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Summary

This paper describes our experience in capturing� using a formal speci�cation language� a
model of the knowledge�intensive domain of oceanic air tra�c control� This model is in�
tended to form part of the requirements speci�cation for a decision support system for air
tra�c controllers� We give an overview of the methods we used in analysing the scope of
the domain� choosing an appropriate formalism� developing a domain model� and validating
the model in various ways� Central to the method was the development of a formal require�
ments engineering environment which provided automated tools for model validation and
maintenance�

Introduction

The problems inherent in Software Engineering� especially those relating to the production
of safety�critical systems� are nowadays all too apparent� Brown et al 	in 
���� point out a
number of these problems� We group them here into two classes

� The problems of understanding the customer�s initial requirements� and maintaining
them as they change�

� The problems inherent in the complexity� malleability and invisibility of software itself�
That is� as well as being deceptively complicated� software is easily changed� and is not
a physical artifact unlike the output of other engineering processes�

In this paper we present an overview of a method for formally capturing requirements for
knowledge�intensive systems that demand high integrity in their construction� We illustrate
the method by its application in the development of a prototype decision support tool for air
tra�c control� involving separation of aircraft in the airspace over the North�East Atlantic�
Using the method for this particular type of project� we believe that the problems in Software
Engineering stated above can be addressed e�ectively�

This work provokes issues that span both software engineering and knowledge based systems�
including knowledge capture� formalisation� correctness� validation and automated reasoning�
The bene�ts of formally specifying requirements� to do with precision� removal of ambiguity�
automated manipulation and so on� have been well argued with the appearance of appropriate
formal languages 	e�g� MAL 
���� Up to now� few real industrial applications have been
reported� and it seems often to be the case that researchers concentrate on particular kinds
of applications in order to promote a particular formalism� Our approach to requirements
speci�cation is based on a formalism�independent method� where the choice of formalism
and appropriate engineering environment is a feature of that method� In outline the method
encompasses the following steps

� Scoping and Domain Analysis determining the size and nature of the domain�
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� Formalism Choice and Customisation selecting and customising a language and envi�
ronment for domain capture�

� Domain Model Capture eliciting knowledge and capturing a model of the domain using
the chosen formalism�

� Diverse Validation a �ve point validation plan that includes dynamic testing� hand
validation� and static analysis by formal reasoning�

The particular signi�cance of this work lies in

� the use of an expressive formal speci�cation language 	Many�Sorted First Order Logic�
to capture part of the requirements speci�cation for a real application�

� the construction and customisation of a formal requirements engineering environment
	which is given the acronym �FREE� throughout the paper� that was used as a frame�
work for the capture and validation of the model�

As well as carrying out all forms of syntactic checks� and allowing reasoning about the be�
haviour of the model to be carried out� the FREE translates the requirements model into

� a �hand validation� form� for examination by domain experts who may be unfamiliar
with formal logical notation�

� a prototype� for use within

� a test harness to perform dynamic testing of the requirements� and

� a simulator to allow users access to an animated version of the requirements� al�
lowing �hands�on� validation by domain experts�

This approach addresses the two main problems mentioned at the start of the introduction�
The software engineer�s idea of what the users or customers want is precisely captured in a
validated� maintainable formal model� It may be that the simulator can be further developed
to satisfy the full user requirement 	for example it could be optimised to satisfy response�
time requirements�� In this case the problems to do with software development are reduced
to those encountered in the development of the simulator� and in constructing� acquiring
and customising the tools that make up the model�s environment� At the very least� this
approach aims to deliver a well�validated formal speci�cation with which to contract software
developers� as well as a simulator with which to dynamically check �nal software�

In the project described here� we were concerned with the speci�cation of requirements for
software which would implement rules used in oceanic air tra�c control� as we will explain
below� Throughout the paper� we use the term �application domain� 	or �domain�� to mean
that part of reality with which we are concerned� and the term �requirements model� 	or
�model�� to refer to the speci�cation of the domain� While a complete speci�cation of re�
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quirements for the software would include de�nitions of �non�functional� requirements� such
as those relating to its performance or user interface� the aim of our project was simply to
capture �functional� requirements relating to the implementation of rules for aircraft separa�
tion� The part of the requirements model 	or requirements �speci�cation�� we are concerned
with here is thus equivalent to the model of the domain which we aim to capture�

An Overview of the FAROAS project

The formal requirements method was developed within the context of the FAROAS project�
a research project funded by The Civil Aviation Authority� The general area of interest of
the work was the separation of aircraft in oceanic airspace�

Air tra�c in the airspace over the north eastern part of the Atlantic � The �Shanwick Oceanic
Control Area� 	Shanwick OCA� � must be separated in accordance with minima laid down
by the International Civil Aviation Organisation� The separation distance that is applicable
in any given situation depends on a large number of factors including the type of an aircraft�
its navigational accuracy and whether it is climbing or descending� A structured� natural
language description of these separation standards is contained in the Manual of Air Tra�c
Services� Part � 	MATS��� 
��� It is the responsibility of air tra�c control o�cers to ensure
that all aircraft within Shanwick OCA are separated by at least the required minima through
the processes of con�ict prediction and con�ict resolution� Con�ict prediction is the process
of detecting potential separation violations by comparing the projected �ight paths 	�ight
pro�les� of pairs of aircraft� Con�ict resolution is the process of planning new con�ict free
�ight pro�les�

The air tra�c control o�cers use an automated Flight Data Processing System 	FDPS�� a key
component of which is the �con�ict software�� that provides assistance for the processes of
con�ict prediction and resolution� A new FDPS is currently being developed and we became
involved with the capture of the requirements for the con�ict software in the new FDPS�
The long term goal to which the work of the FAROAS project contributed was to develop
a formal speci�cation of the requirements for con�ict in oceanic airspace� The aim was to
formalise and make complete the requirements of the Shanwick OCA aircraft separation stan�
dards with respect to the speci�c function of predicting and explaining separation violations
	i�e� con�icts� in aircraft �ight plans� in such a way that those requirements can be rigor�
ously validated and maintained� Ultimately the formalisation might serve as an independent
standard for the procurement of con�ict software systems� Hence the role of this document
would be comparable to the MATS�� in operational ATC� Within this context the objectives
of the FAROAS project were

� to identify a formalism for requirements capture that could be validated by ATC experts

� to formally capture the functional requirements of con�ict prediction

� to establish a method for validating 	and re�validating when necessary� the formally
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captured requirements�

The project commenced in May ���� and was based at The City University in London� For
the duration of the project� the project team consisted of of two full time research fellows� a
project manager� a project consultant� a quality manager and a project manager from The
Civil Aviation Authority� Also� a research fellow worked for � months on the use of automated
proof assistants for maintaining the requirements speci�cation� From the outset� project plans
detailed the major deliverables and milestones against which the progress of the research was
to be judged� Also implemented from the start of the project was a detailed quality plan which
set down procedures for formal review of all project deliverables 	reports� speci�cations and
software�� The project terminated successfully at the end of ���� upon delivery of the formally
captured requirements model which had been validated to the satisfaction of the client and
su�ciently to demonstrate the method�

The Scope and Nature of the Domain

Criteria used in the domain analysis

The success of requirements capture depends greatly on establishing a clear scope for the
project� and on a good choice of formalism� The scope of our application� which we will refer
to as the oceanic ATC domain� was con�ned to con�ict prediction� although we wished to
keep open the possibility of adding a con�ict resolution component at a future stage�

Once the scope of a project has been established� the domain should be analysed to identify

� the key sources of domain knowledge

� the groupings and the nature of various types of knowledge

� the size of the model to be constructed� and the aspects 	e�g� time� agents� that need
to be represented explicitly

In formal requirements capture� we have to deal with the vague concepts of �knowledge� and
�knowledge representation�� Since the �eld of knowledge representation has not yet arrived
at generally agreed standard criteria or measures� the points above will instead be illustrated
by example�

The key sources of knowledge

The key sources of knowledge will a�ect the planning of domain capture� for example if the
major source is experts rather than documents� the setting up of interviews and document
reviews will tend to lengthen the project and increase its cost� These key sources also play

�



a crucial role in validation� and so are as important towards the end of a project as they
are during the elicitation phase� For example� comparing the behaviour of a prototype that
has been automatically generated from a requirements speci�cation against the customer�s
existing software� is far easier than assembling groups of experts together to �hand validate�
a set of formalised rules�

In the oceanic ATC domain the main knowledge source was

� documentation � principally the separation standards encapsulated in the MATS�� 
���
Additional sources were the design documentation of the current con�ict prediction
software 
�� ��

Additional knowledge sources were

� people � principally air tra�c control o�cers

� software � the current con�ict prediction software

The groupings and the nature of various types of knowledge

Unless there is some strong reason to the contrary� such as the need for a new technical
solution� then the captured model should re�ect the existing groupings of knowledge� Each
grouping should be analysed� to determine the types of knowledge it contains and its likely
interface with other groupings�

The oceanic ATC domain contains two broad types of knowledge

� rule�based  This includes a set of rules in natural language within the MATS�� document
that detail the minimum separation that must be maintained between aircraft in oceanic
airspace� Also� there are rules that de�ne a method of determining if two �ight pro�les
will violate the minimum separation values that have been derived from the separation
rules� in other words to detect potential con�icts�

A simple rule de�ning the scope of a segment 	a section of a �ight pro�le� is paraphrased
below

�If a pro�le containing a segment is wholly or partly in Shanwick OCA then
a segment of such a pro�le starts at or after the �rst recognised point for
oceanic con�ict prediction if and only if the entry time of that segment is
at or later than the time of the �rst recognised �D point for oceanic con�ict
prediction of the pro�le containing that segment��

� object�based  the objects� relationships and properties that underlie the rules� For
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example� �segment� is an important kind of object used in many of the rules� The rule
above contains the following functional relationships

�the entry time of that segment�
�the pro�le containing that segment�

The size of the model to be constructed

It is important to try to quantify the likely size of the model so that the project can be
planned accordingly� This presumably extends work carried out during the feasibility study�
One crude measure of model size is simply the number of axioms or rules that are predicted
to appear in it�

For the FAROAS project� model size was estimated by considering the

� textual size of the main knowledge sources� in terms of relevant assertions about the
oceanic ATC domain� and the

� number and complexity of discernible types of objects in the domain�

In choosing a metric for size we had to assume a particular formalism 	possible metrics
include number of equations� operations� rules or axioms predicted to be in the model�� Using
these observations� and choosing a �number of axioms� metric� we examined the available
documentation and correctly estimated the size as being in the region of several hundred
axioms�

The nature of the explicit knowledge

Another important question regarding the model is which aspects of the domain will require
explicit representation� Some general aspects that might be considered here include

� agents

� time

� states of knowledge and belief

� actions

� probabilities
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� permissions and obligations

To some extent these aspects are independent of each other some formalisms explicitly rep�
resent agents and belief� but none of the other aspects listed above� some explicitly represent
actions� but none of the others and so on� Once it has been decided that a particular aspect
needs to be represented explicitly� further questions arise as to how this should be done� For
example� in the case of time� the model of time adopted may be either discrete or continuous�
it may be bounded or unbounded 	in either past or future directions�� it may involve time
points or time intervals 	or both�� and from a syntactic point of view� it may involve the use
of modal operators� or alternatively the use of terms denoting times

The real domain of air tra�c control clearly involves time and agents 	e�g� pilots and air tra�c
controllers�� who have beliefs and who perform actions 	e�g� issuing clearances�� However�
since the focus of the FAROAS project was the rules governing oceanic aircraft separation and
con�ict prediction� we concluded that of the general aspects listed earlier� only time need be
represented explicitly� The chosen model of time was discrete� and unbounded in the future�
It was felt that times should be represented syntactically by explicit temporal terms� relative
to a nominal zero time� The term ��� �� GMT day �� is a typical example of such terms
the day number here is relative to an arbitrary �day ��� since there is no need to refer to the
actual calendar date as far as the separation rules are concerned�

Formalism Choice and Domain Capture

Criteria for Formalism Choice

Once the scope� size and nature of the domain have been determined� the most important
initial aspect of formal requirements capture is the choice of formalism� To some extent
this will depend upon the experience and prejudices of the modellers� but there are also
more objective criteria� In a similar study to this one 	described brie�y in 
���� an Airborne
Collision Avoidance System 	ACAS� was captured using the LOTOS speci�cation language

��� Describing the capture� Sowerbutts states that the main reason for the choice of LOTOS
is the �natural mapping from ACAS onto LOTOS�s processes�� In other words LOTOS was
chosen on the basis of how well it �tted the domain� Another factor was the availability of
tool support for LOTOS 	in particular an interpreter��

Considerations such as these lead us to the following criteria for evaluating candidate for�
malisms� the �rst being the most important

� natural �t  does the formalism �t the domain� Does it allow domain knowledge to
be represented at an appropriate level of abstraction� so that the model can mirror
the domain� This question is analogous to consideration of the �semantic gap� in
programming language selection the narrower the gap between language features and
application� the more natural the selection of that language is said to be� The chief
advantage of a natural �t is that it eases knowledge elicitation and validation� For
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example� a model that mirrors the domain can be directly viewed by domain experts
	as was intended in the FAROAS project� and facilitates the construction of a tool for
translating parts of the speci�cation into a validation form that can be easily read by
the domain experts�

� support environment  are practical tools available for the formalism� The kinds of
tools required for formal requirements capture are type checkers� parsers� translators�
interpreters� proof checkers and inferencing mechanisms� These tools should be available
in an integrated environment that can be customised for a particular project�

� maintenance  if the domain is subject to change� can the model be easily and consis�
tently updated to re�ect this� This question may in fact be combined with the one
above � for example� are tools available to easily re�generate proof obligations to ensure
model consistency�

� expressiveness and extendibility  will the formalism restrict natural expression in any
way� If the scope or depth of requirements of the domain are increased� can the for�
malism be likewise extended�

� formality  does the language have a �rm mathematical basis� where its meaning is
clearly independent of and not tied to a program or interpreter� Is it possible to reason
with the formalism in a precise and straightforward way� ideally with a tool such as a
proof assistant�

� experience and training  are project sta� initially familiar with the formalism� or will
they require a period of learning or even formal training before they can use it e�ectively�
If the latter is the case� considerable delay and additional cost may result� The same
applies to future sta�� who may have to maintain the system after the initial project
team have left� A formalism that is uncommon or di�cult to learn will thus introduce
extra delays and costs throughout the whole life�cycle of the system�

Connecting all these criteria is the dominant issue of validation� The requirements model will
have an interpretation that makes it a �model� of something real� making it analogous to an
inductive scienti�c theory� Like a scienti�c theory� it cannot be formally proved absolutely
correct or complete� However� its quality can be promoted by systematic validation� relying on
diverse and largely automated validation processes� The link may be indirect� but a formalism
that helps the validation process is also desirable�

Evaluation of Candidate Language Groups

At the start of the project we performed a survey and feasibility study into the use of various
likely languages groupings 
��� and evaluated them according to the criteria above� Here we
will summarise that evaluation� taking each group in term�

Firstly� there are those languages traditionally used for knowledge representation in the areas
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of arti�cial intelligence and knowledged�based systems� These include rich� highly expressive
languages such as frame�based representations 
��� input languages for expert system shells

��� and variants of formal logic 
���� As early as the mid������s frame�based languages� which
inspired the �����s boom in object�oriented languages and methods� allowed one to capture
knowledge as a collection of related objects� each object having internal structure comprising
slots 	or attributes� and procedural attachments 
��� This slant towards rich� very high level
languages seems to be at the expense of semantic rigour� Frame�like representations and
expert system shell languages can be criticised for having a meaning which lacks a formal
mathematical basis� and is too tied to an interpreter or an implementation� Hence� whereas
the machine�independent languages of logic are possible candidates� in general the languages
in this group do not score well on the formality criterion�

We might also have considered using a specialised requirements speci�cation language� such
as RML 
��� or MAL 
��� While languages such as these are being developed speci�cally for
use in capturing and modelling the requirements for certain kinds of system� they were judged
not to be appropriate for use in our project� Languages such as MAL are more expressive and
more complex than was judged necessary for example� although Structured MAL provides
the engineer with the ability to specify agents and obligations in the domain of interest� we
had already decided that the FAROAS project would not need to be concerned with the
explicit modelling of such phenomena� Other languages� such as RML� have been targeted
at use in developing information systems and therefore embody concerns di�erent to those
involved in the development of technical decision support systems� Still other requirements
speci�cation languages� such as that under investigation in the KAOS project 
��� were judged
to be at too early a stage in development to be used in specifying a real application� Support
tools for such languages were also not readily available�

Other potential candidates were the established formal speci�cation languages� which fall into
two broad families� The �rst are those languages based on equational algebra� for example
OBJ � 
���� AXIS 
���� and LOTOS 
��� A speci�cation written in OBJ � is typically formed in
a hierarchical structure of algebraic speci�cations of abstract data types� Speci�cations thus
have an abstract� object�oriented �avour� supporting polymorphism and encapsulation� and
their equational basis allows speci�cations to be prototyped using a re�write rule interpretation

���� While it would be possible to build up de�nitions of the objects in the ATC domain
in this way� the bulk of the domain 	requiring a rich logical form� could not be represented
naturally using equational expressions� In other words� the semantic gap between the rule
based ATC knowledge and an equational�based speci�cation language was too wide�

The model�based formal speci�cation languages 	chie�y VDM�SL 
��� and Z 
���� are based
on �rst order logic and set theory� and have the advantages of a growing user�base and tool
support including parsers and type checkers 	e�g� fuzz for Z 
����� Speci�cations written
in VDM�SL typically contain a mathematical model of a state involving composites of sets�
sequences and mappings� as well as a collection of operations that specify state changes using
pre� and post�conditions�

We initially used a model�based notation to represent some of the objects in the oceanic ATC

domain and some of the functions on those objects� In an early project report on the domain
analysis� �ight pro�les were represented as the following set 
��� 	the reader not familiar with
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this notation may safely ignore the details�

Flight pro�les � f	a� f �  a � Aircraft �

f � seq
	Flight positions � Times�� Aircraft speeds � �
				p�� t��� s��� 	p�� t��� s��� � adjacent	f �� t� � t�� �
	� s � ran	ran	f ���s � max speed	type	a��� �
	� s � ran	dom	dom	ran	f �����s � �ight ceiling	type	a��� � length	f � � �g

Our idea of an adequate representation for �ight pro�les incrementally shifted as our under�
standing deepened� however� so that e�ort creating 	and typesetting� this initial de�nition
had been largely wasted� We soon realised that at this early stage any commitment to a model
of the objects in the domain was premature� Rather� we needed to construct the requirements
model using a loose speci�cation� one that allows us to make the least commitment to the
structure and behaviour of the model 	as explained on page �� of reference 
����� When
capturing requirements one does not have a deep enough knowledge of the domain to commit
to a particular representation using abstract mathematical building blocks typi�ed by the
set� If one creates an inappropriate partial model in this form then throwing away the initial
model and creating a new one wastes e�ort� In addition� our initial domain analysis reports
containing set�based formulae� such as that shown above� were o� putting to our client�

One �nal point against the use of a model�based formalism for this project is to do with their
promotion of speci�cations using an abstract state� Our application could not easily be given
an interpretation that involved operations on a state� as the bulk of the data represented
	monotonic� knowledge which would be used to come to a binary decision about aircraft
separation� Hence we would be unlikely to put these notations to full use�

These deliberations lead us to concentrate on more abstract languages based wholly on formal
logic� A result of the domain analysis was that we did not need to represent uncertainties�
beliefs� actions etc� which indicated that a straightforward �rst�order logic would be adequate�
easing the problems of sta� training and tool support� Also� the major part of the knowledge
we were to capture was written used a logical phrasing 	as the example paragraph on page �
suggests� which could be captured at a natural level of abstraction by �rst order logic� To
deal with objects in the application� classical logic can be enriched with sorts 
��� de�ning
classes of objects which share the same properties� Encapsulating primitive axioms in a sort
de�nition also gives a natural structure to the speci�cation� as explained in the next section�

The Domain Capture Formalism

Having decided on the type of formal language� a �nal decision was required between using
an �o� the shelf� formalism and customising our own� In the event we chose a formalism
in the latter category� a customised version of Many�Sorted First Order Logic 
��� which we
refer to in the remainder of the paper as MSFOL� A strong candidate in the former category
appeared to be Z 
���� an alternative we will discuss in retrospect after an exposition of the
use of MSFOL�
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We de�ned a version of MSFOL to have a simple structure of disjoint sorts� with rigidly sort�
restricted functions and predicates � with the sole exception of numerical sorts� predicates
and functions� In this case� subsorts were allowed so that numerical operators could be
overloaded in the usual way� For example� the symbol ��� could be used to compare two
terms that were both of type natural numbers� integers or reals�

Atomic w�s were composed of mix��x predicates and functions� allowing expressions to be
written with maximum readability� for example

	Segment starts at or after �rst recognised pt for oceanic cpr�

is an atomic w�� where Segment is a sort variable followed by a long but descriptive predicate
name�

The syntax was de�ned using a �determinate clause grammar�� expressed in the Prolog gram�
mar rule notation 
���� Such a grammar has a dual interpretation as a speci�cation and a
program� and hence doubles as a parser� This formed the �front�end� to the translation tools
which were the central processes in the FREE� the requirements engineering environment
which we constructed during the course of the project�

The Structure of the Con�ict Prediction Speci�cation

The model we constructed captured the functional requirements of the con�ict prediction
process within the oceanic ATC domain� and so in what follows we shall call it the �Con�ict
Prediction Speci�cation� 	the CPS�� It should be clear from this section that parts of the
model however� in particular the separation rules� can be re�used for other applications such
as a speci�cation of con�ict resolution�

Many of the axioms in the CPS were non�recursive de�nitions of predicates or functions in
terms of lower�level predicates and functions� For example� the rule stated in English on
page � was represented by the following axiom

	the Pro�le containing	Segment� is wholly or partly in shanwick oca�
��


	Segment starts at or after �rst recognised pt for oceanic cpr�
���
	the entry Time of 	Segment� is at or later than

the Time of 	the �rst recognised �D pt for oceanic cpr of 	
the Pro�le containing	Segment����

�

This axiom amounts to a conditional de�nition 	applicable only to segments belonging to
pro�les that are wholly or partly in the Shanwick OCA� of the predicate

	Segment starts at or after �rst recognised pt for oceanic cpr�
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in terms of the functions

the Pro�le containing	Segment�
the entry Time of 	Segment�
the Time of 	�D pt�
the �rst recognised �D pt for oceanic cpr of 	Pro�le�

and the predicates

	Pro�le is wholly or partly in shanwick oca�
	Time� is at or later thanTime��

The structure of the speci�cation re�ected the hierarchical structure of the con�ict prediction
domain� shown in �gure �� At the top�level are axioms speci�cally capturing the con�ict
prediction method� which involves pairwise comparisons of segments� For example� a recursive
axiom 	which we will refer to as the �box con�ict axiom�� describing the conditions under
which con�ict is said to exist within a time interval modelled as a set of discrete points� is as
follows


	Segment� and Segment� are subject to oceanic cpr�
 
	Time� is in overlap time window for Segment� and Segment��
 
	Time� is in overlap time window for Segment� and Segment��
 
	Time� is at or later than Time���
��

	box con�ict exists between linear tracks of Segment� and Segment�

at some time at or between

Time� and Time��
���

	box con�ict exists between linear tracks of

Segment� and Segment� at Time��
or

	box con�ict exists between linear tracks of Segment� and Segment�
at some time at or between

the next integer Time in mins after	Time�� and Time��
�

��

The separation values for segments of a pro�le are captured by the �Separation Value Ax�
ioms�� An example separation rule from the speci�cation is as follows

��



Conflict Prediction Axioms

Separation Value Axioms

Domain Object Axioms

Auxiliary Axioms

Figure � The Structure of the Speci�cation


	Segment� and Segment� are subject to oceanic cpr�
 
	Flight level� lies in �ight level range of Segment��
 
	Flight level� lies in �ight level range of Segment���

��

	the min vertical sep Val in feet required for

Flight level� of Segment� and Flight level� of Segment�� � ����
���

	both Segment� and Segment� are �own at subsonic speed�
 
	bothFlight level� and Flight level� are at or below FL ������

This captures a rule which says that in certain situations there has to be a vertical separation
of ���� feet between aircraft� Again� note the use of mix��x� readable predicates� contributing
to the overall transparency of the model� Below the Separation Value Axioms in the hierarchy
lie a larger group of Auxiliary Axioms� de�ning various auxiliary predicates and functions used
in the Separation Value Axioms�

The higher levels of the speci�cation are anchored by the �Domain Object Axioms�� which
constrain the meaning of the primitives associated with each sort� Sorts were textually en�
capsulated in de�nition modules� where the signature and axiomatic de�nition of operations
	predicates and functions� of that sort resided� This gives the requirements model the object�
centred �avour one expects to �nd in an algebraic speci�cation� although the use of an object
inheritance technique was not required� For example� an extract of the sort Segment is given
in �gure �� This was the largest sort de�nition having �� functions� �� predicates and ��
axioms associated with it�
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Sortname  Segments

Function names 
the Segment	Pro�le� �D pt�� �D pt��Val�
the Pro�le containing	Segment�
the entry �D pt of 	Segment�
the exit �D pt of 	Segment�
the machno Val on	Segment�
the cruise climb status Val of 	Segment�
� � �

Predicate names 
Segment� � Segment�
Segment� n � Segment�
	Int gte � is a min long sep value for Segment� and Segment�

entered via the mst command�
	time periods of Segment� and Segment� overlap�
	�ight level ranges ofSegment� and Segment� overlap�
	Flight level lies in �ight level range of Segment�
� � �

Axioms 
Segment� � Segment�
���

the entry �D pt of 	Segment�� � the entry �D pt of 	Segment��
 
the exit �D pt of 	Segment�� � the exit �D pt of 	Segment��
 
the machno Val on	Segment�� � the machno Val on	Segment��
 
the Pro�le containing	Segment�� � the Pro�le containing	Segment���
� � �

Figure � Part of the Sort �Segment�
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It is possible to follow down chains of de�nitional axioms until one reaches primitive predicates
and functions that require factual pro�le data 	i�e� sort instances� to be evaluated� The
speci�cation itself does not include instances of sorts� but for the purposes of animation� the
CPS was supplemented with particular details of an oceanic airspace� containing persistent
information regarding sort instances 	aircraft makes� air�eld positions and so on�� Finally�
pro�les themselves need to represented as sort instances to allow evaluation of the con�ict
prediction function�

An Alternative Formalism

As we considered the speci�cation language Z to be the most serious rival to the choice of
MSFOL� in this section we will brie�y compare the two for this application� Z has been
proposed for use in requirements capture 
��� and although classed as a model �based formal
speci�cation language� it can just as easily be used to capture domain knowledge in a purely
axiomatic way� by naming types and placing logical axioms in schemas around these types�
This would result in the kind of loose speci�cation that we argued for above�

We illustrate the di�erence between Z and the customised MSFOL by comparing the MSFOL
encoding of the box con�ict axiom shown on page �� with the Z encoding shown in �gure ��
Although the Z schema contains signatures of the relations as well as the axiom itself� in�
spection of the two encodings shows up little di�erence� except that the MSFOL version is
arguably more readable and less �mathematical�� Readability was a key concern as it was
important that the CPS was in a form 	or easily translated to a form� that could be read
by air tra�c control experts for the purposes of validation� We also felt that the readability
of the CPS would be increased if type information was separated from the main body of
axioms and held as part of the grammar!lexical rule de�nition 	although type information
was suggested by the use of appropriate namings in the MSFOL��

Apart from readability� the reasons for selecting MSFOL over Z for capturing the functional
requirements of the oceanic ATC domain are

� MSFOL could be represented entirely with standard ASCII characters� so that �les
containing axioms did not require the use of special fonts such as those needed for Z�
This makes editing and processing of axiom �les more straightforward� and it enhances
the portability of axiom �les between di�erent machines and software applications�

� in the oceanic ATC domain� no changes of state occur and so it was unlikely we would
need to re�ne our speci�cation to include a state model� Thus we would not need to
call on Z�s huge collection of set�based notation 	as detailed in 
�����

� while tool support for MSFOL was not as readily available as in the case of Z � the use
of a �mainstream� logic meant that tools were easy to construct or to import� Creating
our own tools environment meant that we could easily interface to and extend it� an
important factor in such an exploratory project�
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SEGMENT �TIME �

areSubjectToOceanicCpr  SEGMENT � SEGMENT

isInOverlapTimeWindowFor  TIME � 	SEGMENT � SEGMENT �

isAtOrLaterThan  TIME � TIME

haveBoxCon�ictAt  	SEGMENT � SEGMENT �� TIME

theNextIntegerTimeInMinsAfter  TIME 	 TIME

haveBoxCon�ictAtSomeTimeAtOrBetween 
	SEGMENT � SEGMENT �� 	TIME � TIME�

� Segment�� Segment�  SEGMENT � Time��Time�  TIME j

	Segment� and Segment� � areSubjectToOceanicCpr �
Time� isInOverlapTimeWindowFor Segment� and Segment� �
Time� isInOverlapTimeWindowFor Segment� and Segment� �
Time� isAtOrLaterThan Time��"

Segment� and Segment� haveBoxCon�ictAtSomeTimeAtOrBetween
Time� and Time�



	Segment� and Segment� haveBoxCon�ictAt Time�
�

Segment� and Segment� haveBoxCon�ictAtSomeTimeAtOrBetween
theNextIntegerTimeInMinsAfter	Time�� and Time��

Figure � Example Z Rule
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� it is a little awkward to express general relational predicates in Z� Firstly� n�ary relations�
where n � �� have to be split into pairwise relations� as in the example in �gure ��
Secondly� predicate names naturally expressed in mix��x form have to be expressed
using one contiguous identi�er�

The Validation Process

Validation of Formal Requirements Models

Many problems are associated with requirements validation� especially when knowledge has
to be elicited from domain experts� In fact one could contend that a correct and complete
model of the domain could not exist because there is rarely full agreement among experts� and
their understanding of the domain tends to change over time� The optimal solution seems to
be in promoting the ��t� between model and domain in various ways� whilst allowing e�cient
means of model maintenance� We identify two important features of the validation process
that support this

� Diversity errors occurring in a model can be syntactic or semantic� and may be of
omission or commission� Di�erent kinds of validation may unmask errors of di�erent
kinds hence a range of validation processes is advisable�

� Automation a major factor in the design of the validation process is allowing for the
process to be repeated many times� This repetition will initially be frequent� although
even after the acceptance of the requirements model� re�validation of an updated model
is essential� Hence there is an overwhelming need to automate as many parts of the
process as possible�

A Framework for Validation

We outline �ve separate ways in which a formal requirements model could be validated� their
relation to the requirements model is as shown in �gure �� referenced by process numbering�
In both �gure � and �� boxes represent documents or datastores and ovals represent processes
or processors� In this context� we use the word �validation� in the widest sense� to include
the removal of any class of error from the model�

� by syntactic checking �process ��� Under this heading we group the removal of
syntactic errors such as spelling mistakes� as well as illegal use of logical operators
and type errors in predicate and function arguments� This check will be performed
automatically by a parsing tool� and will form the front end to the FREE as shown in
�gure ��
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� by dynamic testing �process ��� Being able to generate a prototype automati�
cally has several advantages� principally that captured requirements can be immediately
tested� without the need for any software development work� The ease and degree of
automation involved in its production will depend upon the application� Historic data
can be extracted from the application domain and systematic dynamic testing can be
performed in a similar manner to program testing� using a test harness�

� by hand �process 	�� We de�ne hand validation as the use of domain experts to read
through and comment on the validity of 	a presentation of� the model� This is arguably
the most time consuming and unpredictable form of validation� but helpful texts exist
relating to the conduct of such interviews and meetings 
���� The FREE should output
an easily readable form of the domain capture formalism� substituting mathematical
symbols with a natural language translation� and producing diagrams describing the
model�s structure�

� by formal reasoning �process 
�� Requirements speci�cations can be used and
re�used for di�erent applications and objectives� rather than just being used as a speci�
�cation of a particular program 	and in a way dynamic testing only tests one particular
behaviour�� We require� therefore� a way of reasoning with the model to investigate
its general behaviour and logical consequences� Ideally the FREE would incorporate a
proof assistant or theorem prover so that an engineer could formulate desirable proper�
ties of the model and set them up as theorems to be proved� The proof process often
uncovers errors whereas a completed proof heightens con�dence in the model� A fully
automated route from the requirements model to the proof of model properties would
mean easy re�execution of these proofs after model updates�

� by simulator �process ��� Testing of a more user�oriented kind may be performed
with a simulator� This should be integrated with the automatically generated prototype
via a custom�built interface� allowing the users to test the model themselves� If the
simulator is constructed in such a way that the user can ask for explanations of the
behaviour of the model� it can be used in conjunction with hand validation sessions 	as
in process � above��

No one form of validation should be used to convince us that a model is valid� For example�
dynamic testing of requirements models gives a similar scenario to that of program testing
� only showing the presence of errors but not their absence� The whole validation process
should be systematic� and execution of its sub�processes sensibly ordered� with syntactic
parsing of the speci�cation preceding any other sub�process� In both hand validation and
testing� the scope of validation should be recorded� as these processes may be iterated many
times� In summary� a systematic approach should be imported into requirements testing from
the conventional �eld of Software Testing�
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Validation in the FAROAS Project

Our initial capture of the oceanic ATC domain model led to a document of about three
hundred axioms� structured in a hierarchical form� Knowledge was acquired chie�y from
documents� although several interview sessions were arranged with air�tra�c control sta�
to elicit background knowledge� Once the model size stabilised� we set about tackling the
validation stage�

Below we describe the validation processes that we used� The engineering environment that
we in e�ect created is shown in �gure �� The FREE was implemented in Quintus Prolog�

on a Sun workstation� using the Unix operating system� All key �les were held under the
Source Code Control System� a standard Unix con�guration management tool� which provides
facilities such as �le protection� automated version control and logging of alterations�

Process �� Syntax Checking

As a pre�condition for any other validation process� the whole of the CPS must parse suc�
cessfully� thereby showing that its syntax and its de�ning grammar are mutually consistent�
In e�ect this use of the parser is similar to tools such as fuzz for Z 
���� The grammar that
de�nes the syntax of the domain capture formalism has a level that applies to �rst order logic
generally� and a customised level� which� for example� allows us to control the actual names
of variables for each sort within axioms� Hence the content as well as the form of sentences
in the formalism is strictly controlled� and any non�conformance will result in failure of the
parse� Errors identi�ed in this process may not only arise from oversights in the speci�cation�
it may be decided that the grammar itself is inadequate� The grammar was validated by the
client through visual inspection of its de�nition and its use in the documents describing the
CPS� As can be imagined� over the course of the project� syntax checking uncovered errors
too numerous to count#

Process �� Dynamic Testing

The most complex part of the parsing and translation process is the tool which produces an
executable form of the CPS 	the production of a Prolog prototype as shown in �gure ��� It
must be emphasised that the decision on what execution form to use was not made until after
the initial requirements capture� If the execution form is known before the construction of
the speci�cation� then it can have an undue in�uence on the representation of the domain�
possibly compromising its clarity and natural structure�

Inspection of the CPS showed that the logic could be transformed to Horn clauses� and

�Copyright ����� Quintus Corporation
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hence it was quite feasible to automate the process of translation to an executable Prolog
prototype� The translation procedure 	which takes about � minute to execute on our chosen
architecture� was built so that each time the speci�cation is updated and successfully parsed�
the output parse�tree from the parser feeds into the translator which automatically creates
the Prolog prototype 	see �gure ��� For example� the box con�ict axiom referred to on page
�� is automatically translated to the following Prolog clause

box�conflict�exists�between�linear�tracks�of�at�some�time�

at�or�between�Segment��Segment��Time��Time�	
�

are�subject�to�oceanic�cpr�Segment��Segment�	�

is�in�overlap�time�window�for�Time��Segment��Segment�	�

is�in�overlap�time�window�for�Time��Segment��Segment�	�

Time� is�at�or�later�than Time��

�box�conflict�exists�between�linear�tracks�of�at�Segment��Segment��Time�	

�

the�next�integer�Time�in�mins�after�Time��Time	�

box�conflict�exists�between�linear�tracks�of�at�some�time�

at�or�between�Segment��Segment��Time�Time�		� ��

The prototype was used for dynamic testing with an historical test set of client supplied
con�ict scenarios that tested top�level con�ict prediction tasks� and a set of �in�house� gen�
erated tests which were designed to systematically test lower level and auxiliary predicates
	numbering about ��� tests in total��

Insecurities in Prolog to do with types were dealt with by ensuring that any use of the
prototype was channelled through the FREE� Thus test data is input in the MSFOL language�
and tools parse it� translate it into Prolog queries and then input it into a test harness
which runs the prototype� After execution of all the tests the output contains the queries
in a validation form together with the expected and actual results� The validation feedback
loop shown in �gure � was invoked for � tests which gave incorrect results� and this process
eventually led to the uncovering of � errors which were were present in the CPS� Signi�cantly�
two of these errors to do with the boundaries of aircraft vertical separation had been initially
missed at hand validation meetings� emphasising the need for multiple forms of requirements
validation� The tests were run repreatedly until a ���$ success rate was achieved on both
the client supplied and in�house generated test sets�

Process 	� Hand Validation

A validation form was required so that the speci�cation could be presented to air tra�c control
experts� As the domain capture formalism was already quite readable the validation form
was obtained simply by replacing logical symbols with their natural language translation�
and improving the layout and presentation of the axioms� Sentences in validation form were
automatically output from the parsing and translation tools� as illustrated by the resultant
form of the box con�ict axiom below
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FOR ANY Time�� Segment�� Segment� and Time�

IF

Segment� and Segment� are subject to oceanic

conflict prediction and resolution

AND

Time� is in the overlap time window for Segment� and Segment�

AND

Time� is in the overlap time window for Segment� and Segment�

AND

Time� is at or later than Time�

THEN

box conflict exists between the linear tracks of

Segment� and Segment� at some time at or

between Time� and Time�

IF AND ONLY IF

EITHER

box conflict exists between the linear

tracks of Segment� and Segment� at Time�

OR

box conflict exists between the linear

tracks of Segment� and Segment� at

some time at or between the next integer Time in

mins after Time� and Time�

Hand validation meetings were arranged� initially to check the scope of the speci�cation�
and later to validate individual axioms� Tree diagrams were used to show the hierarchical
interconnection of axioms� allowing validators to �navigate� through the model� As the
domain capture formalism allows the structure of the oceanic ATC domain to be preserved�
air tra�c control experts found both it and its validation form understandable� stimulating
debate and allowing them to easily uncover errors in our initial understanding of the domain�
With so many axioms� however� hand validation was still a long and painstaking process� and
there was time at each meeting to study only a part of the whole speci�cation� During the
course of the FAROAS project � validation meetings were held� each lasting ��� days and
involving ��� personnel� For each meeting the number of errors and omissions found in the
speci�cation� ranging from the trivial to the serious� was in the range �� � ���

Process 
� Formal Reasoning

During the project we performed a proof of the overall consistency of the CPS without the
use of �intelligent� computer�based support tools� The proof strategy used was to view the
requirements model as a theory� and construct a particular interpretation for it which satis�ed
each of its axioms� As a preliminary to the proof� the set of axioms was reduced by sifting
out all those that are de�nitional� These axioms can be regarded as expressing an extension
to the language of the theory� in e�ect introducing a convenient �abbreviation� for more
complex formulae involving lower�level predicates and functions� Approximately ��� axioms
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were unique� unconditional extensions of this nature� and were removed so that we could
concentrate on proving the consistency of the reduced set of axioms� Then an interpretation
function for the reduced set of axioms was constructed� and we used it to show that at least
one set of objects existed for which the axioms are true� The main e�ort involved here was in
producing an argument that separate parts of multiple conditional de�nitions for predicates
or functions were mutually exclusive�

Proving this type of consistency draws attention to the overall structure of the speci�cation�
and� in the event� one error was removed from the speci�cation during the proof process�
On the other hand� generating hand proofs is a slow and potentially error prone process
for speci�cations of this size� and a feasibility study to incorporate automated support as
indicated in our idealised FREE in �gure � was carried out in the project 	and is discussed
later under �Future Work���

Process �� The Interface and Simulator

An interface for the FREE was produced using Quintus Pro�Windows�� giving a consistent
�look and feel� to the environment� This allows the CPS and the grammar de�ning its
syntax to be securely maintained� and each time the speci�cation is parsed successfully� a
fresh executable prototype and validation form is generated� Any changes made to the CPS
can thus be dynamically tested� and viewed in a validation form� in a matter of minutes�

The interface also provides the front�end to the simulator which consists of a windowing
system that allows air tra�c control experts to

� input �ight pro�les

� run the con�ict prediction function

� request explanations of con�ict decisions

In the event of a detected con�ict between two �ight pro�les the simulator can if required
identify the segments which were in con�ict� and indicate the required separation values
	vertical� lateral and longitudinal� that were violated� The simulator can thus help air tra�c
controllers to validate that con�ict decisions made by the prototype are made on the same
basis as their own�

Results of the Validation Process

A slightly surprising result was that dynamic testing and the formal consistency proof un�
covered relatively few errors� This may have meant they were not very e�ective� or that the

�Copyright ����� Quintus Corporation
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model was already a good �t for the domain� One argument to support the latter reason
was that the syntax checking and hand validation processes were started well in advance of
the other processes� with only one hand validation meeting occurring after the �rst round
of dynamic testing� Thus many errors both of omission and commission had already been
removed� On the other hand� our client supplied dynamic test sets were not exhaustive� and
our consistency proof was only one aspect of what could be termed formal validation 	and we
return to these issues in the section on Future Work��

The criterion for adequate validation of the CPS 	within the boundaries of the project� was
agreed in an o�cial test plan� and entailed a sequential error�free execution of processes ��
�� and �� after the errors uncovered at a �nal hand validation meeting had been removed�
The scope of the hand validation process covered the Con�ict Prediction Axioms and the
Separation Value Axioms� while the dynamic testing was limited to the client supplied and
�in�house� test set as mentioned above� At the end of the Project this criterion was met
successfully�

Although the simulator 	process �� was not available until the end of the project� it has already
shown a potential for use in the maintenance of the model during the last hand validation
meeting it proved possible to remove errors from the CPS� generate a new prototype and
use the simulator to test the corrections� Finally� one often quoted point against formal
speci�cation is that a mathematical notation can be o� putting to the customer� Our use
of a readable formal speci�cation language naturally capturing the current solution to this
domain has contributed in no small way to the success of the validation process�

Conclusions

We have given an overview� using a real application� of a method for formal requirements
capture and validation� In summary� this encompasses domain analysis� formalism choice�
the development and customisation of a FREE� domain capture and validation�

This method addresses the problems of requirements capture through diverse� automated and
systematic validation� The bene�ts of such a method include the user obtaining a validated�
maintainable model of the domain which can be used as a prototype running system� for
exploratory work on new requirements and for comparisons with any derived 	or existing�
implementations� If the prototype embedded in the simulator completely satis�es the users
needs then software production at the sub�speci�cation level has e�ectively been minimised
to the production of tools such as translators and test�harness environments� On the other
hand� the requirements model may be used as a sound speci�cation from which software
developers could generate e�cient software that satis�es non�functional constraints� including
interfacing and e�ciency considerations� or the need to construct a running system within a
certi�ed programming language such as ADA�
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Generalisation of the Method

Our method has been used for a particular industrial domain that is su�ciently important to
require study and formal capture� The domain contained chie�y rule�based and object�centred
types of technical� expert knowledge and a good deal of the knowledge could be extracted from
documentation� These are the characteristics that seemed to make our approach appropriate
to the oceanic ATC domain�

Using the method on similar but larger domains� resulting in larger axioms sets� would not
seem to present a major problem� Our current CPS has a clear hierarchical structure 	shown
in �gure �� that could be combined with further structures� such as an axiom set capturing
methods of con�ict resolution of aircraft pro�les 	as opposed to con�ict prediction��

Much more of a problem would lie in using the method on domains requiring a deeper repre�
sentation� to cover probabilistic� modal or deontic information� In this case we feel problems
to do with validation would be exacerbated� as the notation would be far less accessible to
experts� and the generation of a prototype a lot less straightforward�

Future Work

While we believe our validation framework as outlined above encourages a rigorous approach
to validation� the particular validation plan we carried out in the �� month project was limited
by time� Firstly� a considerably larger test set would be required to ensure every axiom was
tested fully� Secondly� all the axioms� not just Con�ict and Separation Value Axioms require
hand validation�

Finally� the scope and operation of formal validation needs to be extended and improved� As
well as performing a hand consistency proof� during the project we investigated the feasibility
of using the B�Tool 
���� a generic proof assistant� to support such activities� with a particular
view to determining whether such a tool would be useful in maintaining the CPS� The B�Tool
is a proof assistant which arose out of early work on the B methodology by J� R� Abrial

���� Its main function is that of supporting formal methods experts in constructing proofs
to demonstrate important properties of formal speci�cations� It is a generic tool� in the sense
that it can be customised for use with speci�cations written in various notations de�nitions
of operators and inference rules used in �rst order predicate logic are built into the tool� but
other de�nitions and rules can be added by the user� During our feasibility study we used
the B�tool to prove completeness and consistency results for vertical separation rules of the
CPS� Given this initial success future work could concentrate on providing an automatic link
in the FREE to a proof assistant of this sort�
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