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Abstract This paper introduces a three-dimensional vol-

umetric representation for safe navigation. It is based on

the OctoMap representation framework that probabilistically

fuses sensor measurements to represent the occupancy prob-

ability of volumes. To achieve safe navigation in a domestic

environment this representation is extended with a model

of the occupancy probability if no sensor measurements are

received, and a proactive approach to deal with unpredictably

moving obstacles that can arise from behind occlusions by

always expecting obstacles to appear on the robot’s path. By

combining the occupancy probability of volumes with the

position uncertainty of the robot, a probability of collision

is obtained. It is shown that by relating this probability to

a safe velocity limit a robot in a real domestic environment

can move close to a certain maximum velocity but decides

to attain a slower safe velocity limit when it must, analogous

to slowing down in traffic when approaching an occluded

intersection.
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1 Introduction

Robots that navigate in indoor, domestic environments face

an environment that encompasses obstacles and uncertain-

ties. Obstacles generally vary in their size and shape and

can be static as well as dynamic. Uncertainty typically arises

from three sources (Berg et al. 2011): (i) sensing uncertainty

due to noisy and false sensor measurements, (ii) uncertainty

about the environment due to (partially) unknown parts of

that environment and (iii) robot position uncertainty due to

localization errors and external disturbances acting on the

robot. In the presence of these characteristics a robot always

needs to guarantee that it is safe, i.e., that it can ensure to

come to a timely stop when a collision is imminent. Safe

navigation can be achieved by moving a robot at very low

velocities, typically below 0.1 m/s. However, by incorporat-

ing knowledge on the environment a robot can move with

higher velocities without becoming unsafe.

A navigation system generally consists of a representa-

tion of the environment, one or more algorithms that search

for a path or trajectory through this environment and gen-

erate motor commands and a policy that coordinates these

algorithms. A three-dimensional representation of the envi-

ronment is a prerequisite to deal with the challenges that a

typical domestic environment poses (Marder-Eppstein et al.

2010). An approximate cell decomposition is a common

and popular approach to represent the environment (Goerzen

et al. 2010; Hornung et al. 2013). Searching and executing

a path in an environment with obstacles and uncertainties is

typically achieved using a planner that finds a path to the

goal that is executed by a reactive algorithm (Goerzen et al.

2010). Such a reactive algorithm controls the robot in real-

time to avoid imminent collisions by stopping or swerving

the robot when an obstacle is known to be on the robot’s

path.
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Fig. 1 A corridor with a doorway that is occluded. In a domestic envi-

ronment this increases the probability of collision for a robot as moving

obstacles such as people can emerge from behind such occlusions

Space that is unknown, due to occlusions and a limited

sensory range, poses a threat to a robot that navigates in

a domestic environment as moving obstacles might emerge

from behind occlusions onto the robot’s path. An exemplary

situation occurs when a robot traverses a corridor as depicted

in Fig. 1. Near unknown space, such as a passage or a door-

way that is occluded to the sensors, an obstacle can suddenly

emerge. This requires the robot to lower its velocity such

that it can guarantee that it will not collide with a possible

incoming obstacle. The robot can increase its velocity when a

confined part of the environment, like the part of the corridor

past the doorway, is known to be free as there is no uncer-

tainty arising from any unknown space. A reactive algorithm

that has no information about this threat can approach at a

velocity that does not allow the robot to detect the imminent

collision and react to it to avoid collision. Hence, analogous

to slowing down in hazardous situations in traffic, a repre-

sentation is necessary that allows the robot to decide when it

is able to move at a certain maximum velocity and when it

must maintain a slower pace to ensure safety.

2 Related work and contribution

To achieve safe behavior some approaches modify the robot’s

planned path or motion using the obstacle representation.

They enlarge obstacles by inflating their representation with

a ‘safe’ distance that encompasses the robot position uncer-

tainty as well as the robot sensing uncertainty (Hsu et al.

2002; Chung et al. 2004). While this may ensure that a robot

keeps a greater distance from obstacles, it may also prohibit

a robot to traverse tight spaces. This is undesirable as tight

spaces such as doorways are typically present in a domes-

tic environment. Other approaches limit the robot’s velocity

based on distance to obstacles on the robot’s path (Linge-

mann et al. 2005) or the amount of clearance on both sides

of the robot (Fox et al. 1997). The former approach will

fail when a moving obstacle emerges from occluded regions,

e.g., a doorway in a corridor as shown in Fig. 1. The latter

approach is conservative in that it will scale down its veloc-

ity in a narrow corridor, while in such a confined part of the

environment the robot could safely drive at higher velocities.

Uncertainties can explicitly be taken into account to

prevent collisions. A range of approaches estimate the prob-

ability of collision of the robot along its path (Missiuro and

Roy 2006; Burns and Brock 2007; Guibas et al. 2009; Berg

et al. 2011; Patil et al. 2012). These approaches plan a path by

sampling the environment for feasible robot configurations

that reduce the probability of collision during the execution of

a path. These approaches result in robot motions with a lower

probability of collision by explicitly considering the robot

position and sensing uncertainty. However, these approaches

do not take into account the uncertainty that arises due to

unknown parts of the environment. In Marder-Eppstein et al.

(2010), a method is introduced that does track the unknown

space in three dimensions. To guarantee safe behavior it is

ensured that the robot never traverses this unknown space.

However, it is assumed that the environment is mostly static,

i.e., it can not ensure safe behavior if an obstacle emerges

from an occluded part of the environment. Furthermore, once

any unknown space is marked as free it will remain free.

This makes the representation over-confident in its assump-

tion that space is free as this space can become occupied

again in a changing environment. Hence, a time-dependent

occupancy probability model is necessary, instead of merely

tracking unknown space.

A more formal approach to assess safety can be found

in literature discussing inevitable collision states, e.g.,

in Fraichard and Asama (2003), Bautin et al. (2010), Althoff

et al. (2010), Bouraine et al. (2012) and Althoff and Dolan

(2014). However, these methods assume that a model of the

future is available but do not consider unmodeled obstacles

occurring from behind occlusions. Other methods to assess

safety and threats can be found in, e.g., Eidehall and Peters-

son (2008) and Althoff and Mergel (2011), but these require

position information of other objects as well.

Finally, some approaches explicitly model the uncer-

tainty that arises due to unpredictable moving obstacles, e.g.,

humans (Philippsen et al. 2006, 2008; Rohrmüller et al.

2008). Moving obstacles are extracted from subsequent sen-

sor readings and their position and velocity is estimated to

obtain a probabilistic model that resembles the risk of col-

lision. A moving obstacle can, however, be occluded up

to an imminent collision. Furthermore, these methods limit
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themselves to a two-dimensional representation of the envi-

ronment and are therefore not suitable for application in a

domestic environment.

Hence, current approaches that deal with uncertainties to

allow safe navigation are not fully suited for a domestic envi-

ronment. Not all present uncertainties are considered in an

integrated approach and they lack an explicit model to deal

with the uncertainty that arises due to occlusions in an envi-

ronment with unpredictably moving obstacles.

This paper contributes a three-dimensional representation

that allows a motion planner to decide when it can move

at a certain maximum velocity and when it must maintain a

slower pace to ensure safety based on the probability of colli-

sion. This is achieved by explicitly representing the multiple

uncertainties that are present in a domestic environment and

using the probability of collision to determine a safe velocity

limit, analogous to slowing down in hazardous situations in

traffic.

3 Environment representation

In this section the proposed environment representation for

safe navigation is elaborated. First, it will be described how

this representation, based on the OctoMap framework (Hor-

nung et al. 2013) and first introduced in Coenen et al. (2014),

uses probabilistic fusion of sensor measurements to be robust

against uncertainty in sensing. Secondly, it is described how

uncertainty due to unknown space is represented if no mea-

surements are received and how the probability of obstacles

appearing on the robot’s path from behind occlusions is repre-

sented using a proactive approach (Alami et al. 2002). These

first two parts results in the representation of the probability

of volumes being occupied by an obstacle. Next, the proba-

bility of the robot occupying a volume is represented using a

model of the robot position uncertainty. Finally, the probabil-

ity occupancy of obstacles and the probability occupancy of

volumes by the robot are combined to represent a probability

of collision. This probability is then related to a safe velocity

limit that the robot must attain in order to guarantee safety.

3.1 Robot sensing uncertainty representation

The OctoMap framework provides a volumetric octree-based

representation of the environment (Hornung et al. 2013).

It models the environment as free, occupied and unknown

cubic volumes or so-called voxels. Sensor measurements

are integrated probabilistically using occupancy grid map-

ping (Moravec 1988). This technique allows a probabilistic

fusion of multiple sensor measurements making it robust to

noisy and false sensor measurements. Also, it allows the inte-

gration of measurements from multiple, different sensors.

The occupancy of a voxel is updated as measurements are

received. Each voxel n, with a resolution r , has a probability

P(n) of being occupied. The occupancy probability of all

volumes is typically initialized to unknown, i.e., the uniform

prior P(n) = 0.5. Then, P(n) is updated based on a sensor

specific model as measurements z1:k up to time step k are

received. The update rule for the estimated voxel occupancy,

using the log-odds (L) notation (Moravec 1988), is

L(n | z1:k) = L(n | z1:k−1) + L(n | zk), (1)

with

L(n) = log

[

P(n)

1 − P(n)

]

, (2)

where L(n | z1:k) is the estimated log-odds probability of a

voxel given measurements z1:k , L(n | z1:k−1) is the previ-

ously estimated log-odds probability and L(n | zk) denotes

the log-odds probability of voxel n being occupied given the

measurement zk . The update of occupancy probability is typ-

ically performed in log-odds as using additions is faster than

the multiplications that are necessary when (1) is expressed

in P(n).

L(n | zk) relies on a sensor model that relates the sensor

measurements to the occupancy probability of a voxel:

L(n | zk) =

{

lfree, if n is marked as free

locc, if n is marked as occupied
(3)

Given equally likely measurements (lfree = locc), a voxel

that is marked as free k times needs to be marked as occu-

pied equally many k times before its occupancy probability is

equal again. This makes the representation unable to change

as quickly as the environment. As discussed in Hornung et al.

(2013), the representation can be made adaptable to a chang-

ing environment by limiting the probability in the update

rule in (1) to a lower and upper bound on the log-odds value,

respectively lmin and lmax or pmin and pmax on the probability.

For more details on the update formula and its background

the reader is referred to Moravec (1988) and Hornung et al.

(2013).

3.2 Environment uncertainty representation

The update rule introduced in (1) models the occupancy

probability of voxels under the assumption that they receive

measurements. However, large parts of the environment typ-

ically yield no measurements as they are occluded to the

robot’s sensors. It is important that the update rule in (1)

also describes the occupancy probability of voxels if no mea-

surements are received. For example, consider a robot that
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moves in an environment such that all voxels n in the repre-

sentation are receiving measurements, either marking voxels

as free or occupied. Then, given a static environment, the

occupancy of the voxels will approach the threshold, i.e.,

either P(n) = pmin or P(n) = pmax. However, it is incor-

rect to assume that the occupancy of those voxels that do

not receive measurements does not change if the environ-

ment is dynamic. In other words, such a representation is

over-confident in its assumption that space is either free or

occupied. Hence, the occupancy of a voxel is more realisti-

cally modeled to become unknown again as no measurements

are received for some time.

A time-dependent occupancy probability model is added

to the representation to deal with this environment charac-

teristic. Instead of only updating a voxel n if a measurement

is received, it is updated at every time step k that the envi-

ronment is updated. Thereto, the sensor model, introduced in

(3), can be extended with the occupancy probability update

rule

ldec = (k − kn
z,last)�dec if n is not marked, (4)

where kn
z,last is the time step at which a voxel n received

its last measurement update and �dec indicates the rate of

decay of the probability of a voxel n in ldec/k. The value of

the log-odds value ldec depends on the occupancy of a voxel

according to:

ldec =

{

+ldec, if l < 0, i.e., P(n) < 0.5

0, if l > 0, i.e., P(n) > 0.5
(5)

Hence, if a voxel receives no measurements and P(n) > 0.5

it gradually turns to unknown again, i.e., P(n) = 0.5. This is

visualized for a voxel that is at the lower probability thresh-

old pmin in Fig. 2. The update rule in (5) does not let the

occupancy probability of an occupied voxel decrease from

P(n) > 0.5 to unknown as no measurements are received,

0 2 4 6 8 10 12 14 16 18 20
0

pmin

0.2

0.3

0.4

0.5

free measurements no measurements

k

P
(n

)

lfree = 0.3

∆dec = 0

∆dec = 0.15

∆dec = 0.30

Fig. 2 The occupancy probability of a voxel P(n) decreasing with

lfree = −0.3 according to (3) as it is marked as free at the first ten time

steps and increasing with ldec according to (5) for various �dec as it is

not marked for ten following time steps

since this would require more knowledge of obstacles to dis-

criminate between them. For example, a voxel that belongs to

a static obstacle, e.g., a wall, is more likely to remain occupied

than a voxel that belongs to a moving obstacle, e.g., a human.

The update rule in (5) is based on a model that is linear in log-

odds, similar to the sensor measurement update model in (1).

Therefore, the rate of decay �dec can intuitively be chosen as

a rate at which measurements are discarded again, such that

the probability returns to unknown. For example, a measure-

ment that decreases the probability of occupancy is discarded

at the next step the environment is updated and no measure-

ment is received by choosing �dec = lfree. Hence, it takes an

equal amount of time steps to increase from P(n) = pmin

to P(n) = 0.5 if no measurements are received as it took to

get from P(n) = 0.5 to P(n) = pmin when this voxel was

marked as free.

The representation of occupancy probability is three-

dimensional. However, to keep the computational complexity

of the representation tractable the three-dimensional grid of

voxels is projected down to a two-dimensional representa-

tion. Therefore, each column of voxels in the occupancy map

is projected down to a grid cell with occupancy probability

p according to

Pc = max
i

P(ni ), (6)

where c is a grid cell with resolution r . Taking the maximum

occupancy probability is a conservative strategy that is nec-

essary for safe navigation as it ensures that the robot never

underestimates the possibility that a voxel is occupied at any

height in a column. Other possibilities would be summing the

probabilities or taking the average. However, summing the

probabilities of each voxel would make the robot too con-

servative: if Pi = pmin∀i , the cell would probably be free

but the robot would still consider it unsafe. The cell proba-

bility pc could even exceed 1. Averaging the probabilities of

all voxels in a column, on the other hand, would lead to an

overconfident robot: if only a single voxel would be occupied

with probability P = pmax and the remaining voxels of the

column would be free, i.e., P = pmin, taking the average

would indicate that the cell is more likely to be free than to

be occupied, while the occupied voxel actually indicates that

it is probably not safe to go there.

As mentioned, in a domestic environment an obstacle can

move on the robot’s path from behind an occlusion, as illus-

trated in Fig. 1. The occupancy probability model that has

been introduced so far must be extended with a velocity

model to deal with this. This model is based on a proac-

tive approach that is introduced in Alami et al. (2002). By

proactive it is meant that the robot is always expecting that

a moving obstacle can appear on the robot’s path from an

occluded region. This is achieved by inflating the occupancy
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dobs = tstop · vmax
obs

occluded region

field-of-view
robot

vrob Rs

sensor
range

Fig. 3 An obstacle can appear on the robot’s path out of a region that is

occluded to the robot. To represent this possibility the uncertain region

is inflated with the maximum distance the obstacle can travel within the

time the robot needs to come to a stop

probability of cells in the two-dimensional projected map

that are not marked as an obstacle, as depicted in Fig. 3. The

inflation distance dobs depends on the distance that an obsta-

cle can travel within the time the robot needs to come to a

stop, tstop = vrob/am + td , where vrob is the robot’s velocity,

−am is the maximum deceleration and td is the maximum

update delay that is present before an incoming obstacle is

actually detected. The distance an obstacle can travel with a

maximum velocity vmax
obs is now dobs = tstopv

max
obs , which is

conservative as it assumes that an obstacle will maintain its

maximum velocity. However, this assumption is necessary

as any obstacle trajectory is assumed to be unknown.

The cells of the grid map with an occupancy probability

are inflated with the obstacle inflation distance dobs. A grid

map cell can be affected by the inflation of multiple cells.

Hence, these probabilities must be merged and this is done by

taking the maximum probability of all inflated probabilities.

In practice this means that all inflated cells are regarded as

one potential source of collision risk. By guaranteeing that

the robot is safe in this situation it can also be guaranteed

that it is so in the case of multiple sources of collision risk.

3.3 Robot position uncertainty representation

The uncertainty that is present in the robot’s position is due

to errors in the estimation of the robot’s position relative to

a map of its environment. As is mentioned in, e.g., Choset

et al. (2005), if the initial pose of the robot is (approximately)

known and a localization algorithm solely needs to track the

position of the robot while moving through the environment,

the position uncertainty can be modeled as a bivariate normal

(Gaussian) distribution

x ∼ N2(µ,Σ), (7)

with probability density function f (x|µ,Σ), where the mean

µ is the robot position at x = (x; y) and Σ is the two-

dimensional covariance matrix. For simplicity, it is hereby

assumed that robot has a circularly shaped platform. As a

result, obstacles can be inflated with the robot radius and

the robot can be considered as a point in the configuration

space. The distribution of the robot’s position is consid-

ered within a prediction interval to limit computation. The

occupancy probability of a cell c by the robot P(c, robot)

is approximated by multiplying the value of the probabil-

ity density function at the center of this cell f (xc|µ,Σ)

by r2/s. Here, r2 denotes the surface of cell c and s is

the factor that normalizes the probabilities within the pre-

diction interval s = Σc P(c, robot). The resulting discrete

probability distribution is denoted by Nd(c;µ,Σ). Given a

probability of 1 − α the robot’s position is guaranteed to

be in a certain region A centered around the mean µ. The

region A is an ellipsoid with a ‘radius’ k, given by the rela-

tion (x − µ)TΣ−1(x − µ) = k2 that can be deduced from

(7). Given α, the ellipsoid shaped region A follows from

k =
√

χ2
2 (α), where χ2

2 α is the upper (100α) percentile from

the two-dimensional chi-squared distribution. For example,

for Σ = [0.1 0; 0 0.1] and α = 0.05, the robot’s position

is located with a probability of p = 0.95 in a circle with a

radius k =
√

0.1 · 5.99.

3.4 Combined representation

The environment uncertainty model in Sect. 3.2 and the robot

position model in Sect. 3.3 are combined to obtain a proba-

bility of collision. The probability of a cell being occupied by

an obstacle and the probability of that same cell being occu-

pied by the robot are assumed to be independent. Hence, the

probability of collision, i.e., a cell is occupied by both the

robot and an obstacle, is equal to the product of both prob-

abilities. Now, the probability of collision at a specific cell

can be determined according to

P(collision) =
∑

c∈A

Pc · Nd(c;µ,Σ), (8)

This probability of collision must be related to a veloc-

ity limit vsafe that ensures safe navigation. Thereto, the

maximum velocity must be lowered as the probability of

collision increases, analogous to driving in traffic where the

road becomes dangerous. The maximum velocity can be

derived given that drob + dobs < Rs must always hold to

avoid collision. Here, Rs is the limited sensory range and

drob = 1
2

am(vrob/am)2 +vrobtd is the maximum distance that

the robot travels to come to a stop. Given dobs = tstopv
max
obs ,

the maximum robot velocity is

vmax
rob = −vmax

obs − am td +
√

a2
m t2

d + (vmax
obs )2 + 2am Rs . (9)

One could argue that to be strictly safe the robot must have a

zero velocity in the presence of a nonzero probability of col-

lision. However, the robot must accept some risk of collision
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0 pmin 0.2 0.3 0.4 0.5 0.6 0.7 0.8 pmax 1
0

vthresh

0.4vrob
max

0.6vrob
max

0.8vrob
max

vrob
max

P (collision)
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a
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·
v
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o
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/
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Low risk

Medium risk
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Fig. 4 The safe velocity limit as a n-degree polynomial function of the

robot’s maximum velocity with n = 0.1 (low risk), n = 1.0 (medium

risk) and n = 10.0 (high risk). A threshold velocity, vthresh = 0.2vrob
max,

allows the robot to move at a limited velocity in the presence of any risk

of collision. The robot can be allowed to move faster by taking more

risk

during navigation as it is generally not absolutely certain that

space is free. This is an inherent consequence of the update

rule in (1) and the clamping threshold pmin on the occupancy

probability. Hence, a threshold velocity vthresh is used, that

allows to robot to drive at a velocity close zero in the presence

of any uncertainty. The choice for vsafe is a trade-off between

moving safely at vthresh or moving faster with more risk of

collision. This trade-off is visualized in Fig. 4 for a poly-

nomial function with different degrees. Of course, the exact

function to relate the probability of collision to a safe veloc-

ity limit is a design choice that depends on the consequences

of collision in a particular scenario.

4 Implementation

4.1 Global and local planner

The environment representation, introduced in Sect. 3, is

implemented in our existing motion planning approach that

has been successfully used in the RoboCup@Home league

over the past years (Lunenburg et al. 2013, 2014). This

approach consists of a global planner that searches for a plan

to the goal and a local planner that computes a velocity such

that this global path is followed.

The global planner uses an A* algorithm that searches for

a cost-optimal path. The costs are encoded in a costmap that

represents the distance to obstacles. A plan is computed at a

fixed frequency of 2 Hz. If the current plan is free, a re-plan is

executed if the estimated time for the new plan is significantly

less. This way the robot does not hold on to an old plan when a

shorter path has become available but switching between two

paths of approximately similar costs is avoided. If the current

plan is blocked and an alternative plan is significantly longer,

the robot will wait before executing this. This ensures that

if a path is blocked for only a short time (e.g., by a moving

obstacle), an unnecessarily long re-plan is not executed. If

the new plan is of approximately equal length to the original

plan it will be executed immediately to avoid unnecessarily

long waiting.

The local planner computes an omni-directional velocity

(vx , vy, vθ ) in the direction of the next pose of the global path

that maximizes velocity while obeying acceleration limits

and the velocity limit that the representation imposes, i.e.,

vsafe as introduced in Sect. 3.4. If the error eθ between the

path and the robot orientation exceeds a certain threshold, an

in-place rotation is performed to keep the robot facing the

driving direction. To avoid discrepancies between the local

and global planner, both use the same global representation.

4.2 Task integration

With the representation, the global and the local planner the

robot can move from a start pose to a target pose. How-

ever, navigation systems typically also address issues such

as recovery behaviors and replanning to make the system

more robust. Nevertheless, navigation is part of a larger task.

Hence, it should not be considered in itself and integration

with other modules is essential to optimize performance.

Therefore, in order to enhance this integration, the naviga-

tion system is coordinated by a task executer, i.e., the software

component that activates the various subsystems of the robot

to achieve a certain task. This executer has additional knowl-

edge of both the environment and the task so that it can make

more informed decisions about the desired behavior. This

manifests itself in the definition of goals, actively directing

sensors and in recovery behaviors:

Goals Goals can be defined as a pose x, y, θ in the global

coordinate frame or as a semantic query to the robots knowl-

edge base. This query will return a list of possible poses that

meet the requirement. The best target pose is selected based

on distance to travel and proximity to obstacles. Not only do

these queries provide a more intuitive interface (you can ask

the robot to drive to, e.g., ‘the table’ or ‘a shelf that has not

yet been visited’), but they also make navigation more robust

by trying the next pose in the list if a target pose turns out to

be unreachable.

Directing sensors Actively directing sensors, e.g., gaze

direction, greatly enhances the environment representation.

Since the task of the robot may put additional requirements on

the gaze direction, the gaze direction itself is also controlled

by the task executer. Under normal operation, the robot looks

to the current path at a fixed distance in front of him. If an

obstacle is encountered on the path, the robot will turn its

attention to this obstacle.

Recovery behaviors As is also mentioned in, e.g., Marder-

Eppstein et al. (2010), even with a good navigation system

the robot can still get stuck in some situations, exposing the

need for recovery behaviors. Especially in cluttered, dynamic

environments, the robot may not be able to clear all obstacles

that are no longer there. By explicitly looking at obstacles,
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the probability of moving obstacles and sensor noise being

cleared increases significantly. The currently used recov-

ery behaviors include clearing the space around the robot

if the local planner is stuck and resetting the representation

to its default state, consisting only of obstacles and unknown

space, if no valid global plan is possible. The task executer

decides when these behaviors are executed, easing integra-

tion of possible future behaviors such as asking people to

move out of the way or removing obstacles by itself.

5 Experimental results

The navigation approach in this paper is verified using the

AMIGO robot, a domestic service robot developed by Eind-

hoven University of Technology. AMIGO competes in the

RoboCup@Home League. This annual competition, where

domestic service robots compete in performing household

tasks, is part of the international RoboCup project (Kitano

et al. 1997). AMIGO has a four-wheeled omni-directional

base that is capable of navigating through wheelchair-

accessible areas. Its torso is equipped with two anthropo-

morphic arms to perform manipulation tasks. To extend the

reach of the arms the torso is connected to the circular base

with a lifting mechanism. In this study the arms are not

used. A Hokuyo UTM-30LX Laser Scanner, positioned at

the front-side of its base, provides a 220◦ view at 30 cm

above the ground. AMIGO uses adaptive Monte Carlo local-

ization (AMCL) (Fox 2001) to localize itself on a static, a

priori map. A Microsoft Kinect mounted with a pan-tilt unit

on top is used to provide three-dimensional pointcloud data.

Simulations have been performed in a scenario based

on the 2013 RoboCup@Home League set-up and experi-

ments have been performed in a domestic environment in

the Robotics Lab of the Eindhoven University of Technol-

ogy as well as in the university library. The parameters are

set according to Table 1. The computation time to update

the representation is approximately 0.35 s. As it can take

up to two updates before an obstacle is detected, the maxi-

mum delay is set to 0.7 s and as a result, the maximum robot

velocity, computed according to (9) is 0.7 m/s. The voxel

resolution of the representation is r = 0.05 m, such that

AMIGO can still fit through the narrowest doorway with a

Table 1 Different model parameters used in experiments

Sensors Environment Robot

lfree −1.10 (p = 0.25) vmax
obs 1.0 m/s vmax

rob 0.7 m/s

locc +0.85 (p = 0.70) Rs 3.2 m vthresh 0.2vmax
rob

lmin −1.40 (p = 0.20) td 0.7 s am 0.5 m/s2

lmax +2.20 (p = 0.90) r 0.05 m σ 2
x , σ 2

y 0.1 m

α 0.05

Fig. 5 A model of the 2013 RoboCup@Home League set-up used

for the simulation experiments. The blue dots indicate the predefined

goal locations that are randomly visited by AMIGO. The areas that are

marked red indicate regions where an obstacle can cross with AMIGO

width of 80 cm. The covariance terms of the position uncer-

tainty model are based on the covariance matrix provided by

the AMCL module. For simplicity, the maximum variance

obtained from previous tests with AMIGO is used.

5.1 Results of simulation experiment

Simulations are performed with AMIGO in a model of the

RoboCup@Home League 2013 set-up, as shown in Fig. 5.

The representation is tested for the velocity risk profiles n =
{0.1, 1, 10}, probability decay rates �dec = {0.0, 0.15, 0.30}
and with and without taking into account moving obstacles,

vmax
obs = {0.0, 1.0} m/s. The position uncertainty is modeled

according to the parameters in Table 1 for all tests.

In a first test the robot drives through the corridor, as

shown in Fig. 5, while an obstacle appears from the occluded

doorway on its right, thereby blocking the robot’s path. This

simulation demonstrates the effect of taking obstacle veloc-

ities into account as well as the difference between the low,

medium and high risk velocity functions. To focus on these

two effects, the rate of probability decay is not considered in

this test. The velocity profile along the path is presented in

Fig. 6. At the beginning of the test the part in front of the robot

is unknown and hence it moves at the speed defined by the

velocity threshold. When the obstacle velocity is taken into

account, i.e., vmax
obs = 1.0 m/s, the unknown area is inflated.

Since this unknown area behind the robot is inflated past the

robot footprint, the threshold velocity for vmax
obs = 1.0 m/s

must be attained longer than for vmax
obs = 0.0 m/s. Near

the doorway the test with vmax
obs = 0.0 m/s disregards the

increased probability of collision due to moving obstacles

resulting in a collision for a medium (n = 1) and high
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Fig. 6 The velocity of AMIGO with (upper figure) and without (lower

figure) taking the obstacle velocity into account, respectively vmax
obs =

1.0 m/s and vmax
obs = 0.0 m/s, along the same path through the corridor of

the simulation environment. Halfway the corridor an obstacle entered

on AMIGO’s path from an occluded doorway, indicated by the black

line at 6.25 m. In the upper plot, the robot stops before colliding with

the obstacle, regardless of the velocity function. In the lower plot, the

robot collides with the obstacle if a medium or high risk velocity profile

is used

(n = 10) risk velocity profile. For n = 10 the robot even

failed to recognize the obstacle and hit it with maximum

velocity. Due to the position uncertainty the robot typically

moves at a velocity near its threshold for a low risk velocity

profile, thereby giving it enough time to detect the obstacle

and to stop in time. The test with vmax
obs = 1.0 m/s shows that

a velocity near the maximum velocity, i.e., vmax
rob = 0.7 m/s,

is possible without collision.

In a second simulation AMIGO drives to random loca-

tions, within a set of predefined locations as depicted in

Fig. 5, for 30 min. Obstacles are modeled to move at ran-

dom time intervals over predefined paths that will intersect

with AMIGO, resulting in areas with an increased risk of

collision similar to the test in the corridor. By navigating

over a longer timespan the influence of the rate of probabil-

ity decay (�dec) can be determined on the performance. As

a measurement of performance the number of collisions and

the average velocity during the test is reported in Table 2.

The results show that the rate of probability decay has a

noticeable influence on the number of collisions. For �dec =
0.15 the number of collisions drops significantly: compared

to �dec = 0.0, the number of collisions using vmax
obs =

1.0 m/s, the number of collisions decreases from 1 to 0 for a

low risk velocity profile, from 5 to 0 for a medium risk veloc-

ity profile and from 9 to 3 for a high risk velocity profile. The

difference with tests with �dec = 0.3 is not significant: the

only difference occurs with vmax
obs = 1.0 m/s and a high risk

velocity profile, where the number of collisions decreases

from 3 to 1. Furthermore, the tests with a low risk velocity

function, i.e., n = 0.1, resulted in a robot that appeared too

conservative as it was not able to achieve its goal position in

most situations. Hence, accepting some risk results in a robot

Table 2 Simulation test results

Rate of change vsafe profile

Low risk

(n = 0.1)

Medium risk

(n = 1)

High risk

(n = 10)

vmax
obs = 1.0 m

s

�dec = 0.3 ncoll = 0 ncoll = 0 ncoll = 1

v̄ = 0.11 v̄ = 0.24 v̄ = 0.30

�dec = 0.15 ncoll = 0 ncoll = 0 ncoll = 3

v̄ = 0.14 v̄ = 0.27 v̄ = 0.32

�dec = 0.0 ncoll = 1 ncoll = 5 ncoll = 9

v̄ = 0.19 v̄ = 0.30 v̄ = 0.35

vmax
obs = 0.0 m

s

�dec = 0.3 ncoll = 0 ncoll = 3 ncoll = 7

v̄ = 0.13 v̄ = 0.26 v̄ = 0.31

�dec = 0.15 ncoll = 0 ncoll = 3 ncoll = 7

v̄ = 0.14 v̄ = 0.29 v̄ = 0.35

�dec = 0.0 ncoll = 4 ncoll = 12 ncoll = 14

v̄ = 0.20 v̄ = 0.33 v̄ = 0.43

Bold values indicate the best simulation results in this table: no colli-

sions and an average velocity of 0.27 m/s. Therefore, the parameters

used to obtain these results (n = 1, vmax
obs = 1.0 m/s, �dec = 0.15) are used

in the experiments described in Sects. 5.2 and 5.3

that navigates with a higher average velocity without neces-

sarily increasing the number of collisions. In a few occasions,

a moving obstacle was not completely cleared before it was

out of the sensor view and therefore cluttered the environ-

ment, preventing the robot from reaching its goal. A model

for the decrease in occupancy probability for occupied vol-

umes, as discussed in Sect. 3.2, would alleviate this problem.

It can be concluded that the increased probability of col-

lision due to moving obstacles must be taken into account

and the probability of occupancy must be time-dependent in

order to navigate without collision. Furthermore, the trade-

off between velocity and the probability of collision is clear.

Accepting some risk of collision during navigation, i.e.,

choosing a medium risk velocity limit (see Fig. 4), results

in a robot that moves at its maximum velocity if it can and at

its velocity threshold when it must to ensure safety.

5.2 Validation in a laboratory experiment

The proposed environment representation is validated by an

experiment on the robot in a domestic environment. This

environment, shown in Fig. 7a, is a partial replica of the

2103 RoboCup@Home League set-up on a slightly smaller

scale (0.9:1). In the experiment the robot visits a set of

waypoints numbered w1–w7. The robot is initialized with

a three-dimensional map, as depicted in Fig. 7b, and a static

map for localization, as depicted in Fig. 7c, that both are

generated off-line. A variety of challenging obstacles are
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Fig. 7 An experiment with AMIGO in a real domestic environment.

The robot drives to a number of predefined waypoints (see Fig. 7c) in

the environment depicted in Fig. 7a, b. The resulting velocity profile

can be seen in Fig. 7d where a decrease in velocity due to occlusions

is marked cyan, a velocity difference due to a changing environment

is marked green and a decreasing velocity due to a narrow passage is

marked red. a Test set-up at the Robotics Lab of Eindhoven University

of Technology. b Robot visualization. c Footprints on the localization

map. d The robot velocity along the executed path during the experiment

present, that are not in the a priori map, such as a pair of

mini wooden shoes between w3 and w4, the IV pole and

overhanging sidetable near the hospital bed at w4 and the

desk chairs near w5 and w6. The parameter set as used in the

simulation experiments is used for the experiment and, based

on the simulation test results, the variable parameters are set

to vmax
obs = 1.0 m/s, �dec = 0.15 and n = 1.

AMIGO navigated without collision in the domestic envi-

ronment. In Fig. 7c the robot’s footprint on the localization

map and its executed path are shown at every second. The

velocity along the executed path is displayed in Fig. 7d.

The three-dimensional representation correctly represented

the obstacles encountered during the run. At parts with an

increased probability of collision due to occlusions, e.g., near

the doorway in the corridor, the robot lowered its velocity,

Fig. 8 AMIGO driving through the university library

allowing it to stop in time if an obstacle suddenly appears

on its path. In narrow passages the robot lowered its velocity

to its threshold to be robust against position uncertainty. The

effect of the probability decay rate �dec is noticeable near

w4 and w5. The space near these waypoints is marked as

free as the robot approaches. However, as the robot contin-

ues to its next waypoint the space becomes unknown again

as it is out of sensor range. Hence, a lower velocity limit is

present. In open and known space, such as at the beginning

of the corridor and near w5, the robot achieved velocities

near its maximum velocity. The sudden decreases in veloc-

ity between waypoints are the results of in-place rotations to

keep the robot facing its driving direction.

5.3 Experiences in a real world experiment

Although the experiment in the previous section clearly

demonstrates the caution that the robot takes in case of

risk of collisions due to occlusions, to a dynamic environ-

ment and narrow passages, the environment itself actually is

static without any people moving around. Since the robot

is supposed to navigate through a domestic environment,

a second experiment has been conducted. This has taken

place in the library of the Eindhoven University of Technol-

ogy (see Fig. 8). The library is much larger (approximately

70 m × 40 m) than the environment in Sect. 5.2 and much

more challenging because of the amount op people walking

around: the floor where the experiment was performed can

host up to 300 people. Furhtermore, paths being blocked by,

e.g., chairs and bags located at random locations pose addi-

tional challenges.

The first step to obtain a clean default Octomap of the

environment was to make a localization map (see Fig. 9).

Subsequently, this map was post-processed to remove people,

chairs, bags and other non-stationary objects. Furthermore,

overhanging desks were included. The result can be seen

in Fig. 10a. Finally, this was extruded to obtain a default

Octomap, see Fig. 10b.

In this environment, a number of interesting locations was

defined as if the robot was showing people the way to, e.g., the

elevator, the copier or the location of certain books. Using a
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Fig. 9 The localization map of the university library and the paths

AMIGO took during the experiments. The goal locations are denoted

in blue

Fig. 10 The localization map was post-processed as an intermediate

step. People, chairs and bags were removed and overhanging desks were

included. Subsequently, this map was extruded to produce the default

Octomap. a The processed map. b The default Octomap

smartphone, a user could select a location and the robot would

show him the way. In case there was no pending goal request,

the robot would select one at random. This way, the robot

covered a total of 2.9 km in this environment. Although this

is by far not as much as in, e.g., Marder-Eppstein et al. (2010),

a number of conclusions can be drawn from this experiment.

The representation approach presented in Sect. 3 works.

Even difficult objects such as the legs of the deskchairs were

generally perceived well, as can be seen in Fig. 11a. How-

ever, slight variations in the robot localization could have as a

result that multiple voxels in the vicinity of the legs received

an ‘occupied’ measurement but not enough to reach the upper

threshold. In that case, the chair would not be mapped cor-

rectly (see, Fig. 11b) but usually the robot would still drive

around the chair. If the available space was very tight, never-

theless, the robot would slightly touch the chairs. The bags of

students that were on the floor were detected correctly every

time.

On a few occasions, however, this was not the case (see

Fig. 11b).

During the experiments, many people were walking

around in the library. Especially around lunch time, there

Fig. 11 Overlay of the camera image and the Octomap and costmap.

Usually, chairs and their legs were mapped correctly but occasionally

the legs did not appear in the Octomap. a The chair has been mapped

correctly. b The chair has not been mapped correctly

Fig. 12 An example where a moving person has left some ‘clutter’ in

the Octomap. a View from the robot: it can easily pass through between

the people and the chairs. b However, this is prevented by some occupied

voxels that are the remainder of a person who has just walked by

were many people taking a close look at the robot and thereby

obstructing its path. In many situations, the robot was still

able to continue after a replan. On a number of occasions,

however, the robot was stuck and a recovery behavior, either

clearing the Octomap in the vicinity of the robot (nineteen

times) or resetting the entire costmap (eighteen times) had to

be invoked, which solved the problem in all but four cases.

Moving people demonstrated a shortcoming of this represen-

tation: since the voxels are all independent, the representation

might get cluttered if not all voxels of a moving obstacle are

cleared. An example of this can be seen in Fig. 12: a couple of

floating occupied voxels just outside the sensor range Rs that

are the remainder of a person passing by prevent the robot

from planning a path forward (Fig. 12b), although there is

clearly enough space to pass through the chairs on the left

and the people on the right, as can be seen in the robot’s view

(Fig. 12a). Associating this data with people tracked using,

e.g., a laser rangefinder as is done in Rohrmüller et al. (2008)

could prevent these issues.

The behavior demonstrated in the lab experiment was

also visible in this experiment, particularly the lower veloci-

ties due to narrow passages and occluded areas. The former

proved to be effective to avoid collisions, however, the latter

proved to be too conservative: due to the cluttered environ-

ment, there were always (small) unknown areas in the vicinity
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Fig. 13 Three approximately similar paths (upper plot) result in sig-

nificantly varying velocities (lower plot) for vmax
obs = 1.0 m/s, vmax

obs =
0.5 m/s and vmax

obs = 0.0 m/s

Table 3 The average robot

velocity v̄ for varying vmax
obs . If

vmax
obs = 1.0 m/s, v̄ ≈ vthresh

which is considered too

conservative

vmax
obs (m/s) v̄ (m/s)

1.0 0.13

0.5 0.17

0.0 0.28

of the robot because the sensors could not see beyond bags

or the legs of people or chairs. After inflation, these caused

the robot to drive at the minimum velocity vthresh most of

the time. To illustrate this effect, the experiment was con-

ducted with three different values for vmax
obs . In Fig. 13, the

robot passes through the same part of the environment with

vmax
obs = 1.0 m/s, vmax

obs = 0.5 m/s and vmax
obs = 0.0 m/s.

In case vmax
obs = 1.0 m/s, the robot velocity hardly exceeds

the lower bound vthresh = 0.14 m/s, which is even in

this environment not sufficient. This is confirmed by the

average velocities for the different vmax
obs , as can be seen in

Table 3.

A major difference with the lab experiment was the

library floor, which provided less grip than the carpet in the

lab experiment. The local planner proved not sufficiently

robust for the resulting slip and therefore caused oscilla-

tions. This manifested itself especially in the orientation

with an amplitude around 0.2 rad/s. However, a larger prob-

lem that was caused by both slip and some inaccuracies

in the localization map was a large localization error. This

error occasionally exceeded 0.8 m and 0.16 rad, which is

much more than originally modeled with σ 2
x , σ 2

y = 0.1 m.

Since this method only has a global representation method

and does not rely on a local collision map, this error can

cause the robot either to get stuck (see Fig. 14) or to

cause collisions. In this experiment, the localization error

Fig. 14 An example where the robot gets stuck due to a localization

error. a A localization error occurs. b As a result, the robot gets stuck

resulted in imminent collisions on two occasions which is

not acceptable in the application. This illustrates the need

for a local representation as well, as was already argued

in Moore et al. (2009).

6 Discussion

6.1 Parameters

Inflating the obstacle representations often implies that a

more or less arbitrary (exponentional) decay function is used.

One of the motivations of this research was to eliminate these

arbitrary functions and tuning parameters by modeling the

various sources of uncertainty of an environment separately.

Although many parameters such as the maximum obstacle

velocity, the maximum sensor range, maximum update delay

and robot velocity and acceleration are well-defined, there

are still parameters that are not directly related to a measur-

able physical quantity. Most notably, the probability decay

rate �dec and the function relating the probability of colli-

sions to a safe velocity (see Fig. 4) are selected empirically

by doing the extensive simulations presented in Sect. 5.1.

Future research should provide the necessary insights to

relate these model parameters to measurable quantities as

well.

6.2 Independency of measurements

As a result of the time dependency of the environment repre-

sentation in this work, the free space becomes unknown over

time but occupied space remains occupied. Hence, if certain

voxels of dynamic obstacles are not cleared correctly, these

will impede motion planner and might cause the robot to take

unnecessary detours or even prevent the robot from reach-

ing its goal. Simply forgetting obstacles over time, on the

other hand, might also lead to unsafe situations. This prob-

lem is inherent to the independency of the voxels. Therefore,

a representation significantly benefits if measurements are

associated with the objects in the environment: if the robot
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detects that an obstacle has moved away from its path, it can

immediately clear all associated voxels. Furthermore, this

enables to explicitly account for additional properties such

as movement of obstacles.

7 Conclusions and future work

The proposed volumetric representation allows a robot to

safely navigate in a domestic environment. It probabilisti-

cally models the occupancy of volumes as sensor measure-

ments are received and, as opposed to typical representations,

also if no measurements are received. Furthermore, the prob-

ability of moving obstacles appearing on the robot’s path

from behind occlusions is taken into account. These prob-

abilities are combined with a model of the robot position

uncertainty to form a probability of collision. Based on this

probability a safe velocity limit is defined.

Extensive simulations have demonstrated that this app-

roach results in the desired behaviour, i.e., the robot moves

with velocities up to the maximum of 0.7 m/s if this is safe

but slows down in case of narrow passages or uncertain areas

of the environment. This has been confirmed by laboratory

experiments, where the same behavior was demonstrated and

challenging obstacles such as small objects on the floor or

overhanging tables were successfully avoided. This approach

also worked in a real-world experiment, performed in the

university library. However, it was found that the inflation of

the uncertain areas was still too conservative. Furthermore,

the approach was not sufficiently robust against localization

errors.

Several directions can be indicated for improvement of

the current approach in future work. A number of conserva-

tive assumptions were necessary to ensure safe navigation, in

particular (i) obstacles may maintain their maximum velocity

if they occur on the robot’s path, (ii) obstacles never disap-

pear, hence the probability of occupied obstacles P > 0.5

does not decrease over time and (iii) dynamic obstacles can

emerge at any height from every voxel, thus the maximum

occupancy probability of a column is inflated . By includ-

ing more information, e.g., (i) obstacles are not adversary

and will try to avoid collisions, (ii) certain obstacles such

as humans may move away over time and (iii) there are no

flying obstacles, these assumptions can be relaxed to result

in more efficient robot navigation. The representation can be

improved by adding explicit obstacle models of, e.g., humans

as proposed in Philippsen et al. (2006), Philippsen et al.

(2008) and Rohrmüller et al. (2008), but also of static parts

of the environment, e.g., walls. By discriminating in obstacle

representations, the probability of their presence can be mod-

eled separately and thus more accurately. In turn, this will

allow a less conservative velocity limit. Furthermore, an actu-

ated sensor can be controlled to actively reduce uncertainty

in the vicinity of the robot instead of always looking forward

on the robot’s path. This will decrease the collision probabil-

ity and thereby increase the safe velocity limit. For example,

at start-up the robot is then able to directly face the uncertain

space in front of its base, while during navigation it can look

further ahead. The position uncertainty can also be modeled

more accurately. It is now represented with a normal distri-

bution based on an a priori determined maximum variance,

while directly using the covariance matrix from the AMCL

module is more accurate because this is updated based on the

sensor measurements. Additional robustness against local-

ization errors can be added by a local representation, i.e.,

directly reacting to measurements. Better performance of the

total system can be achieved by an improved local planner.

Finally, deeper insight in the choice of model parameters

is desirable. It would be particularly useful to investigate

how to measure the probability decay rate �dec of a cer-

tain environment and how to relate the safe velocity vsafe to

the probability of collision P(n). Although those parameters

depend on the environment as well as the specific applica-

tion at hand, a theoretical and extended simulative analysis

in different environment set-ups can reduce heuristic tuning

of parameters and make the presented method better gener-

alizable.
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