( M*,

M. or L), and the level (in angle brackets). For example, 75 M* (8> refers to an M*-node of value 75
at level 8. 'he second line gives the relative position of the node with respect to the distinguished

M*-node in pixels from the original image. These numbers are (Ax, iy). In the distinguished node,

the second line gives the actual position of the node. Also shown are the attributes of the entire

L-path:

* AL: (written as dl) the change in levels between the M*-nodes;

e D: the length of the L-path in pixels; and,

• 8: (written as Angle) the orientation of the vector from the distinguished M*-node to the

other M*-node.

Fach L-nodc has a circled number beside it. These numbers serves as an identifier in the tables

that illustrated L-nodc correspondence and distance.

Figure 8-24 shows the L-path which desi--is the same shadow in teapot # 3. The correspondence

between L-nodes after the L-path from teapot #3 has been rotated and scaled to match the L-path
from teapot # 1. is shown in figure 8-25 and table 8-12. The correspondence in figure 8-25 is shown
with dashed arrows. Table 8-12 lists the locations to which the L-nodcs from teapot #3 were

transformed and the closest L-node from teapot # 1. The column labeled distance is the cartesian

distance between the transformed reference node and the nearest measured node expressed in pixels

(samples in the original image). The column labeled "error" shows the result of dividing this distance

by the sample rate at the level of to which the reference node was transformed. At the bottom of the

table is the average error and the largest error.

Nee figures 8-1 through 8-5

20
Note: the sign of the "y" term is reversed in all of the figures and tahles in this section Ibis has the effect of making

angles increase positively in the counter-clockwise direction. Thus y and 8 are consistent with the right-handed coordinate

system usually used by humans instead of the left-handed coordinate system usually used in image processing. 'Ibis also keeps

the anglcs used in this section consistent with those given in the examples in section 8.4.



194

Reference M*-node -> 75 M* <8> Q
(161,113)

Teapot # 1 67 L <8>
(-8,8,0)

(Right Shadow)

dL= 3

D =40.19

Angle = 276 44 L <8>

(-8, 24,0)

35 L <7> (4)
Format: (0,32, -1)

Value Symbol <level> 39 M <6>
(dx, dy, dk) (4,36 -2)

41 M*5> 

(4,40,-3)

Figure 8-23: L-path from Teapot #1

The top line of table 8-12 shows the change in attributes between the two L-paths. AL is the

difference in levels between the distinguished M*-nodes. DM/Dr is the ratio of the lengths of the

measured (m) to the refercnce (r) [-paths. This ratio is computed with length measured in pixels

before the reference L-path is shifted by Ak levels. "llius this ratio is the product of the match

parameters Ad and 2Ak/2 that were described above. A8 is the difference in angles. 'Te program that

matched these two L-paths transformed the reference L-path by dividing cach distance by the ratio of

the lengths and rotating by the difference in angles. Tablc 8-13 shows the results of transforming the

L-path from Teapot # 1 to match that of Teapot #3. In both table 8-12 and table 8-13 a one-to-one

correspondence was found between 1.-nodes and the error is always less than one sample.
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89 M* <9> ()

(161,145)

Teapot #3

dL= 3

D = 44.72
72 L <9>

Angle = 280.3 (0, 16,0)

46 L <9>
(0,32,0)

30 L <8> (
(8,40 -1)

38 M <7>
(8,40 -2)

41 M* <6>
(8,44,-3)

Figure 8-24: L-path from Teapot #3

Transforming the I.-path from teapot #3 to be in correspondence with the smaller L-path from
teapot # 1 gave a worst case error is 0.824 samples and the average error is 0.32. Matching the 1-path

from the larger teapot # 1 to the larger teapot #3 gave a worst case error of 0.648 samples and -an

average error of 0.30 samples. Thus. despite a scale change of = 1.36 between the two images,

aligning the terminating M*-nodcs brought the [-path from the each image into a reasonably close

correspondence with the L-path from the other image.

Figure 8-26 shows the L-path from the shadow in teapot image #4. 'he correspondence of

transformed [-nodes from teapot #4 to the b-nodes of teapot #1 is shown in figure 8-27. The
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~~89 M* <9> ------
(161,145)-- -- 75 M* <8>

(161,113)

67 L <8> 0
-a' (-8,8,0)

72 L <9>
(0,16,0)

44 L <8>
L( - (-8,24,0)

46 L <9> "

(0,32,0)

35 L <7>
-~(0, 32, -1)

30 L <8>
(8,40 .1) 39 M <6>

38 M.1<-7> (4, 36 -2)" Q ~~38M(7> -- - -

(8,40 .-2) 41 M* <5>
A I_.- .._ .- (4, 40,-3)

41 M* <6>
(8,44, .3)

Teapot #3 Teapot # 1

Figure 8-25: L-path Correspondence:
L-Path from Teapot #3 Transformed to Match I.-path from Teapot # 1

correspondence of L-nodes and their distances arc shown in table 8-14. L-nodc number 3 in the
[-path from teapot #4 might be considered spurious. 'This [-node is slightly to the lcft of the rest of
the L-path and without it, the two [--paths would have the same number of L-nodes. None-the-less,
it matches [-node 3 from teapot I to within 0.55 of a sample while L-nodes 2 and 4 are offby more
than a vample. Note also that due to the change in orientation of these two L-paths there is not a
one-to-one correspondence. B1oth L.-nodes 2 and 3 of teapot #4 match to L.-node 3 of Teapot #1
and both L.-nodes 5 and 6 of tcpot #4 match to [-nodc 5 of teapot #1. L-nodc 2 of teapot #I is
not found to be the nearest neighbor by any L.-node from teapot #4.
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Transform of Teapot # 3 to Match Teapot # 1

AL = -1, Dm/Dr = 0.89, af = -9.180

Nodes from teapot # 3 Nodes from teapot # 1

Transform of Reference Node Closest Measured Node

Node Ai a V Ak Node ax av Ak distance error

1 0.00 0.00 0 1 0.00 0.00 0 0.000 0.000

2 -1.15 14.33 0 2 -8.00 8.00 0 9.329 0.824

3 -2.30 28.67 0 3 -8.00 24.00 0 7.366 0.651

4 4.28 36.41 -1 4 0.00 31.99 -1 6.155 0.769
5 4.28 36.41 -2 5 4.00 35.99 -2 0.505 0.089

6 4.00 40.00 -3 6 4.00 40.00 -3 0.000 0.000

Average Error = 0.38

Worst Error = 0.82

Fable 8-12: Correspondence and Distance for Transform of

L-path from Teapot # 3 to Match L-path from Teapot # 1

Transform of Teapot # 1 to Match Teapot # 3

AL= 1, Dr/Dr = 1.11, A= 9.180

Nodes from teapot # 1 Nodes from teapot #3

Transform of Reference Node Closest Measured Node

Node Ai A ak Node Ax av Ak distance error

1 0.00 0.00 0 1 0.00 0.00 0 0.000 0.000

2 -8.15 9.58 0 2 0.00 15.99 0 10.378 0.648

3 -6.73 27.32 0 3 0.00 31.99 0 8.195 0.512

4 2.85 35.48 -1 4 8.00 40.00 -1 6.847 0.605
5 7.64 39.56 -2 5 8.00 40.00 -2 0.562 0.070

6 7.99 44.00 -3 6 8.00 43.99 -3 0.000 0.000
Average Error = 0.30

Worst Error = 0.64

Table 8-13: Correspondence and Distances for Transform of

L-path from Teapot # 1 to Match Teapot # 3

* Table 8-15 shows the result of transforming and matching the L-nodes from the I.-path in teapot

#1 to the L-path from teapot #4. The correspondence between L-nodes in this table is different

than those for the match from teapot #4 to teapot # 1. in this case the worst case error was 0.901,

which is less than a sample. The average error. 0.48 is also smaller in this case. Node 2 from teapot

# 1. which gave the largest worst case distance in table 8-14 was not found to be a closest neighbor to

* any of the L-nodes form teapot 4. Node 3 from teapot #4, which appeared to be spurious. actually

fell within 0.552 samples of a L-node 3 from teapot #1.

The I.-path for the right shadow in teapot #2 is shown in figure 8-28. The result of matching this

L1-path to that of teapot # I is shown in table 8-16. lDespite the change in scale of 1.14 between these

* two images these two L-paths have exactly the same lengths and orientations. Differences in position
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78 M* <8>
(145,81)

Teapot #4

dL= 3

D =36.2

Angle = 264 68 L <8>
(0,16,0)

51L<8> - 45L<7>

O- (-8, 24,0) (0, 24,-1)

45 L <6>
(0,32,-2)

50 M <6>
(-4,36 -2)

52 M* <5>
(-4, 36, .3)

Figure 8-26: L-path from Teapot #4

relative to the sample, however, cause L-nodes 4 and 5 in these L-paths to each be off by 1 sample at

their levels.

Figure 8-29 shows the [-path from teapot #5. This image is scaled by a factor of 1.14 and rotated
by -15 from teapot #1. "be M*-nodcs in the L-paths occur such that there is an angle of 37.40

between them. The reader may recall that teapot #5 had an M*-nodc that occured at level 9, when it

was expected to occur at level 8. As a result, this l-path spans 4 levels. This l.-path also has two

L-nodes that are -2 levels below the root M*-node. 'lle results which this had on finding the

correspondence is shown in table 8-17.
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C

75 M* <8> G1:
78M* <8> - (161,113)

(145,81)

67 L (8>

(-8,8,0)

O 68L<8>
(0,16,0)

-- L <8>

51 L <8> --- 45 [77> (-8,24,0)

6 (-8,24,0) (0,24,-l)

45 L <6> 35L<7>

(0,32,-2) - -- (0,32,-i)

50 M <6> 39 M<6>
(-4,36 -2)-- (4,36 -2)

2 M* <5> 41 M* <5>
(-4, 36,-3) (4,40,-3)

Teapot #4 Teapot # 1

0 Figure 8-27: l-path Correspondence:
L-Path from Teapot #4 Transformed to Match l.-path from "reapot #1

As can bc seen from table 8-17, the alignment of the highest level M*-node from teapot #1 with

that of teapot #5 caused several of the [.-nodcs from teapot # to find their nearest neighbor at a

6 lower level. Such "across level" matches add a weight of I sample to the error distance. Both

L-nodcs 2 and 3 from tcapot # found L.-node 3 of teapot 5 to bc thc closest ncighbor after alignment.

L-node 3 from teapot # 1 had to look up onc lcvel to find this match, with an crror of 1.090 samples.

Node 4 from teapot # I also found its closest neighbor from teapot #5 in an upper level, giving an
error of 1.269 samples. Partly as a result of all the across level matches, the average error was 0.85
samples and the worst case error was 1.37 samples.

I
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Transform of Teapot # 4 to Match Teapot # 1

,L = 0, Dm/D, = 1.10. 48 = 24.100

Nodes from teapot #4 Nodes from teapot # 1

Transform of Reference Node Closest Measured Node

Node ai A0 ak Node Ax av ak distance error

1 0.00 0.00 0 1 0.00 0.00 0 0.000 0.000

2 3.70 17.36 0 3 -8.00 24.00 0 13.456 1.189

3 -3.12 27.90 0 3 -8.00 24.00 0 6.246 0.552

4 5.56 26.04 -1 4 0.00 31.99 -1 8.145 1.018
5 7.41 34.73 -2 5 4.00 35.99 -2 3.642 0.643

6 4.00 39.99 -2 5 4.00 35.99 -2 3.999 0.707
7 4.00 39.99 -3 6 4.00 40.00 -3 0.000 0.000

Average Error = 0.58

Worst Error = 1.18

Table 8-14: Correspondence of Transformed L-nodes from Teapot #4

to L-nodcs from Teapot #1

Transform of Teapot # 1 to Match Teapot # 4

aL = 0, Dn/Dr = 0.90, 10 = -24.100

Nodes from teapot #1 Nodes from teapot #4

Transform of Reference Node Closest Measured Node

Node a a ak Node Ax Av Ak distance error
1 0.00 0.00 0 1 0.00 0.00 0 0.000 0.000

2 -8.55 5.54 0 1 0.00 0.00 0 10.194 0.901

3 -11.56 19.64 0 3 -8.00 24.00 0 5.628 0.497

4 -6.01 28.19 -1 4 0.00 24.00 -1 7.339 0.917
5 -3.24 32.47 -2 5 0.00 31.99 -2 3.282 0.580

6 -4.00 36.00 -3 7 -4.00 35.99 -3 0.000 0.000
Average Error = 0.48

Worst Error = 0.91

Table 8-15: Correspondence of Transformed L-nodes from Teapot #1

to L-nodes from Teapot #4

8.5.5 Summary of L-path Matching Examples

The first example presented above was the match of the L-paths between teapot # 1 to teapot #3.
Tiis illustrated matching between images when the object has been scaled by close to VT" in size. In

this example, there was a one-to-one correspondence between the Lnodes from the two images, for

both the case when the L-path from teapot #1 was scaled and rotated and the nearest neighbor was

sought from teapot #3 and when the L-path from teapot #3 was scaled and the nearest neighbor

from teapot # 1 was sought. In both cases all of the correspondences were found within one sample.
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70 M* (8> Q
(185,153)

Teapot # 2

dL =3 54L<8>
(-8,8,0)

D = 40.19

Angle = 264

34 L <8>

(-8, 24,0)

27M(<7>
(0,32,-1)

34 M <6>
(0,40,-2)

36 M* <5>
(4,40,-3)

Figure 8-28: L-path from Teapot #2

In the third and fourth examples, the L-path from teapot #1 was matched to that of teapot #4.

Teapot #4 is of the same scale as teapot #1. but rotated by approximately -15 , The difference in

position of the terminating M*-nodes led to a differencc of angle between the two l-paths of

approximately 240. Also, the I.-path from teapot #4 was 0.90 the length of the one from teapot #1.

This difference in length and orientation led to a difference in the number of L-nodes in the two

L-paths. There was not a one-to-one correspondence in the matches of the two L-paths. When the

l.-path from teapot #4 was scaled and rotated to match the one from teapot # 1. two of the l.-nodes

found their nearest match more than one sample away, with the worst being 1.189 samples away. The

avcragc distance was 0.58 samples. When the 1-nodes from teapot # I were compared to those of

teapot #4, the worst case matches was 0.91 samples and the average error was 0.48 samples.
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Transform of Teapot # 2 to Match Teapot # 1

AL= 0. D/D r = 1.00. A= 0.000

Nodes from teapot #2 Nodes from teapot # 1

Transform of Reference Node Closest Measured Node

Node ai a ak Node Ax Av ak distance error

1 0.00 0.00 0 1 0.00 0.00 0 0.000 0.000

2 -8.00 8.00 0 2 -8.00 8.00 0 0.000 0.000

3 -8.00 24.00 0 3 -8.00 24.00 0 0.000 0.000

4 -8.00 31.99 -1 4 0.00 31.99 -1 8.000 1.000

5 0.00 40.00 -2 5 4.00 35.99 -2 5.656 1.000

6 4.00 40.00 -3 6 4.00 40.00 -3 0.000 0.000

Average Error = 0.33

Worst Error = 1.00

Table 8-16: Correspondence of L-nodes and Distances for Transform of

L-path from Teapot # 2 to Match Teapot # 1

In the next matching example the L-path from teapot #2 was matched to that of teapot #1.

Teapot #2 is 1.15 larger than teapot #1. The two L-paths had exactly the same length and

orientation. All of the L-nodes except two found their nearest neighbor at a distance of 0.0 samples.

These two L-nodes found their nearest neighbor 1.0 samples away.

In the final example, the L-path from teapot #5 was compared to that of teapot #1. Teapot #5 is

rotated by -150 and scaled by 1.15 from teapot # 1. The principal M*-node in teapot #5 was one

level higher than expected, and this had a big effect on the matching of these two L-paths. Many of

the nearest neighbors in thios example were found across level.

Our conclusion from these experiments is that the L-path matching procedure and similarity

measure described above gives a reasonable estimate of the of the similarity of L-paths from two

images. The worst mismatch between individual L-nodes in all of these examples was 1.37 samples

while the worst average error distance was 0.85. This matching procedure gives the ability to

compare L-paths from any orentation and length, and spanning any number of levels. The simple

similarity measures of worst distance and average distance provide a useful measure of the similarity

of L-paths from two images.
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82 M*9> )
(177,129)

Teapot 5

dL= 4

D = 36.87

Angle= 257 468 L <8> 62L <9>
(-16,16,-1) (0, 16,0)

36 L <7> 4
(-8, 24,-2)

38 M <7>
(-8,32 -2)

42 M <6>
(-8,32 -3)

43 M* <5> 0
(-8, 36, .4)

Figure 8-29: L-path from Teapot #5
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Transform of Teapot # 5 to Match Teapot # 1

aL = -1. Dm/D r = 1.09. A1 = 37.42

Nodes from teapot #5 Nodes from teapot # 1
Transform of Reference Nodc Closest Measured Node

Node Ai - a Ak Node ax Ay Ak distance error

1 0.00 0.00 0 1 0.00 0.00 0 0.000 0.000
.2 5.59 16.52 0 3 -8.00 24.00 0 15.516 1.371

3 -10.92 22.11 -1 3 -8.00 24.00 0 8.723 1.090
4 0.13 27.58 -2 4 0.00 31.99 -1 7.178 1.269

5 2.93 35.84 -2 5 4.00 35.99 -2 1.080 0.191
6 2.93 35.84 -3 5 4.00 35.99 -2 4.143 1.035
7 4.32 39.97 -4. 6 4.00 40.00 -3 2.847 1.006

Average Error = 0.85

Worst Error = 1.37

Table 8-17: Transform of L-path from Teapot # 1 to Match Teapot #5
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Chapter 9
Discussion

This chapter presents a discussion of applications of the DOLP transform and a discussion of how

the properties of the representation for gray scale shape could be proven with experiments.

9.1 Applications of the DOLP Transform

The DOLP transform, in both its 1-D and 2-D form, can be useful as a representation for a variety

of applications requiring signal detection or signal description. Characteristics of the DOLP

transform that make it useful in signal detection situations are:

e It provides a function for detecting pulses that is not dependent on the sharpness of the
boundary or the uniqueness of the amplitude of the pulse:

* It separates pulses of different durations so that they may be detected independently;

* It provides a way of detecting a pulse whose width is not known a priori;

* It provides a way to find the resolution at which some desired signal occurs;

The following paragraphs elaborate on these characteristics.

9.1.1 Detecting Ill-defined Pulses

The 10! IP transform provides a technique for detecting pulses in 1-1) signals and regions in 2-D
signals which is not dependent on the sharpness of the boundary of the pulse or region. Indeed,

within the l)OLP transform the boundary is a separate signal at a higher resolution. In a I-D signal

this ability can be used to find blurred pulses of a particular frequency, even in the presence of noise.
For a 2-1) signal the I)OI.P transform provides a simple technique for detecting and describing small

2-D regions. A 2-13 region will appear as a local maxima in the DOLP ransfrom. This maxima may

be tracked in consecutive frames without a search process.

The lI)0li transform is also useful flr detecting the orientation of a surface from texture cues. An
image texture is usually composed of elements at a particular set of sizes. In many natural textures,

the shapes of the individual elements may be random. If the size of the physical objects which
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correspond to the regions is known, the distance to the surface may be inferred from the size of the

texture elements. Furthur-more the orientation of the surface may be inferred from the gradient of

the size. For either process, the size of the the texture elements may be measured by detecting local

maxima in the 3-space of the DOLP transfrom. The level at which the maxima occurs gives an

estimate of the size of the clement. This simple detection scheme will even work when the shapes of

the individual elements vary randomly.

9.1.2 Detecting Pulses of Different Durations

[he DOLP transfrom separates a signal into band-pass components. Each band-pass channel

responds to signals of a particular range of durations ( in I-D ) or widths ( in 2-D ). This property can

be used to detect overlapping signals of different durations which are superimposed in the same

image. For exunple, consider printing on a textured or nonuniform surface, such that the patterns or

blotches on the surface arc much larger than the printed letters. A DOLP transform of the image will

separate the characters of the writing from the pattern on the papers, allow either the pattern or the

writing to be detected by thresholding.

9.1.3 When Width is not known A-Priori

The DOLP transform channels are sensitive to frequency ranges which are exponentially spaced

and cover the range from the smallest to the largest signal representable in the image. This property

can be useful for detecting a signal whose width ( or duration ) is not known a-priori. Such a signal

will result in a local maximum in at least one of the DOLP channels.

9.1.4 Automatic Focus

When a camera is out of focus the effect is the same as convolving a low-pass blurring function

with the image. It is possible to measure whether a lense is moving toward or away from correct

focus by detecting the change amplitude with which a high frequency pattern ( e.g. a thin bar ) is

detected by a I)OLP transform channel. In the case where the scene does not contain an artificial

focusing pattern of known spatial frequency it is possible to servo the focus from the highest

frequency level at which significant signal energy is observed in a DOLP transfrom.

9.2 Evaluating Claims

This research was undertaken to show that it was possible to resprescnt an image with a set of

band- -ass filters and to determine the properties of such a representation. This research was

undertaken with very limited resources. This resource limitation has restricted the investigation to

forming the representation of only a few images.

The research has gone well beyond its original goals: we have shown that it is not computationally
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prohibitive to ompute the convolution of an image with an expontially spaced set of band-pass

filters: we have shown that such a set of convolutions can be organized into a reversible transform;

we have shown that the image shapes can then be representaed by detecting peaks and ridges in the

band-pass images; We have shown that these peaks and ridges can be detected by local processes.

9.2.1 Claims Concerning the Representation for Shape

The primary claim of this dissertation is that the representation of a shape based on the 2-D

Sampled DOLP transfrom which is described in chapters 6 and 7 can be matched efficiently. A

secondary claim is that this representation can be matched regardless of changes in the size, position,

or 2-space orientation of the shape.

The ability to match hierarchically from global to local is intrinsic to the structure of the

representation. In chapter 8 we have demonstrated how this matching is done. Having such a

representation does not completely solve the problem of how to best do such matching. Issues of

how to organize the search for a match and what criteria to use to measure the over all goodness of

the match must also be settled. This representation presents the data in a structure that allows a

matching procedure to procede hierarchically, and to use the results of a each match to constrain the

search for matching features at a more local level.

The hierarchical nature of the representation is intrinsic to the DOLP transfrom: it can not be

disputed. To prove the usefullness of such a representation for matching, it is necesary to develop a

matching algorithm based on the representation. The ability of the algorithm to produce correct

results must be demonstrated in a large number of different images. This will provide proor" va the

technique works.

The computational complexity of the matching algorithm must then be analyzed. The resulting

measure of computational complexity should then be compared to the complexity of other matching

algorithms.

9.2.1.1 lnvariance to Size and Rotation

Experiments have shown that the representation composed of M-nodes. 'M*-nodes. L-nodes and

P-nodes is subject to cylic distortions when a pattern shifts in position, size or orientation. As a shape

increases in size, the M-nodes. [-nodes, and M*-nodes must make the transition to a higher level in

discrete steps. Since these transitions are not constrained to occur simultaneously, the specific

configuration of nodes does change. This is a cyclic distortion; after the change in scale has advanced

by a factor of V2", the pattern will have returned to its starting configuration. ihe effects of change

in position are similar: as a pattern moves over a distance which is one sample rate at the level of its

highest M*-node. the M-nodes, l-nodes, M*-nodes and P-nodes in the representation move to the

next sample at in discrete steps that are not constrained to occur simultaneously. However, after the

pattern has shifted by the distance of one sample at any level, all of the nodes at the level and lower

4 will have returned to the same configuration. This behaviour is suggested by reasoning and

confirmed with experiments with squares and rectangles. The exception to the cyclic degradation

from a position shift occurs when a pattern shifts closer ( less than its diameter) to a second pa em.

4
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It is possible to construct a second, more abstract, description which comoiensates for the cyclic

distortions. This description, described in chapter 8, is composed of M-paths. M*-nodes. and L-

paths. While this representation is not subject to the cyclic distortions, there remain certain illusions

which can alter the representation of a shape as it undergoes a transformation in size, position, or

C orientation. So far all of the illusions which have such an effect also cause distortions in the

perception of the form by the human visual system.

.I
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Chapter 10
Summary and Conclusions

This chapter presents a summary of the contents of the preceding chapters, a discussion of the

results presented in each chapter, and the salient conclusions that can be drawn from these results.

10.1 Major Results of this Dissertation

This dissertation presents results in three areas.

1. A reversible transform ( The Difference of Low Pass or DOLP transform ) for detecting

and mathematically representing signals of any number of dimensions. Signals are

filtered into exponentially-spaced spatial frequency bins by convolution with circularly

symmetric band-pass filters. The filters arc size-scaled copies of a low-pass filter minus

the same filter scaled larger by a scaling factor, S (typically V2). This transform resolves

a signal into components of different spatial frequencies.

2. Techniques for greatly speeding up the calculation of a DOLP transform using

resampling and cascaded filtering with expansion.

3. A representation for 2-D gray-scale pictures, based on the sampled DOG transform,

which greatly simplifies matching of picture information for structural pattern

recognition and stereo interpretation.

This dissertation may be divided into the following sections:

9 Background Material (Chapters 1, 2 and 3);

* Measurement, detection and mathematical representation of nonperiodic signals (
Chapters 4 and 5);

* Fast computation techniques for the detection technique (Chapter 6);

* Converting the mathematical representation to a symbolic representation which describes

gray-scale shape heirarchically by spatial frequency ( Chapter 7 ):

9 Examples of the representation and its use for matching, including demonstrations of the

invariance of the structure of a description to the size and orientation of the pattern

(Chapter 8).
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10.2 Summary of Background Chapters

Chapter 1 introduced the problem context for this research: model based recognition of 2-D

patterns and 3-D objects by matching structural descriptions to prototypes. This chapter also

contains a discussion of the methodologies used in this research and a summary of the results.

Chapter 2 reviewed related work on the problems of measuring and representing 2-D signals. This

chapter began with a discussion of the two popular approaches to image description: edge detection

and region segmentation. Both approaches are based on the assumption that an image is composed

of approximately uniform regions. Careful examination of most images of "real world objects" in

unconstrained lighting shows this assumption to be inaccurate. 1his chapter also described

inadequacies in the representations produced by both of these approaches:

* the description of shape in terms of small events,

e the inability to describe gradual transitions in intensity, and

e the inability to describe textured regions.

A number of detection functions for edges are then described. Thwas was followed by a review of

several multi-resolution algorithms that have been used to solve various problems involving two

dimensional signals. The chapter ended with a review of two representation techniques which give

object-centered descriptions of shape.

Chapter 3 provided a brief review of mathematics and terminology from the field of digital signal

processing which are employed in later chapters. Definitions were presented for convolution and

correlation, the two operations were shown to be the same for a symmetric filter, and correlation was

shown to be equivalent to a sequence of inner products. The transfer function of a linear operator

was derived based on the properties of the cigenfunctions of linear systems. Resampling, aliasing,

and the 2-D Nyquist boundary were then described. The VY resampling operation was defined and

its effects on the frequency content of an image were described. Chapter 3 ended with a review of the

parameters that are commonly used to specify a digital filter.

10.3 Measurement, Detection and Mathematical Representation of
Non-Periodic Signals

Chapter 4 described the foundation on which the techniques described in the later chapters are

based. Chapter 4 began by describing the concept of a parameterized family of detection functions.

T'iis idea was conceived early in this research and led to the development of the I)Ol.P transform.

Chapter 4 then reviewed principles for the design of detection functions which arc to be used to

detect and describe non-periodic signals using ridge and peak detection. These principles were

conceived early in this research and played a key role in the development of the I)O.LP transform:

they served as a guide which directed the research. "llcse principles also show die assumptions on
which the research proceeded.
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One of the major innovations resulting from this research is the Difference of Low-Pass (DOLP)

transform, described in chapter 5. The DOLP transform consists of a set of exponentially size-scaled

band-pass filters which are formed by subtracting a sequence of size-scaled low-pass filters. The

DOLP transform expands an N point signal into Log(N) band-pass signals, where N is the number

of samples in the signal, and S is the scale factor for size scaling the filters (typically V21). The

band-pass signals, and a convolution of the largest low-pass filter with the signal may be added

together to recover the original signal. Thus the DOLP transform is reversible; it preserves all of the

information in a signal. The DOLP transform separates a signal into overlapping frequency channels.

This has the effect of decomposing a signal into components of different sizes, even if the boundaries

of the components are poorly defined. The configuration of peaks in the DOLP transform of a signal

describes its components in a tree whose structure is invariant to the scale of the signal.

The DOLP transform may be defined for signals of any dimensionality, and may be computed by

analog filters as well as digital filters. Based on this dissertation, a 1-D form of DOLP transform has

been recently used to detect and discriminate defects in the coatings of florescent light bulbs

[Handelsman8l]. An investigation is being launched into the use of a form of DOLP transform for

tracking formants in speech spectograms. Another effort is being started to investigate the use of a

form of DOLP transform to describe range data from a depth sensor, Also, we have recently

proposed the use of a 3-D form of DOLP transform to represent 3-D shape in terms of primitives

which are fuzzy spheres.

As the band-pass impulse responses are scaled larger in size it becomes possible to resample the

band-pass signals at a rate proportional to the scaling of the band-pass filter. This resampling can

greatly reduce the complexity of computing the DOLP transform as well as the amount of storage

required. Resampling at a rate proportional to the scaling of the band-pass impulse response can be

designed so that the no information is lost to the description from aliasing, while the computational

cost is reduced from O(N 2) to O(N Log N) and the storage requirements are reduced from O(N Log
N) to 3N. (N is the number of sample points in the image.) The resampled DOLP transform was also

defined and described in chapter 5.

10.4 Techniques for Fast Computation of a DOLP Transform: The

DOG and Sampled DOG Transforms

Chapter 6 concerned techniques for which were developed in this research to greatly reduce the

cost and speed of computing a 2-1) DOI.P transform. Two properties of the Gaussian function can

be used to obtain substantial decreases in the cost of computing a DOLP and a sampled DOLP

transform:

1. the Gaussian auto-convolution scaling property, and

2. The separability of the circularly symmetric 2-D Gaussian function.

The Gaussian auto-convolution scaling property provides that when a Gaussian function is convolved

with itself, the result is the Gaussian function scaled larger in standard deviation by a factor of Vr'.

ihis suggests that the I)0I.P transform may be speeded up by producing each low-pass image from
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the previous low-pass image by convolving by the appropriate Gaussian function. In fact, the DOLP

transform may be reduced in cost from O(N2) multiplies to O(N Log N) multiplies by using an

additional technique for scaling a Gaussian function by V2: The V'" expansion function. The

\2 expansion operation maps each row of a function on a cartesian sample grid onto each diagonal

of a \2 sample grid. '1lle expanded function is zero or undcfincd for points between those on the

VT grid. This expanded Gaussian filter has a transfer function with a Gaussian center-lobe which is

scaled smaller (in frequency) by a factor of V2. 17herc are also reflections of this center lobe in the

four corners of de (u. v) Nyquist plane. By proper choice of filter parameters. these reflections can be

formed such that they fall over a region of the auto-convolved Gaussian's transfer function where the

response is very small (i. e. < -70 dB). Thus. when the two functions are convolved, the center lobes

are attenuated to a very small response ( < -100 dB in our examples).

By repeated VT expansion the original filter may be scaled to the same size as the cumulative

low-pass impulse response at each level. 'Thus each low-pass image for level k + 1 can be formed by

convolving the low-pass image at level k with a copy of the low-pass filter that has been expanded k

times.

An algorithm for computing a DOLP transform using Gaussian filters, auto-convolution, and

expansion was described in section 6.2. This algorithm, called "Cascaded Convolution with

Expansion", produces a form of DOLP transform ( the DOG transform) in O(N Log N) multiplies.

Further speed-up, and a reduction in storage requirements are possible by including

VT resampling in the algorithm. This algorithm, called "Cascaded Convolution with Resampling",
gives a form of sampled DOLP transform, the SDOG transform, in 3 X, N multiplies, where X, is

the number of coefficients in the kernel Gaussian filter. As with the Sampled DOLP transform, 3N

storage cells are required.

Chapter 6 defined:

" The Gaussian function

" 'T'he 2-1) Circularly Symmetric Gaussian filter

" The Gaussian auto-convolution scaling property

" the V expansion operation

* Cascaded convolution with expansion and the DOG transform

" Cascaded convolution with resampling and the SI)OG transform

In this chapter the complexity of the cascaded convolution with resampling was derived. This

complexity was compared to that of computing a SI)OG transform using FF' convolution. Cascaded

convolution with resampling was shown to be more efficient whenever die image signal is larger than

65 x 65 samples.
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Chapter 6 also examined the attenuation of the reflections that result from thb expansion operator,
and the accuracy of the auto-convolution scaling property when used with a finite Gaussian filter

with a circular support. At the end of chapter 6. the impulse responses of the level 0 and level 1
band-pass filters were shown, and linear and log plots were shown of the transfer functions of the

level 1 and level 2 band-pass filters.

10.4.0.1 Conclusions Concerning Signal Detection

The principal conclusions to draw from chapter 6 are that:

" A DOLP transform is not prohibitively expensive to compute.

" A DOLP transform can be implemented using Gaussian filters and cascaded convolution
with expansion such that the computational cost is less than that of a Fast Fourier
Transform.

" Cascaded convolution with expansion can be used to produce a sequence of low-pass
images such that the impulse response with which the images are convolved have

standard deviations which form an exponential sequence, o k = aoa 2 k.

" Cascaded convolution with expansion can be implemented such that the impulse
responses have stop bands which are kept very small, (i. e. < -80 dB).

The work described in chapter 6 could be extended in several ways.

" A substantial speedup ( a factor of 49/18) can be achieved by using the separability
property of the circularly symmetric Gaussian function. However this technique will
result in a slightly higher worst-case stop-band ripple because a square support is needed
for separable filtering. An investigation into the extent of the degrading of the stop band
rejection from this method would be useful. Such an investigation is to be carried out in
the near future.

* The cascaded-filtering-with-expansion algorithm approximates the Gaussian low-pass
filters with an auto-convolved Gaussian convolved repeatedly with expanded Gaussians.
This is illustrated in figure 6-9. The measures which were used to determine the accuracy
of this approximation are somewhat crude. It would be interesting to compute the
standard deviations of the sequence of filters produced in this manner. It would also be
interesting to find a measure for how closely these composite filters approximate true

Gaussian functions.

" The effects of the Gaussian filter parameters R and a have only been examined over a
limited region of the R. a space. This examination showed that for R =4.0 and a = 4.0
the transfer function tapers monotonically along the u and v axes of the spatial frequency
plane to a response of approximately z.ero at the Nyquist boundary points u = *W. v =
0.21 An exhaustive exploration of the effects of R and a would be interesting. However

21The funclion is symmetc and so u and v arc interchangeable.
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on the basis of the experiments that were carried out, it does not appear that such an
exploration would contribute anything to the techniques used elsewhere in this thesis.

10.5 Transforming the SDOG Transform of an Image into A Symbolic

Description

Chapter 7 described a sequence of processes which produce a structural description of the

information in an image. based on a SDOG transform of the image. These processes are:

* the detection of local peaks in each band-pass image,

e the detection and linking of ridge points in each band-pass image,

* linking of peaks between levels to form a tree, and detection of the peaks which are a

local maximum in the SDOG transform.

There arc four types of symbols that are assigned to sample points in the SDOG transform by this

process. These symbols are:

P-nodes: Ridge points within a band-pass level.

M-nodes: Local positive maxima or negative minima within a band pass level.

L-nodes: Ridge points in all three dimensions of the SDOG transform. These are detected
by comparing the values of ridge points at adjacent levels.

M*-nodes: Local positive maxima and negative minima in all irce dimensions of the SDOG
transform. These are detected by comparing the values of adjacent M-nodes in
adjacent band-pass levels.

A local, two-pass peak and ridge detection algorithm is executed for each band-pass level. The
result of this algorithm is set of points marked as P-nodes or M-nodes. P-nodes and M-nodes which

are 8-neighbor adjacent. are linked by two-way pointers. The result is a set of M-nodes which are

connected together by chains of P-nodes. 'l'hese chains of P-nodes are called P-paths. Processes are

then run at each level which remove small loops and fill in short gaps in the P-paths.

The P-paths at each level serve two purposes:

1. They provide candidate puints for L-node detection: and

2. They link together M-nodes which are part of the same visual form.

Sections 8.3 and 8.4 described how the P-path attributes of orientation and length are used to
match small graphs of M-nodcs a band-pass level from two images. The purpose of this matching is

to obtain a one-to-one correspondence between the M-nodes.
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M-nodes servc as markers for distinct features in visual forms. M-nodes occur at several levels for

forms such as corners, ends of bars, and other convex and concave parts in a visual form. They also

denote the presence of forms which are not elongated. Examples of the forms that cause M-nodes are

given in section 7.1 and 7.3. Because M-nodcs denote distinct visual features they provide excellent

tokens for matching images. Correspondence matching in an SDOG transform is a process of

determining the correspondence between M-nodes, M*-nodes, and L-nodes in the descriptions from

two images.

The fact that each band-pass impulse response is a copy of the impulse response from the next

lower level scaled larger by V provides that the M-nodes from adjacent levels occur within two

sample distances of each other. Thus it is possible to connect M-nodes between the band-pass levels

by having each M-nodes search for M-nodes in a small neighborhood in the band-pass image above

it. Such adjacent M-nodes form a two-way pointer between themselves. Sequences of M-nodes at

several levels such that each M-node is connected to one M-node above it and/or one M-node below

it are called M-paths. M-paths that describe a visual form give a tree. At the top levels of the tree

there are M*-nodes that provide an estimate of the size of the visual form. Aligning the M*-nodes

from two images gives an initial estimate of the relative position and size of the two visual forms. The

relative orientation is provided by determining the correspondence of the M-nodes, M*-nodes and

L-nodes in lower levels of the tree. Such matching is described in Chapter 8.

Forms that arc long and thin result in ridges at several adjacent band-pass levels. Comparing the

values of ridge points at adjacent levels gives ridge points in the three dimensional SDOG transform.

The 3-space ridge points are labeled as L-nodes. L-nodes are linked to adjacent L-nodes with

two-way pointers to form an L-path. Except for certain degenerate forms, L-paths begin and end at

M*-nodes. An L-path describes the points along the center of an elongated form. The level of each

L-node gives an estimate of the width of the form at that point along the center of the form. The

alignment of the M*-nods at each end of an L-path provides an initial estimate of the best alignment

of the L-paths from two images. A nearest neighbor matching rule was described for comparing two

l-paths in section 8.5.

A conclusion that can be drawn from the algorithms described in chapter 7 is that a a structural

description of an image can be constructed without the use of explicit measures of directionality. The

issue of whether a measure for directionality was needed to detect ( or even define what is meant by)

ridges in each band-pass image was raised at the outset of our investigation into techniques for

constructing a description of an image from a DOI.P transform. The outcome was that such a

measure is not necessary: a two pass process can be used to detect ridges. In the first pass of this

process samples are linked to their largest neighbors. In the second pass. samples which link to each

other are marked as ridge nodes. Tbis process was found to be sufficient for detecting ridges.

A fundamental reason why the processes described in chapter 7 work is the smoothness of each

band-pass image. 'Ibis smoothness is a result of the band-pass characteristics of the filters used in the

IXOLP transform. 'le DOLP band-pass filters sufficiently constrain the spatial frequency content of

each band-pass image so that relatively simple processes may be used to detect peaks and ridges in

each image. 'Ibe %2 scaling between filters constrains the changes between adjacent band-pass

images so that nearest neighbor comparisons may be used to detect the local peaks and ridges among

the band-pass images in the transform space.

i..
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10.6 Examples of Matching

Chapter 8 demonstrated how the representation may be used to determine the correspondence of

forms in two images, even when a form has been rotated and/or scaled from one image to the next.

This chapter started with a discussion of the use of correspondence matching for structural pattern

recognition and for depth measurement from stereo pairs of images.

A procedure for determining the correspondence of M-nodes and L-nodes in the desciptions of

two images of similar objects was then summarized. A set of test images of teapots were then

presented. These test images were formed at 3 distances and 2 image-plane orientations. They were

formed to test and demonstrate the invariance of the representation to changes of scale and image

plane orientation.

A discussion of dctermining the correspondence by matching M*-nodcs and M-paths was then

prescnted. This discussion describcd how the highest level M*-nodes may be used to obtain an initial

estimate of the relative position and size of the form in the two images. It thcn describcd how the set

of M-nodes which are connected by P-paths at each level may be matched. This matching employs

the distance and relative orientations between the connected M-nodes as the principal feature in the

matching. The process appears to exhibit only a linear growth in complexity as the number of

M-nodes at each lower level increases, because the matches at each level constrain the matches at the

next lower level.

Examples were then presented which show matching of the teapot images from 3 distances (sizes)

and 2 orientations. These examples showed the cyclic degrading of the description that occurs as

scale is increased by a factor of V2. The examples also showed that matching is possible despite this

degradation.

This section closed with an example of matching between a pair of stereo images. The

correspondence of M-nodes in the upper levels of a pair of images of a paper wad was shown.

The last section of chapter 8 described a process for aligning L-paths. based on the correspondence

of their terminating M*-nodes. and a simple measure for the similarity of L-paths. The alignment

function is a simple linear scaling and rotation of the entire i.-path, based on the relative distances

and orientations between the M*-nodes at each end of the L-paths. 'le similarity measure is based

on the principle that for each 1.-node in the scaled and rotated L-path. the nearest l.-node in the

second 1.-path is determined. The 1.-path similarity is then measured by the average and the worst

case distances between l.-nodes. Example of this matching were given using an I-path that describes

a shadow from 5 of the teapot images.

Much work is needed in refining and developing the matching processes described in chapter 8. A

thorough development of matching techniques using descriptions based on the D)O.P transform is

much too large a problem to be encompassed under the limited scope of this dissertation. It is

however a timely and very important problem.
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Thc matching examples that were shown in chapter 8 were intended to both illustrate the size and

rotation invariance of a structural description based on a DOLP transform, and to show kinds of

matching which can be done with such descriptions. In some sense these were the results of a

preliminary investigation. These preliminary results were promising. M*-nodes and M-paths were

found to be particularly useful in finding the correspondence of components in two descriptions. We

are preparing to launch a thorough development of matching techniques for descriptions based on

the DOLP transform within the problem domains of structural pattern recognition and stereo image

correspondence. This promises to be an exciting and fruitful investigation.

4

I
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Aprpendix A
Selection of Fiter Parameters

This appendix describes the choice of filter parameters, R = 4.0 and a = 4.0, for the experimental

implementation of the SDOG transform which was used to develop the structural representation.

The choice of R and a must balance two opposing constraints. On one hand. the low pass filters

must sufficiently attenuate response at frequencies outside of the Nyquist boundary at each low-pass

level to avoid aliasing from resampling. Such aliassing would result in random errors in the position

of peaks and ridges as well as the detection of spurious peaks and ridges. The filter response can be

made arbitrarily small outside the Nyquist boundary by increasing the number of coefficients of the
filter. (i.e. by increasing R ). It is also possible to adjust the position of the stop band towards the

origin, at the expense of increasing the stop-band ripple, by decreasing the parameter, a.

On the other hand it is desirable to keep the number of coefficients and thus the computational

cost of the SDOG transform as small as possible.

The R parameter determines the cost of a DOLP transform ( Given the size of the image, and the

scaling value S = V ). R should be chosen to be the smallest value which gives acceptable low

levels of aliasing when the low pass images are sampled. The meaning of acceptable remains a topic

of debate. We have suggested that the stop band ripple is acceptable if the magnitude of the worst

case stop-band error is less than the quantization resolution used to reprcsent the samples. In our

actual choice of R and a we were much more conservative than this guideline.

The a parameter specifies the standard deviation of the filter for a given R. Since a controls the

tapering of the coefficients at the boundary of the filter support, it gives a trade-off between the

transition width (AF) and the magnitude of the ripples (8) in the stop band. Increasing a decreases

the size of the ripples in the stop band region while ,naking the transition region wider and moving

the edge of the stop band away from the origin. For any value of R. a should be chosen as large as

possible, so that the stop band ripple is as small as possible. The upper limit for a is the value at

which the largest filter response at the Nyquist boundary is of the same magnitude as the stop-band

ripple.

The first re-sampling occurs at the level I low pass image, where the impulse response of the

low-pass filter is the kernel filter. g(x,y;R,a) convolved with itself. Thus the transfer function of the

composite filter at level 1 is the square of the transfer function of the the kernel filter.

It was decided to design the kernel filter so that the outer edge of its transition region would just
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touch the new nyquist boundary for V2 sampling. This meant that the sampling distance at each

level would be approximately VT smaller than needed to minimize aliasing. This provides a factor
of V_ better positional accuracy in the description, although it tends to make peaks and ridges less
sharp. This also meant that the worst case stop-band ripple would be the square of the ripple in the

kernel filter.

Parameters for the kernel filter were tested to determine:

1. The worst case ripple outside the Nyquist boundary for V2 sampling.

2. The values at u,v = ±w'/2, the four points on the new nyquist boundary that are closest

to the origin.

As a first pass. filters and their transfer functions were computed at each of the 9 points given by

all combinations of:

R E {3,4,5}

a E { 3,4,5 }

These starting values were chosen from earlier experience with circularly symmetric Gaussian filters.
The values obtained for maximum amplitude of stop band ripple (8) and for G(u = w/2,v = w/2)
(This is for the real part of the transfer function) are shown below in table A-1. The symbol N/A is
given for 8 when the ripple did not come to a peak inside the u,v plane.

a = 3.0 a =4.0 a =5.0
S. G{ t/2. r/2) 8,QG{y/2. r/2) 8. G(wr/2.r/2)

R = 3 0.031, 0.025 N/A, 0.063 N/A, 0.109
R = 4 -0.018, 0.013 -0.008,0.011 0.003, 0.021

R = 5 -0.003,0.0111 -0.006, -0.006 -0.002,0.002

Table A-i: Results of Initial Parameter Trial

From this experiment it was learned that R = 3 was not not quite adequate to keep the transition
region within the Nyquist boundary for V2 sampling. R = 5 was rejected because R =4 was judged

to be adequate. The value of a = 4.0 was judged to be the best of these three trial points due to the

closeness of the stop band ripple magnitude and the maximum stop band error. The transfer

functions were then computed fbr R = 4 and a = 3.80 to a = 4.20 in steps of 0.05. The value a =
4.0 was found to put the first zero crossing at the points (u.v) = (±,O) and (0.±yr) , and thus was

selected for use in developing the symbolic description technique described in the chapters 7 through

9.

From the table of values given above it can be seen that the worst case aliasing when the level 1
low pass image is sampled, occurs at (u,v) = (±/2.±/2). 'These points are on the Nyquist
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boundary, and for them the filter response is 0.0112 = .000121 or -78.34 dB down from the maximum

response ( 1.0 at DC). All other aliased frequencies are less than or equal to -.0082 = 0.000064 or

-83.8 dB or smaller. This was judged to be adequate and attention was turned to other matters.

I

I - -- -l ~ l i l i l i l i ini .. ..
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