Stephen L. Bloom

A REPRESENTATION THEOREM FOR THE LATTICE OF STANDARD CONSEQUENCE OPERATIONS

This paper will be published in Studia Logica.

§1. Introduction

A sentential language S is an algebra of finite type (i.e. a set equipped with a finite number of finitary functions) which is absolutely free in the class of all similar algebras, freely generated by a set of "(sentential) variables". A consequence operation on S is a function C from the power set of S, PS, into PS satisfying the following three conditions:

- i) $X \subseteq C(X)$, all $X \subseteq S$;
- ii) $X \subseteq Y \Rightarrow C(X) \subseteq C(Y)$, all $X, Y \subseteq S$;
- iii) $C(C(X)) \subseteq C(X)$, all $X \subseteq S$.

A consequence operation C is algebraic (or finite) if

iv)
$$C(X) = U\{C(Y)|Y|X,Y \text{ finite}\}$$

and is structural if for all endomorphisms h of S,

$$hC(X) \subseteq C(h(X))$$
, all $X \subseteq S$.

If C is both algebraic and structural, C is called *standard* (see [W] and [B]).

It is known that the collection ST (for "standard") of all standard consequence operations on S forms a complete lattice when the ordering is defined by:

$$C \leqslant C'$$
 if $C(X) \subseteq C'(X)$, all $X \subseteq S$.

Indeed, if C_i , $i \in I$ is a subset of ST, then $\bigvee (C_i, i \in I)$ is the consequence operation C satisfying:

$$\alpha \in C(X)$$
 iff, for some $i_1, \ldots, i_n \in I$,

$$\alpha \in C_{i_1}(C_{i_2}(\dots(C_{i_n}(X)))\dots)$$

In this note, a representation of the lattice ST will be given.

For any sentential language S, let L(S) be the first-order language (without equality) having one unary predicate symbol T, whose terms form an algebra isomorphic to S. (Thus we identify the formulas of S with the terms of L(S)). Let H denote the collection of all sentences of L(S) which are the $universal\ closures$ of formulas of the form

(*)
$$T(\tau_1) \wedge T(\tau_2) \wedge \ldots \wedge T(\tau_k) \rightarrow T(\tau)$$

where $k \ge 0$, τ_i , τ are terms. When k = 0 (*) becomes just $T(\tau)$. H is thus the collection of (strict) basic Horn sentences (see [CK]).

For a subset Γ of H, let $\overline{\Gamma} = \{ \sigma \in H | \Gamma \models \sigma \}$, where is the classical logical consequence operation. It is easily seen that the collection HN (for "Horn") of subsets of H of the form $\overline{\Gamma}$, $\Gamma \subseteq H$, is a complete lattice when ordered by set inclusion. Indeed, if $\overline{\Gamma}_i$, i = I are in HN, then

$$\Lambda(\Gamma_i, i \in I) = \bigcap (\overline{\Gamma}_i : i \in I),$$

i.e. the meet operation in HN is just intersection. In the next section, we will prove the following

Theorem. The lattices ST and HN are isomorphic.

COROLLARY. ST is a complete, compactly generated ("algebraic") lattice (i.e. every element is a join of compact elements).

Indeed, the lattice HN is algebraic, since $\overline{\Gamma} = \bigvee(\overline{\Gamma}_f : \Gamma_f \subseteq \Gamma, \Gamma_f \text{ finite})$, and the sets $\overline{\Gamma}_f$, with Γ_f finite are compact in HN.

§2. Proof of the theorem

A matrix M is a pair (A,T) consisting of an algebra A similar to S and a subset T of A (we use the same letter for an algebra and its underlying set.)

Equivalently, a matrix is just a L(S)-structure. Any matrix M = (A, T) determines a structural consequence operation C_M on S by: for $X \subseteq S$, $\tau \in S$,

 $\tau \in C_M(X)$ if, for any homomorphism $h: S \to A, h(\tau) \in T$ whenever $h(X) \subseteq T$.

For any consequence operation C on S, let K(C) be the class of all matrices M such that $C \leq C_M$.

LEMMA 1. A class K of matrices is K(C) for some standard C iff $K = Mod\overline{\Gamma}$, for some $\Gamma \subseteq H$.

PROOF. If K = K(C), C standard, then by ([B], Theorem 2.6) it follows that $K = Mod\overline{\Gamma}$, where Γ consists of all sentences

$$(**) \qquad \forall \overrightarrow{x} [T(\tau_1) \dots T(\tau_k). \to T(\tau)]$$

such that $\tau \in C(\tau_1, \ldots, \tau_k)$.

Conversely, if $K = Mod\overline{\Gamma}$, define C by:

 $\tau \in C(X)$ iff $\tau \in C_M(X)$, all $M \in K$. By ([B], Theorem 2.9) C is standard, and it is easily seen that K = K(C).

Remark. It is well-known [G] that an axiomatizable class K of matrices is $Mod\overline{\Gamma}$, some $\Gamma\subseteq H$ iff K is closed under arbitrary products and substructures.

LEMMA 2. Suppose C_i are standard consequence operations on S, Γ_i are subsets of H such that $K(C_i) = Mod\overline{\Gamma}_i$, i = 1, 2. Then $C_1 \leqslant C_2$ iff $\overline{\Gamma}_1 \subseteq \overline{\Gamma}_2$.

PROOF. By (W], Theorem 3.1) it follows that $C_1 \leq C_2$ iff $K(C_2) \subseteq K(C_1)$. The lemma thus follows easily.

From Lemmas 1, 2 it follows that the function $C \mapsto \Gamma_C$ taking the standard consequence C to the subset $\Gamma_C = \overline{\Gamma}_C$ of H with $K(C) = Mod\Gamma_C$ is a lattice isomorphism $ST \to HN$. Notice that the sets $\overline{\Gamma}$, with Γ finite, correspond to the "finitely based" [B] consequence operations on S, i.e. those definable from a finite number of structural rules [W]. These consequence operations are precisely the compact elements of the lattice ST.

We close with several problems. It is known that if M is a finite matrix, C_M is standard, but we do not know whether C_M is compact on ST. Further, we don't know if the meet of two compact elements is compact.

References

- [B] S. L. Bloom, Some theorems on Structural Consequence Operations, IBM Research Report RC 4620, to appear in Studia Logica.
- [CK] C. C. Chang, H. J. Keisler, Model Theory, North Holland, Amsterdam 1973.
 - [G] G. Gratzer, Universal Algebra, Van Nostrand, Princeton 1968.
- [W] R. Wójcicki, *Matrix approach in Methodology of Sentential Calculi*, **Studia Logica** 32 (1973), pp. 7–37.

Stevens Institute of Technology Hoboken, N.Y., USA.