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ABSTRACT

The collection of Earth system models available in the archive of phase 5 of CMIP (CMIP5) represents, at

least to some degree, a sample of uncertainty of future climate evolution. The presence of duplicated code as

well as shared forcing and validation data in the multiple models in the archive raises at least three potential

problems: biases in the mean and variance, the overestimation of sample size, and the potential for spurious

correlations to emerge in the archive because of model replication. Analytical evidence is presented to

demonstrate that the distribution of models in the CMIP5 archive is not consistent with a random sample,

and a weighting scheme is proposed to reduce some aspects of model codependency in the ensemble. A

method is proposed for selecting diverse and skillful subsets of models in the archive, which could be used for

impact studies in cases where physically consistent joint projections of multiple variables (and their temporal

and spatial characteristics) are required.

1. Introduction

Today’s Earth system models (ESMs) are great tes-

tament to collaborative scientific thinking. Millions of

lines of computer code represent the pinnacle of un-

derstanding of the intricate coupled interactions of

Earth’s land, ocean, cryosphere, and atmosphere sys-

tems. Unlike themore simple atmospheric models of the

past, few people (if any) now understand the models in

their entirety and so the models themselves have be-

come vehicles of a scientific consensus that we use to

project future climates and cannot be directly validated

for decades to come. For some parts, such as the rep-

resentation of the equations of fluid flow, understanding

is mature and thus (relatively) uncontentious. However,

other components, such as the effect of a changing cli-

mate on ecosystem dynamics, are sufficiently complex

that any computational code must inevitably make sig-

nificant approximations in order to even represent the

bulk behavior of the system in any tractable fashion.

A given model is thus more than a computer program;

it is a collection of axioms and beliefs about which

processes might be important for evaluating how our

environment might change and how those processes

should be represented, and as such each model is a self-

consistent entity. The challenge arises, however, when

one wishes to combine the results of many models to

attain some more comprehensive understanding of the

uncertainties present in their individual implementa-

tion. Given a set of models of the climate system,

assessing the value of adding another model clearly

requires a consideration of whether the model is fit for

purpose (e.g., the validity of its axioms, forcing data, and
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tuning protocols). We would argue also that it is im-

portant to assess if the model provides new information:

to measure how independent the new model is from

those in the original set. In an extreme case, adding an

exact duplicate of a model already in the set would not

add value; rather, it would bias any combination of

model results toward the results of the duplicated model

(Caldwell et al. 2014).

Phase 5 of the Coupled Model Intercomparison Pro-

ject (CMIP5; Taylor et al. 2012) is the largest archive of

climate data the world has seen to date. Such multi-

model ensembles (MMEs) have often been referred to

as ‘‘ensembles of opportunity’’ (Tebaldi and Knutti

2007) because the range of models represent some

sample of the systematic choices that developers face in

the course of representing the climate system in the form

of computer code. However, as has been noted before

(Knutti 2010), this sample is far from perfect.

First, the models available may vary in their ability to

resolve certain processes that might be observed in the

Earth system. For any given process, a researcher may

find relevant observations to rank models for their

purposes, but the output of the ESMs is sufficiently high

dimensional that any ranking is unlikely to be universal

(Santer et al. 2009). In contrast to weather forecast

models, ESMs can also rarely be validated out of sample

and so there remains a risk that empirical components of

ESMs can be calibrated using the only available obser-

vations; although this might be a pragmatic approach, it

leaves little opportunity for assessing and contrasting

model performance (Sanderson and Knutti 2012).

A second problem lies in the lack of independence of

models, where independence is not meant in a statistical

sense but in a more loose sense of models sharing ideas

for parameterizations and simplifications or sharing ac-

tual computer code and therefore being biased in similar

ways relative to reality. At the time of writing, 61models

are listed in the Earth System Grid database. This does

not necessarily mean that each of these models provides

an independent estimate of future climate change. In-

deed, some of these codependencies are trivial and can

be accounted for by considering models submitted with

different resolutions (e.g., MPI-ESM-MR and MPI-

ESM-LR; see Knutti et al. 2013). Most institutions also

produce model variants with a range of different con-

figurations, with options for interactive atmospheric

chemistry or carbon cycle (e.g., CMCC-CESM and

CMCC-CM). Finally, different institutions can share

model components: for example, the FIO-ESM model

shares its atmosphere, ocean, sea ice, and land surface

code with CCSM4 but adds a surface ocean wave param-

eterization. Submodel replication is common throughout

the ensemble: for example, in the models considered for

this study over 25% use some variant of the Community

AtmosphereModel (CAM3, CAM3.5, CAM4, or CAM5)

to represent atmospheric processes. The GFDL Modular

Ocean Model is similarly popular (MOM2.2, MOM4.0,

and MOM4.1). Table 1 shows a broad illustration of

shared model components in the CMIP5 models consid-

ered for this study.

This extensive model replication in the CMIP5 and its

predecessors is not a problem per se; in fact, it seems

natural to copy successful parts and build on the work of

others, and it requires enormous effort to develop entirely

new model components. Hence, each institution un-

derstandably focuses on certain aspects but copies other

components. However, model replication presents a

number of issues for model ensemble analysis. The first is

simply a matter of representation: the assessment reports

of the Intergovernmental Panel on Climate Change

(IPCC) have often used the multimodel mean of the

CMIP ensembles to represent a consensus view of model

projections of future climate, but clearly this mean will be

biased towardmodels that are highly replicated within the

ensemble. Similarly, model agreement on the sign or

magnitude of a change in future climate is often taken to

imply confidence in a result (Tebaldi et al. 2011; Knutti

and Sedá�cek 2013) but, if models are highly replicated

within the ensemble, such agreement becomes less

significant.

Another issue lies in the possible effect of replicated

models in studies that attempt to constrain aspects of

future climate change. If a researcher discovers a cor-

relation between an observable quantity and some

unknown climate parameter in a multimodel ensemble

(e.g., Fasullo and Trenberth 2012; Qu and Hall 2013),

the statistical significance of that correlation would be

inflated if some points are repeated. This argument is

developed in Caldwell et al. (2014), who show that,

although a data-mining approach will yield more strong

correlations between climate sensitivity and potentially

observable fields than one would expect to see by

chance in CMIP5, this may be attributable in part to

model codependencies.

This is the second in a series of papers examining in-

terdependency in the CMIP ensembles. In Sanderson

et al. (2015), we developed a distance metric that en-

abled bothmodels and observations to be represented as

points in a multidimensional space. We then showed

that model properties could be interpolated within this

space, allowing a resampling of model properties in a

manner that was less sensitive to model replication and

could take into account a measure of performance in

reproducing observations. However, the approach of

Sanderson et al. (2015) is also unable to provide full

spatial and temporal variations in quantities. For example,
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a farmer may not want an estimate of the change in av-

erage rainfall but a set of representative summers with full

spatial and temporal information and the corresponding

temperature, sunshine, and wind data. For such cases, it

maybebetter to use the raworbias-correctedmodel output

directly, but that requires selecting a set of models to use.

It has been proposed before that subsets of larger

ensembles may producemore statistically robust results;

Evans et al. (2013) investigated this concept using sub-

sets of a multiphysics ensemble of weather forecasting

models. Perhaps the simplest approach to achieve this

might be to take a single model from each institution,

but there are numerous issues with this. First, although

there are often similarities betweenmodels published by

single institutions, such a crude approach would elimi-

nate cases where significantly different models were

produced by the same group. There are several exam-

ples of the latter case: the GISS-E2models, for example,

are published with two structurally different oceans.

Furthermore, several groups [National Science Foun-

dation (NSF)–DOE–NCAR (CESM), GFDL, and Met

Office (UKMO), among others] publish both a ‘‘bleed-

ing edge’’ model and a legacy model to the archive,

where there might be significant structural changes be-

tween the releases. Finally, an institution-based pruning

approach would not help identify models from different

institutions that share a large fraction of their code.

It could be argued that one could account for many of

these problems through careful consideration of model

lineages, by documenting the basic parameterizations

shared by differentmodels or by assessing the fraction of

common code between different models. This, however,

would be a considerable undertaking, and the results

would require a comprehensive understanding of each

model’s code. First, although some models document

and publish their code base in full before submitting

simulations to the CMIP archive, this practice is far from

universal. A model could in theory be defined by sum-

marizing the parameterizations, their values, and other

structural assumptions that have been employed in that

model, but assessing the relative importance of each of

those parameterizations in terms of model climatology

or response to external forcing would require good prior

intuition of the relationships between the parameteri-

zations and the process to be studied, which might be

possible in some but not necessarily all cases. Such an

approach would clearly be worthwhile, and could

greatly aid in the interpretation of differences in climate

change projections, but it would be a monumental

undertaking.

An alternative approach is to utilize output from the

models themselves to establish codependencies. This

approach has been demonstrated with some promise by

Masson and Knutti (2011, 2013), who used intermodel

distances derived from spatial patterns of climatological

temperature and precipitation to establish a hierarchical

clustering of models that resembles a tree showing

structural relationships one might expect from consid-

ering model lineages. As noted in Masson and Knutti

(2011) and Sanderson et al. (2015), the distribution of

intermodel distances shows recognizable structure, with

models from the same institution and models with

common heritage generally exhibiting similar patterns

of mean state bias. However, the aforementioned stud-

ies did not establish any quantitative assessment of in-

termodel distance, which we attempt to address here.

To this end, we formalize an approach to use model

similarity information to select models based on their

skill and independence. This does not eliminate model

interdependency but allows us to select a subset of

models where the most glaring examples of model rep-

lication are no longer present. In section 2a, we

establish a method for identifying near neighbors in a

climate model ensemble. In section 2d, we use model

similarity information to produce a weighting scheme

that accounts for both model skill and model in-

terdependence. Section 2e shows how this framework

can be used to select a subset of models from an archive

of climate models. Finally, section 3b demonstrates this

method using the CMIP5 multimodel archive.

2. Method

a. Processing model output

In this study, as in our accompanying paper

(Sanderson et al. 2015), we produce a matrix of inter-

model distances in an EOF space derived from 30-yr

mean climatological output from eachmodel’s historical

simulation conducted for CMIP5. The details of the

construction of the distance matrix are identical to that

of Sanderson et al. (2015). We use the historical and

RCP8.5 experiments and the CMIP5 ensemble-member

simulations in each case. In the special case of CCSM4,

we also consider the sensitivity of the technique to in-

ternal variability by repeating the analysis with all

available simulations in the CMIP5 archive (e.g., r1i1p1,

r1i2p1, r1i2p2, r2i1p1, r3i1p1, r4i1p1, r5i1p1, and r6i1p1

for the historical runs and r1i1p1, r2i1p1, r3i1p1, r4i1p1,

r5i1p1, and r6i1p1 for the RCP8.5 simulations).

The input data for this study are both processed and

used to conduct an EOF analysis in a similar fashion to

Sanderson et al. (2015). Minor differences in the inter-

model distances occur because the former study con-

siders both CMIP3 and CMIP5 models, which slightly

changes the exact form of the EOFs. For each model, a
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number of monthly, gridded diagnostic variables are

considered to represent the climatology of themodel. For

each available model in the CMIP3 and CMIP5 ensem-

bles, monthly climatologies are obtained from a single

historical simulation by averaging monthly mean fields

for the time period 1970–2000. Data are obtained for five

two-dimensional fields [surface air temperature (TAS),

total precipitation (PR), outgoing top-of-atmosphere

shortwave radiative flux (RSUT), outgoing longwave

top-of-atmosphere flux (RLUT), and sea level pressure

(PSL)] and two three-dimensional fields [atmospheric

temperature (T) and relative humidity (RH)]. Three-

dimensional fields are zonally averaged. Corresponding

observational monthly mean climatologies are obtained

by averaging available years for each field type, as shown

in Table 2.

Data from each model and dataset are regridded

onto a 2.58 by 3.758 latitude–longitude grid, and zonal

vertical fields are regridded onto a 2.58 latitude grid at 17

pressure levels. For each variable, values are area

weighted. Vertically resolved fields are also weighted by

the pressure difference between the top and bottom of

the corresponding level. To usefully concatenate the

multivariate field for EOF analysis, the variables must

be normalized for each to represent a similar amount of

variance in the multimodel ensemble. We normalize

each observable field using values obtained from the

observations. For two-dimensional fields, we calculate

the intermonthly variance of tropical grid cells and take

the average over the tropics to obtain a single normali-

zation factor for each variable. For three-dimensional

fields, we take the intermonthly variance of zonally av-

eraged fields in the tropics between 700 and 400 hPa and

then average the variances over the spatial domain to

obtain the normalization factor. Normalization factors

are calculated from the observations only, and the fields

from each model are divided by the same factor (shown

in Table 2). Each field is then reformulated into a single

vector. If any elements of the vector in any single model

or in the observations are missing, those particular ele-

ments are removed from all models. Each field vector is

then normalized by the number of remaining elements,

and the 2D and 3D fields are concatenated into a single

vector length n (where n 5 358 248 when all fields are

utilized). Each of the m vectors is combined to form a

matrix X
20c (size m by n, where m is 36, comprising 36

CMIP5 model vectors). The ensemble mean value is

calculated by averaging the m rows of the matrix, and

this is subtracted from each row to yield the anomaly

matrix DX20c, such that

DX
20c

5X
20c

2X
20c . (1)

The analysis is also repeated with a number of dif-

ferent subsets of the entire set of variables. In these

cases, the matrix DX20c is formed using only that subset,

and the analysis continues in the same fashion.

The process is repeated to produce a similar matrix to

represent the climate change between the historical

simulation (1970–2000) and the RCP8.5 simulation

(2070–2100). In this second analysis, the anomaly be-

tween the two 30-yr periods is taken to form the matrix

DX
21c. The future analysis is also repeated with a num-

ber of different subsets of the entire set of variables. In

these cases, the matrix DX21c is formed using only that

subset, and the analysis continues in the same fashion.

b. Principal component analysis

We conduct a principal component analysis on the

resulting matrix formed by combining the climatology

vectors from each participating model, such that the

EOF loadings define a t-dimensional space (where t is

the truncation length of the principal component anal-

ysis) in which intermodel and observation–model Eu-

clidean distances may be defined. The use of the EOF

prefilter combines fields that are trivially correlated (i.e.,

adjacent grid cells) into a single mode. The results of the

analysis do change in a subtle fashion with truncation

length, and we discuss this sensitivity further in the

subsection in section 3c, but for the initial analysis we

use a truncation length of t 5 9. This truncation length

effectively provides enough degrees of freedom to

TABLE 2. Observational datasets used as observations throughout the study.

Field Source Reference Years Global normalization

TAS HadCRUT3 Brohan et al. (2006) 1970–2000 2.09K

PR GPCP Adler et al. (2003) 1979–2001 30.1Wm22

RSUT CERES EBAF NASA (2011) 2000–05 25.8Wm22

RLUT CERES EBAF NASA (2011) 2000–05 3.32mmday21

T Atmospheric Infrared Sounder (AIRS)* Aumann et al. (2003) 2002–10 0.28K

RH AIRS* Aumann et al. (2003) 2002–10 12.12%

* The data used in this effort were acquired as part of the activities of NASA’s Science Mission Directorate and are archived and

distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC).
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represent some subtle differences between related

models in the resulting distance metric but not so many

as to introduce excessive random noise into the

calculation.

The PCA on any DX can be performed by singular

value decomposition and truncated to tmodes, such that

DX
20c

5U
20c

l
20c(V20c)T (2)

for the present-day case (20c) and

DX
21c

5U
21c

l
21c(V21c)T (3)

for the future case (21c). TheU20c andU21c (sizedm by t)

are matrices of model loadings, V20c and V
21c (sized n by

t) are spatial patterns of ensemble variability, and l
20c

and l
21c (sized t by t) are diagonal matrices representing

the variances associated with each mode.

The intermodel distances can then be measured in a

Euclidean sense in the loadings matrices U20c and U
21c,

such that the distances between two models i and j can

be expressed as

d
20c
ij 5

(

�
t

l51

[U20c(i, l)2U
20c( j, l)]2

)1/2

(4)

for the present day and

d
21c
ij 5

(

�
t

l51

[U21c(i, l)2U
21c( j, l)]2

)1/2

(5)

for the future. Model–observation distances d20ci(obs) that

can obviously only be calculated for the present-day

case are created using a climatological vector from an

observational dataset X(obs) prepared in the same fash-

ion as X20c,

DX
20c
(obs)n 5X

(obs) 2X
20c , (6)

whereX20c is themultimodel mean ofX20c, with length n.

This observational anomaly vector can be projected

onto V
20c to form an observational loading vectorU(obs)

(length t). The distance between each model and the

observations can be then calculated in a similar fashion,

d
20c
i(obs)(i)5

(

�
t

l51

[U20c(i, l)2U20c
(obs)(l)]

2

)1/2

. (7)

Finally, we calculate the variability expected in an

initial condition (ic) ensemble by taking nic 5 8 (his-

torical) or nic5 6 (future)memberCCSM4 ensemble for

both the historical simulation and RCP8.5. In each case,

the data are processed in the same fashion as for the

multimodel case to create an nic by n matrix, X20c
ic and

X
21c
ic . We then take anomalies from the CMIP5 ensemble

mean,

DX
20c
ic 5X

20c
ic 2X

20c and (8)

DX
21c
ic 5X

21c
ic 2X

21c . (9)

These can also be projected ontoV20c andV
20c to form

loading vectorsU20c
(ic) andU

21c
(ic) (size nic by t). The distance

between initial condition ensemble members can be

then calculated as before for the multimodel case.

c. Forming random ensembles

To compare intermodel distances in the CMIP5 ar-

chive with distances expected by chance, we create a set

of 105 matrices of random data with the same di-

mensions asU20c andU
21c (wherem is 36). Each random

distribution represents interpoint distances for all pos-

sible pairwise combinations m points (703 distances in

this case). Our results are not sensitive to further in-

creasing the number of random cases.

Each row of one of these random matrices is popu-

lated with draws from a Gaussian PDF with variance

equal to that from the rows of U20c and U
21c (all of the

rows have equal variance in each case). As a result, data

in these random matrices are independent in directions

corresponding to both the EOF number and the model

number. We desire matrices with an independent model

dimension in order to test the likelihood that CMIP5

output was drawn from a set of independent models.

Having independence in the field direction is appro-

priate because the columns of U20c and U
21c are in-

dependent by construction.

Our assumption that the t-dimensional normal distri-

bution is representative of an independent ensemble of

climate projections is subject to some caveats; we are

making the effective assumption that a normal distri-

bution of models in the space defined by U
20c or U21c is

plausible and that there are no parts of that space that

might represent an unphysical climate state. There are

some justifications for this assumption; the random dis-

tributions are compared with the loading matrices U20c

and U
21c, which are themselves orthogonal basis sets

defined by multimodel variability. As such, we are

making the assumption that, if there are physical re-

lationships between variables in the model output data

(e.g., between adjacent grid cells or between surface

temperature and outgoing longwave radiation), then

any correlation between these would be represented as a

single mode in the EOF analysis. Thus, any linear re-

lationships that exist in the original data are effectively

1 JULY 2015 SANDERSON ET AL . 5177



preserved in the random ensemble also. However, a

strong nonlinear relationship between two variables in

the CMIP5 archive could not be represented in a single

EOF mode and might be represented in two or more

modes. In this case, then there would be some of the

space that should be physically off limits. Hence, by

using normally distributed data to define the random

ensembles and their associated length scale for inter-

point distances, wemake the assumption that multimodel

variability can be appropriately described by a linear

basis set. Although one could potentially consider

designing a random sample that fitted a high-

dimensional distribution to the existing ensemble to

account for nonlinear relationships between modes,

the increase in complexity, the lack of samples in the

original ensemble, and the necessary subjective pa-

rameterization of such a distribution means this is

impractical for the present study.

d. Weighting for uniqueness

In this section, we seek to use the relationships de-

rived in section 2b to define a weighting scheme that

would effectively downweight closely related model

pairs the ensemble, which we can assess using the ex-

pectation values for near-neighbor distances in the

random ensembles proposed in section 2c. Our scheme

should also provide the capability to downweight

models that exhibit low fidelity in a desirable metric.

The limiting cases of such a scheme are easy to define.

We consider the models, as before, to be represented as

points in a space defined by the loadings of the model in

an ensemble-wide EOF analysis. In the extreme case, if

the distance between twomodels is exactly zero then the

models are considered identical and eachmember of the

pair should be given half the weight that they would

otherwise have (equivalently, a statement that adding an

identical model to an existing ensemble member should

not change the results).

We propose a simple functional form for model sim-

ilarity that satisfies the requirements for a given model

pair (i, j), separated by a distance d
20c
ij or d21cij ,

S(d20cij )5 exp

2

42

 

d
20c
ij

Du

!2
3

5 and (10)

S(d21cij )5 exp

2

42

 

d
21c
ij

Du

!2
3

5 , (11)

where Du is a free parameter, a ‘‘radius of similarity,’’

such that model pairs separated by less than this value

are considered similar. The distance is squared so that

the metric tends to unity for values �Du. The smallest

reasonable value forDu would be the expected distance

between two identical models exhibiting different re-

alizations of internal model variability, given this

represents a case where the model structure is identical.

As Du is increased from this value, increasingly distant

pairs of models are considered similar. In the extreme

case, as Du approaches the largest interpoint distances

(i.e., the largest values of d20cij or d21cij ) in the ensemble,

then only the models with the largest biases would

exhibit a value of S of close to unity and all other

members would be downweighted.

In section 2c, we derived Du empirically by consider-

ing the nearest neighbors one would expect to find by

chance in a t-dimensional normal distribution of equal

population, variance, and dimensionality as U. This is

achieved in practice by considering the randomly gen-

erated distributions from the section 2a.We defineDu to

be the 50th percentile of nearest-neighbor distances in

the 105 randomly generated ensembles.

One can thus obtain a value for the effective repeti-

tion of model i in the ensemble,

R
u
(i)20c 5 11 �

m

j 6¼i

S(d20cij ) and (12)

Ru(i)
21c

5 11 �
m

j 6¼i

S(d21cij ) , (13)

for the past and future cases, respectively, wherem is the

total number of models. We then propose a uniqueness

weighting for model i by taking the inverse of the

number of models similar to i,

w
u
(i)20c 5 [R

u
(i)20c]21 and (14)

wu(i)
21c

5 [Ru(i)
21c]21 . (15)

for the past and future cases, respectively. If desired, a

weighting scheme could also consider model quality;

a model should be given increasingly less weight the

farther that model lies from the point representing the

observations in the EOF space. In the limiting case,

the model weight should tend to zero as the distance of

the model to the observations tends to infinity. These

attributes are satisfied by the following construction for

wq, the model quality weighting:

w
q
(i)5 exp

2

42

 

d
20c
i(obs)

Dq

!2
3

5 , (16)

where d20ci(obs) is the Euclidean distance between the EOF

loading for model i and the loading of the observed

climatology projected onto the same EOF basis set. This
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is only calculated for the historical data where obser-

vations are available. The parameter Dq is a ‘‘radius of

model quality’’ and is a free parameter in the weighting

scheme. As Dq/ 1‘, then wq/ 1 for all models, and

the quality weighting has no distinguishing effect. As the

value ofDq is reduced, models closer to the observations

are increasingly upweighted. The smallest reasonable

value for Dq would be the smallest observational bias

seen in the ensemble [i.e., min(di(obs))]. In the extreme

case as Dq/ 0, the majority of the weight is placed on

the single best performing model.

To explore the sensitivity to this parameter, we con-

sider two values for Dq: a ‘‘wide’’ choice where Dq is

equal to the mean intermodel distance in the CMIP5

ensemble and a ‘‘narrow’’ choice that is half of this

value. ExpressingDq in terms of the CMIP variance has

the disadvantage that the variance itself can be influ-

enced by both model quality and reproduction, but this

decision is a matter of practicality. We present the

values ofDq as subjective, effectively as a statement that

relative skill, rather than any absolute measure, should

define whether we accept or reject a model. In effect, the

wide case describes a situation where only the models

with the largest biases in the ensemble are down-

weighted, while in the narrow case a distinction is made

between the ‘‘average’’ and ‘‘best’’ performers. It might

be desirable to let internal or natural variability define

Dq, but, as we show in section 3a, this would lead to a

situation where d
20c
i(obs) � Dq for all i, which, given Eq.

(16), would place the majority of the weight on the

model with the lowest value of d20ci(obs).

e. Eliminating interdependent models

If the researcher’s goal is simply to produce a multi-

model average that is less susceptible to bias by model

replication, then simply weighting each model by the

appropriate value of wu would suffice. This approach

could be used directly for calculating a central estimate

of combined multimodel projections.

However, some issues associated with model co-

dependence cannot be solved by weighting alone. For

example, the potential bias associated with regression-

based predictions of unknown climate parameters can

only be addressed by removing the interdependent

models. This can be achieved in a pure statistical fashion

(see Caldwell et al. 2014), but the interpretation of such

constructions is not always intuitive.

We propose here a less formal approach that should

be readily reproducible for a variety of purposes where it

is desired to remove the most blatant model co-

dependencies. Our method is a stepwise model elimina-

tion, where the models with the highest codependencies

are removed first.

The simplest approach here would be to recursively

remove amember of the closest near-neighbor pair until

the remaining ensemble conforms to a plausible random

distribution in the n-dimensional EOF space. Since

better models are replicated more, however, such an

approach preferentially eliminates themodels clustering

closer to observations while models with large biases

would be preserved. This has a significant detrimental

effect on the mean performance of the remaining en-

semble. Instead, we propose a strategy that considers

both model performance and model independence

when creating an ensemble subset.

First, we introduce a bulk quantity that describes the

ensemble characteristics, the ‘‘independent ensemble

quality score,’’

S20cm 5 �
m

i

w20c
u (i)w

q
(i) and (17)

S21cm 5 �
m

i

w21c
u (i)w

q
(i) , (18)

for historical and future cases, where w20c
u , w21c

u , and wq

are described in section 2d as the individual model

weights corresponding to model i. Using the product of

the two weights is a subjective decision, and other

functional forms could potentially be explored. How-

ever, as we now demonstrate, this simple combination of

the uniqueness and quality weights addresses our goals

to remove the influence of exactly replicatedmodels and

of very poor models.

This can be illustrated as follows for the historical

simulation: If an independent model is added to the en-

semble,w20c
u (i) equals 1 formodel i and so Smwill increase

by themodel quality scorewq(i). The increase is large for a

high performing model and approaches zero for a very

poor model. However, if two identical models i and j are

added to the ensemble together, w20c
u (i) and w20c

u ( j) each

equal 0.5, and so SN will still only increase by wq(i).

If we start with anN-member ensemble, we eliminate a

single member by considering the maximum possible en-

semble quality score for each combination of N 2 1

members. The excluded model j is removed from the

ensemble and the process is repeated until an appropriate

stopping criterion has been reached. We can assess the

effective number of models remaining at any point by

considering the ‘‘number of effective models,’’ for both

historical and future cases,

n20ceff 5 �
m

i

w20c
u (i) and (19)

n21ceff 5 �
m

i

w21c
u (i) , (20)
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with each representing the sum of the uniqueness

weights for the remaining models in the ensemble.

The approach outlined here is quantitative but

subjective, with a number of free parameters. To

demonstrate its utility, we consider a case study of the

CMIP5 ensemble, where we can objectively demon-

strate that we can use the algorithm to produce a

subset of CMIP5 models that provides comparable

model diversity, improved mean model performance,

and reduced model replication in comparison to the

original model sample.

3. Results

a. CMIP5 ensemble properties

The initial dataset fromwhich we draw our conclusion

is thematrix of pairwise distances betweenmodels in the

CMIP5 archive, d20c and d
21c, which are calculated from

U
20c and U

21c matrices. This matrix is represented

graphically in Fig. 1 for the all-variable case using both

present-day climatological fields calculated from 1970 to

2000 in historical simulations and the anomalies from

those fields in the RCP8.5 simulation between 2070 and

2100. In both cases, recognizable structure relating to

model genealogy is visible in the intermodel distance

field.

We can compare, in a bulk sense, the distribution of

distances in the matrices to that onemight expect from a

purely random distribution. The distributions for the

CMIP5 derived matrix and the random distributions are

plotted in Figs. 2a,b for a number of different variable

choices.

The random distributions have the same variance as

the original CMIP5 distributions by design because each

dimension of the random psuedo ensembles is normally

distributed with the same variance as the original

CMIP5 case in each dimension ofU20c andU21c. Because

we consider a large number of pseudorandom normally

distributed ensembles, we can produce best estimates

and confidence intervals for the distribution of inter-

model distances one would expect if the models were

normally distributed in the space defined by U
20c and

U
21c. If the CMIP5 distribution falls outside of this

range, this implies that the models in CMIP5 are dis-

tributed in a nonnormal fashion in the space.

We find there are some significant deviations in the

CMIP5 distribution from what one would expect in a

purely random case. First, there are a number of model

pairs that lie closer to each other in the EOF space than

ever occurs by chance in the random samples (less than

50% of the expected mean interpoint distance for the

random case). However, there is also an absence of

models at intermediate distances (between 50 and 90%

of the mean interpoint distance), relative to the random

distributions. This indicates that the distribution of

CMIP5 models in the EOF space has a rather hetero-

geneous, clustered distribution, with families of closely

related models lying close together but with significant

voids in-between model clusters. These features are es-

pecially clear in the future case, where the distances are

measured in terms of (2070–2100) anomalies from the

(1970–2000) climate mean state. We also show the his-

togram of intermodel distances in initial condition

CCSM4 ensemble, demonstrating that intermodel dis-

tances resulting from internal model variability alone

are an order of magnitude smaller than the mean in-

termodel distances seen in the CMIP5 archive.

The responsible model pairs can be explicitly plotted.

Figure 3a shows model pairs that are closer together

than the expected nearest-neighbor distances in the

random distributions, using all variables. Many of these

samples correspond to identical models from the same

institution submitted at a different resolution (e.g.,

IPSL-CM5A-MR/LR and MPI-ESM-LR/MR). Other

model pairs relate to changes in model configuration

that do not influence the set of atmospheric diagnostics

considered here (e.g., HadGEM2-AO and HadGEM2-

ES share the same atmosphere, ocean, and ice models,

but the former lacks treatment of the carbon cycle,

which has little effect in these concentration-driven

simulations). Finally, there are some cases where

models from two institutions share a large fraction of

code base, and this is reflected in their proximity in EOF

space (e.g., HadGEM2-AO and ACCESS1.0 or FIO-

ESM and BNU-ESM). Several other model pairs are

plotted with dotted lines. These, to a lesser degree, still

occur closer together than one might expect by chance

(for the models joined by a black line, one such pair

would be expected by chance in a 36-member ensem-

ble). These connections can also be related to common

model components (e.g., NorESM and CCSM4 share

atmosphere and land surface, and MPI-ESM and

CMCC-CSM5 share atmospheric code).We also include

the observational point in the same analysis in Fig. 3a,

which shows that none of the models in the CMIP5

archive is considered closer to the observations than

would be expected by chance. In the later part of the

study, where we prune similar models from the archive,

this gives us some confidence that similar models are not

being removed because they are all converging on the

‘‘true’’ climate. We can repeat the analysis for future

changes in the same variables (Fig. 3b), which show a

similar close relationships to present-day case. Using

specific fields produces similar (but nonidentical) re-

lationships (Figs. 3c–e). The all-variables case shows
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FIG. 1. A graphical representation of the intermodel distance matrix for CMIP5 calculated

for ALL using (a) 1970–2000 monthly mean climatological fields (as defined in Table 2) and

(b) changes in the aforementioned fields between 1970–2000 and 2070–2100. Each row and

column of (a),(b) represents a single climate model (or observation). Each box represents

a pairwise combination, where warm colors indicate a greater distance. Distances aremeasured

as a fraction of the mean intermodel distance in CMIP5.
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that all close relationships would be expected from a

genealogical perspective. However, when one uses sin-

gle variables (PR especially), there are some unexpected

results (e.g., MIROC and CAM5 are considered close).

We attribute this to the difficulty of representing in-

termodel precipitation variability in a low-dimensional

basis set (although models from different centers may

in some cases share parameterizations).

b. Stepwise model elimination

There are various arguments to support the hypoth-

esis that the CMIP5 ensemble is biased by the inclusion

FIG. 2. Histograms of CMIP5 intermodel Euclidean distances in the EOF loading space

derived from (a) 1970–2000 monthly mean climatological fields (as defined in Table 2) and

(b) changes in the aforementioned fields between 1970–2000 and 2070–2100, as compared to

a sample of 105 histograms calculated from randomly sampled distributions. Gray bars show the

histogram of intermodel distances in the CMIP5 ensemble in an EOF space constructed with all

available variables, while other colors show distances constructed with only a subset of vari-

ables: TAS, TOA shortwave and longwave fluxes, PR, and TQ. The yellow bars indicate the

distribution using all variables from the CCSM4 initial condition ensemble. The box-and-

whisker plots show the range of bin values observed in the random distributions showing the

10th, 50th, and 90th percentiles of the distribution.
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of common components: some of which are featured

more frequently than others. One can make this argu-

ment from a consideration of the models themselves

(see section 1 and Table 1) or by examining the spatial

distribution of models in orthogonal dimensions derived

from model output. We have proposed a method of

model removal that maximizes a metric reflecting both

model diversity and fidelity. The iterative model elimi-

nation process is illustrated for the CMIP5 ensemble in

Fig. 4.

The plot shows the consecutive removal of models

from the set of 36 considered in this study until a

single model remains. The process is demonstrated by

eliminating interdependent models as judged by the

FIG. 3. An illustration of intermodel and observation–model distances in an EOF space defined by (a) 1970–2000 simulated climatology

for ALL and (b) the anomaly between 1970–2000 and 2070–2100 under the RCP8.5 scenario for ALL. Plots are repeated for individual

variables: (c) TOA shortwave and longwave fluxes, (d) precipitation, and (e) surface air temperature. Intermodel lines illustrate where the

intermodel distance is less than 50% (dotted) or 90% (solid) of nearest interpoint distances in a randomly generated distribution of with

the same dimensionality, variance, and population.
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simulation of present-day climatology. The model

quality weights wq are obtained using the mean state

climatology from the models as compared to the ob-

servations. Model uniqueness is calculated as in section

2e after each iteration.

We demonstrate the sequence of model removal in

Fig. 4 (for present-day similarities, all variables and a

wide quality radius). The figures show the order in which

models are removed from the archive to achieve the

maximum independent ensemble quality. If the re-

movedmodel is closer thanDu (a function of the number

of models remaining) to any other remaining model,

then that model is shown to merge with its nearest

neighbor. However, if the model is further thanDu from

any other model, the model branch is shown as termi-

nating in the diagram.

We have not yet fully discussed an appropriate point

to stop trimming models. This question is ultimately

subjective, and the conclusion is somewhat dependent

on the specific needs of the researcher. However, Fig. 5

shows some changing characteristics of the remaining

ensemble as the ensemble size is decreased, and these

can be used to recommend ensemble subsets for differ-

ent scenarios. In essence, a first phase of eliminating

models just removes redundant data, and a second

phase improves the characteristics of the ensemble by

FIG. 4. An illustration of the stepwise model elimination procedure outlined in section 2e as applied to the 36

models from the CMIP5 ensemble, usingmodel similarity information from the present-day (1970–2000) climatology

forALL and the wide quality radius. The full set ofmodels is shown on the left axis, and the order ofmodel removal is

shown along the bottom axis, with the leftmost model removed first. If the number of effective models neff decreases

by less than 0.5, then the removed model is shown merging with its nearest neighbor in EOF space. If the number of

effective models decreases by more than 0.5, the line ends, indicating the removal of that model family from the

ensemble. Background shading indicates whether the smallest interpoint distance in EOF space using the remaining

archive is less than 90% (light gray), 50% (mid gray), or 10% (dark gray) of purely random distributions of the same

population, variance, and dimensionality.
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removing poor models and partly redundant ones. Go-

ing beyond that potentially worsens the ensemble mean

bias representation.

Figure 5a shows how neff varies asmodels are removed

from the archive as described in section 2e. The actual

number is dependent on the choice of Du, the radius of

similarity. Two choices ofDu are illustrated, using either

the 50th percentile of nearest-neighbor distances in the

set of 105 random ensembles (as was used in section 2d)

or, for comparison, the 90th percentile. Using all the

models in the archive, neff is 15.5 using the larger value

forDu or 22.5 using the smaller value (using present-day

climatology metrics of similarity). The removal of the

first 10 models has little effect on neff (especially using

the larger value of Du). The removal of the remaining

models results in a monotonic decrease in neff.

As was indicated by Fig. 5a, most of the early model

eliminations have little effect on neff. Figure 4 shows that

many of the initial removals represent models (from

CCSM4 to CESM1(BGC), from HadGEM2-ES to

HadGEM2-AO, and from GFDL-ESM2M to GFDL-

ESM2G) that are largely structurally identical, at least

in terms of their long-term atmospheric climatology,

differing only in the presence of an active carbon cycle

that would not influence the diagnostics used in this

study. It is thus largely random which member of the

pair is eliminated. In this regime, there is a strong in-

verse relationship between model quality weights (wq)

and uniqueness weights (wu), as shown in Fig. 6a.

The second broad class of eliminations is models with

strong connections, often from the same institutions but

with some differing components. In these cases, the

model with the higher value quality weighting (wq) is

generally preserved (e.g., GISS-E2-H and GISS-E2-R,

which differ in their ocean components). In this regime,

the inverse relationship between the model quality

weight and uniqueness weights is weaker (Fig. 6b), as the

clear duplicates have already been removed. Note that

the uniqueness weights now refer to uniqueness within

the remaining subset and not within the full CMIP5

archive.

The final stages of removal (approximately the final

20 models) do result in a reduction in the number of

effective models, illustrated by the termination of the

model path. As shown in Fig. 5b, in this regime, the

distribution of intermodel distances are now consistent

with what one might expect from a purely random

sample. Each family of closely related models is now

represented, to a large extent, by its own ‘‘champion.’’

Figure 6c shows that when only 10 models remain,

the relationship betweenwu andwq is rather weak, with

all remaining models having comparable uniqueness

weights.

FIG. 5. Plots illustrating the stepwise model elimination fol-

lowing the procedure in section 2e. Calculations are conducted

using model similarity metrics derived from both present-day

climatology and from future climate change under RCP8.5.

(a) The number of effective models as a function of the number of

actual models remaining in the ensemble. The percentile cutoff is

the fraction of nearest-neighbor distances seen in purely random

ensembles used to define the radius of similarity Du in Eq. (10).

(b) The nearest-neighbor distance as a function of the number of

models remaining. For comparison, the 10th, 50th, and 90th

percentiles of nearest-neighbor distances in purely random en-

sembles of the same dimensionality and variance are shown.

(c) RMSE of weighted and unweighted multimodel means as

a function of remaining models.
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FIG. 6. A plot demonstrating how model uniqueness weights and model quality weights

change as models are eliminated in the sequence shown in Fig. 4, for (a) 36, (b) 20, and (c) 10

models remaining.
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Our value judgment for an appropriate stopping cri-

terion is thus dependent on the application. If one

wishes to only remove near-identical models, one should

stop trimming when the number of effective models neff
begins to significantly decrease. However, if one wishes

to produce the best performing ensemble mean simu-

lation of the mean state, it is more logical to also remove

the worst performing models such that the RMSE error

of the subensemble mean is minimized.

c. Sensitivity to initial choices

The algorithm as described in section 2e requires

several assumptions and we explore the sensitivity of the

results to those choices in this section. Figure 7 shows the

models that are retained in the analysis with a range of

different initial variable and parameter choices. In each

case, the analysis is repeated and there is a stepwise

removal of models based on maximizing the ensemble

quality score. On each line of the plot, we show which

models remain when the smallest interpoint distance in

the remaining archive is first greater than 50% (unfilled

symbols) or 10% (filled symbols) of purely random

distributions of the same population, variance, and di-

mensionality (regions marked by mid-gray and dark

gray shading in Fig. 4). Thus, we can explore the sensi-

tivity of the retained models to our initial assumptions.

First, there is the choice of which variables are used to

derive the intermodel distance matrix. To address this,

we repeat the analysis with a variety of individual fields,

as well as the multivariate example discussed in the

previous section. The analysis is repeated for zonal

mean temperature and humidity (TQ), gridded PR,

gridded top-of-atmosphere (TOA) shortwave and

longwave fluxes, gridded TAS, and all variables com-

bined (ALL). Second, we explore the radius of model

quality Dq introduced in Eq. (16). The analysis is re-

peated for two values, a wide value whereDq is equal to

the mean intermodel distance in the CMIP5 ensemble

and a narrow choice that is half of this value. The latter

narrow case effectively increases the role of the model

quality metric, such that models with a low quality

score are removed earlier in the algorithm, unlike in the

wide case, where highly interdependent models are re-

moved first. Finally, we construct the model uniqueness

weightings wu using the intermodel distances derived

from the 30-yr mean 1970–2000 present-day data in the

‘‘present’’ case but use the anomaly between 2070–2100

and 1970–2000 for the ‘‘future’’ case.

We find that variable choice has little impact on the

final choice of model subsets. Although in some cases

the choice of model from a given institution can change,

the overall number of models retained is similar for each

of the variable choices. The use of the narrow radius of

model quality, however, significantly decreases the

number of retained models with respect to the wide

value. This can be explained by considering that the

narrow setting increases the ratio of the model quality

weighting for models lying close to the observations and

those far away. In the narrow regime, the ensemble

quality score is best maximized by removing the poorly

performing models earlier in the analysis; thus, after the

interdependent remaining models have been removed,

FIG. 7. A plot showing suggested subsets of CMIP5 given model

quality scores and codependencies derived in a number of ways.

Each line in the figure repeats the analysis leading to Fig. 4 with

different assumptions. Plotted are the remaining models where the

smallest interpoint distance in EOF space using the remaining ar-

chive is greater than 10% (unfilled symbols) or 50% (filled sym-

bols) of purely random distributions of the same population,

variance, and dimensionality (regions marked by mid-gray and

dark gray shading in Fig. 4). The analysis is conducted with TQ,

gridded PR, gridded TOA shortwave and longwave fluxes, gridded

TAS, and all variables combined. The parameterDq, the radius of

model quality, is set to wide or narrow (the latter increasing the

role of model quality metrics in model elimination). The variable

wu, the model uniqueness weighting, is shown calculated with the

future RCP8.5 data or the present-day data. Numbers at the bot-

tom of the plot indicate the number of retained models for the two

conditions where the minimum remaining intermodel distance is

greater than the 10th or 50th percentile of the random smallest

intermodel distances.
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the number of remaining unique models is smaller than

in the wide case.

EOF TRUNCATION CHOICES

Some subjective decisions are required in the in-

terpretation and subsequent usage of the PCA con-

ducted in section 2a, and we discuss these at greater

length here. In previous studies like Masson and Knutti

(2011), the intermodel distances were calculated with-

out the PCA stage, simply calculating distances in the

space defined by the anomaly matrices DX20c and DX21c.

For the purposes of this study, and its companion studies

(Sanderson et al. 2015), it is necessary to decrease the

dimensionality (and codependence) of the data in

order to establish prior expectations of near-neighbor

distances.

In this study, as in Sanderson et al. (2015), the inter-

model distances are calculated with the truncated set of

nine modes. The resulting intermodel distance matrix

calculated with U
20c truncated to nine modes has a 0.93

correlation with the matrix one would calculate using

the full-fieldmatrixDX20c, but using the orthogonal basis

set allows us to form random matrices with which to

compare the results (Fig. 2).

For smaller values of t, only the leading patterns of

model difference are retained, which results in large

intermodel distances between different model fami-

lies (e.g., CESM1 and GFDL models) and very small

distances between models in the same family [e.g.,

CESM1(CAM5) and CESM1(CAM4)]. With such few

degrees of freedom, very small intermodel distances

cannot be ruled out by chance in the random ensembles,

and so no models can be excluded from the ensemble

(see Fig. 8 for truncation values of 3 or less). The analysis

produces very similar results, and the minimum number

of retained models, for values of t between 8 and 12 (see

Fig. 8), with relatively little sensitivity to variable choice

(not shown). For values of t of 15 or greater, the higher-

order modes increasingly represent subtle and often

noisy differences between models in the archive, which

inflates the distance between the near neighbors in

the ensemble. Hence, once again we see fewer models

ruled out.

To test the sensitivity of the intermodel distance ma-

trix to variable choice, we also repeat the EOF analysis

with a number of different subsets of diagnostic vari-

ables. The resulting correlation depends significantly on

which exact variable is retained. The intermodel dis-

tances calculated using gridded TAS only are highly

correlated with the multivariate case (R 5 0.95 un-

truncated). Top-of-atmosphere radiative fluxes (RAD;

R 5 0.85 untruncated), PR (R5 0.66 untruncated), and

zonally averaged vertical temperature and humidity

(QT; R 5 0.42 untruncated) are increasingly poorly

correlated with the full-field multivariate case. This

implies that some fields, such as surface temperature

have sufficient information to render a multivariate

approach unnecessary.

With a truncation length of 9, which we used for the

bulk of this study, the resulting distance matrix remains

highly correlated to the full-field distancematrix, but the

influence of covariant fields and models is reduced [see

Caldwell et al. (2014) for an extensive discussion of

these issues].

d. Ensemble mean performance

The results of section 3b suggest that eliminating the

strongest interdependent models to leave a plausibly

random distribution would leave between 10 and 25 of

the 36 CMIP5 models considered here (depending on

variable and parameter choices). Trimming the ensem-

ble to its more independent subset does not worsen the

FIG. 8. As in Fig. 7, but showing suggested subsets of CMIP5with

different truncation lengths for the EOF analysis. Plotted are the

remaining models where the smallest interpoint distance in EOF

space using the remaining archive is greater than 50% (unfilled

symbols) or 10% (filled symbols) of purely random distributions of

the same population, variance, and dimensionality (regions

marked by mid-gray and dark gray shading in Fig. 4).
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fidelity of the climatological mean result, and removing

the poorer performing outliers (models with large bia-

ses) can actually improve it, as we show in this section.

We can first examine how the multimodel mean of

present-day climatology compares against observa-

tions. Figure 5c considers the root-mean-square errors

(RMSEs) of various weighted and unweighted multi-

model means calculated using the same multivariate

climate state vectors described in section 2a and the

observations listed in Table 2. We illustrate this using

the ALL case, with the wide radius of model quality

and present-day derived intermodel distances. We also

compare with the average RMSE seen when a com-

pletely random sample (without replacement) of the

same size is taken, as compared to the detailed tech-

nique outlined in section 3b.

If one considers only the far left of the plot, where

all 36 models are retained, weighting the models by

uniqueness actually increases the RMSE. This is largely

to be expected–as we have seen in Fig. 6a that the best

performing models have the lowest uniqueness weights.

It also suggests that a mean of the CMIP5 ensemble is

already weakly weighted toward the better performing

models. If we explicitly weight the model mean toward

models that lie closer to the observations in the EOF

space, the RMSE can be reduced significantly.

As the first 10 (highly interdependent) models are

removed from the archive, the simple mean RMSE in-

creases slightly while the random draw RMSE remains

constant, likely because the high-performing models

have less representation when the duplicates have been

pruned. The uniqueness weighted mean also becomes

more similar to the simple mean case (uw is now more

consistent across the ensemble). Between 28 and 12

models remaining, the simple RMSE decreases signifi-

cantly; when 20 models remain, the subset outperforms

the RMSE of the random sample. The lowest RMSE

values occur with between 12 and 5 models remaining.

Removing any further models increases the RMSE of

the simple multimodel mean. With 5 or fewer models

remaining, all models have a high value of both wu and

wq, so weighting by uniqueness or quality has little ef-

fect. In all cases, any further removal of models (below

5) significantly increases the RMSE, a fact that is likely

attributable to the Cauchy–Schwartz inequality (Annan

and Hargreaves 2011).

4. Discussion and conclusions

The present study considers how one might remove

potential biases that might arise from shared compo-

nents in the CMIP5 archive of climate models and its

predecessors. We also propose some simple diagnostics

that might be used to identify interdependent models

using model diagnostic output and a possible strategy to

choose a model subset to maintain model diversity

without replication and to incorporate model quality

information into this decision.

This study represents a proof of concept; the choice of

diagnostics used in this study is of course arbitrary, to

some degree, although the results of which models are

interdependent do seem to be relatively resilient to

changes in variable and time period (see Fig. 3; Pennell

and Reichler 2011; Knutti et al. 2013). However, we do

assume that a model’s mean state climatology can be

used to assess both its skill and independence. Clearly, if

our final goal is to assess the plausibility of a model’s

future simulations, then the mean state simulation is

not a perfect assessment of model skill, although it could

be argued that it is a necessary condition and as such a

weighting strategy based on present-day climatology can

be justified in the absence of any additional information.

Certainly, which model exhibits the highest quality

score is very much dependent on the specific metrics in

which the researcher might be interested (Santer et al.

2009), and it is far beyond the scope of this study to

conduct an exhaustive comparison of possible model

metrics. In this study, we have focused primarily on di-

agnostic output from the atmospheric model, and our

results are thus liable to be most sensitive to common

component in that model. As such, the results of this

study should be interpreted as illustrative of a potential

method for reducing the effects model interdependency

and not as a prescriptive list of models that should be

used for future studies. Most studies based on CMIP5

could easily use such a framework, but the value

judgements of future researchers should be embedded

into the choice of metric used to assess model similarity

and quality.

We assess the likelihood of near-neighbor models

occurring by chance using a large number of random

distributions of the same dimensionality as the truncated

orthogonal set of EOF loadings we derive from the

original ensemble. The random sample is not a proxy for

the space that might be attainable by the real climate;

rather, it is a proxy for the distribution of models

represented in an orthogonal basis set defined by

multimodel variability. As such, we are making the

assumption that, if there are physical relationships be-

tween variables in the model output data (e.g., between

surface temperature and outgoing longwave radiation),

then any correlation between these would be repre-

sented as a single mode in the EOF analysis. However, if

there is a strong nonlinear relationship between two

variables in the CMIP5 archive, then this relationship

could not be represented in a single EOF mode and
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might be represented in two or more modes. In this case,

then the distribution of models in the space could be

more complex than a simple Gaussian. One could

imagine designing a random sample that fitted a high-

dimensional distribution to the CMIP5 ensemble to

account for such nonlinearities, but the increase in

complexity, the lack of samples in the original ensemble,

and the necessary parameterization of such a distribu-

tion means this is impractical.

We also assume, by drawing random samples using

the variance defined by the original ensemble, that none

of the CMIP5 members can be ruled out a priori. One

could imagine a situation where an arbitrarily poor

model was included in the ensemble that would increase

the variance represented in each mode such that any

realistic models would look self-similar and would be

downweighted by the uniqueness weighting. Therefore,

the method only makes sense if there is some level of

base confidence that none of the models in the archive is

completely unrepresentative of the true system. How-

ever, we would argue that this is true of any analysis that

uses the CMIP5 archive and that even a simple multi-

model mean is subject to a sanity check of the

participating models.

Caveats aside, this study illustrates some interesting

characteristics of theCMIP5 archive and potential issues

that might arise from treating this archive as a random

sample of possible climate models. There is extensive

replication of model code in the archive, primarily

within institutions but also in some cases between in-

stitutions (see Table 1). This should come as little sur-

prise: a quick examination of AOGCM makeup in the

CMIP5 models indicates that some individual compo-

nents are used by over 25% of the archive. However, we

show in this study (e.g., Masson and Knutti 2011) that

many of those similarities can be identified also

through a simple analysis of model output. A more de-

tailed discussion of sharedmodel components is given in

the supplementary material of Knutti et al. (2013).

Similarities in diagnostic output are not always pre-

dictable from a consideration of model construction

alone. One can find examples of cases with significant

changes in code base but with minor changes in diagnostic

similarity. For example, CCSM4 and CESM1(CAM5)

have significantly different aerosol schemes, dynamics,

and cloud microphysics, and yet our results show the

two models as very strongly related when considering

the distribution of intermodel distances. This indicates

that tuning strategies and nonatmospheric components

may play a significant role in diagnostic model simi-

larity, even when primarily atmospheric output is used

to assess intermodel distance. This implies that, al-

though the diagnostic output is a useful indicator of

model similarities, those similarities may not be a func-

tion of shared code alone. The climateprediction.net

(Stainforth et al. 2005) and Quantifying Uncertainty in

Model Predictions (QUMP; Murphy et al. 2007) ex-

periments, for example, show that considerable diversity

in model behavior is achievable through parameter

perturbation alone with an identical codebase.

There are several possible additional factors that

might influence diagnostic similarity. First, the tendency

for various generations of models from a single in-

stitution to exhibit strong similarities in spite of exten-

sive model component changes [see Fig. 2 in Sanderson

and Knutti (2012) with reference to NSF–DOE–NCAR

CESM, GFDL, or Hadley Centre models] indicates that

some elements of model calibration tend to cluster

models from a given modeling center. The reasons for

this clustering have multiple possible candidates that

could lie in institutional policy or regional focus (in-

stitutions might be more concerned with their model’s

performance in the region’s climate). Standard metrics

used to judge model performance during the model

development process or preferred observational data-

setsmay also vary from institution to institution. Second,

models rarely change all components at the same time,

so we would posit that evaluating when a model is

‘‘new’’ is a subjective matter. Finally, the CMIP5 pro-

tocol allows for some flexibility in the way that models

implement external forcings, so different groups, even

with identical models, can choose to represent the his-

torical and future boundary conditions in different ways

to produce differences in the simulated climate. Knutti

et al. (2013) see similar relationships in control simula-

tions, but one cannot exclude the possibility that the

control simulations themselves might also include

common assumptions on boundary conditions.

In summary, we confirm earlier arguments that

models are not independent, some are essentially du-

plicates, and the effective number of independent

models based on this method is less than half of the

actual number of models, consistent with earlier studies

(Jun et al. 2008; Annan andHargreaves 2011; Sanderson

and Knutti 2012). Some models are closer to observa-

tions than others (Gleckler et al. 2008; Knutti and

Sedá�cek 2013). We believe that our method and results

do not strongly hinge on the way in which one interprets

the ensemble as ‘‘truth centered’’ (Knutti 2010), ‘‘in-

distinguishable from truth’’ (Annan and Hargreaves

2011; Rougier et al. 2013), or neither (Sanderson and

Knutti 2012; Bishop and Abramowitz 2013). One could

imagine a hypothetical ensemble following any of these

frameworks; by duplicating some of its members, bias

would be introduced in the ensemble distribution. By

evaluating our ensemble subset performance in terms of
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ensemble mean performance, we do not necessarily

advocate a truth centered ensemble, as the ensemble

mean would also be the best estimate of future change in

the indistinguishable case.

There are of course different ways to account for

model performance and interdependence. In the com-

panion paper (Sanderson et al. 2015), we proposed a

method to produce probabilistic estimates that are

largely insensitive to model duplicates and can consider

model performance. However, when high-dimensional

data and/or spatially and temporally consistent fields are

required (e.g., for impact models), a fully probabilistic

method becomes unwieldy and might even hinder the

development of tractable impact analyses (Dessai and

Hulme 2004). Bishop and Abramowitz (2013) also pro-

pose an alternative technique where models in the

archive are subject to a linear transformation, where the

weighted mean of transformed models is calculated to

be optimally close to an observed climate. This trans-

formation and weighting can then be extrapolated for

future projections. This method has the advantage that

the resulting transformed models have independent er-

rors and weight future projections by climatological

skill. However, the transformed models are not them-

selves physically self-consistent and there is a potential

for simulations to be overfitted to historical data in a

manner that could potentially result in overconfident

future projections. In comparison, the method we pres-

ent here preserves a subset of self-consistent physical

models (for both present-day and future projections);

although they might not be independent in the strict

sense of orthogonality, this subset can be simply used for

almost any application or analysis.

We thus propose that there is significant utility in

spanning the potential uncertainty in future climate by

representing spread with an appropriate subset of

models. This study introduces weights that assess model

uniqueness and model climatology fidelity. We find that

the two were inversely related such that the models with

the best simulations of the present-day climate were also

least unique. A part of this is possibly due to the fact that

models have been calibrated by the observations and

will thus appear to cluster around those observations

(and each other). However, a closer examination reveals

that a large fraction of the high-scoring models’ lack of

uniqueness can be explained by other models that have

duplicated some or all of their code. When these dupli-

cates are removed, this strong inverse relationship is

weakened (but not entirely eliminated).

This property of the ensemble is clearly, to some ex-

tent, contingent on the choice ofmetrics used, but it does

raise a potentially interesting property of the ensemble;

the best performing models might also be the most

promiscuous. This situation implies that the ensemble

as a whole is already strongly weighted toward the better

performing models. We show that, if the models are

weighted to reward their uniqueness, then the RMSE

of the ensemble mean is increased. Thus, through a

mechanism of quasi-natural selection, the climate com-

munity has created an ensemble of models that has al-

ready upweighted its climatologically best performing

members. In other words, relying onmodel democracy is

to some degree upweighting skilled model structures

without deliberately thinking about it or discussing it, by

the mechanism of duplication of well-proven code.

This could be seen as an argument in support of

keeping the entire ensemble when performing an anal-

ysis and at least some justification that the multimodel

mean result is a defensible best estimate. However, it is

at best an accidental property that is not guaranteed to

remain in future ensembles and may not at all be visible

for more specific questions or metrics. Whether a model

is extensively duplicated is not a pure function of its

quality or fidelity. A submodel with open source code

and few restrictions on its use ismore likely to be utilized

by another group than another model with a closed-

source policy. However, a model that is jointly used by a

large number of groups also has a large development

pool invested in improving that model. Duplication

within institutions depends also on funding and the

available computing resources. One could make the

argument that the CMIP5 ensemble distribution and

the social and intellectual landscape of the climate

community are surely related but certainly not in any

simple fashion.

A question also remains of whether the original

CMIP5 ensemble is sufficient to assess systematic un-

certainty in future climate change. This question could

easily form a study in itself, but our results are somewhat

informative in this matter. First, the number of truly

independent models in the archive is significantly less

than the number of submitted models, when gauged by

model output. Hence, adding another model to the

existing archive has most value if the developers in-

troduce novel components and assumptions. It is true

that exploring different configurations of existing com-

ponents through submodel exchange or parameter per-

turbation can certainly modify model behavior, and we

would argue that such experiments should continue in

order to fully explore the inherent uncertainties in the

existing model set.

However, this uncertainty is conditional on the num-

ber of independent models available to us and estab-

lishing whether the current set is sufficient is a question

that might not be a useful, because there is not a con-

venient space in which systematic model assumptions
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can be defined. For example, the current CMIP5 en-

semblemight have n fundamentally different convection

schemes, each with its own advantages and biases, but

nobody would argue that this constituted a ‘‘full set.’’

Where there is approximation and parameterization,

there are potentially limitless ways to address this. Be-

cause nobody can know the behavior of the (n 1 1)th

model, the question of ensemble adequacy cannot be

answered in a strict sense.Within the ensemble we have,

we can tractably experiment with subsetting to assess

howmanymodels are required to have confidence in the

distribution of future climate change formed by the full

set, but we can never know if the (n 1 1)th model will

adopt different assumptions or resolve a new process to

place its projection outside of the existing distribution.

We argue that a joint consideration of model simi-

larity and quality metrics allows the researcher to make

use of a more quantitatively defensible sample of sim-

ulations available in the CMIP archives, either through

weighting or by model elimination (in itself, an extreme

form of weighting) to produce a best estimate of com-

bined model projections. Our approach for achieving

this can be controlled with a small number of subjective

but clearly defined parameters, which can potentially

mitigate some of the arbitrary sampling issues that arise

from relying on model democracy and can be tailored to

specific questions by choosing appropriate metrics and

datasets.

It should be noted in this discussion that the CMIP5

archive is not a full representation of the uncertainty

space for GCM projections. Rather, it is a collection of

intended best possible models: the final iterations of

their respective tuning processes as model developers

calibrate their parameterization choices to best repre-

sent the observed climate properties that they find most

important, although there may be other acceptable

configurations (Mauritsen et al. 2012). Clearly, these

choices and targets will vary from model to model, but

the fact that there are implicitly a near-infinite number

of rejected parameter configurations for each model

must be remembered when trying to interpret the sig-

nificance of the spread of simulations in the archive. In a

practical sense, we ignore these rejected configurations

because we do not have access to them. In addition,

there is some evidence to suggest that the model di-

versity one can attain by structural changes signifi-

cantly exceeds that of parameter changes in currently

available perturbed parameter ensembles (Yokohata

et al. 2013). Nevertheless, it should be remembered

that both the CMIP5 ensemble (and by definition our

subsets of that ensemble) is already a subset of all

possible model configurations that have been chosen

by model developers.

There are some cases where we would argue it is es-

sential to eliminate interdependent models, such as

when a correlation found in the multimodel ensemble is

used as a constraint on a climate parameter [i.e., for

climate sensitivity in Fasullo and Trenberth (2012) or for

high-latitude surface albedo feedbacks in Hall and Qu

(2006)]. The presence of closely related or even identical

models in the archive would tend to artificially inflate

the significance of any correlation simply because

identical models would exhibit similar values for both

the predictor and for the unknown quantity (Caldwell

et al. 2014). Removing the obvious interdependent

models as shown in this study would certainly be better

than assessing a correlation based on the entire archive,

but a method for achieving this in a strict statistical sense

is presented in Caldwell et al. (2014).

There is a danger that, as models improve, the better

models have the potential to converge on the true cli-

mate state, which might lead to their elimination if in-

terdependent models are removed. We show in Fig. 3

that this is unlikely to be the case for CMIP5, given none

of the models lies close enough to the observations to be

influenced by the uniqueness weighting. However, one

could imagine if a small group of models make a real

advance that removes a long-standing systematic bias

(e.g., as some models begin to explicitly resolve con-

vection), then it would be necessary to accept a higher

level of similarity among the better performing models

(i.e., the uniqueness weighting uw could no longer be

independent of the skill weighting us).

Proposing a subset of models to consider for a less

biased analysis could be seen as overly prescriptive, but

our aim is not to focus on the exact set of models that

should be used for future studies but rather to establish a

framework in which researchers could make their se-

lection based upon metrics that are most relevant to

their question. We would argue that, although the col-

lection of models arising from the ‘‘ensemble of op-

portunity’’ is often seen as sacrosanct, the democratic

policy of one model, one vote is no longer a logical one

in the increasingly complex family tree of models

available to the researcher. A subset of 10–20 models

that are reasonably independent and perform well for

the criteria that are judged to be relevant is very likely to

be more skillful than the full ensemble. Giving equal

weight to all models that have completed a simulation of

interest is, albeit implicitly, adopting a weighting scheme

that rewards model components that are highly repli-

cated. This weighting scheme might fortuitously have

the property of rewarding the most skilled components

but, we would argue, this property should be demon-

strated and the decision how to incorporate it should be

made consciously.
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