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A Representation Theory for Morphological Image 
and Signal Processing 

PETROS MARAGOS, MEMBER, IEEE 

Abstract-This paper presents a unifying theory for many concepts 

and operations encountered in or related to morphological image and 

signal analysis. This unification requires a set-theoretic melhodology, 

where signals are modeled as sets, systems (signal transformations) are 

viewed as set mappings, and translation-invariant systems are uniquely 

characterized by special collections of input signals. This approach 

leads to a general representation theory, in which any translation-in- 

variant, increasing, upper semicontinuous system can be represented 

exactly as a minimal nonlinear superposition of morphological erosions 

or dilations. In this representation, many similarities and a few 

differences are observed between systems processing binary or multi- 

level signals, and continuous-domain or discrete-domain signals. The 

theory is used to analyze some special cases of image/signal analysis 

systems, such as morphological filters, median and order-statistic fil- 

ters, linear filters, and shape recognition transforms. Although the de- 

veloped theory is algebraic, its prototype operations are well suitable 

for shape analysis; hence, the results of this study also apply to systems 

that extract information about the geometrical structure of signals. 

Zndex Terms--Image/signal processing, mathematical morphology, 

nonlinear/linear filtering, shape analysis, systems representation. 

I. INTRODUCTION AND SUMMARY 

T HIS paper develops a representation theory unifying 
many systems (“systems” are defined here as signal- 

to-signal transformations) encountered in or related to 
morphological image and signal processing. By “mor- 
phological signal processing” is meant in this paper not 
only the area of mathematical morphology [ 11, [2] as an 
image analysis method, but also the use of its implicit 
signal analysis techniques to study arbitrary signals and 
systems. Although the theory is motivated by specific ex- 
isting systems related to morphology, it is very general 
and refers to all systems that share three properties: trans- 
lation-invariant, increasing (preserve a signal ordering), 
and semicontinuous (insensitive to very fine signal de- 
tails). 

Many theoretical results concerning the operations of 
mathematical morphology can be found in [ l]-[ 151, [46]. 
These operations have been applied successfully to a broad 
variety of image processing/analysis tasks (including 
noise suppression. image enhancement, coding, feature 
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extraction, thinning, texture analysis, and shape recog- 
nition) encountered in diverse areas such as biomedical 
image processing, cellular automata, electron micros- 
copy, astronomy, and automated industrial visual inspec- 
tion. ’ The basic concepts and analytic tools behind mor- 
phological operations can be found for binary signals in 
set theory and integral geometry, and for multilevel sig- 
nals in measure theory, convex analysis and fuzzy set the- 
ory. The ideas needed from these areas of mathematics 
are elementary, but can become effective tools for anal- 
ysis of arbitrary signals and systems. For example the the- 
oretical analysis of median and rank-order filters has been 
simplified and extended using such “morphological” 
techniques in [ 131. In addition, the relationship among 
morphological filters, median-type filters, and even clas- 
sical linear filters goes much deeper: they can all be rep- 
resented in terms of a minimal nonlinear superposition of 
morphological erosions or dilations [ 1 l]-[ 131. One goal 
then of this paper is to introduce a general representation 
theory which includes these fundamental results as special 
cases. 

Currently, there are many commercial computer archi- 
tectures for digital image analysis whose main operations 
are combinations of erosions and dilations. Early exam- 
ples include [21]-[23]; for some recent examples see the 
session on morphological systems of the workshop [24]. 
In addition, there are VLSI, optical/electronic, and ana- 
log optical implementations of rank order filters (whose 
special cases are the simple erosions and dilations) or 
morphological filters [25]-[28]. Therefore, from an up- 
plications viewpoint, our representation theory estab- 
lishes the capabilities and limitations of all these com- 
puter architectures and implementations by finding the 
general class of signal operations that they can perform. 
Further, the ever-increasing industrial need in automated 
visual systems calls for low-cost machine vision modules 
that can do a variety of complex image processing/anal- 
ysis tasks based on a rather small set of available simple 
image operations. Hence, given the wide applicability of 
erosions/dilations, their parallellism, and their simple im- 
plementations, the work in this paper theoretically sup- 

‘Since we do not attempt here a survey of applications of mathematical 
morphology, a complete list of such references lies beyond the scope of 
this paper. A few examples can be found in [2], [S], [16]-[19], the session 
on morphology of the conference [20], and the tutorial parts of [lo], [ 121, 
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ports a general purpose vision (software or hardware) 
module that can perform erosions/dilations. Although 
several morphology-based algebraic systems have been 
proposed (e.g., see [2], [8], [9], [29]) for image process- 
ing, it is known from [30], [31] that erosions/dilations are 
insufficient by themselves to represent all possible image 
operations. Image algebras have been developed [30], 
[3 l]-[33], [34] which represent all digital image-to-image 
operations as a finite composition of a few basic opera- 
tions, which include erosions/dilations. These image al- 
gebras contain as (morphological) subalgebras all the op- 
erations representable via erosions/dilations only. Ritter 
et al. [31] showed that a subalgebra of their full image 
algebra generalizes the theory of mathematical morphol- 

WY. 
From a theoretical viewpoint, this paper unifies the rep- 

resentation of previously totally unrelated systems, e.g., 
morphological filters used in image analysis and median 
(or other order-statistic based) filters used in robust statis- 
tics. It also provides a common mathematical framework 
and analytic tools for a large class of linear and nonlinear 
filters. Finally, a motivation for our research is our belief 
that it helps conceptually and offers insight to know that 
a particular system together with many others sharing a 
few common properties result from the combination of a 
few simple generic systems. 

This paper, which reports work from [9], is organized 
as follows: in Section II we provide a set-theoretic meth- 
odology for signals and systems suitable for the represen- 
tation theory; a brief review of the definitions of the re- 
quired basic morphological filters; and some concepts 
related to systems obeying a “threshold” superposition 
that will help us bridge the gap between systems process- 
ing binary versus multilevel signals. In Section III-A we 
summarize Matheron’s [l] results on using the kernel (a 
special collection of input signals) of translation-invariant 
set mappings to show that any translation-invariant in- 
creasing system processing binary signals is a union of 
erosions by its kernel sets, and also an intersection of di- 
lations by the kernel sets of a dual system. Our first major 
contribution begins with Section III-A where we extend 
Matheron’s work by introducing a kernel representation 
for systems processing multilevel signals and by showing 
that any such translation-invariant increasing system is the 
supremum of erosions by its kernel functions, and also 
the infimum of dilations by the kernel functions of a dual 
system. These kernel representations of systems require 
an infinite number of elements. Seeking to eliminate any 
redundancy in the kernel, we introduce in Section IV the 
concept of the basis as the collection of minimal (with 
respect to a signal ordering) kernel elements. The basis is 
an infinitely smaller subcollection of the kernel, and 
sometimes it is finite. Our major contributions in Section 
IV is to show that the basis of translation-invariant, in- 
creasing, upper semicontinuous systems processing mul- 
tilevel (binary) signals exists, and such systems can be 
represented exactly as the supremum (union) of erosions 
by their basis functions (sets). These results are devel- 

oped for systems processing signals of both discrete and 
continuous domain. Although the latter case forces us to 
use a mathematical sophistication that could perhaps be 
avoided for discrete systems, we believe it is worthwhile 
for two reasons: 1) theoretical completeness, and 2) prac- 
tical motivations arising from the existence of optical an- 
alog implementations [27], [28] that perform morpho- 
logical filtering on images with continuous domain and 
range. Another contribution in Sections III-B and IV con- 
cerns the special class of systems that can process both 
multilevel and binary signals without altering this feature 
and commute with thresholding; the application of our 
theory to these systems yields their representation in terms 
only of the kernel of their corresponding binary-signal- 
processing systems, which are easier to analyze and im- 
plement. Finally, in Section V we use the general theory 
from Sections III and IV to obtain new realizations for 
some special classes of systems, i.e., morphological fil- 
ters, median and rank order filters, linear filters, and win- 
dow-transforms for shape recognition. In Sections V-B 
and V-C we also survey some results from [9], [ 121, [ 131. 
Some of these results were obtained via combinatorial 
proofs which were unrelated to morphology and different 
for each class of systems. Here we rederive these results 
using the theory of this paper as a manifestation of the 
generality of the theory, from which the special cases re- 
sult as simple corollaries. 

The proofs of all the major theoretical results that are 
new contributions are contained in the Appendix. 

II. BACKGROUND 

A. Set Representations of Signals 

Following the classification of [12] for m-dimensional 
(m-D; m = 1, 2, 3, . . . ) signals, in our analysis we 
shall always use the distinction that an m-Dfinction rep- 
resents and refers to an m-D multilevel signal, whereas 
an m-D set represents an m-D binary (two-level) signal. 
This induces a similar classification for m-D systems into 
eitherfunction-processing (FP) systems, which can accept 
as inputs and produce as outputs m-D multilevel signals, 
or into set-processing (SP) systems, whose both inputs and 
outputs are m-D binary signals. A subclass of m-D FP 
systems can produce a binary m-D output signal whenever 
the input is also an m-D binary signal; these are called 
junction- and set-processing (FSP) systems. 

Notation: R and Z denote the set of real and integer 
numbers, respectively. D = R”’ or 2”’ is the domain set 
on which signals are defined. V = R or Z is the range set 
in which signals take values. Capital letters “A, B, 
. . . X, Y” denote sets; points of sets are denoted by 
loweicase letters “a, b, * * * , x, y, z”. “0, E, G , ( . Y, 
U , fl , X” denote, respectively, the empty set, set mem- 
bership, inclusion, complementation, union, intersection, 
Cartesian product. {x : P } denotes the set of points x sat- 
isfying a property P. f: A --t B denotes a mapping f whose 
domain is A and range is a subset of B. sup ( * ), inf ( . ), 
max ( * ), and min ( * ) denote, respectively, the supre- 
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mum, infimum, maximum, and minimum of sets in R. 
Functions are denoted by “f, g, h”. Capital (lowercase) 

I Greek letters, e.g., \k, % ($, 4) denote SP (FP) systems. 
If f is input signal to the system $, $( f) denotes the out- 
put signal. “ * , H, V” denote, respectively, “implies,” 
“if and only if (if),” and “for all.” 

It not otherwise stated, we henceforth work in the class 
ERV (D ) of all extended real-valued functions on D, i.e., 
functions f: D + V U { - 00, + 03 } . The threshold sets 
(also called cross-sections in [2]) of such a function f are 
the sets 

T,(f) y (x E D: f(x) 2 a}, a E V, (1) 

which are generated by thresholding f at any amplitude 
level a. 

Theorem 12: a) The threshold sets T, ( f), a E V, of an 
extended real-valued function f (x), x E D, decrease as a 
increases and obey a monotonic continuity; i.e., Va, b E 

V, 

a < b * T, 2 Tb, (2) 

Th = u?h T, (if V = R). (3) 

Further, f can be reconstructed from its threshold sets: 

f(x) = sup {a E V:x E T,(f)}, VXED. (4) 

b) Let { G, E D: a E V } be any set collection satis- 
fying (2) (and (3) if V = R), and define a function g(x) 

;. 
sup{a~V:x~G,},x~D.Then,T,(g)=G,~a~ 

Reconstruction (4) leads us to allow our functions to 
take infinite values. That is, if for some x0 E D the set of 
a’s in the brackets of (4) is equal to 0 or V, then we 
simply setf(xo) = sup (0) = --03 orf(xo) = sup (V) 
= + 03. This formalism is very convenient for the nonlin- 
ear signal operations examined in this paper. 

Another set representation off is its umbra [4], [5] 

U(f)zf {(x,a)ED X V:f(x) 2 a}, (5) 

which uniquely characterizes f since 

f(x)=sup{aEV:(x,a)EU(f)j, WED. (6) 

U(f) is a subset of E = D x V. This definition of E 
implies that E = R”“‘, R” x 2, Z” x R, or Z”‘+‘. The 
subsets of E in these four cases can represent, respec- 
tively, m-D signals whose choices for argument and am- 
plitude span the four combinations of being continuous or 
discrete. 

Set operations on threshold sets or umbrae induce cer- 
tain nonlinear operations on functions. That is, let the 

functions CAMJ> (x> = inf,,, {h(x) > and (Vi,d> (xl 
= SUpiF/ { A(x) } denote, respectively, the pointwise in- 

jimum and supremum of an indexed family { A: i E I > of 
functions. If the index set I is finite, A (V) denotes the 

‘Theorem 1 is a generalized version of Serra’s theorem [2, p, 4261 that 
refers only to upper semicontinuous functions. 

point-wise minimum (maximum). By using (l), (5), and the 
properties of sup/inf, the next results follow easily and 
establish that, intersection (union) of threshold sets or 
umbrae corresponds to A (V) of functions: 

T,(f) = !, T&L) Va E V * D(f) = i, D(f) 

T,(f) = ,?, T,(J) Va E V e f = &f 

T,(f)= y,T,(f)Va~V*f= Vf 
!El 

(8) 

(9) 

Zis finite * T, Vf; = U T,(f) Va. 
( > 

(10) 
rel iEl 

Such concepts are similar to the formalism encountered 
in the theory offizzy sets [36]. 

Finally, set inclusion between umbrae or threshold sets 
corresponds to an ordering relation between functions. 
That is, “f precedes g”, denoted as f I g, iff f (x) I 
g(x) vx E D; then 

f 5 g * u(f) s u(g) e T,(f) G T,(g) Va. (11) 

B. Morpohological Filters 

Morphological filters are nonlinear signal transforma- 
tions that locally modify the geometrical features of sig- 
nals or image objects. Next we classify them into SP, FP, 
and FSP filters (systems). 

SP Filters (31, (11: Consider sets A, B in E. Let A + b 
= {a + b : a E A } denote the (vector) translate of A by 
b E E, and let B = { -b : b E B } denote the reflection 
(symmetric) of B. The four basic SP morphological trans- 
formations of A by B are: 

Dilation: A 0 B = U A + b 
beB 

= {z:A n (B + z) f a}, (12) 

Erosion: A 0 B = n A - b = {z:B + z C A), 
bcB 

(13) 

Opening: AOB=(AOB)@B, (14) 

Closing: A 0 B = (A 0 B) 0 B. (15) 

The set dilation is the well-known Minkowski sum [3].’ 
FP Filters (41, (51, (21, (121, (141: As explained in [ 141 

via the umbra homomorphism theorems, the dilation of a 
function f by a function g is defined indirectly by U( f 

‘In the recent literature on morphology, there are mainly two slightly 
different sets of definitions for (12)-(15): one of [I], [2] and another of 
[5], [14], which becomes identical if B = 8. Maragos and Schafer used in 
[9]-[ 131 the definitions from Matheron and Serra. In this paper we use 
Stemberg’s definitions and the notation of Haralick et al. because they are 
simpler; our only difference is to use the group-theoretic notation S + x 
for set translation. Note also that Hadwiger [3] originally called Minkowski 
sum and difference what we call here dilation and erosion. 
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@g)~fU(f)@U(g).Then,ifSpt(f)~f{x~D:f(x) 
# - 03 } denotes the support off, the FP dilation off by 
g is the function 

(f @ s> (xl = sup 
y~r~~r(f) n spt(R) +*I 

{f(Y) + g(x - Y))? 

x E D, 06) 

where g(x) = g( -x) is the rejection of g. The FP ero- 
sion off by g is the function 

(f 0 g> (4 = inf 
yESpt(g) +x 

{f(Y) - g(Y - XI} (17) 

if Spt (g) + x E Spt (f ), and --oo if otherwise. The FP 
opening and closing off by g are, respectively, the func- 
tionsfOg=(fOg)Og,andfOg=(fOg)Og. 

FSP Filters (61, (21. As introduced in [2], if 9 (X) = 
X 0 B, X, B G D, is an SP dilation filter and f is an input 
function, the sets + [ T, ( f )] satisfy the conditions to be 
the threshold sets of a function defined as the FSP dila- 
tion, f 0 B, off by the set B; then (see Theorem 1) 

(f@B)(x)=sup{f(x-y):yEB}, LED. 

(18) 

for all f. Since (21) and (4) imply (20), an FSP system 
obeys the threshold superposition if it commutes with 
thresholding. Note that an FSP system satisfies (21) only 
if it satisfies some necessary conditions summarized in 
Lemma A 1 of the Appendix; a sufficient condition for (2 1) 
is provided in [ 121. Examples of systems that commute 
with thresholding include the FSP erosion, dilation, open- 
ing, and closing as shown in [6], [2]. In addition, any 
cascade or parallel (using V or A) combination of FSP 
systems commuting with thresholding commutes with 
thresholding too. Similar threshold superpositions have 
been used extensively in the analysis of median and re- 
lated nonlinear digital filters [37], [38], [ 131. 

III. KERNEL REPRESENTATIONS 

A. SP Systems 

The FSP erosion off by B is the function 

(f@B)(x)=inf{f(x+y):yEB}, XED. 

(19) 

The FSP opening and closing off by B are, respectively, 
fOB=(fOB)OBandfOB=(fOB)OB.The 
FSP erosion, dilation, opening, and closing off by B re- 
sult as simple cases from their FP counterparts whenever 
g is binary, i.e., g(x) = 0 for all x E Spt (g). Then, if B 
= Spt (g), (16) and (17) reduce to (18) and (19), respec- 
tively. For discrete-domain (e.g., sampled) signals and 
finite sets B, all the above FSP morphological filters be- 
come the moving local maximum/minimum filters intro- 
duced in [6]. 

Consider the power set 6 (E ) (class of all subsets of 
E) and let S c 6 (E ) be henceforth a class of input sets 
(binary signals) closed under translation; i.e., A + z E S, 
vAES,VzEE. WesaythatanSPsystem\k:S + 6(E) 
is translation-invariant (TZ) iff \k (A + z) = \k (A ) + z 
VA E S, Vz E E. TI systems have the exceedingly desir- 
able property that the result of an image processing op- 
eration is independent of the exact location of the image 
object. The kernel of the TI system \k is defined [l] as the 
following collection of input sets: 

3c(\k)zf {AE~:&*(A)}, (22) 

where 0 denotes the zero vector of E (or of D according 
to the context). For example, the kernel of the SP erosion 
system\k(A)=AOB,AES,byagivenBE E,is4 
[see (22) and (13)] 

def 

G(B) = x(A -AOB)={AES:AZB}. (23) 

Similarly, from (22) and (12), the kernel of the SP dila- 
tion 9(A) = A 0 B is C. Threshold Superposition for FSP Systems 

Let 4 be an FSP system, and let + be its corresponding 
SP system; i.e., if x,~( z) is the characteristic@nction of 
asetS(x,(z)is 1 ifzESandOifzESC),then4(x,) = 

X@(S). We say that the 4 obeys the threshold superposition 
property if 

[4(f)] (x> = sup { a E V:x E @[T,(f)]) (20) 

for any function f. Hence, transforming f by any FSP 
system 4 satisfying (20) is equivalent to decomposing f 
into its threshold sets T, ( f), transforming each set T, ( f ) 
by the respective SP system +‘, and then constructing the 
output function 4(f) from the transformed sets 
9 [ T, ( f )]. FSP systems satisfying (20) are useful be- 
cause the filtering of a multilevel signal by them reduces 
to filtering for binary signals, which is easier to analyze 
and implement. 

A suficient condition for threshold superposition is 
commuting with thresholding. That is, we say that an FSP 

system 4 commutes with thresholding iff 

@[T,(f)] = T&(f)], Va E V, (21) 

def 

9(B) = X(A -AOB)={AES:A~B+~}. 

(24) 

A fundamental kernel property is the fact that from 
X ( \k ) we can uniquely reconstruct \k, because \k (A ) = 
{z E E:A - z E X(9)). 

Assume henceforth that we deal only with SP TI sys- 
tems \k that are nondegenerate: i.e., \k ( 0 ) = 0, \k (E > 
= E, and X (Q) contains more elements than the single 
set E. Moreover, if { \k; : i E I } is an indexed family of 
TI SP systems defined on S, let us define their union and 
intersection superposition, respectively, as the systems 
[U;‘ki] (A) = Ui[\k,(A)] and [n;\k;] (A) = 
ni[\k;(A)], A E S. Then we have: 

Proposition I [1]: a) X( n,,, +,) = n,,, X(\k;). b) 

4The notation CK (A - \k(A)) denotes X(q) 
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X( Ui,,\Ej) = U;,,X(\kj). C) PI E \k*(A) VA j 

xc*,) c x(*2). 

An SP system \k is called increasing iff A G B * \k (A ) 
C 9(B ) VA, B. Let \k db,e a TI increasing SP sys- 

tem with domain S. If S” = {A’: A E S }, the dual SP 

system of \k is defined by qd( A ) “zf [ \k (A”)]“, A E S”. 
Obviously, ‘kd is TI and increasing iff I is TI and increas- 
ing, respectively. The kernel of any TI increasing SP sys- 
tem has the following intriguing property: 

Theorem 2 (Matheron [1])5: Let 9 : S -+ 6 (E) be a 
TI increasing SP system, where S G 6 (E ) is closed un- 
der translation. Then, VX E S, 

\k(X) = u X@A = n ~08. (25) 
AEzicIC(sf) Bsx(w’) 

B. FP Systems 

We extended the kernel representation to FP systems as 
follows. Let the FP system $ be defined on a class 5 of 
extended real-valued input functions. Let F be the corre- 
sponding umbra-processing system of $, i.e., F [ U(f)] 
= U [ II/ ( f) 1, f E 5. Thus F is defined on the (closed un- 
der translation) class ‘Xl of the umbrae of all f E 5. For 
eachfE 3, a translation of U(f) by z, = (y, c) E D x V 
corresponds to shifting both the argument off by y as 
well as the amplitude off by c; we call this the (vector) 
translation off(x), x E D, by (y, c). Since U is closed 
under set translation, 5 must be closed under function 
translation too. We say that 

$ is TI * $[f<x - Y> + cl = [+(f>] (x - Y> + c 

VfE3,V(Y,C)ED x v. 

Clearly, $ is TI on 3 iff F is TI on U; then, the SP system 
I’+has a kernel X(r). ForeachfE 5, U(f) E F:(F) iff 

(0, 0) E nwf)i = wm * bw)i (0) 2 0. 
Thus, we define the kernel of the TI FP system $ as the 
following collection of input functions: 

x(&qfE3:[$(f)](o’) 101. (26) 

Obviously, there is a one-to-one correspondence be- 
tween X ( II/ ) and X ( F ) , because for each f E X ( $ ) there 
is a unique umbra U(f) E X(F) and vice versa. The 
kernel of FP systems has the following property (proven 
in the Appendix), which has no SP counterpart. 

Proposition 2: If X is the kernel of a TI FP system 
IJ : 5 + ERV (D ) then, 

if V = R, f(x) E x * [f(x) + P] E x VP > 0, 

P E R, 

if V = 2, f(x) E x * [f(x) + P] E x VP > 0, 

p EZ. (27) 

From X ( $) we can uniquely reconstruct $, as the next 
result (proven in the Appendix) shows. 

‘Matheron’s statement of Theorem 2 is less general because S and S” 
are restricted to be equal, i.e., S = S” = CP( E ), However, this restriction 
is unnecessary as shown in [9, p. 1211. 

Proposition 3: Let 3 G ERV (D) be closed under 
translation. Let X be any subclass of 5 satisfying (27). 
Then the system $ defined by 

P(f)] (xl = sup { a E V:f(y + x) - a E x), 

function of > (28) 
x~D,f~3, 

is TI, and its kernel is equal to X. 
Thus, there exists a one-to-one mapping from the space 

of all subclasses (the kernels) of 5 that satisfy (27) onto 
the space of all TI systems defined on 5. 

Examples: Consider the FP erosion rl/ ( f) = f-0 g, f 
E 5, by a given g. From (17), fOg( 0) = 

infyESpt(gj {f(Y) - g(y)) 2 0 * f(Y > 2 g(y) VYi 
hence, the kernel of this erosion-by-g FP system is 

G(g) = {fE 3:f2 g>. (29) 

Likewise, consider the FP dilation II/(f) = f 0 g. From 
(26) and (16), its kernel is 

9,(g) = (fE 3: 
itspt(~~spt(,~) [f(y) + g( -y)l 2 01. 

(30) 
The kernel of an FSP system 4 on 3 commuting with 

thresholding can be derived from the kernel of its SP 
counterpart G. That is, from (26), (l), (21), and (22), 

X(4) = { f~ 3: T,(f) E W+)}. (31) 

For example, (31), (23), and (24) imply that the kernels 
of the FSP erosion and dilation by a set B are 

K(f-f@ B) = {fe 3:B C T,(f)}, (32) 

X(f- f0 B) = {f~ 3:B n T,(f) f a}. (33) 

Assume henceforth that all TI FP systems $ of interest 
are nondegenerate: i.e., +(f = -m) = -03, $(f = 
00) = 00 (wheref = c means that f(x) = c Vx), and 
X (rl/) contains more elements than the single function f 
= 03. 

If { $;: i E I } is an indexed family of TI FP systems, 
let us define their supremum and injimum superposition as 

the systems [v,$;l (f> = vi[ti,(f)l and [hrc/il (f> = 
h[$i(f)l,fE 3, respectively. Both superpositions cor- 
respond to parallel interconnection of systems. The kernel 
representation preserves the above types of superposition 
as well as ordering of systems, as stated below (see Ap- 
pendix for proof). 

Proposition 4: a) X ( A;~,$,) = (l ielX (1+5;). b) X (11/) 

= U,,,X($i) * II/ = vie, $;. If I is finite, then 

~(V;,,~;) = U;.,X(b4>. c) +4(f) 5 $2(f) v-e 3 @ 
X($1> c X($2). 

An FP system II/ is called increasing iff f I g * $( f) 
I rc/(g) Vf, g. Thus, increasing systems are order-pre- 
serving. The increasing condition is of fundamental im- 
portance in image processing if we want the image oper- 
ations to preserve order (contrast ), or, equivalently, to be 
compatible with the spatial ordering of the opaque objects 
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from which the image signals emanated. Moreover, in- 
creasing systems are consistent with the high-level vision 
models of gestalt psychology; in this field there is a strong 
belief that the perceptual processes underlying the visual 
interpretation of a scene are actually increasing systems. 
That is, as stated by Kiihler [39], “Experienced order in 
space is always structurally identical with a functional or- 
der in the distribution of underlying brain processes. ” 
This is the principle of psychophysical isomorphism as it 
applies in the case of spatial order. For instance, letfand 
g be two image signals emanating from two opaque ob- 
jects that partly cover each other. Then, as argued in [7], 
we perceive the signal f v g through a high-level vision 
system II/ and, because of the principle of psychophysical 
isomorphism, the transform, $( f v g), off v g must 
dominate the max-superposition of the individual trans- 
forms; i.e., $(fV g) L $(f) V $(g). This latter con- 
dition is equivalent to $ being increasing. 

We extended Theorem 2 to FP systems as follows. Let 
II/ be a TI FP system with domain 3. We define its dual 

(with respect to negation) FP system by @( f) zf 

-$(-f), f E Sd, where (-f) (x) = -f(x) and 3d “Lf 
( f: -LIZ 3 } . Sd is closed under translation iff 3 is closed 
under translation. tid is TI and increasing iff 1c/ is TI and 
increasing. The next result (proven in the Appendix) is an 
FP counterpart of Theorem 2. 

Theorem 3: a) FP Systems: Let +: 3 + ERV (D) be a 
TI increasing FP system, where 3 G ERV (D) is closed 
under translation. Then 1+5 can be represented exactly as 
the pointwise supremum of erosions by all its kernel func- 
tions, and also as the pointwise infimum of dilations by 
all the reflected kernel functions of its dual system $J~; 
i.e., VfE 3, 

f@h. (34) 

b) FSP Systems: Let 4 : 3 + ERV (D), with 3 as in 
a), be a TI FSP system that commutes with thresholding, 
and Cp is its respective SP system. Then 4 can be repre- 
sented exactly as the pointwise supremum of erosions by 
all the kernel sets of +, and also as the pointwise infimum 
of dilations by all the reflected kernel sets of the dual SP 
system G?‘; i.e., Vfe 3, 

IV. BASIS REPRESENTATIONS 

Theorems 2 and 3 may be theoretically interesting but 
they have no direct practical importance, because they re- 
quire an infinite number of erosions to implement an in- 
creasing TI system, since the kernel of such a system has 
an infinite number of elements [9]. Therefore, we were 
led to introduce the concept of the basis of such systems, 
which we defined as the collection of minimal kernel ele- 
ments. If the basis is nonempty, then we may be able to 
exactly represent a system as a minimal (maybe finite) 
union of erosions using just the basis elements. 

The kernel X ( \k) of an SP system \k defined on S to- 
gether with the ordering relation of set inclusion is a pur- 
tially ordered set (poset).6 A kernel set-element is mini- 
mimal in (X (\E), E ) iff it is not preceded (with respect 
to G ) by any other kernel set. If P is also increasing, and 
ME X(\k), then G(M) = {A:A 2 M} G X(q). In 
addition, X 0 A C X 8M for any set X and A 2 M. 
Thus, in representing k as a union of erosions, the ero- 
sion by M contains the erosions by any other kernel set in 
E (M ), and, hence, it is the only one needed. We define 
the basis of any TI SP system q as the collection of its 
minimal kernel sets. denoted as 

03(q) tf {ME X(\k):[Ae X(\k) andA G M] 

* A = M]. (36) 

The above discussion also applies to any FP increasing 
TI system $. Clearly, the pair (X($), I ) is a poset, 
where I is the function ordering in (11). A kernel func- 
tion-element is minimal in (X ( $), I ) iff it is not pre- 
ceded (with respect to I ) by any other kernel function. 
The basis of $ is the collection of its minimal kernel func- 
tions 

andf I g] *f= g). (37) 

In both cases the basis is a subcollection of the kernel with 
infinitely fewer elements. As shown later, there are cases 
where the basis contains only a finite number of kernel 
elements. 

At this point, two fundamental questions naturally arise: 
Does the basis exist? Can we represent the system only 
by its basis? In what follows we will answer both of these 
questions affirmatively. Toward this goal we had to re- 
strict the general space of signals. Thus, instead of the 
most general set class 6 (E ), now we select for signal 
representation the class of all closed subsets of E, denoted 
by C (E ). This is a natural compromise if we assume that 
each image object contains its boundary [l]. Therefore, 
all the threshold sets and the umbra of a function must be 
closed sets. The equivalent class of functions is the class 
of upper semicontinuous functions on D, denoted as USC 
(D ). That is, f on R” is upper semicontinuous iff T, ( f) 
is a closed set in R” Vu E R, or, equivalently, iff its umbra 
is closed set in Rm+‘. Discrete-domain signals are trivi- 
ally upper semicontinuous because all their threshold sets 
are subsets of Z”’ and hence closed. 

6A relation “ zs ” on a set S is called a partial ordering, and the pair (S, 
~)iscalledaposeriffVa,b,c~S:l)a~a,2)a~bandb%aimply 
a = b, and 3) a 5 b and b 5 c imply a 5 c. If (L, I ) is a poset and for 
all a, b in L we have a s b orb 5 a, then (15, 5 ) is called a heady 
ordered set. 

‘A function f is upper semicontinuous at a point x iff f(x) = 
inf,,a[sup{f(y):O 5 I/X - yII < r}] [40]. For example, if c(x) is a 
continuous function, the function g defined by g(x) = c(x) forx # x0 and 
g(xa) = c(xa) + p. is upper semicontinuous at x0 ifp 2 0. 
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A. Existence of Minimal Elements 

Let {X, In Z i be any decreasing sequence of sets that 
converges monotonically to a limit set X, i.e., X, + , G X, 
vn and X = n .X,; we denote this by X,, 1 X. An increas- 
ing SP system \k : C (B ) -+ (3 (E ) is called upper semi- 
continuous [l] iff X,, 1 X implies that \k (X, ) 1 \k (X ). By 
using umbrae in the place of the sets X, we can extend 
these definitions to FP systems. That is, let fn 1 f denote 
a function convergence where { J1 }n >, is a decreasing se- 
quence (i.e., f, +, _ < f, vn) of functions that converges 
monotonically to a limit function f = A,&. Then, an in- 
creasing FP system 1c/ is called upper semicontinuous iff 
fn 1 f implies that $( fn) 1 $( f) in USC(D ). 

Upper semicontinuity amounts to requiring systems to 
be insensitive to fine details in the signal, since a physical 
resolution limit cannot be avoided. This, together with the 
already discussed importance of increasingness and trans- 
lation-invariance, makes TI increasing upper semicontin- 
uous systems an interesting class of signal operations. 
Such systems are “digitalizable,” meaning that the tran- 
sition between transforming continuous and discrete im- 
age objects satisfies a continuity condition [2]. Further, 
they play a central role in our work since the basis of a 
TI increasing SP or FP system exists (i.e., is nonempty) 
if the system is upper semicontinuous, as explained by the 
next theorem proven in the Appendix. 

Theorem 4: Existence. 
a) SP Systems: Let \k : S + C! (E ) be a TI increasing 

and upper semicontinuous SP system, where S & C (E ) 
is closed under translation and any (possibly infinite) in- 
tersection. Then, the kernel of 9’ has a minimal element. 

b) FP Systems: Let $ : 5 + USC(D) be a TI increas- 
ing and upper semicontinuous FP system, where 5 c 
USC(D) is closed under translation and pointwise infi- 
mum. Then, the kernel of tc/ has a minimal element. 

Upper semicontinuity and closedness of the systems’ 
domains under fl or A are sufficient conditions for the 
existence of the basis. It remains to be found whether they 
are also necessary, or whether one can find other sufficient 
conditions for the existence of minimal elements. 

B. Representation by Minimal Elements 

We will show that any TI increasing and upper semi- 
continuous SP system \k defined on S G (3 (E ) is a union 
of erosions by its basis sets. To find a dual representation 
involving dilations, we should further restrict S to dis- 
crete-domain signals. That is, both S and Sd = {A : AC E 
S } must be subsets of C (E ). This is possible only if E 
= 2”‘. Further, since both S and Sd must be closed under 
any intersection, they must also be closed under any 
union; they are also closed under translation. Therefore, 
in the case of dual representations we set S = Sd = 
6 (2”). Next is our first theorem (proven in the Appen- 
dix) for representation by minimal elements. 

Theorem 5 (Representation for SP systems): 
a) All SP Systems: Let \k : S + (3 (E ) be a TI increas- 

ing and upper semicontinuous SP system, where S G 

C(E) is closed under translation and any intersection. 
Then \k can be represented exactly as the union of ero- 
sions by all its basis sets; i.e., VX E S, 

\k(X) = u XQ M. (38) 
MEa 

b) Discrete SP Systems: Let \k : 6 (2”‘) + 6 (2”) be 
a discrete TI increasing and upper semicontinuous SP sys- 
tem. Then, if the dual system ?Erd is upper semicontin- 
uous, q can be represented as the union of erosions by all 
its basis sets, and also as the intersection of dilations by 
all the reflected basis sets of \k”; i.e., VX C Z”‘, 

qx>= u XQM= n xm. (39) 
MEas NEcB(W) 

Since we consider only nondegenerate systems, the ba- 
sis is a proper subset of the kernel. Hence, there is a proper 
subset M of E belonging to the basis. Then, all the (infi- 
nite in number) sets X in S such that M G X G E belong 
to the kernel but not to the basis. Thus, Theorem 5, com- 
pared with Matheron’s Theorem 2, realizes the system by 
infinitely reducing the number of required erosions (or di- 
lations).8 Examples are given in Section V. 

Next we show that any TI increasing and upper semi- 
continuous FP system $, defined on 5 G USC(D), is a 
supremum of erosions by its basis functions. To find a 
dual representation for $J, the domain Sd = { -f:f~ 5 } 
of the dual FP system $d must be a subclass of USC(D). 
But then both f and --f must be upper semicontinuous for 
all fin 5 and sd. Further, since both 5 and Td must be 
closed under pointwise infimum, they must also be closed 
under pointwise supremum. Hence, in the case of dual 
representations we select 5 = Sd to be the class ERV 
(2”‘) of all extended real-valued functions defined on 2’“. 
Next we present (see Appendix for proof) an FP counter- 
part of Theorem 5. 

Theorem 6 (Representation for FP systems): 
a) All FP Systems: Let II/ : 3 -+ USC(D) be a TI in- 

creasing and upper semicontinuous FP system, where 5 
E USC(D) is closed under translation and pointwise in- 
fimum. Then $ can be represented exactly as the supre- 
mum of erosions by all its basis functions; i.e., Vf E 5, 

Ir/(f) = &f@ g. (40) 

b) Discrete FP Systems: Let II, : ERV( 2”‘) + ERV 
(2”) be a discrete TI increasing and upper semicontin- 
uous FP system. If the dual FP system tid is upper 
semicontinuous, then $ can be represented as the point- 
wise supremum of erosions by its basis functions, and also 
as the pointwise infimum of dilations by the reflected ba- 
sis functions of IJ~; i.e., Vf, 

“After we had presented and published Theorem 5 in [ll] and [9], a 
theorem similar to Theorem Sa appeared subsequently in [35] only for dis- 
crete SP systems. 
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c) AEZ FSP systems: Let the FSP system 4: 3 -+ USC 
(D ), with 3 as in a), be TI and commute with threshold- 
ing. Let + be its respective SP system. Then 4 can be 
represented exactly as the pointwise supremum of ero- 
sions by all the basis sets of @; i.e., Vf E 3, 

4(f) = ME;(+)fG Iv. (42) 

d) Discrete FSP Systems: Let the discrete FSP system 
+:ERV(Z”) + ERV(Z”) be TI and commute with 
thresholding. Let @ be its respective SP system, and let 
its dual SP system 9d be upper semicontinuous. Then 4 
can be represented exactly as the pointwise supremum of 
erosions by the basis sets of 9, and also as the pointwise 
infimum of dilations by the reflected basis sets of @d; i.e., 

Vf? 

Observe that in Theorems 6c and 6d the assumptions 
for an increasing and upper semicontinuous $J and for a 
TI increasing upper semicontinuous + are not needed, be- 
cause they result from the commuting with thresholding. 
(See Lemma Al in the Appendix.) For the same reasons 
as for SP systems, Theorem 6 realizes the FP system with 
infinitely fewer kernel functions than Theorem 3. Further, 
for both SP and FP systems, if the basis is finite, then the 
systems can be realized by using only a finite number of 
erosions or dilations. Examples are given in Section V. 

Concerning our general assumptions for the systems to 
be TI, increasing and upper semicontinuous, the next re- 
sult [9, p. 1391 provides some sufficient conditions: 

Proposition 5: a) Any finite union or any intersection 
of TI increasing upper semicontinuous SP systems is a TI 
increasing upper semicontinuous system. The same is true 
for FP systems if we replace the finite union with maxi- 
mum and the intersection with infimum. b) Any finite cas- 
cade of TI increasing upper semicontinuous systems is a 
TI increasing upper semicontinuous system. 

It is known [l], [2] that erosion, dilation, opening, and 
closing by signals with compact support are TI increasing 
and upper semicontinuous systems. Hence, Proposition 5 
implies that any finite maximum/minimum (parallel inter- 
connection), or cascade (series interconnection) of such 
basic morphological filters is a TI increasing upper 
semicontinuous system; hence, the theory of minimal ele- 
ments applies. 

V. EXAMPLES 

A. Morphological Filters 

Unfortunately, our proof for the existence of minimal 
elements is not constructive; hence, there is not yet a sys- 
tematic algorithm to find them. One technique that we 
employed for an SP system \k is based on the fact that its 
minimal kernel elements are the sma_llest (with respect to 
C_ ) solutions X of the set equation 0 E \k (X ). However, 
finding these solutions is very system-dependent. For ex- 

ample, consider the SP+erosion system \E (X > = X 0 A 
by a fixed set A. Then 0 E X 0 A e A c X; the smallest 
X 2 A is A. Hence, the erosion basis is 

@3(X-X@A)={A}. (44) 

Consider the SP dilation +(X ) = X @ A. Clearly, 0’ E 
+(X)oXfl;i#@@ -aEXforsomeaEA;the 
smallest such X are the sets { -a ), a E A. Hence, the 
dilation basis is 

&3(X- X@A) = {{-a}:aEA}. (45) 

Opening: LetI? =X0 A = (X0 A) 0 A. Since 
X0 A ==JJ,,, X 0 (A - a) = UafA {z:(A - a + z) 
E X}, 0 E I-(X) #A-aaXforsomea~A;the 
smallest such X are the sets A - a, a E A. Thus the basis 
of the SP opening is 

&(XcXOA)={A-a:a~A}. (46) 

Closing: LetA(X)=XOA=(XOA)OA.Since 
X.A=(7 asAX 0 (A - a), the kernel is X(A) = 
(X:Xn (1 +a) # ,@vaEA}.Inthiscasewecannot 
find explicitly the basis elements, but we can find a fixed 
upperbound. That is, let GE K(A) and F, = G fl (2 
+ a). Obviously, G 2 H = UoEA F, and H E x(A). 
From Theorem Al in the Appendix, the kernel sets G and 
H contain a minimal element M. Then, M G H G UoEA 

2 + a = A 0 2. Hence, the basis of the SP closing is 

~(~-xOA)={M~AO;~:~EMOA 

and M is minimal} . (47) 

Thus, the basis of discrete SP erosions, dilations, open- 
ings, and closings by a finite set A with cardinality 1 A ) 
= n > 1 is finite. Specifically, the erosion has only one 
basis set, the dilation n, and the opening n basis sets; the 
basis of the closing has cardinality smaller than ( 6 (A 
0 ;i ) I. For analog morphological filters the formulas 
(44)-(47) are still valid. The only difference is that, since 
now A c R”, only the erosion will have a finite (one 
element) basis; the dilation, opening, and closing will 
have an infinite number of minimal elements. 

Since X 0 A = (X 0 ;i )“, the dual SP system of the 
opening is the closing by A. Then Theorem 5b implies 
that 

XOA= U X@(A-a) =MECd(FY.AjX@fi. 
LIEA 

When A is l-D, the basis of the closing by A can be 
found more specifically; see Appendix for proof of the 
following. 

Proposition 6: Consider any n-point convex 1-D set A 
=(xEz:c~xzsc+ n - l),cEZ,n L l.Thebasis 
of the discrete SP closing by A consists exactly of the set 
{O}andthen(n - 1)/2sets{a,b} G A@] = {ye 
Z: -n + 1 I y 5 n - l}, where a < 0 < b and 2 I 
b-a<n. 
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If A is a 1-D convex n-point set and f is a sampled mul- 
tilevel input signal, the obvious implementation of the 
FSP opening f 0 A as the cascade ( f 0 A ) 0 A requires 
2 (n - 1) max/min comparisons per output sample. From 
Theorem 6d, implementation off 0 A (as max-of-min- 
ima) by the basis of the SP opening requires ( n2 - 1) 
comparisons per output sample, whereas implementation 
off 0 A (as min-of-maxima) by the basis of the SP clos- 
ing requires (n* - n) such comparisons. In practice the 
window size n is small; for such cases there may be ap- 
plications (e.g., in VLSI hardware) where the basis im- 
plementation yielding a single local operation may be 
more favorable than the direct cascade that introduces de- 
lays and requires additional storage. Note also that the 
basis of the closing offers us a [ lOO/( n + 1 )] percent 
reduction in the computations involved to find the open- 
ing. These savings are trivial for large n but considerable 
for small n; e.g., if n = 3, the savings are 20 percent and 
this 3-point opening provides signal smoothing compara- 
ble to a 5-point median filter, as explained in [ 131. These 
1-D openings/closings are not only useful for filtering 
1-D signals, but 2-D signals as well; i.e., as investigated 
in [2], [41], performing openings or closing by four 1-D 
sets oriented at 0,45,90, and 135 degrees and then taking 
the maximum of the four results provides 2-D smoothing 
without eliminating 1-D structures that reside in the 2-D 
image. 

For 2-D structuring sets A the basis of the opening is 
more advantageous than the closing; i.e., it is trivial to 
find the minimal elements of the opening using (46), 
whereas the minimal elements of the closing can still be 
found using (47) but the search procedure is usually more 
involved and their number grows fast with the size of A. 
For example, if A = ((0, 0), (0, l), (1, 0), (1, l)}, 
the basis of the opening by A has only four 4-point sets, 
whereas the basis of the closing by A has eight sets: { (0, 
0) }, two 2-point sets, four 3-point sets, and one 4-point 
set. 

B. Median and Rank Order Filters 

Median and rank order filters are nonlinear TI discrete 
filters that can suppress impulse (or speckle) noise from 
signals while preserving their edges; they have been used 
extensively for image and signal enhancement [42]-[45]. 
(See [42], [43] for reviews.) Let f (x), x E Z”, be an input 
sampled signal (function), and let W !G Z” be a finite win- 
dow with ( W ] = n points. For r = 1, 2, . * * , n, the rth 
rank order filter by W is an FSP system 4 with output 
$<f> = RQ(f; WI, a function whose value at x is the 
rth largest number among the values f (x + y), y E W. 
The corresponding SP system of 4 is a rank order filter 
G(X) = RO,( X; W) for discrete sets X G Z”, where 

RO,(X; W)Ef {p~Z~:lXn W+pj r rl. (49) 

If n is odd, for r = (n + 1) /2 we have the median filter 
of a function f (or set), denoted as med ( f; W ). 

Rank order filters 4 commute with thresholding, as in- 
vestigated in [6], [37], [2], [9], [13] and [42, ch. 5, 61. 

Hence (see Lemma Al in the Appendix), they are increas- 
ing and upper semicontinuous TI systems. The basis of @ 
is [13] 

03(X ++ RO,(X:W)) = {M G W:lM( = t-1, (50) 

and has n! /r! (n - r)! elements. The dual SP system of 
9 is the (n - r + 1 )th rank order filter by W. Then Theo- 
rem 6d yields: 

[RO,(f; W>] (x> = y:“w [y$ { f(x + Y)}] 

IAl =r 

= pi; [yf; {f@ + y)}]. 
(51) 

IBI=n-r+l 

For example, let W = { (0, 0), (0, l), (1, 0), (-1, 
0), (0, - 1) } be the 5-point discrete disk of radius 1. 
Then the basis of the 2-D SP median by W has only ten 
elements Ak, 1 I k I 10: all the 3-point subsets of W. 
Thus, 

med f(x - 1, Y)?f(X, Yhfb + 1, Y) 

i f(x, Y - l),f(x? Y + 1) 1 

= $+ [ ciz;A, { f (x + 6 Y + j I}] (52) 

for any signal f (x, y) on Z*; we can also interchange min 
and max in (52). 

The implications of (51) are profound because they en- 
able us to express any median and rank order filter via a 
closed formula involving only max-min of prespecified 
sets of numbers without requiring any sorting. For large 
window sizes ) W ( this max-min realization may have 
higher computational complexity than other fast sorting 
schemes because the number of minimal elements grows 
fast. However, for small windows W implementation of 
rank order filters via its basis is quite attractive in practi- 
cal applications. For example, at the Harvard Robotics 
Lab we are currently investigating this max-min imple- 
mentation of median filtering by the 5-pixel window W of 
(52), which allows us to perform 2-D median filtering in 
real-time on Max Video pipelined image processing ar- 
chitectures manufactured by Data Cube Inc. These archi- 
tectures perform a local max-min (by any subwindow of 
a 3 x 3 neighborhood) of 512 x 512-pixel images in a 
1/30th of a second, but they cannot do sorting. Thus, 
performing the median filtering by sending the image to 
the host computer for the necessary sorting would require 
at least a few minutes per image frame. However, the ba- 
sis implementation of a median filter by the 5-pixel cir- 
cular 2-D window requires a maximum of ten local min- 
ima, which can be done on the Data Cube and requires 
only half a second per image frame. For a median by a 
3 x 3-pixel window, which has 126 minimal elements of 
5 points each, the basis implementation would require ap- 
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proximately 4 seconds to do the local minima and 4 sec- 
onds for the maximum. 

Wendt et al. [38] defined stack jlters as a generaliza- 
tion of rank order filters based on threshold decomposi- 
tion and Boolean functions. In [ 131 it was shown that stack 
filters are all the finite max-min operations, and their basis 
representation is equivalent to representing their defining 
Boolean function via irreducible sum-of-products expres- 
sions. 

Next we introduce a generalization of rank order filters 
in order to relate them to FP erosions and dilations that 
use a multilevel structuring function g(x) withjnite sup- 
portW=Spt(g).Forl sr~n=IW(,wedefinethe 
rth generalized rank orderfllter by g as the FP system $ 
whose output is 

Ii/(f) = [ROr(f; d] (-d 

= rth largest off(x + y) + g(y), YE w. (53) 

Note that the first (r = 1) rank order filter by g coincides 
with the discrete FP dilation by jj, whereas the last (r = 
n) rank order filter is the FP erosion by -g. If g is binary, 
i.e., 0 on W, these filters reduce to the simple rank order 
filters of the previous discussion. Assume now that g is 
not binary. These general rank order filters do not com- 
mute with thresholding. Their basis consists of n! /r! (n 
- r)! input functions h such that h(y ) = -g(y) for r 
points y E W and ( Spt (h) ( = r. For example, consider 
the generalized median (n = 3, r = 2) of 1-D signals 
f(x) by the function g(x) defined as g( -1) = 1, g(0) 
=4,g(l) = -2,andg(x) = --03Vx$i W= {-l,O, 
1 }. Its basis has only 3 functions h,, hZ, h,: 

h,(-1) = -1, h,(O) = -4, Spt (h,) = { -1, O> 

h,(-1) = -1, h,(l) = 2, Spt (h2) = { -1, 1) 

h3(0) = -4, h3( 1) = 2, Spt (h,) = (0, l}. 

Then med ( f; g) = V’= ,f 8 hi due to Theorem 6a; i.e., 

med (f(.x - 1) + l,f(x) + 4,f(x + 1) - 2} 

t 

min {f(x - 1) + l,f(x) + 4) 

= max min { f( x - 1) + l,f(.x + 1) - 2) . 

min (f(x) + 4,f(x + 1) - 2) 1 

(54) 

Simple medians by W behave like FSP openings/closings 
[ 131. Hence, the practical usefulness of the generalized 
medians by g is similar to the FP openings/closings by g. 

C. Linear Shift-Invariant Systems 

Let h (x), x E D, be the impulse response of a classical 
linear shift-invariant system rl/ ( f) = h * f, f~ 5, where 
* denotes linear convolution (analog or discrete) and 5 is 
a closed under translation class of functions with range R. 
1c/ is translation-invariant in the sense we have defined, if 
it passes constant inputs unchanged, or equivalently if h 
has area equal to one. Then the kernel of II/ is X ($) = 

{g E 5:h * g( 6) L O}. $ is increasing iff h is non- 
negative everywhere [ 121. Due to the linearity of $, the 
dual filter of + is identical with II/; i.e., @( f) = -$( -f) 

= rl/(f>. 
For example, if h(x) = ( 1 /a& ) e-(*‘/20”, x E R, 

is a Gaussian, then h(x) 2 0 vx and jRh (x) dx = 1; 
hence Theorem 3 yields 

where X = {g E 5: j?z g(y)e-Y’/2”’ dy 1 0). Note 
that the restricting conditions that the impulse response 
be everywhere nonnegative and its area be equal to one 
can be relaxed [ 121. 

If $ is a discrete linear TI increasing system whose im- 
pulse response h (n ), n E z”, has afinite support { n : h (n ) 
# 0 } (this latter assumption makes I,& upper semicontin- 
uous), then $ has a basis given by [ 121 

63(+) = {g E S:h * g( 0’) = 0, 

and g(n) = --03 H h( -n) = 0). (56) 

For example, let h(n) = a&(n) + (1 - a) 6(n -l), 
n E 2, where 0 < a < 1 and 6 (n) is the discrete unit 
impulse. 1c/ is a moving averagejlter; its basis functions 
are g(n), n E Z, where g(0) = r E R, g( -1) = -ar/ 
(1 -a),andg(n) = -mforn # 0, -1.ThenTheorem 
6b yields 

afb) + (1 - a)f(n - 1) 

= sup 
L i 
min f(n)-r,f(n- I)+* . 

i-GR 11 

(57) 
Since a supremum of erosions involves only additions 

and max-min comparisons, if we can use only a finite 
number of the required erosions to realize a linear TI sys- 
tem (e.g., by quantizing and bounding the range of input 
signals) and quantify the approximation errors, these mor- 
phological representations may become useful in imple- 
menting linear systems without using multiplications. 
These issues are still under investigation. 

D. Window-Transforms for Shape Recognition 

Let A be a fixed compact set and let W be another com- 
pact set containing A such that the set difference W\A 
serves as a local background (narrow ring) around A. Then 
the hit-or-miss transform [2] (X0 A) n [Xc0 (W\A)] 
provides the set of points p at which A “fits exactly” in- 
side an input set X; i.e., A + p C X and ( W\A ) + p s 
X”. Crimmins and Brown [8] proved that this shape rec- 
ognition transform is the prototype for a large class of 
binary or graytone image transforms, called window-tran- 
forms (W-transforms), defined below. 

Theorem 7(8]: Let W E Z2. An SP system q is called 
a W-transform iff there exists X C 6 ( W) such that, VX 
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G z2, 

‘P(X) = {p EZ~:(W n X -p) E X}. (58) 

If W is finite, then, VX G Z2, 

‘l’(X) = Ayx (X Q A) f-l [X’ 8 (W\A)]. (59) 

Thus \k (X ) in (59) is the set of points p at which at least 
one of the patterns A in X, shifted at location p, fits ex- 
actly inside X. Next we analyze the kernel and basis of 
W-transforms. 

Any W-transform \E is uniquely defined by its class 3C 
via (58). Since \k is obviously a TI system, it can also be 
defined by its kernel. Given a W-transform \k defined by 
(58), it can be shown that 

X = {A c_ W:o’ E P(A)] E X(\k). (60) 

If Wis infinite, i.e., W = Z2, then X = X(q); further, 
the definition of \E through (58) becomes identical to the 
representation of \k via its kernel. Therefore, the kernel 
representation of TI systems is more general than Theo- 
rem 7 because W-transforms are just a special class of TI 
systems. 

Further, an increasing upper semicontinuous W-trans- 
form \k can be represented more efficiently (computation- 
ally) as a union of erosions by its basis elements than with 
(59). That is, (59) represents \k as a union of hit-or-miss 
transforms (more complex than erosions) by all the sets 
in X, which is larger and contains the basis_ of 9. To see 
this, let F G G C W with F # G and 0 E P(F) E 
\E ( G ). Then both F and G of W belong to X, but only F 
may belong to 63 ( \k), because G is not a minimal element 
of X ( \k). For example, let W be the 5-point 2-D window 
of (52) and consider the SP system \k (X ) = med (X; W ), 
X c Z2. Then \k is a W-transform whose defining class 
is X = {A s W:3 I IA 1 5 5 >. Thus, X consists of 
16 subsets of W, these subsets are the patterns that the 
W-transform recognizes. The basis of \k is @ (\k) = {A 
c W: IA 1 = 3). Thus &(\k) contains only 10 sets, and 
Theorem 5 represents \k as the union of 10 erosions by 
these basis sets. However, Theorem 7 represents \k as the 
union of 16-hit-or-miss transforms by the elements of X, 
and each hit-or-miss transform is the intersection of two 
erosions; hence, the latter representation is computation- 
ally less efficient because it requires a larger number of 
more complex morphological operations. 

VI. CONCLUSIONS 

The major contributions of this paper are the develop- 
ment of: 1) a kernel for translation-invariant increasing 
systems processing multilevel signals and their represen- 
tation as a sup-of-erosions by kernel functions; 2) a basis 
of the kernel, and representations of translation-invariant 
increasing and upper semicontinuous systems for multi- 
level (binary) signals as a supremum (union) of erosions 
by basis signals; 3) results (1) and (2) for systems pro- 
cessing signals with both discrete and continuous domain; 
4) analysis of various nonlinear and linear systems by their 
kernel or basis. 

For future work, more systematic general algorithms 
are needed for obtaining the basis. In addition, if some 
direct links or analytic criteria are found between desir- 
able properties of systems and their basis, then the design 
of new useful systems can be approached through their 
minimal elements representation. 

APPENDIX 

Proof of Proposition 2 

LetfeX;then[$(fJ](c) 1 O.Forall(realorin- 
teger)p > O,[$(f)](O) +p > Oandhence[f(x) + 
p] E X. Conversely (for the case V = F), let [f(x) + 
p]~XVp>Oandg=$(f).Theng(O)> -p,which 
implies 0’ E T,= -p(g) !a < 0. From+ (3) we get T,(g) 
= p-7 .<oT,(g)l 2 { 0 1. H ence g( 0 ) I 0, and thus f 
E x. Q.E.D. 

Proof of Proposition 3 

Let&,.,,(x) denote the translate f (x - z) + c off(x) 
by (z,c>. From (WY [rl/(&,cj)l (x) = sup 
ki&- a) E X } = sup {t + c:J~-~,-,) E X }, with 
t = a - c. Thus> [W&l (x) = c + sup 
kL-t) E X } = c + [$(f)] (x - z). Hence, $ is 
TI. 

Let X ($) be the kernel of $. For each f E 5, let A = 
{a E V:fc 0, -a) f X }. First, let f = fc o,~, E X. Then 0 E 
A * [$(f)] (0) 10 * fE X(4); hence X E X+($). 
Conversely, let f E X ( rc/ ), which implies [ II/ ( f) ] ( 0 ) = 
sup (A ) 1 0. Assume first V = R. If sup (A ) > 0, there 
is a > 0 such that A;, -a) E X; then (27) yields [ Ao, -a) 
+ a] = f E X. If sup (A ) = 0, a E A Va < 0; then 

h-4) E X Vp = -a > 0, which implies f E X. Likewise, 
if V = Z, then sup (A ) 1 0 * there exists a 1 0 in A 
*A;,-,,EX =f(;,-a) +a =fEX.ThusX($) c X 
c X($) * x = X(l)). Q.E.D. 

Proof of Proposition 4 

a)f E $(A;$,) w inf; {[b4(f>l CG)> 1 0 * 
[rl/i(f>l(O)) 1 ov i @ felK($;)Vi e fE n,x(+i). 

b) IfX(ti> = U, x(rl/i>,then, fromW9, [$(f>l (~1 
= sup {a:[$i(f)l (~1 2 a, somei) = supi ([h(f)1 
(x)>. Thus, II/ = Vi$. If I is finite, then X(V;t,) = 

{f:max,{[k4(f)l(O>I 201 = {f:[44(f>l(o) 1 
0, some i} = { f:f E X(rc/;), some i> = UiX($;). 

c) Let Fr, P2 be the respective umbra-processing sys- 
tems of $i, $2. Then, X($,> G X($,) @ X(F,) c 
3w,) H r,w(f)] E r,w(f)] w uwdf)] G 
u+,(f)1 * h(f) 5 +2(f) vf. 

Q.E.D. 
For Theorem 3b we need the following. 
Lemma Al: Let 4: 5 --* 6 be an FSP system with 5, 

6 s ERV(D), and let Qr be its respective SP system. If 4 
commutes with thresholding, then: 

a) Both r#~ and + are increasing [ 121. 
b) If 6 = USC(D) and 5 c S is closed under pointwise 

infimum, then both 4 and 9 are upper semicontinuous 
]121. 

c) If 5 is closed under translation, then 4 is TI iff + is 
TI. 
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Proof. c) Let 4 be TI and let A c D. If xA (z) is the 
characteristic function of A, then 4 [ xA (I - y)] = 

[+(x/t)1 (z - y> ‘9 ED. Thus +(A + y) =- *(A > + y, 
which implies that + is TI. Conversely, let 9 be TI and 
let g = 4(f) for some f (x) E 5. We use the fact that 

T,tf(x - Y> + cl = IT,-c(f)1 + Y, V(Y, c> ED x 
V. Then, Va, T,[+(f(x -Y> + c>l = @(IT,-,(f)l + 
Y) = @[T,-,(f)1 + Y = [T,-,(g)1 + Y = Ta[g(x - 
y) + c]. Thus, 4[ f (x - y) + c] = g(x - y) + c, and 
hence 6 is TI. Q.E.D. 

Proof of Theorem 3: 

a) Let X = X ($). Since rl/ is increasing and TI, if g 
E-X, h E 5, and h, L g, then h E X, because [$(h)] 
( 0 ) 1 [$(g)] ( 0 ) I 0. Thus, see (29), E(g) G X 
Vg E X; hence, UgEK E(g) S X. Also, since {g} C 

C,(g), X = +lc g { > G ugdc G(g). Thus X = 
U REK G (g). Proposition 4b then yields 

Applying this result to the TI increasing system @, we 
have that 

$(f) = -[$“<-f>l = -& C-f) @ h 

because ( -f) 0 h = - (f 0 i; ). Thus the proof of (34) 
is complete. 

b) 9 is defined on the (closed under translation) class 
S of the threshold sets of all f E 5. Because of Lemma 
Al, + is TI and increasing. From Theorem 2, Va E V, 

T&(f)] = +[T,(f )I = AEiCaj fTa(f)] ’ A 

= f-I [T,(f)] @ ii. 
BEX(W 

(61) 

Since, [T,(f)] 0 A = T,( f 0 A) and [T,(f)] 0 B = 
T,( f 0 ii), (61) completes the proof of (35) because of 
(8) and (9). Q.E.D. 

Proof of Theorem 4 

a) Let X be the kernel of \k. Since \k is nondegenerate, 
the poset (X, G ) has an infinite number of elements [9, 
p. 1301. Let d= = {Xi : i E I > be any linearly ordered 
subset of X, where I is some index set. Then Xi C Xj or 
Xj c Xi for any i, j E I. The set X = n;,,X, belongs to S 
and is clearly a lower bound of C. If X = Xi for some i, 
then obviously X E X. Assume now that X # Xi Vi E I; 
this implies that I is infinite and that 6: contains an infinite 
number of distinct elements. Then, with respect to the hit- 
or-miss topology [l] of C (E ), it can be shown that X is 
a limit point of the infinite set 6:. Hence, since e (E ) is 
a compact, Hausdorff topological space with a countable 
base, there is an infinite sequence { X, }n 2 , of distinct X, 
E d: converging to X. Let Y, = X,, for some integer n,. 
Assume that for 1, 2, * . . , k I 1, increasing positive 

integers n,, n2, . * * , nk have been chosen such that Y = 
X,,,, 1 I j I k, and Y, 2 Y, 1 * * * 2 Yk. Then there 
exists integer nk+ , > nk such that Yk + , = Xnl+, C Yk, 
because otherwise X, 2 Yk Vn > nk which implies that 
lim X,, 2 Yk and hence lim X, # X. Thus, by induction 
on k, we can find a decreasing set sequence { Yk = 

Xnk)k>l that is a subsequence of {X,, }. Hence, Yk 1 X = 
lim Yk. Since \k is increasing and upper semicontinuous, 
Yk 1 X,= ‘k( Yk) 1 \k(Xj = nk \k(Yk). Further, Yk E x 
vk * 0 E \k(Yk) vk = 0 E \E(X) * XE X. Thus every 
linearly ordered subset of X has a lower bound in X. 
Therefore, from Zom’s lemma [40] we infer that X has 
a minimal element. 

b) Let P be the equivalent umbra-processing system of 
$, defined on U = (U( f):f E 5 }. Then U G C?(E) is 
closed under translation and intersection, and F is TI in- 
creasing and upper semicontinuous [9, p. 1331. By apply- 
ing Theorem 4a to P we infer that the poset ( X (P), E > 
has a minimal element, call it I/, then there exists g E 
X ($) such that I/ = U(g). Due to (11) and the one-to- 
one correspondence between X (F) and X ( rl/), the poset 
(X ($), I ) is isomorphic to (X(P), G ). Hence, g is a 
minimal element of ( X (II/), I ). Q.E.D. 

For Theorems 5 and 6 we need to prove the following. 
Theorem Al: Let \k and $ be an SP and FP system 

satisfying the assumptions of Theorems 4a and 4b, re- 
spectively. Then, for any A E X (\k), there exists a min- 
imal kernel set M E 63 (q) such that A 2 M. Likewise, 
for any f E X ( $), there exists a minimal kernel function 
g E a($) such thatf I g. 

Proof: SP systems: let X = X (q ). If A E X = 
U aExCG(B), then A E G(B), and hence A 2 B for some 
B~X.Likewise,BcE(C) * B2 CforsomeCEX. 
Hence, for any A E X we can find a decreasing sequence 
of kernel sets A 2 B 2 C 3 . * * and so on. Thus we 
can find a linearly ordered subset of X, call it C, that 
contains A. From Hausdorff’s maximality principle [40], 
there is a maximal linearly ordered subset 312 of X con- 
taining 6:. Let M = n 311 be the intersection of all sets of 
%Z. Then A 2 n 6: 2 fl 3n = M. In proving Theorem 
4a we showed that M is an element of X. In addition, M 
is a minimal element of X, because otherwise there is a 
set Y # M in X such that Y c M. But then 311. U { Y } 

is a linearly ordered subset of X which contains properly 
3n : contradiction, because 311 is maximal. Hence, M E 
&(\k) and A 1 M. 

FP Systems: For any f E X ( rl/), by arguing as above 
we can find a linearly ordered subset of X ( $), call it X, 
that contains f. Then we can find a maximal linearly or- 
dered subset $j of X (II/) that contains X. Let g = AS be 
the pointwise infimum of all functions in 6. Then f I 
AX I A$j’ = g. From Theorem 4 we know that g E 
X (4). Also, g is minimal in (X (rl/), I ) because 6 is 
maximal. Hence, g E @ ($) and f L g. Q.E.D. 

Proof of Theorem 5 

a) Let X and 63 denote the kernel and basis of \k. If A 
E X, then from Theorems 4a and Al there is M E U3 such 
that A 1 M. Thus, A E UMea3G(M). Hence, K G 
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U Mt(H S (M ) G UFEX G (F ); also (25) is equivalent to 
x=u FEXS(F). Therefore, X = UMEa G(M), and the 
proof of (38) is complete because of Proposition lb. 

b) From part a), \E(X) = U,,,,caX 0 M. Applying 
Theorem 5a to \E” we obtain 

q(x) = [*“(xc,]’ = I,,:*,,) X” 0 N]( 

= n xofi, 
Ne(R(‘&“‘) 

because (X“ 0 N )’ = X 0 N. Thus the proof of (39) is 
complete. Q.E.D. 

Proof of Theorem 6 

a) Let X and 63 denote the kernel and basis of +. Iff 
E X, then from Theorems 4b and Al there is g E B such 
that f r g. Thus, f E U,,aG(g). Hence, X C 
U @&(g) G U/E.?c 8(h); also, (34) is equivalent to X 
=u h,x&(h). Therefore, X = URE03G(g); then Prop- 
osition 4b completes the proof of (40). 

b) From part a), II/(f) = V,,,f 0 g. Applying Theo- 
rem 6a to I// yields 

$(f) = -V( -f) = -& (-f) @ h 

= A f@t;. 
hE@3($4 

Thus the proof of (41) is complete. 
c) + is defined on the class S of the threshold sets of 

allfE 5; thus S is closed under translation and any inter- 
section. From Lemma Al, @ is TI increasing and upper 
semicontinuous. Hence, from (21) and Theorem 5a (ap- 
plied to +) we obtain T,[$(f)] = @[r,(f)] = 

U,,,,,,tT,(f)l 0 M = UM~CR(+) T,(f@ Ml, vu E 
V. Then property (9) completes the proof of (42). 

d) The sup-of-erosions representation for 4 was proven 
in c). Applying Theorem .5b to @J yields T, [ 4( f)] = 

+[Ta(f)l = nN..,,~,[Ta(f)l @ N = nN~633(0”)Ta(f 

0 i? ), VU E V. Then property (8) completes the proof of 

(43). Q.E.D. 

Proof of Proposition 6: 

Let W = A 0 A and & be the basis of the closing by 
A. From (47), ME 03 * M C W. Now, {p > E 03 e 0 
~(p}O/fop=O.A ssume n I 2. If there are sets 
{a, b} in 63, then Q, b E W\(O}. Then {a, b} 0 A = 
(A + a U A + b) 0 A. Hence (assume a < b), 0 E {a, 
b).At,AG(A+aUA+b)=(x:u+ccx~ 
u+c+n-l,orb+cIx<b+c+n-l}.This 
istrueiffu<O<bandb-u<n.Foreachk=b- 
a, 2 I k I II, there are k - 1 sets {a, b} in @ since 1 
I b I k - 1. Hence there are totally n (n - 1)/2 such 
sets{u,b}in~.Finally,forallM~~,(M( 52.To 
see this, observe that 0 E M 0 A * A S UxcM A + x. If 
0 $ M and M E a, then there must exist a, b E M with a 
< 0 < b; choose the largest such a and the smallest such 
b. If there is an additional point e E M, then either b < e 

or e < a. If b < e, then the points of A + e needed in 
the union U xcMA + x to cover A have already been con- 
tributed by A + b; similarly, we exclude the case e < a. 
Thus, 63 consists exactly of n (n - 1)/2 two-point sets 
and the set (0). Q.E.D. 
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