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A REPRESENTATION THEOREM
FOR CYCLIC ANALYTIC TWO-ISOMETRIES

STEFAN RICHTER

Abstract. A bounded linear operator T on a complex separable Hubert space
W is called a 2-isometry if T* T -27*7+7 = 0. We say that T is analytic if
n«>o T"^ = (0). In this paper we show that every cyclic analytic 2-isometry
can be represented as multiplication by z on a Dirichlet-type space D(ß).
Here p. denotes a finite positive Borel measure on the unit circle. For two
measures p and v the 2-isometries obtained as multiplication by z on D(p)
and D(v) are unitarily equivalent if and only if ß = v . We also investigate
similarity and quasisimilarity of these 2-isometries, and we apply our results to
the invariant subspaces of the Dirichlet shift.

1. Introduction

Let F be a bounded linear operator on a complex separable Hilbert space
^. Following J. Agler [1] we say that F is a 2-isometry if

T*2T2 _2T*T + I = 0.

Using quadratic forms we see that F is a 2-isometry if and only if

||F2x||2 - 2||Fx||2 + ||;c||2 = 0   for every jc £ ST.

It follows that every isometry is a 2-isometry. The Dirichlet shift is an ex-
ample of an operator that is a 2-isometry, but not an isometry.

A study of 2-isometries and related operators is of interest for several rea-
sons. First, even though the spectrum of any 2-isometry must be contained in
the closed unit disc, the operator must always expand the norm of every vector
in the space. Thus, the 2-isometries are examples of operators which are not
members of classes which have been extensively studied like, e.g., the class of
contractions or subnormal operators. Secondly, as 2-isometries are generaliza-
tions of isometries, we shall show in a forthcoming paper that they can be used
as dilations for another class of expanding operators.

Our current interest in 2-isometries is based on the observation that, if F
is a 2-isometry and JÍ is a nonzero invariant subspace of F, then T\Jt is a
2-isometry as well. This fact was one of the key ideas that enabled the author
in [9] to show that every invariant subspace of the Dirichlet shift is cyclic.
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326 STEFAN RICHTER

We also mention that recent work of Agler [1] provides a different kind of
motivation for the study of 2-isometries.

We call an operator re^fJ) analytic if n„>0 Tn^ = {0} • The intuitive
idea behind this definition is that, if ß? is a Hubert space of analytic functions
on a domain containing the origin and if Mz denotes the operator of multiplica-
tion by z acting on %?, then Mz is analytic. The study of analytic 2-isometries
is a natural starting point for a more general study of 2-isometries, because, as
we shall show in forthcoming work, every 2-isometry can be uniquely written
as the direct sum of a unitary operator and an analytic 2-isometry.

The main result of this paper (Theorem 5.1) is that every cyclic analytic 2-
isometry can be represented as multiplication by z on a Dirichlet-type space
D(p). The space D(p) depends on a positive Borel measure p. supported on
the unit circle T. This dependence is such that two multiplication operators
Mz acting on two spaces D(p) and D(v) are unitarily equivalent if and only
if p. = v.

Using this representation theorem we shall investigate similarity and qua-
sisimilarity of cyclic analytic 2-isometries (§6). In §7 we shall apply our results
to invariant subspaces of the Dirichlet shift. For example, we shall show that
every invariant subspace of the Dirichlet shift is of the form fD(mA , where
/ is a Dirichlet space function and m, is an absolutely continuous measure
associated with /.

In [6] Halmos asked the following question: If F is a weighted shift op-
erator and if J? is a nonzero invariant subspace of F, is T\Jf similar to a
weighted shift operator? This question was motivated by the observation that
the answer is yes for the unilateral shift. Furthermore, if F can be represented
as multiplication by z on a Hubert space of analytic functions on D, if F - A
is bounded below for every A £ D, and if ^f is generated by a finite Blaschke
product, then T\A? is similar to a weighted shift operator. It has been known
for quite some time that the answer to the question in general is no. However,
it remained open in the special case when F is the Dirichlet shift (see [11, p.
109]). In Theorem 7.3 we shall see that the restriction of the Dirichlet shift to
an invariant subspace J( is similar to a weighted shift operator if and only if
J? is generated by a finite Blaschke product.

2. Preliminaries

All Hilbert spaces referred to in this paper are separable. Although we use
m to denote Lebesgue measure on T, we shall write dt instead of dm(t).

On various occasions throughout the paper we shall refer to the Da-spaces,
a £ R, of analytic functions on the open unit disc. The norm on Da can be
given in terms of the Taylor coefficients: if f(z) = J2f(n)z" , then ||/||Q =
XX« + l)a|/(«)|2 . For a = 0 one has DQ = H2 and for a = 1 7), = D, the
Dirichlet space. It is easy to verify that / £ Da if and only if /' e Da2. For
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CYCLIC ANALYTIC TWO-ISOMETRIES 327

a < 0 an equivalent norm is given by

if\f(z)\2(l-\z\2)-l-adA(z).
J Jo

For the details see [13, Lemma 2]. In particular, we note that the 772-norm of
a function / is equivalent to |/(0)|2 + //„ |/'(z)|2(l - \z\2)dA(z).

We shall now review a few properties of 2-isometries, which are essentially
contained in [9, §2]. Lemma 1 of [9] implies that for every 2-isometry F one
has T*T — I > 0. Thus we can define D to be the positive square root of
T*T - 7. The following lemma follows from formula (11) of [9].

Lemma 2.1 [9]. If T e Sf(%?) is an analytic 2-isometry and x0 £ kerF*,
||jc0|| = 1, then

(2.1) \\p(T)x0\\2 = \\p\\2H2 + J2\\Dpk(T)x0\\2
k=l

= \\PÙ + ¿2(\\Tpk(T)x0\\2 - \\pk(T)x0\\2),
k=l

for every polynomial p . Here for k > 0 we used the notation

n=k

Proof. It is clear from the definition of D that the two right-hand sides of (2.1)
are equal to one another. Thus we only have to verify the first equality.

Let L be the left inverse of F with kerL = kerF* and let Q be the
projection onto kerF*. Then for all k > 0 we have QL p(T)xQ = p(k)x0
and F L p(T)x0 = pk(T)x0. The fact that F is a 2-isometry implies that
\\DT x\\ = \\Dx\\ for every x £ %?. Now (2.1) follows from formula (11) of
[9] applied with Jl = X and x = p(T)xQ :

\\p(T)x0\\2 = ¿2 \\QLkp(T)x0\\2 + Y, \\DLkp(T)x0\\2
fc=0 k=l

= J2 \P(k)\2\\*o\\2 + E \\DTkLkp(T)x/
k=0 k=l

= \\p\\2H2 + Yl\\Dpk(T)x0\\2.   O
k=l

3. The spaces D(p)

In this section we state and prove the basic facts about D(p). We shall
see that D(p) is always contained in 77 , that multiplication by z defines a
bounded linear operator on D(p), that this operator is a 2-isometry, and that
the polynomials are dense in D(p).
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328 STEFAN RICHTER

Let /i be a positive finite Borel measure on the unit circle T = {z e C: |z| =
1} and let P(z, e") = (1 - \z\ )/\e" - z\ denote the Poisson kernel. Define
the positive harmonic function g>   on the open unit disc D by

-In<pß(z) = ̂ JJp(z,e")dß(t).
If p = 0, then let D(p) = 77 ; otherwise we define the space D(p) to consist
of all analytic functions / on the open unit disc D such that

(3.1) Jjjf'(z)\2<pM(z)dA(z)<œ.

Here dA denotes normalized Lebesgue area measure on D, i.e., dA(z) =
(l/n)rdrdt, where z = re" .

Lemma 3.1. If f £ D(p), then f £ H2.  In fact, if p. ¿ 0, then there is a
constant C = C(p) > 0 such that for any analytic function f on D

\2H2 < C (V(0)|2 + ¡j \f\z)\2<pß(z) dA(z)

Proof. We may assume p ^ 0. Suppose / is analytic on D. In §2 we noted
f a function / is equivalent to

l/(0)|2+//|/'(z)|2(l-|z|2)^(z);
J Jn

i such that

& < c (|/(0)|2 + ff \f'(z)\2(l - \z\2)dA(z)
\ J Jb /

that the 772-norm of a function / is equivalent to

thus there is a c> 0 such that

If z e D then

è/fjrhF*»^-
In the following estimate, as in the rest of the paper, we shall use the letter c to
denote a generic constant whose value may change from line to line, but which
never depends on the function /. We have

H/È» < c (|/(0)|2 + //d l/'(z)|2(l - |z|2) dA(z)^j

^Kl/(0)|2 + ̂ //Dl/,(Z)l^(Z)^(Z))

< C (\f(0)\2 + U \f'(z)\2<pp(z) dA(z)j .    D

It follows from Lemma 3.1 that we can define a norm on D(p) by setting

\\f\\l = \\f\\2Hi + ll\f'(z)\2<P/i(z)dA(z).
We call attention to the special case when p coincides with m , the Lebesgue

measure on T. In this case we have D(m) = D, the Dirichlet space.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CYCLIC ANALYTIC TWO-ISOMETRIES 329

In the following example we shall see that even if p is mutually absolutely
continuous with respect to Lebesgue measure, it does not follow that D(p) ç Hp
for any p > 2.

Example 3.2. Consider the measure  p  defined by  dp  =  |1 - e"\ dt  =
2(1 - Reeu) dt. We have for z £ D,

^(z) = 2(l-Rez) = |l-z|2 + l-|z|2

< |l-z|2 + 2|l -z\ <4|l-z|.

Now let 0 < a < 1/2 and define f(z) = (1 - z)~a. Then f'(z) =
-a(l - z)~a~   and

// \f'(z)\2ç>(z) dA(z) < 4a2 (¡\(l- z)\-2a~l dA(z) < oo,
JJd JJo

since 2a + 1 < 2 and area measure integrates over singularities of this type.
Thus, / e D(p), whenever a < 1/2.

On the other hand f £ Hp if and only if a < l/p. Hence D(p) is not
contained in Hp for any p > 2.

Point evaluations on D(p)  are continuous because D(p)  is continuously
2 2contained in 77   and point evaluations on 77   are continuous.

Note that D(p) n 77°° is an algebra for every p. Indeed, if /, g £ D(p) n
77°° , then clearly fg £ H°° . A simple estimate shows that fg £ D(p) as well.

We further note that since <pß(z)dA(z) is a finite measure on D, D(p)
contains every 77 function that has a bounded derivative. In particular, D(p)
contains the polynomials. We shall see later (Corollary 3.8) that the polynomials
always form a dense set in D(p).

Our first goal is to show that the linear transformation Mz , f -, zf, defines
a bounded linear operator on D(p). In addition, we shall see that Mz is a
cyclic 2-isometry. Prior to this we need a few lemmas.

If / is an analytic function on the unit disc, then / has a Taylor expansion
f(z) = Y^=Qf(n)z" . Associated with / and a nonnegative integer k we define
the truncated analytic function Tkf by

oo

(Tkf)(z) = J2f(n)zn.
n=k

Furthermore, for 0 < r < 1 we set fr(z) = f(rz).
In the following let FD denote the open disc of radius R. Then for any

analytic function / on D and any 0 < R < 1, ffRB \f'(z)\ <p„(z) dA(z) < oo,

and if / G D(p), then \\f\fo + jfm \f'(z)\2<pp(z)dA(z) -, ||/||J as R -, 1,
R < 1. It follows that an arbitrary 77 function / is in D(p) if and only if
ÍIrb l/'(z)|2^u(z)^(z) is hounded independently of R < 1.
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330 STEFAN RICHTER

Lemma 3.3. Let 0 < R < 1. If f is analytic on D, then

ff   \f'(z)\2<p(z)dA(z) = Yd^- f2*\(Tkf)(Reit)\29lt(Rei')dt.
JJRO * k~~l J°

Proof. In the proof it will be convenient to use the least harmonic majorants of
the subharmonic functions \TkfR\2, so for 0 < R < 1 and k > 0 define

"* *(/Kz) = ¿ f2n\(TkfR)(e's)\2P(z,ei5)ds.
¿Tt Jo

Using Fubini's theorem and the fact that P(Re's, e' ) = P(Re' , els) we see
that for each nonnegative integer k ,

rln

2n Jo^fn\(Tkf)(Reis)\2<pß(Re's)ds

C ¿ i* \(Tkf)(X*")\2nXeU > Ó àsdp{t)2n jo
r2n

= ^l*ukR(f)(Relt)dp(t)
'0

Thus we have to show that
r2n

ÍL |/,(z)|2^(z)dA{z)=ë ¿i * uk,R(f)(Re")d^)■
k=\

A second application of Fubini's theorem yields
finII   \f'(z)\2(pß(z)dA(z) = ̂ l    Hjf'(z)\2P(z,eit)dA(z)dp(t),

hence it suffices to show that for each fixed t £ [0, 2n] we have

//    \f'(z)\2P(z,e")dA(z) = Y,uk R(f)(Re").
J J RO ,.    ,

To this end let t £ [0, 2n]. Two short computations with Poisson kernels
show that for all nonnegative integers n, m ,

1      f     e^-^pfRe\e")ds = R\»-
¿n Jo

m\   i(n-m)te

and

if       n   m ni i'\ j ai   \       -<   /      /    1     / i(n-m)s n,     is      it*   ,   \    n+m+l   ,II    z z  P(z, e ) dA(z) = 2       [y        e p(re   ,e)ds\r dr

Jo
-ml   i(n-m)(,   n+m+l   ,e )r dr

, D2-.max(«,m)+l
_    i{n-m)t (R  )

max(«, m) + 1
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CYCLIC ANALYTIC TWO-ISOMETRIES 331

The Taylor series of f(z) and f'(z) converge absolutely and uniformly on
FO ; thus

ff   \f'(z)\2P(z,ei')dA(z)
J Jro

= Z)Z> + !)/(" + !)(w + l)/("i+l) //   znlmP(z, e")dA(z)
n,m>0 JjR0

_ / p2^max(« ,m)+l
= E£(» + 0/(» + l)(m + l)/(i» + l)e'("-m)'£-max(«, w) + 1

/¡,m>0

= ̂ 2J2nf(n)mf(m)e
i D2-.max(n,m)

i(n-m)t(R )
max(«, m«,m>l v    '      '

,n+m D\n—m\   i(n—m)t= ££/(«)/(rn)min(«, m)Rn+mRMe
n ,m>l

Further, for k > 1,
r2jt

%,*(/)(**''') = ¿^   |(rfc/)(Äe")|2P(lteft, eis)ds

- E E/(")7^)^+,"¿ /'* ei(n-m)sP\Reil, eu) ds
n,m>k
V^ V^ 2-1   \Ti    \ T>n+m r.\n-m\   i(n-m)t= l^2^f{n)f{m)R     R      xey
n ,m>k

Consequently, a change of summation yields

,n+m u\n—m\   i(n—m)t¿2uk,R(f)(Re'') = £ YEñn)f(m)R"+mRln~mle'
k=\ k=l   n,m>k

min(rc,m)
,n+m D|n-m|   i(n—m)t= EE    E    f{n)f(m)Rn+mR^-mV

n,m>\        k=\

EV~*   ri   \~~Ft     \      •   / \ nn+m r>l"-ml   i(n—m)t2^f(n)f(m)mm(n,m)R     R      'e
n,   m>\

ff   \f'(z)\2P(z,eit)dA(z).    D
J J RO'RO

Lemma 3.4. Let 0 < R < 1. If f is analytic on D, then

ff   \(zf)'(z)\2<p (z)dA(z)-R2 ff   \f'(z)\2<p(z)dA(z)
JJro JJro *

= ^l*n\f(Re")\2<pfl(Re")dt.
'0

Proof. We note that for all k > 1,

(Tk(zf))(Re") = Rei'(Tk_xf)(Reil),
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332 STEFAN RICHTER

and hence \(Tk(zf))(Reil)\2 = R2\(Tk_xf)(Reu)\2. Now we apply Lemma 3.3
to the functions / and zf :

ff   \(zf)'(z)\2<p (z)dA(z)
J Jro

00   1    r2K
= E¿/0    \(Tk(zf))(Re")\2c>ß(Re")dt

00   1    f2n 1
= * E^/0    \(Tk_xf)(Re")\2<pß(Re")dt

R2   f2n
= ^/o    \ARe")\\(Re")dt

00   1   r2n 1
+ *E^/    \(Tkf)(Re")\2<Pß(Re")dt

k=i 2n Jo

= ̂  IJ \f(Re")\2<Pß(Re")dt + R2 Hjf'(z)\2<pß(z)dA(z).
This concludes the proof of Lemma 3.4.   D

Prior to proving that Mz is a bounded operator on D(p) we need one more
lemma.

Lemma 3.5. There is a constant c = c(p) such that for every f £ D(p) and
0<R< 1,

¿jr2*|/(lteft)|2^(Jtett)rfi<c||/||J.

Proof. We have f(Reu) = f(0) + (Txf)(Reu), hence

\f(ReU)\2 < 2(|/(0)|2 + \(Txf)(ReU)\2)
00

2 .    T^,,^     ~,„    Us,2<2[\\f\^+Y,\{Tkf){Reit)\
V fe=i /

By Lemma 3.3 this implies

^ j* \f{Reu)\\{Reu)dt

< hfÙ fn<Pß(Re')dt + 2ff   \f'(z)\2<pß(z)dA(z)
71 Jo JJro

< ±\\f\\2Hlp(T) + 2fl \f'(z)\2<pß(z)dA(z)

<c\\f\\2ß.   ü

Theorem 3.6. Let f be analytic on D. Then

f£D(p)&zf£D(p).
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In fact, one has \\f\\2 < \\zf\\2 < (c + 1)||/||2, where c is the constant from
Lemma 3.5.

Consequently, multiplication by z defines a bounded linear operator on D(p).
We shall denote it by (Mz, D(p)) or simply by Mz.
Proof. First assume that / e D(p). Then both / and zf are 77   functions,
and for 0 < R < 1 we have by Lemmas 3.4 and 3.5

WÙ+ ff   \(zf)'(z)\2<p (z)dA(z)
J Jro

2H2 + §¿ f \f(Reil)\2<pß(Re11) dt + R2 jj   \f'(z)\2<pß(z) dA(z)

<(c+l)||/||J.
Letting R -, 1 we obtain zf £ D(p) and ||z/||2 < (c + 1)||/||2 .

Now assume that zf £ D(p). Again it follows that both / and zf are in
H . For 0 < R < 1 we have by Lemma 3.4

ml > \\zf\\2H2+llj(zf)'(z)\29ii(z)dA(z)

= UÙ + 2%in l/(*e")l V*e")dt + *2 ¡j   l/'(z)l V^) dA(z)

>\\f\\2H2+R2 ff   \f'(z)\2<p (z)dA(z).
J Jrb

Now we let R -, 1 to obtain that / e D(p) and \\zf\\ß > \\f\\ß .   D

Theorem 3.7.  (Mz, D(p)) is a 2-isometry, i.e., for every f £ D(p) we have

ll^2/llí-2||z/||2 + ||/||2=0.
Proof. Clearly, \\z2f\\2„2 - 2\\zffH2 + \\ffH2 = 0 for every / £ D(p). Thus, it
is enough to show that

//  (|(z2/)'(z)|2-2|(z/)'(z)|2 + |/'(z)|2)^(z)^(z)-0   asF^l.
J Jr®IRB

Consider

//   (\(z2f)'(z)\2 -2R2\(zf)'(z)\2 + R4\f'(z)\2)<p (z)dA(z)
J J RO

= /*/  (\(z2f)'(z)\2 - R2\(zf)'(z)\2)<p (z)dA(z)
J Jrb

-R2 ff   (\(zf)'(z)\2 -R2\f'(z)\2)(p (z)dA(z)
J J RO

= ^l*n\Re"f(Re")\2<pß(Rel,)dt

-R2l^lo2n\f(Re")\2c>ß(Re")dt]
'o

= 0,
by Lemma 3.4 applied to zf and /.
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Hence

//  (|(z2/)'(z)|2 - 2|(z/)'(z)!2 + \f'(z)\2)<p (z) dA(z)
J JR3

=-2(1-R2) ff   \(zf)'(z)\2<p (z)dA(z)
J Jro

+ (l-R4) ff   \f'(z)\2(p (z)dA(z)
J Jro

—► 0    as R —> 1, as required.   D

In the following corollary we list some immediate consequences of Theorems
3.6 and 3.7. We keep the finite positive Borel measure fixed and write Mz
instead of (Mz, D(p)). The direct difference of two subspaces J£ and JA is
Jf © JV = J? n JV , and we let 3§x (D) denote the Cowen-Douglas class of
operators (for a definition see [5]).

Corollary 3.8. (a) If X £ D, then Mz - X is bounded below and dimD(p) e
(z - X)D(p) = dimker(Mz - X)* = 1.

(b) o(Mz) = D" .
(c) M*z£^x(B).
(d) The polynomials are dense in D(p).

Proof, (a) Let X e © and / £ D(p), then \\(Mz - X)f\\ß > \\zf\\ß - \X\ \\f\\ß >
(1 - |A|)||/||   , because by Theorem 3.6 Mz is bounded below by 1.

It now follows from Theorem 3.6 above and Lemma 2.1 of [8] that

dim D(p) e (z - X)D(p) = dimker(Mz - X)* = 1.

(b) By (a) we have D~ ç o(Mz). Furthermore, Lemma 1(c) of [9] states that
for 2-isometries we always have o(Mz) ç D~ .

(c) follows from Theorem 2.10 of [8].
(d) Note that the constant functions are orthogonal to zD(p), thus by (a)

we have D(p) e zD(p) = {/: D -, C : /is constant}. Now (d) follows from
Theorem 1 of [9].   D

4. Boundary values

In [9] we saw that, if F is a 2-isometry, then the positive operator D, defined
by D2 = T* T - I, plays an important role in the study of F. We shall now
see that for the 2-isometry (Mz, D(p)) the operator D is unitarily equivalent
to an operator B that maps D(p) into L (p). Thus, associated with every
/ 6 D(p) one has a "boundary value function" f £ L (p). The results of this
section will be important in what follows.

2 2Let F (p) denote the closure of the polynomials in L (p). The norm on
F (p) is given by

ll/ll^) = ¿/02'I|/(^)|2í3ÍMí)-
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Theorem 4.1. There is a bounded linear transformation B from D(p)  into
P (p) which satisfies:

(a) If f £ D(p) and the Taylor series of f converges absolutely and uni-
formly on 0" .then (Bf)(eit) = f(eit) a.e. [p].

(b) For all f £ D(p) we have

\\zf\\l - ll/llj = ft ¿ [" lAReY^ite^dt

= ¿ j*\(Bf)(eis)\2dp(s) = \\Bf\\2p2{lt).

(c) If p is a polynomial and f £ D(p), then B(pf)(e") = p(eit)(Bf)(eit)
a.e. [p].

(d) If p is a polynomial, then

H^Y,^[n\(TkP)teil)\2dm.

Proof. If f £ D(p) such that the Taylor series of / converges absolutely and
uniformly on D" , then define Bf by (Bf)(elt) = /(<?").

The polynomials are dense in D(p) ; thus, in order to verify that B extends
to a continuous operator on all of D(p) we only have to prove that (b) holds
for all / as above. We shall show that

\\zf\\l-\\f\\l = ̂ ¿ I'* \f(eis)\2dp(s),
whenever the Taylor series of / converges absolutely and uniformly on D~ .
This will imply both parts (a) and (b) of the theorem because by definition of
the D(p) norm and Lemma 3.4 we have

ll*/!lî - ll/llj = £m ¿^ * \f(ReU)\\(Reu)dt.
Let / 6 D(p) be such that the Taylor series of / converges absolutely and

uniformly on D~ . As in the proof of Lemma 3.3, an application of Fubini's
theorem and a computation with the Poisson kernel yields

= lim ¿ P E Zf(»^R"+mRln~mlei{n~m)S d^)

= ̂ l^\f(e's)\2dp(s)
by the Dominated Convergence Theorem.

To verify (c) let p be a polynomial and / e D(p). We have to show that
B(pf)(eil) = p(ei,)(Bf)(eit) a.e. [p].  To this end, let e > 0 and choose a
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polynomial q such that \\f - q\\   < e. We note that B(pq)(e") = pq(e") =
p(eit)Bq(eü) a.e. [p] by (a), thus

\\B(pf) -pBf\\2p2{ß) < \\B(pf) - B(pq)\\2pHß) + \\p(Bq - Bf)\^

<(\\zp(f-q)\\2ß-\\p(f-q)\\2ß)
¡■2k

+ ¿jfl\p(eis)\2\(Bq-Bf)(e's)\2dp(s).

Multiplication by p and by zp are bounded linear operators on D(p), hence
we obtain

\\B(pf) -pBf\\2p2{ß) < Cx(p)\\f-q\\l + \\p\\2J\Bq - Bf\\2p2{ft)
<C2(p)\\f-q\\2ß<C2(p)e.

Thus B(pf) = pBf since e was arbitrary.
Finally, we shall show that (d) holds. Let p be a polynomial. Using the

definition of the D(p) norm and Lemma 3.3 we have to show that

EÍ P \(Tkp)(eVdß(t) = ̂ hmJ- P ^T^iReY^Re^dt.
k=x^Jo k=iR-*lInJo

The sums are finite since p is a polynomial; thus the interchange of sum and
limit causes no problems.

This identity follows immediately from an application of (b) to the functions
Tkp.   D

Note that the map B may have a nontrivial kernel; e.g. let p be a unit point
mass at 1 and / be any polynomial vanishing at 1, then  (Bf)(el ) = 0 a.e.
[p]-

Of course B depends on the measure p. We shall write B = B11 when
we want to stress this dependence. It may happen that an analytic function
/ is contained in D(p) n D(v) for two measures p and v. We shall see
below that in this case there is a Borel measurable function /on T such that
(BMf)(eu) = f(eu) a.e. [p] and (B"f)(eil) = f(e") a.e. [v].

Furthermore, the spaces D(p) are contained in 77 ; hence associated with
every / € D(p) there is a radial limit function f £ L (m) defined a.e. by
f(e") = limr_>xf(re"). If the Taylor series of f converges absolutely and
uniformly on D" , then f(e") = f(e") = Bßf(e") a.e. [p]. However, in
general the measure p may not be comparable with Lebesgue measure on T ;
thus for general functions / € D(p) we have to distinguish between / and
B^f. The next proposition will imply that if p is absolutely continuous, then
f(e") = Bflf(e11) a.e. [p].

In the following we shall write p <c v, if p is absolutely continuous with
respect to v . We shall write [p] = [v], if p and v are mutually absolutely
continuous.
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Lemma 4.2. Let p and v be positive finite Borel measures on T. If p < v
and f £ D(p) n D(v), then Bßf(e") = Bv f(eil) a.e. [p].
Proof. Define a finite positive Borel measure a on T by do = dp + dv . Then
p <C v «: a . f £ D(p) n D(v) implies that / £ D(o).

By Corollary 3.8(d) there is a sequence of polynomials {pk} such that {pk} -,
f in D(o). It follows from the definition of a that {pk} -, f in D(p)
and in D(v). Thus, Theorem 4.1 implies that {BMpk} —► Bßf in F (//) and
{F^} -* B"f in ^i") • Also °y Theorem 4.1 we have Bßpk(eu) = pfc(«''')
a.e. [p] and Bvpk(e") = Pk(e") a.e. [¡/]. Hence we can first choose a sub-
sequence of {pk(el )} that converges a.e. [p] to Bßf(e' ) and then choose a
further subsequence, which converges a.e. [u] to B"' f(elt). We denote this sub-
sequence by {qk}. The assumption /i«i/ implies that {qk(e")} -, Bvf(e")
a.e. [p], as well as {qk(eH)} -, Bßf(eit) a.e. [p]. Thus Bv f(eil) = Bß f(ek)
a.e. [p].   D

Proposition 4.3. Let S? be a collection of positive finite Borel measures on T
such that there is a countable subcollection {p„}neN Q<9* such that W £ S* 3« e
N 3 i/ « //„ .

For every measure v e 5? let dv = dva + dvs be the decomposition into
absolutely continuous and singular parts.

If f £ Ç\ve^ D(v), then there is a Borel measurable function f such that for
every v £ 5? f(e") = B"f{e") a.e. [v] and f(eu) = f(e") a.e. [va].

In particular, if f £ 77 and if S^, consists of all positive finite Borel measures
v that are absolutely continuous with respect to Lebesgue measure and such that
f £ D(v), then for every v £S?f we have B" f(e") = f(e") a.e. \v\.
Proof. Let 3* be a collection of measures satisfying the hypothesis of the
proposition, and let / £ Ç\v^^,D(v).

We may assume that for every n £ N, pn ^ 0. Furthermore, by multi-
plying pn with a constant we even may assume that pn(T) = 1. Let cn =
maxfJI/ll^l}.

Now define a positive Borel measure a on T by da = Y^=x ¿~Y dPn • Then
<t(T) < 1, i.e., rj is a finite Borel measure, and pn < a. By the choice of cn
one readily verifies that f £ D(o).

We set f(e") = (Baf)(e") whenever this is defined and f(e") = 0 other-
wise.

Let v £ S?. Then the assumption implies v <c a and f £ D(a) n D(u) ;
thus, it follows from Lemma 4.2 that Bvf{e") = B°f(eil) = f(eu) a.e. [v].

To finish the proof we have to show that f(e") = f(e") a.e. [va] for every
v £ 5e. The proof is similar to the proof of Lemma 4.2. Let {pn} be a
sequence of polynomials that converges to / in D(o).

Then {pn} converges to / in 77   and to / in P (a). It follows that {pn}
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converges to / in L (m).  Thus, as before there is a subsequence {pn } of

{/>„} suchthat {^(e0)}-»/(*") a.e. [m] and {pBt(e")}-»/(«") a.e.\o].
The measure va is absolutely continuous with respect to both a andLebesgue

measure; thus
{Pnk(e")} ^ f(e')   a.e.[i/a],

as well as
{p„k(e")}-,f(e")   a.e.[«/fl].

This implies f(eu) = f(eu) a.e. [va\.   a

In the following we shall often have no need to refer to the map B ; thus
for ease of notation we shall write / instead of Bf. If in some context sev-
eral measures are present, then by / we mean the function whose existence is
guaranteed by Proposition 4.3. However, we keep in mind that / is associated
with a family of measures as above.

5. The representation theorem for cyclic analytic two-isometries

We are now ready to prove our main result about the spaces D(p).

Theorem 5.1. Let T£Sf(%f). The following are equivalent:
(a) F is a cyclic analytic 2-isometry,
(b) F is a 2-isometry and T* e 3§x (D),
(c) there is a positive finite Borel measure p on T suchthat T is unitarily

equivalent to (Mz, D(p)).

Proof. In §3 we saw that (c) implies both (a) and (b). Furthermore, to see that
(b) => (a), recall from [5] that if F* e 3§x (D), then T is unitarily equivalent
to Mz acting on some Hilbert space of analytic functions, hence f)n>0 Tn%? =
{0} . It now follows from Theorem 1 of [9] that F is cyclic.

Thus, to finish the proof of the theorem we have to show (a) => (c). Assume
that F is a cyclic analytic 2-isometry. By Lemma 1 of [9] any 2-isometry is
bounded below by 1. Also, since F is analytic it cannot be onto; thus that F
has a cyclic vector implies that dimker F* = 1. So let x0 £ kerF*, ||x0|| = 1 .
By Theorem 1 of [9] x0 is a cyclic vector for F, and for any polynomial p we
have by Lemma 2.1

(5.1) \\P(T)X0\\2 = \\p\\2H2 + £ \\Dpk(T)x0\\2,
k=l

where D2 = T*T - I and pk(z) = (Tkp)(z) (Tk as in §3).
Note that kerT) e LatF. Indeed if x e kerT), then \\DTx\\2 = \\T2xf -

\\Tx\\  = \\Tx\\  - \\x\\2 = \\Dx\\  = 0, since F is a 2-isometry.
Define a norm on (ker7))x by \\x\\x = \\Dx\\, and let 5? be the completion

of ((kerT)) , || \\x). Now define a linear transformation T on (kerT)) by
Tx = PTx , where P denotes the projection of %? onto (kerT))   . For every
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x £ (kerT))-1 we have ||Fjc||^ = \\DPTx\\ = \\DTx\\ = \\Dx\\ = \\x\\x. Thus,
F extends to be an isometry on 3i .

Claim.  Px0 is a cyclic vector for F 6 5C(^f).

Proof (of the claim). KerT) is dense in 3? ; thus it is enough to show that
an arbitrary element x £ kerT) can be approximated in || \x by elements
of the form q(f)PxQ , where q is a polynomial. But q(f)Px0 = Pq(T)Px0 =
Pq(T)x0, because (7 - P)x0 £ kerT), hence q(T)(I - P)x0 £ kerT) = kerF.
Thus

||x - q(f)Px0\\Jf = \\Dx - DPq(T)x0\\ = \\Dx - Dq(T)xQ\\
<\\D\\\\x-q(T)x0\\.

Now the claim follows, because x0 is a cyclic vector for F.
We now know that F is a cyclic isometry; hence it is a cyclic subnormal

operator. By Bram's theorem (see [2]) there is a positive finite Borel measure
p on o(T) C T such that F is unitarily equivalent to Mz on F (p), and
the cyclic vector Px0 corresponds to the function 1.   Thus  \\q(f)PxQ\\x =
¿ Jo* l^")! dp(t) f°r everY polynomial q. Hence, if q is a polynomial,
then

(5.2) ||¿MF)x0||2 = ||ö<7(F)Px0||2 = \\DPq(T)PxQ\\2

= \\q(f)Px0\\2r = ±tl7C\q(eit)\2dp(t).

Define a linear transformation U from the polynomials into ß? by p -,
p(T)x0 . The polynomials are dense in D(p), thus the following computation
will show that U extends to be an isometry D(p) -, %f. Also, since U has a
dense range it will in fact extend to be unitary.

Use formulas (5.1) and (5.2) to obtain for every polynomial p
,2       ,,    „2      ,   v^ i, ™      ,-^      ,i2||p(F)x0ir = ||p||^ + ^||T)p,(F)x0||

k=\

= \\PÙ + Y,^r   Ç* \PÁ¿')\2 dp(t)
k=l 2n J°

1      f2n
= H* + E2^/0    \(Tkp)(e")\2dp(t)

= \\P\\l-
The last identity follows from Theorem 4.1(d).

This concludes the proof of the theorem since it follows from the definition
of U that UMz = TU.   D

The following theorem says that (Mz, D(p)) is a canonical model for cyclic
analytic 2-isometries.
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Theorem 5.2.  (Mz, D(p)) is unitarily equivalent to (Mz, D(v)) if and only if
p = v.

Proof. Suppose there is a unitary operator U: D(p) -, D(v) such that UMZ =
MzU. We have to show that p = v.

First note that VI = 1 because llzD(p) and llzD(f). Hence, for every
polynomial p we have Up = p.   Furthermore U is unitary, thus we have
\\zp\\2 - \\p\\2 = \\zp\\2u - \\p\\2u . By Theorem 4.1 this implies that

¿ jT2* \p(eil)\2 dp(t) = ¿ £* \p(eu)\2 du(t),

for all polynomials p . Using polarization we obtain

This clearly implies p = v .   G

6. Multipliers, similarity, and quasisimilarity

The following results about multipliers between D(p) spaces are rather tech-
nical. However, by a well-known argument due to Shields and Wallen [12],
one knows that any operator intertwining (Mz, D(p)) and (Mz, D(v)) can
be represented as multiplication by some analytic function <p . Using this, the
results about multipliers will give us results about quasisimilarity and similarity
of (Mz, D(p)) and (Mz, D(v)).

Lemma 6.1. Let p and v be two finite positive Borel measures on T. Then

(a) \\znf\\l = \\f\\l + "||/||2V)  V/£i)W,«eN.
(b) If f £ D(v),  g £ D(p), and c > 0 such that \\znf\\v < c\\zng\\ß

Vn £ N, then
11/11^) < c\\g\\P>{ßy

Proof, (a) We have \\znf\\2v - ||/||2 = EL.(HZV||' - \\zk~{f\\2v)
by Theorem 4.1(b) and (c).

(b)-From the assumption and part (a) we obtain

Wft + »Il/H2,^ < c{\\g\\2ß + n\\g\\2p2{ij)}   V« £ N.
Now divide this inequality by n and let n —> oo.   D

The author feels that the equivalence of (b), (c), and (d) of the following
theorem are known. However, he has not been able to locate a reference.

Theorem 6.2. Let p,v be finite positive Borel measures on T.  The following
are equivalent:

(a)   D(p)CD(u).

= *\\ñW)
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(b) 3c> 0 such that for every polynomial p

(6.1) ¿ f* \p(eH)\2 dv(t) < c¿ £* IP^')!2 dp(t).
(c) 3c> 0 swc/z that <pv(z) < apß(z) Vzei.
(d) v < // a«i/ t7ze Radon-Nikodym derivative dv/dp is in L°°(p), i.e.,

dv = hdp for h £ L°°(p), h > 0.
Proof. It is clear that (d) implies (c). Also the implication (c) => (a) follows
immediately from the definitions. Thus, to finish the proof we have to verify
that the implications (a) => (b), (b) =>■ (c), and (c) => (d) are true.

(a) =>■ (b). It follows from the closed graph theorem that the inclusion map
from D(p) into D(v) is continuous, hence there is a constant c > 0 such that
\\f\l < c\\f\\ß forallf£D(p).

Now let p be a polynomial. For n £ N substitute / = znp into the previous
inequality, and then use Lemma 6.1(b) to deduce that ||p||p2(l/) < ¿H/'ll/^u) •
This implies (6.1).

(b) => (c). Fix z e D. For every n £ N define a polynomial pn z(e") =

\J^-\^\2EnkZo^eikt. Then \pn,z(el')\2 = P(z, e")|l - zV¡"'|2. Substitute
this into (6.1) and let n -, oo to see that <pv(z) < cq> (z)

(c) => (d). Define a Borel measure on T by a = cp - v. Then da =
cdp - dv , hence the assumption (c) implies that (l/2n) JP(z, eH)da(t) is
a nonnegative harmonic function. Thus, it follows that a is a positive Borel
measure (see e.g. [7, p. 6]). This clearly implies v < p, and the Radon-
Nikodym derivative h = dv/dp satisfies h(e") < c a.e. [p].   D

The following corollary immediately follows from Theorem 6.2.

Corollary 6.3. Let p,v be finite positive Borel measures on T. The following
are equivalent:

(a) D(p) = D(v).
(b) 3c, C > 0 such that c<pß(z) < (pv(z) < C(pß(z)  Vz e D.
(c) v and p are mutually absolutely continuous, and the Radon-Nikodym

derivative h = dv/dp satisfies h, l/h e L°°(p) = L°°(v), i.e., dv =
hdp for h,  l/h£ L°°(p), h>0 a.e. [p].

Definition 6.4. Given a positive finite Borel measure p on T and a function
/ 6 D(p) we define a finite Borel measure pf by dp, = \f\ dp .

Note that, if p is absolutely continuous, then / coincides with the radial
limit function f of f (see Proposition 4.3). Thus, if / ^ 0, then |/| is
strictly positive, except maybe on a set of Lebesgue measure 0. This implies
that in this case p and pf are mutually absolutely continuous.

Below we denote the set of multipliers {</> e D(v): (pD(p) ç D(v)} by
M(D(p), D(v)). We shall write M   for the multiplication operator / -, <pf.
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Lemma 6.5. Let p,v  be finite positive Borel measures on T, and let q> £
M(D(p),D(v)). Then D(p) C D(vç); thus there is h £ L°°(p), h > 0,
a.e. [p] such that dv  = hdp.

If <pD(p) is closed in D(v) (equivalently, M is bounded below), then D(p) =
D(v ).    Thus, in this case [p] = [v ]  and there is h £ L°°(p) such that
l/h £ L°°(p) and dp = hdv  = h\<p\ dv .

If cpD(p) is dense in D(v), then v and v are mutually absolutely contin-
uous, hence //«i/.

We shall postpone the proof until after the next corollary, whose first part
follows immediately by taking p = v . Note that one always has M(D(p)) ç
T7°°.

Corollary 6.6. If <p £ M(D(p)), then ip £ L°°(p). If M is bounded below,
then I /ij> £ L°°(p).

Suppose [p] = [m] and (p £ M(D(p)) is outer. Then M is bounded below
if and only if l/q> £ M(D(p)).
Proof. The first part follows from Lemma 6.5.

Suppose that p and m are mutually absolutely continuous measures. If
l/tp £ M(D(p)), then M is invertible and, in particular, it is bounded below.
So assume that M   is bounded below. Of course, <p £ D(p). By the first part

and Proposition 4.3, l/<p £ H°° . We have (l/y)' = -(l/(p2)(p', hence l/q> £
D(p) .If p is a polynomial, then (l/<p)p £ D(p) and \\p\\ß = \\Mv(l/<p)p\\ß >
c\\(l/<p)p\\ß,i.e., l/<p£M(D(p)).   a

Proof (of Lemma 6.5). The assumption implies that there is a c > 0 such that
\\p<P\\v < c\\p\\ß for all polynomials p. By Lemma 6.1(b) and Theorem 4.1 it
follows that

^ I \P\2dv9 = ± j \p\2W\2dv <c^ J \p\2dp.
Thus Theorem 6.2 implies the first part of the lemma.

If M is bounded below, then there are constants c, C > 0 such that
c\\p\\„.< \\p<p\\p < C||p|| for all polynomials p. The same argument as in
the first part of the proof implies that p and v are mutually absolutely con-
tinuous and there is an h £ L°°(v ) such that l/h £ L°°(v ) and dp = hdv  =
h 101 dv . By Corollary 6.3 this means D(p) = D(v ).

To finish the proof we have to show that v and v are mutually absolutely
continuous if q>D(p) is dense in D(v). We note that it follows from the as-
sumption that (p must be a cyclic vector for (Mz, D(v)). Thus the verification
of the following claim will conclude the proof of the lemma.

Claim. If <p is cyclic in D(v), then v({e": (¡>(elt) = 0}) = 0. Thus, v? and v
are mutually absolutely continuous.
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Proof (of the claim). We may assume that v ^ 0. Let F = {e": (p(elt) = 0}
and assume that v(E) > 0. We have to show that <p is not cyclic in D(v).

If p is a polynomial, then

0<¿"<*)-¿¿W-ila'''

<¿/w-i|2^<c||^-i|¿.
Thus, it follows that ç> cannot be cyclic in D(v).   D

Recall that two operators Tx £ J¿?(3?¡) and F2 € ¿¿'(ßty are said to be
similar if there is an invertible operator 5 € Sf(ßfx, ^) such that STX = T2S.
Tx and F2 are said to be quasisimilar if there are injective operators X £
S?{X\, XA and Y £5f(^2,^x) such that both X and Y have a dense range
and the intertwining relations XTX = F2A" and F, 7 = FF2 hold.

Note that, if Tx is analytic and quasisimilar to F2, then F2 is analytic as
well. Indeed, suppose that f|„>o Tx%[ = {0} and Y is 1-1 such that TXY =
YT2. Let J! = n„>0 F2"X2 . We have YJÍ ç f)n>0 YT^2 = C]n>0 TXY^2 ç
D„>o T\^\ = {°} • ^ is 1-1, hence it follows that Jf = {0}. Also, if F, has a
cyclic vector, then F2 must have a cyclic vector as well.

Thus, if (Mz, D(p)) is quasisimilar to a 2-isometry F, then F must be
a cyclic analytic 2-isometry. By Theorem 5.1, F is unitarily equivalent to
(Mz, D(v)) for some v . The following theorem gives a necessary condition
on p and î/ for (Mz, D(p)) and (Mz, D(v)) to be quasisimilar. We shall see
later (see the remark after Proposition 6.8) that this condition is not sufficient.

Theorem 6.7. If (Mz, D(p)) and (Mz, D(v)) are quasisimilar, then p and v
are mutually absolutely continuous.
Proof Let X £ &(D(p), D(v)) and Y £ 5f(D(v), D(p)) be the opera-
tors that institute the quasisimilarity between (Mz, D(p)) and (Mz, D(v)).
Then X and Y intertwine (Mz, D(p)) and (Mz, D(v)), hence they can be
represented as multiplications by some analytic functions <px, q>2. The poly-
nomials are dense in D(p) and D(v) ; thus we have <pxD(p) ç D(v) and
<P2D(v) ç D(p), where the containments are dense. It now follows from Lemma
6.5 that p and v must be mutually absolutely continuous.   D

In the special case where one of the measures is Lebesgue measure we can
prove the following.

Proposition 6.8. Suppose f £ D n 77°° is an outer function. If (Mz, D(mA) is
quasisimilar to (Mz, D), then f is cyclic in D.

Proof, f £ 77°° implies that |/| £ L°°(m) ; thus by Theorem 6.2 we have D Ç
D(mA . As in the proof of the previous theorem it follows from the hypothesis
that there is a function g £ D such that gD(mf) ç D densely,   g must be
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cyclic in D, and in particular, it must be an outer function. Furthermore, we
have gD ç gD(mj) ç D, i.e., g is a multiplier of the Dirichlet space.

2 2Now let h = g/f. Then h is an outer function and \g\ dt = \g\ dt =
\h\ l/l úfí = |A| l/l dt. The containment gD(mA ç T) implies by Lemma 6.5
that |Â|2 e L°°(m), i.e., h £ 77°° . Hence we have |g(z)| < HftHJ/ir)! for
every z e O. The fact that g is a multiplier and cyclic together with Corollary
1 of [3] now implies that / must be cyclic as well.   D

We see that, if / 6 D n 77°° is an outer function which is not cyclic in D,
then (Mz, D(mA) and (Mz, D) are not quasisimilar even though m and m,
are mutually absolutely continuous. The existence of noncyclic outer functions
in D is a well-known fact. That there are bounded noncyclic outer functions
in D follows from the results in [10].

In Theorem 7.5 we shall see that, if / is a rational function with poles off
the closed unit disc, then (Mz, D(mA) and (Mz, D) are quasisimilar.

If (Mz, D(p)) and (Mz, D(v)) are similar, then the similarity must be given
as multiplication by some analytic function q> and q>D(p) = D(v). Thus the
following corollary follows immediately from Lemma 6.5. We state it again for
clarity.

Corollary 6.9. If (Mz, D(p)) and (Mz, D(v)) are similar and <p £ D(v) such
that (pD(p) = D(v), then p and v are mutually absolutely continuous and there
is h £ L°°(p), h > 0, a.e. [p] such that l/h £ L°°(p) and dp = h\0\2dv,
i.e., <pD(v9) = D(v).

We shall conclude this section with a theorem that indicates how special the
Dirichlet shift is among the 2-isometries. Note that it follows from Corollary
6.7 that (Mz, D(p)) is quasisimilar to the unilateral shift (= (Mz, 77 )) if and
only if p = 0.

Theorem 6.10. If p ^ 0 and (Mz, D(p)) is similar to a weighted shift operator,
then it is similar to the Dirichlet shift.
Proof. Let {en} be an orthonormal basis for the Hubert space %? and {wn} be
a sequence of nonnegative numbers such that Ten = u>nen+x defines a bounded
weighted shift operator on %f. Assume that F is similar to (Mz, D(p)) via
the similarity S £ 3f(^,D(p)), i.e., MzS = ST. Clearly (Mz,D(p)) is
injective; thus we may assume that none of the weights are zero.

Below B £ J2f(D(p), P2(p)) will denote the operator from Theorem 4.1.
Recall that kerF £ Lat(Afz, D(p)) and kerT? ^ D(p) since p ^ 0. e0 is a
cyclic vector for F, hence Se0 must be cyclic for (Mz, D(p)). It follows that
Se0 i kerF.

We shall prove that T is similar to the Dirichlet shift by using Theorem
2(b) of [11, p. 54]. It says that two weighted shift operators with positive
weight sequences  {wn}  and  {vn}  are similar if and only if the sequence
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{w0wx ■ ■ ■ wn/v0vx ■ ■ ■ vn}n>0 is bounded away from zero and infinity indepen-
dently of n.

The weights of the Dirichlet shift are v, = y/(j + 2)/(j + 1), j > 0. Hence
n,=o v. = n + l for every n £ N. Thus,

0<c ^WSe^l + nWBSeX^
(n + l)\\Sf

\\M"Se0\\2ß     _
—^   (Lemma 6.1 )

(« + 1)||S||2

<

\\st\w2 < iif%ii2 = n;io%2
(« + i)ii5ii2- «+i n;:0^2

ii^-'ii2ii5F"gon2  iig-'iñK^oii;
n+1 «+1

ll^'ll^ll^oiij + n^g^)
=-—-<C2<oo.

Hence it follows from the above quoted theorem that F is similar to the
Dirichlet shift.   D

7. Invariant subspaces

If / e D(p) and fD(v) is contained and closed in D(p), then it is an
invariant subspace of (Mz, D(p)). By Lemma 6.5 we can substitute p, for
v , i.e., in this case Jt = fD(pA is an invariant subspace of (Mz, D(p)). Of
course we have dim^# e zJf =1 (see Theorem 5.1).

Conversely, if Jf is an invariant subspace of (Mz, D(p)) which satisfies
dim^# e zJf = 1, then Mz\Jf is a 2-isometry that satisfies the hypothesis
of Theorem 5.1. Thus, there is a positive finite Borel measure v on T such
that (Mz ,D(v)) is unitarily equivalent to MZ\JH . The following theorem will
explain the relationship between p and v .

Theorem 7.1. Let JÍ  be an invariant subspace of (Mz, D(p))  that satisfies
dim J? e zJi = 1.

If f £jiezJ?, ||/||^ = 1, then J! = fD(pf) and \\fg\\ß = ||g||^ for
every g £ D(pf).

In particular, every invariant subspace of the Dirichlet shift (Mz, D) is of the
form fD(mf).
Proof. The polynomials are dense in D(p A. Furthermore, by Theorem 1 of
[9] we know that the polynomial multiples of / are dense in Jf. Thus, it is
enough to show that ||/p||„ = ||p||     for every polynomial p .

Recall that for a polynomial p(z) = J2n=oP^z" ano- f°r a nonnegative
integer k we use the notation pk = Tkp to denote the truncated polynomial
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Pk(z) = 2^n=kP(n)z" • ®ne nas -^ e z^ — ker(A/z|^)*. Thus, Lemma 2.1
applied with the operator F = Mz\Jf and the vector x0 = f yields

\\pf\\l = \\PU + E(\\zPkf\\2ß-\\Pkf\\l)
k=\

= Ml* + E ¿ [* M'")l W)f dp(t)
Jt=i — ■">

Here the last two equalities follow from Theorem 4.1.
The statement about the invariant subspaces of the Dirichlet shift now follows

immediately because by Theorem 2 of [10] dim^#ez^# = 1 for every nonzero
invariant subspace of (Mz, D).   u

Thus, in order to precisely describe all invariant subspaces of the Dirichlet
shift one needs to identify all functions f £ D which satisfy f±znf for all
n £ N. This may be hard and it may be easier to first determine all f £ D such
that fD(mf) is closed in D. We now give an example.

Example 7.2. Let r > 0, g(z) = e-W+*)/V-*) > and ^(z) = (1 _ z)^(z) _
Since m is Lebesgue measure and g is an inner function, it follows from

Proposition 4.3 that |/(<?")| = |1 - e"\. Thus, dmf(f) = |1 - e"\2dt. This is
the same measure as in Example 3.2 and we recall that <pm (z) = 2( 1 - Re z) =
n |2   ,   i       i   i2|1 - z|   + 1 - |z|   .

Claim.  fD(mA is an invariant subspace of (Mz, D).
We know that the polynomials are dense in D(mA ; hence it will suffice to

show that there are constants c, C > 0 such that for every polynomial p

(7.1) c (||(1 - z)gp\\2H2 + II |((1 - z)g/>)'(z)|2^(z))

<\\PÙ+ ff\p'(z)\2<pm(z)dA(z)J Jo f

< C (\\(l - z)gp\\2H2 + II |((1 - z)^)'(z)|2 dA(z\

To verify this it will be convenient to use Carleson's representation formula for
the Dirichlet integral (see [4]). We apply that formula to (1 - z)gp and to
(1 - z)p and, since g(z) = e~   +z)'(I_z) We obtain

(7.2) ff |((1 - z)^)'(z)|2^(z) = ̂ \\p\\2H2 + ff \((l - z)p)'(z)\2dA(z).
JJo L J Jo
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Thus,

||(1 - z)gp\\2H2 + ff |((1 - z)gp)'(z)\2dA(z)
J Jo

<

<c

(4 + 5) \\p\\h> + II |((1 - z)p)'(z)\2 dA(z)

\\2H2+ff\p'(z)\2\l-z\2dA(z)+ff\p(z)\2dA(z))
JJo JJo /

\\2H2+ll\p'(z)\2(pmf(z)dA(z)Y<c

since |l-z| < <pm (z) and because the La-norm is smaller than the 77 -norm.
This establishes the first half of (7.1).

Now compare (7.1) and (7.2) and note that in order to finish the proof it will
be sufficient to show that

II \p\z)\2<Pmf(z) dA(z) < C (fi |((1 - z)p)'(z)\2 dA(z) + \\p\\2H2^ .

We have (1 - z)p = ((1 - z)p)' + p ; thus

// \p'(z)\2<pm(z) dA(z) = ff \p'(z)\2(\ 1 - z|2 + (1 - |z|2)) dA(z)
JJo J JJo

< c (II \p'(z)(l - z)\2 dA(z) + \\p\\2H2^j    (see §2)

<c(ff\((l- z)p)'(z)\2dA(z) + ff \p(z)\2dA(z) + \\p\fc)
\JJo JJo J

<c(ll\((l-z)p)'(z)\2dA(z) + \\p\\2H2^ .    G
In §6 we have obtained some necessary conditions for (Mz, D(p)) and

(Mz, D(v)) to be similar operators and we have seen that the only weighted
shifts that they can be similar to are the unilateral shift or the Dirichlet shift.
For restrictions of the Dirichlet shift to an invariant subspace we can now easily
prove the following proposition, which might be considered somewhat surpris-
ing.

Proposition 7.3. Let D = D(m) denote the Dirichlet space. If ' Jt £ Lat(A7z, D),
then Mz \Jf is similar to a weighted shift operator if and only if Jf is generated
by a finite Blaschke product. In this case it is similar to the Dirichlet shift.
Proof. If / 6 D, then let [/] denote the smallest invariant subspace of (Mz, D)
containing /.

Multiplication by a finite Blaschke product B is bounded below in S?(D),
hence it is clear that [B] = BD and that A7z|[F] is similar to the Dirichlet
shift.

To prove the converse assume that Jt £ Lat(Mz, D), •# ^ (0). Let / £
Jf e z^f, ||/||m = 1 . Then Mz|^# is unitarily equivalent to (Mz, D(mA).
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m j- / O, thus by Theorem 6.10, Mz\J£ is similar to (Mz, D). Since J'CÖ
the similarity must be given by a multiplier tp e M(D), which is bounded
below. Let <p = S<px be the inner-outer factorization of tp . Multiplication by
an inner factor always increases the Dirichlet norm (see [4]); thus <px £ M(D).
Furthermore, by Proposition 4.3, (p = <p = (px = (j>x in L (m). It follows
from Corollary 6.6 that l/(px £ L°°(m) and hence l/<px £ 77°° . This implies
l/<px£D and \\S\\m = \\M9(l/<px)\\m<c\\l/<px\\m. Thus S £ D, i.e., S = B
must be a finite Blaschke product. This implies that MB is a multiplier and
bounded below. Hence M is bounded below. By Corollary 6.6, l/<px £ M(D)
and Jf = [B].   D

We shall now conclude this section by showing that quasisimilarity of re-
strictions of (Mz, D) to invariant subspaces is more common than similarity.
Recall that the disc algebra is the space of all analytic functions on D that
extend to be continuous on the closure of D.

Lemma 7.4. Suppose f is analytic on D and there is an e > 0 and a c > 0
such that for all z £ D

|/'(z)|2(l-|z|2)'-£<c.

Then f is in the disc algebra and fD(ntj-) ç D and D ç D(mf).
Proof. It follows from a theorem of Hardy and Littlewood (see e.g. Duren,
Theory of Hp spaces, p. 74) and the assumption that / is in the disc algebra
(and satisfies a Lipschitz condition). This implies that |/|   £ L°°(m). Thus by
the definition of m, and by Theorem 6.2 we obtain D ç D(mA .

We shall finish the proof by showing that

If \(pf)'(z)\2dA(z)<c\\p\\2mf.
2For any analytic function / on D one has |/(z)| < (pm (z) for every z £ B.

Thus,

ff \(pf)'(z)\2dA(z)
J Jo

<c(ff \p'(z)f(z)\2 dA(z) + ff \p(z)f'(z)\2 dA(z)\
\JJo JJo /

<c(lljp\z)\29mf(z)dA(z) + cll\p(z)\2(l-\z\2)-l+edA(z)"j

<c(lljp\z)\2vm/(z)dA(z) + c\\p\\2H2^<C\\p\\2mf.   D

Theorem 7.5. If f is a rational function with poles off the closed unit disc, then
(Mz, D(mA) is quasisimilar to (Mz, D).
Proof. First note that one can find a finite Blaschke product B and a rational
function g with no poles in O- and no zeros in D such that / = Bg. By
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Corollary 6.3,  (Mz, Dm ) is similar to (Mz ,Dm),soin order to finish the
proof of the theorem it suffices to show that (Mv, T)    )  is quasisimilar tog
(Mz,D).

But g satisfies the hypothesis of Lemma 7.4 and clearly D is dense in D(m )
(it contains the polynomials), hence we have to show that gD(m ) is dense in
D. This will be the case if g is a cyclic vector in D.

To see that g is cyclic one needs to recall results of Leon Brown and Allen
Shields. In fact, the conclusion is immediate from [Proposition 8, p. 275,
Lemma 8, and Proposition 13, p. 289].   D

We note Example 7.2, Theorem 7.3, and Theorem 7.5 imply that there are
quasisimilar analytic 2-isometries that are not similar to one another. Indeed,
if p(z) = 1 - z, then by Theorem 7.5, (Mz, D(m )) is quasisimilar to the
Dirichlet shift. On the other hand, by Example 7.2 we know that (Mz, D(m ))
is similar to Mz |^#, where Jt £ Lat(Mz, D) and all functions in JÍ have
a singular inner factor. Now, if Mz\Jf were similar to (Mz, D), then by
Theorem 7.3, JK would have to be generated by a finite Blaschke product.
This is clearly impossible. Thus (Mz, D(m )) is not similar to the Dirichlet
shift.

This observation is in contrast to the fact that quasisimilar isometries must
be unitarily equivalent.
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