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A REPRESENTATION OF THE SOLUTIONS OF THE

DARBOUX EQUATION IN ODD-DIMENSIONAL SPACES

BY

H. RHEEC)

Abstract. It is shown that determining a function from its averages over all

spheres passing through the origin leads to an explicit representation of the even

solutions of the Darboux equation in the exterior of the characteristic cones in terms

of the hyperboloidal means of the boundary data on the cones.

The purpose of this paper is to derive a representation of the even-solutions

of the Darboux equation 2?-i d2V/dxf-(n-l)/t dV/dt-d2V/dt2 = 0 in the ex-

terior of the characteristic cones C0 (t= ± \X\, X e Rn, n odd ^3) in terms of its

prescribed values on C0- Let f(X) be a continuous function defined in Rn. The

spherical means, SM, off is defined as follows:

SM [/; X, P] = a,"1 f f(X+pcc) dwa,
Ja

where X is the center of the sphere of radius p. a denotes a unit vector. When

P=\X\, we put SM [/; JST, |Jf|] = SM*/

The main part of this paper is concerned with the problem of determining

functions from their integrals over a family of spheres passing through the origin.

Specifically, if J(X) is a given function in Rn, the main problem is to find f(X)

which satisfies

(1) J(X) = SM*/

We shall show that inverting (1) is closely related to the representation of the even-

solutions of the Darboux equation. The problem of determining functions from

their integrals over spheres of a fixed radius was studied by F. John [3].

In this paper we shall make use of the means values of functions defined in Rn

over the confocal hyperboloids which have the origin O and a point X=ra,

r=\X\^Q, as foci, and the line OX as the axis of rotational symmetry. The
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hyperboloid can be described in terms of its intersection with any plane passing

through the axis of symmetry. If (a, t) are the coordinates in such a plane

with (ct, t) = (0, 0) at the origin and (a, t) = (r, 0) at the point X, then the family of

hyperbolas with parameter / is given in (a, t) coordinates by

(2) t-2io-r/2)2-ir2-t2YxT2 =1/4

with / in 0^|/|<r. Note that when / = 0, the hyperboloid is the plane bisecting

OX. From (2) it follows that / means geometrically the differences of distances

from the foci. A point Y=py, p=\Y\, will lie on the hyperboloid of parameter |/|,

if

(3) y = pa+p'a

where a is a unit vector perpendicular to a,

p = i2tP + r2-t2)/2rp,       p' = il-p2)112,       \t\ < r,       (r + /)/2 ^ P < oo.

The point Y will be on one of the two sheets of the hyperboloids, depending on

whether /=|/| or /=—1/|. We denote the two sheets by /¡(x, /) and A(x, —/).

Let Fx be the family of all those circles which have their centers on the hyperbola

(2) and pass through the origin. Then Lx has as envelope the circle cür, 0), |/|)

with center at (a, r) = ir, 0) and with radius |/|. If (a, t) is any point in the exterior

of c((r, 0), |/|), there are two circles of Lj passing through (a, r).

Let J(X) be a continuous function in Rn — 0 (the origin deleted). The hyper-

boloidal means, HM, ofJ over the sheet h(x, t) is defined as follows:

HM [| Y\"-*JiY); X, t] = K^F-2)"1 f°° dp f  Pn-3J(Py)(l -p2)«-™2 do>a.,
J c Ja'

where y is given by (3), c = (r + t)/2.

A function/(Jf) defined in Ln —0 (or Rn) is said to belong to the class Ce,

0<£<1, iff(X) is continuous and f(X) = 0(\X\~n + 2-£) for large \X\. The HM

of y exists, if Je Cs. It is easily verified that if/s C„, then SM*/e Cs.

Theorem 1. Letfe CE in Rn and i/>(X) = SM*f. For Jf=r«#0 and0</<r<oo,

let

U(X, t) = HM [| Y\n-3<P(Y); X, /] + HM [| Y\n~s4>(Y); X, -/].

Then the following identity holds for 0< |/| <r,

(4) SM [/; X, t] = (CxtY1(r2Ny3-n»2[T(-r2/t)Yn-3)l2Tr'l-2U(X, /),

where T=(r2 + t2)/2r d/dt + t 8/dr, N=(r2-t2)/r, Cl= -((n-3)/2)l.

(4) with n = 3 was derived in [1]. (4) expresses the SM of/in terms of the hyper-

boloidal means of SM*/in the exterior of the cones C0. It therefore follows from

(4) that we will have a representation for the even-solutions of the Darboux

equation in the exterior of C0 in terms of prescribed values on C0, if the equation

(1) can be inverted. The problem of inverting (1) will be considered in Theorem 3.
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In the proof of Theorem 1 we shall make use of the following well-known

identity on iterated spherical means by John and Asgeiersson [2],

(5) f dmt f F(sri + d) dojn = 2œn_x f  ' Jt dr [ F(tQ dw^,
Jr. Jn J\r-s\ Jc

where J={[(r + s)2-T2][T2-(r-s)2]Yn-3W(2rsYn+2.

Proof of Theorem 1. Let X=m^Q be a point in Rn and let ß and y be two unit

vectors in Rn. We may write

(6) ß = ql+q'ß',       y = pl+p'y,

where / is the unit vector on the first axis, ß' and y are two unit vectors in Rn~x,

p' = (\ -p2)112, a' = (l -a2)1'2. It suffices for our proof to take X=(r, 0, 0,..., 0)

and «-(1, 0, 0,.. .,0). By letting du>e = (l -a2)'"-^ dq dme. and applying (6), we

obtain

SMV^n1 Í f(P(r+ß))doje

(7) J;
= «¿"I J  ^ (1 -07-3„2 dq ̂ fi(p(p-rq)I+p(p'y'+q'ß')) dmr.

Using (5) and (7), we obtain

HM[|F|"-3^(y); X,t]

(8) c" r1 rA+"
= 2c2r-" + 2        Pn-3dp\     (l-q2Y-3)l2dq\ (l-fr*?*-™* PFrdr,

Jc J-l J|A-«|

where \ = P(l-p2)112, p = P(l-q2)112, c2 = con_2(ojnojn_x)-1,

p = {[(X+p)2-T2][T2-(x-p)2]Yn-»i2(2Xp)-n+3,

F =  [ f(p(p+q)I+tt¡) da
Jn

If we letP'={[(A+M)2-T2][T2-(A-/*)2]}(n-4)'2 and a = P(p+q), (8) may be written

as

2-" + 4c2r-" + 2 C p~n + 2dp [[   P'FTdTdo,
Jc JJgp

where the domain of integration Gp in the (o, r)-plane is obtained as follows:

Let e(p) and e'(p) be circles of the family Fx with their centers on h(x, t), and let the

points (pp, pp') and (pp, — pp') be the centers of e(p) and e'(p) respectively. If e

and e' denote the disks bounded by e(p) and e'(p), then G0 = e — (e n e'). If we now

replace A and p by pp' and pq' respectively, we have

{[(A + /x)2-T2][T2-(A-ii)2]}("-4"2 = (-A-2Bp-CP2Y'M2

= [AP2(bx-l/p)(l/p-b2)Yn-»12,
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where ^ = (<72-r-T2)(((7-Ar)2 + T2), B=m(a-N)£2, C=ma£a-4Ta, |2 = ct2 + t2,

m = 2t/r. Since G0 lies in the exterior of the circle c((r, 0), |/|), we have r(B2 — AC)

— 4pT2Af(t2 + (ct — r)2 — t2) > 0 for each (a, t) in Gp. This justifies the decomposition

of (-A-2Bp-Cp2). Thus (8) becomes

(9) UM[\Y\n-3i/>(Y);X,t] = 2-n + ic2r-n + 2 Y p~2 dp if   (AQYn~im Ft dr do,

where Q = (bx — l/p)(l/p — b2). Replacing /by —/in (9), we find

HM[|F|"-3-A(y);Jif, -/]

"+2 f°° p -2 dp if   (>4 ß')(n-4)/2Lt dr do,
Jb JjG'o

(10)
= 2~n + ic2r

where b = (r — t)/2, G'p = GD(r, —/, p), ß' = ß(r, —/, o, t, p). In order to form the

sum of (9) and (10) we introduce p = — p in (10) as the new variable of integration.

The intervals c^p<co in (9) and —co<p'^—b will be disjoint. The result of

replacing /by — / in (A + 2Bp + Co2) is the same as changing p to />', since of the

three coefficients A, B and C, only L contains odd powers of /. Hence we have

Ô' = Q(r, — t, o, t, p) = Q(r, t, o, t, p) and G'p = GB(r, t, p'). Since p is now only a

variable of integration, we may use p instead of p in (10). Therefore we may express

the sum of (9) and (10) as

(11)    U(X, t) = 2-n + ic2r~n + 2ÍY + I"  "\p-2dP if   (AQfn~i)l2FT dr do.

We shall next interchange the order of integrations of dp and dr do in (11). Note

that in order for a point (ct, t) to be in a domain G„ it must lie in the exterior of the

circle c((r, 0), \t\), since G0 lies in the exterior of c((r, 0), |/1). We know that through

each point in the exterior of c((r, 0), |/|) there pass two circles of the family F%.

This means that (a, t) lies on the boundaries of two of the domains G0. Now (a, r)

can be in Gp if and only if b2 < l/p < bx. Therefore it is clear that these domains are

given by the value of p with bx = l/p and b2=l/p. Hence by keeping (cr, r) fixed in

the domain K (the exterior of the circle cür, 0), |/|) with t>0), we find that the

limits of integration with respect to l/p are simply bx and b2. Thus we may write

(11) as

UiX, t) = 2-" + 4c2r-n + 2 JT A<n-»l2Frdrd<j

(12) ,6l
•        [ibx-l/p)il/p-b2)r-»<2dil/p).

Jb2

It is easily seen that b2-bx = 2A~1iB2-AC)112 and

f1 [ibx-l/p)ii/p-b2)Yn-i)l2dil/P) = CsA-« + 3{4eT2Nr-\T2 + io-r)2-t2)yn-3V2,
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where c3 = 2"-3r2((«-2)/2)r-1(n-2). Hence (12) takes the form

(13) U(X, t) = c2c3r'n + 2 f[  Ai2-n)l2F(Hll2$)n-3Tn-2 dT do,

where H=Nr'1(T2 + (o-r)2-t2). Next apply the operator T(rn~2-) to (13). In

order to differentiate on the limits of integration we write

/»/» ( pr-t /»oo        /.oo /«oo        /»r + i /*OT>1

\    GdTdo = \\        do        + do        +\        do \GdT,
JJk Uo Jo Jr + t Jo Jr-t Jl    J

where G = ^(2-"',2F(//1/2£)n-V'-2, l=(t2-(o-r)2)112. We observe that differen-

tiation on the limits of integration does not contribute anything, since the integrand

vanishes when t = 1. Note that TN=0 and F^4 = 0. Hence we have

N-1T(rn~2U(X, t))

= c2c3r-n + 2(n-3)/2(-t/r2) JT /p-^F/F"-5^-1^-2 oV oV

Since 2n-3ton_2r2[(n-2)/2]üj-_11r-1(n-2)=l, by applying the operator

Fi-r2?"1) to (14) we obtain

N-zT(_r2t-i.)T(rn~2U(X, t))

= (n-5)(n-3)2-1oj-1(-tr-2) if ^-^F/F"-™2^1-^-2 oV oV.

If we continue applying T( — r2t~1-) to (15), we obtain

N(3-n)i2 [T(-r2t -1 ■)Yn-5)l2Trn-2U(X, t)

(16) =((n-3)/2)\2oJ-\-tr-2)

■\\ do   \       +\ do   \       +\ do \-A(2-n)l2en-6Tn-2 dT.
Uo Jo        Jr + t Jo        Jr-t Jl   )

Since 2Tl=(o2 + !2)t/rl, ^2-n)'2=[(a2 + /2)?/--1]2-" for r = /, and

■»<»  f + Í ln~3  ffi(°I + lri) <H ¿<t = i*1"3 SM [/; X, ij,
Jr-t Jn

we finally obtain (4) by applying T( — r2t ~1-) once more to (16).

In the next theorem we shall show that the solution of the Darboux equation

given by (4) attains its prescribed values on the cones C0. The left-hand side of

(4) clearly goes to SM*/ as t —>■ r. But it is not obvious that the right-hand side of

(4) also goes to SM*/ as t -*■ r. Note that we have the factor r(r2 — t2)'1 on the

right-hand side.

Theorem 2. Let J(x) = SM*fi and let U(X, t) = HM[\Y\n~3J(Y); X, t]

+ HM [\Y\n~3J(Y); X, -t]. If we assume that 8'JeC,, 8 = 8/8rr2-, O^i^

(n—l)/2, and let t-*■ r, then the right-hand side of (4) reduces to J(X).
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Proof. Since p = 1 for p = c, and p' = 1 for p = b, we have

Tir»-aUiX, t))

= (^n-i)-1!!"0 dp J"   (1 -i»3)*«/' ifov- J" ¿p f  (1 -p'2)k8J' da>a\,

where k = in —3)/2, J' = rn~3J. Applying L( —r2/-1-) to the above equation and

observing that L(-r2/-1) = (/-2-/2)/2/2, we obtain

L(-ra/-1-)Lrn-aL(A', /)

= w-iijí/2-/2)^/2 £° <//> J  (1 -/>2)fc8./' <k,a.

(17) 7'"Xf äplil-p^J'd^,

-ir2-t2)/2t2 Y dP f il-p'2)k8J'doja.
Jb Ja'

-/-1 r dp r ii-p'2)k82j'dwa\-

It is easily seen that

(18) il-p2) = A^(4p2r)-1(2p + (r-/))(2p-(r+/)),

(19) il-p'2) = A^(4p2r)-1(2p + (r + /))(2p-(r-/)).

If we apply L(-r2/_1 •) to (17) (/c- l)-times, use (18), (19), and let / -> r, then the

right-hand side of (4) reduces to

(20) ik\Y1r1-n-kii-l)k + 1 C p-kiP-r)k8k + 1J' dP+ f" />-fc(p + r)*S* + 1y'</p|-

Using regularity condition on J at infinity and observing that when t = r, 8k + 1J' is

a function of p only, we obtain j"™ p~fc(p + r)Sfc + 1./' op = 0 and

P p-kip-r)k8k + 1J' dp = i-l)k + 1k\rk + n-1JiX).
Jr

Hence (20) reduces to JiX).

We now turn to the following problem: If JiX) is a given function in Rn in odd

^3), determine/ which satisfies SM* f= JiX). It follows from (13) that

UiX,0) = 2((«-lK)-1i— + aAJt jj\Y\~1\Y-X\fiY)dY.
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If we now assume that/(X) satisfies a Holder condition, we have

(21) rA$-»l2(rn-2U(X, 0)) = (-l)<»-»/a(M-2)! 2f(X).

(21) can be written in the form

(22) f(X) = Mr~2n + 3 P dp f  (4-r2/p2yn~^28n-x(pn-3J(Py0))doja,,
Jr/2        Ja'

where A/ = (-iy,-1),2K_2r2((n-2)2-1)2',-5(«-2)]-1,

y0 = X/2p + (l-r2/4p2Y2a'.

Let J(X) be a given function of class Cn_1 in Rn, such that

(23) 8kJ/drk = 0(\XY2n + 3'k~e) for large \X\,       0 ¿ ¿ á n-1, 0 < « < 1.

If SM*/=/(Z) has a solution /e C£ with Holder condition, then/is uniquely

given by (22). In order to show that the function / given by (22) satisfies (1) we

shall make use of the following Radon transform [2] and Lemma,

(24) (-lfl-1)/22'V1-y(Z) = A?"1"2 f    F(X,ZX)dwx,
Jtix

where n is odd, F(X,p) = ]Y.x = pf(Y) dSY and \X\ = l. (The use of the Radon

transform was suggested to me by Professor Y. W. Chen. It was shown in [4]

without making use of the Radon transform that (22) is a solution of (1).)

Lemma.  JFA<?k n is odd à 3,

SM*rA$-»i2rn-2U(X,0) = rA$-"l2rn-2SM* 1/(1,0).

Proof. It is easily seen that

(26) rA(p-l)/2/.»-2a,   =
in-1)12

I    ir-n + 2k + 2^rn-2k^

Jc = l

<\\

y-n + ik + Z^n-ïkQ = r~n + 2k + 2 [02^2 + („ _ 1)/r g/fr + \/r2Aa]rn-2k<&

= (2n-2k-2)(n-2k)<¡> + (3n-4k-l)r®r + r2<!>rr + Aa<&.

Note that we may write

SM*<D = 2n-1o)-1 f  An-2(l-A2)("-3>'2i/A f  Q>(py) d*>tt.,
Jo Ja'

where p = 2rA, y = Aa + (1 - A2)1'2«'. Observing that Aa SM* <D = SM* Ay<D, r d/dr = p

8/dp, r2 d2/8r2 = p2 82/8p2, and using (27), we have

r-»+afc+2Ajrr»-2fc SM* $ = SM* Ay(D + SM* [(2n-2k-2)(n-2k)<t>]

(28) +SM* [(3n-4A:-l)p<Dí)] + SM* [p23>fli]

= SM* (r~n + 2k + 2Axrn-2lc<!>).
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From (26), (28) it follows that

r(n-D/2

rA^-l),2rn-2SM* f/^O)  =
t-D/2 T

[ (r-» + afc + 2AxrB-2fc)   SM* f/^.O)

l-D/2 -1

[ ir-n + 2k + 2Axrn-2k)\UiX,0)

k = X J

k = X

-<n-l)/2

= SM*
L   k = X

= SM* rA^-u'V-2^^, 0).

Theorem 3. Let JiX) be a given function of class C'1 in Rn with the property (23).

Then the function fiX) given by (21) satisfies the equation SM*f=JiX).

Proof. It is easily verified that

(29) UiX, 0) = K-xr»-2)"1 j J(Y)\ Y\ -1 dY,

where 2p = rA, Y= ra/2 + r(A2 - l)i;V/2, X= ra, (A2 -1)<» -3)'2 o"A = P " 1(25/r)n "2 ¿S,

S'=2~1r(A2—l)1,a, e is the hyperplane perpendicular to a and passing through

X/2. If we let J0iX, |Z|a/2)=Je J(F)| yj"1 a"F, it follows from the lemma, (24),

(29) that

SM*rA<$-1)l2rn-2UiX,0)

(30) = 2rK_10-1A(;r1),2 f MX+ra', \X+ra'\2/2)dwa.
Ja'

= i-iy»-*>i*in-2)l2JiX).

Applying SM* to (21), we find

(31) SM* r^~1)l2rn-2UiX, 0) = (-l)("-1)/2(n-2)! 2 SM*/.

It now follows from (30) that the left-hand side of (31) is equal to

(_1)(n-l)/2(M_2)!2/(Z).
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