
K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): CaiSE 2001, LNCS 2068, pp. 108–123, 2001
© Springer-Verlag Berlin Heidelberg 2001

A Requirements-Driven Development Methodology∗

Jaelson Castro1, Manuel Kolp2,and John Mylopoulos2

1 Centro de Informática, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire S/N,

Recife PE, Brazil 50732-970∗∗
jbc@cin.ufpe.br

2 Department of Computer Science, University of Toronto, 10 King’s College Road,
Toronto M5S3G4, Canada

{mkolp,jm}@cs.toronto.edu

Abstract. Information systems of the future will have to better match their
operational organizational environment. Unfortunately, development
methodologies have traditionally been inspired by programming concepts, not
organizational ones, leading to a semantic gap between the system and its
environment. To reduce as much as possible this gap, this paper proposes a
development methodology named Tropos which is founded on concepts used to
model early requirements. Our proposal adopts the i* organizational modeling
framework [18], which offers the notions of actor, goal and (actor) dependency,
and uses these as a foundation to model early and late requirements,
architectural and detailed design. The paper outlines Tropos phases through an
e-business example. The methodology seems to complement well proposals for
agent-oriented programming platforms.

1 Introduction

Information systems have traditionally suffered from an impedance mismatch. Their
operational environment is understood in terms of actors, responsibilities, objectives,
tasks and resources, while the information system itself is conceived as a collection of
(software) modules, entities (e.g., objects, agents), data structures and interfaces. This
mismatch is one of the main factors for the poor quality of information systems, also
the frequent failure of system development projects.

One cause of this mismatch is that development methodologies have traditionally
been inspired and driven by the programming paradigm of the day. This means that
the concepts, methods and tools used during all phases of development were based on
those offered by the pre-eminent programming paradigm. So, during the era of
structured programming, structured analysis and design techniques were proposed
[9,17], while object-oriented programming has given rise more recently to object-

∗ The Tropos project has been partially funded by the Natural Sciences and Engineering

Research Council (NSERC) of Canada, and Communications and Information Technology
Ontario (CITO), a centre of excellence, funded by the province of Ontario.

∗∗ This work was carried out during a visit to the Department of Computer Science, University
of Toronto. Partially supported by the CNPq – Brazil under grant 203262/86-7.

A Requirements-Driven Development Methodology 109

oriented design and analysis [1,15]. For structured development techniques this meant
that throughout software development, the developer can conceptualize the system in
terms of functions and processes, inputs and outputs. For object-oriented
development, on the other hand, the developer thinks throughout in terms of objects,
classes, methods, inheritance and the like.

Using the same concepts to align requirements analysis with system design and
implementation makes perfect sense. For one thing, such an alignment reduces
impedance mismatches between different development phases. Moreover, such an
alignment can lead to coherent toolsets and techniques for developing system (and it
has!) as well, it can streamline the development process itself.

But, why base such an alignment on implementation concepts? Requirements
analysis is arguably the most important stage of information system development.
This is the phase where technical considerations have to be balanced against social
and organizational ones and where the operational environment of the system is
modeled. Not surprisingly, this is also the phase where the most and costliest errors
are introduced to a system. Even if (or rather, when) the importance of design and
implementation phases wanes sometime in the future, requirements analysis will
remain a critical phase for the development of any information system, answering the
most fundamental of all design questions: “what is the system intended for?”

Information systems of the future like ERP, Knowledge Management or e-business
systems should be designed to match their operational environment. For instance,
ERP systems have to implement a process view of the enterprise to meet business
goals, tightly integrating all functions from the operational environment. To reduce as
much as possible this impedance mismatch between the system and its environment,
we outline in this paper a development framework, named Tropos, which is
requirements-driven in the sense that it is based on concepts used during early
requirements analysis. To this end, we adopt the concepts offered by i* [18], a
modeling framework offering concepts such as actor (actors can be agents, positions
or roles), as well as social dependencies among actors, including goal, softgoal, task
and resource dependencies. These concepts are used for an e-commerce example1 to
model not just early requirements, but also late requirements, as well as architectural
and detailed design. The proposed methodology spans four phases:

• Early requirements, concerned with the understanding of a problem by studying an
organizational setting; the output of this phase is an organizational model which
includes relevant actors, their respective goals and their inter-dependencies.

• Late requirements, where the system-to-be is described within its operational
environment, along with relevant functions and qualities.

• Architectural design, where the system’s global architecture is defined in terms of
subsystems, interconnected through data, control and other dependencies.

• Detailed design, where behaviour of each architectural component is defined in
further detail.

The proposed methodology includes techniques for generating an implementation
from a Tropos detailed design. Using an agent-oriented programming platform for the
implementation seems natural, given that the detailed design is defined in terms of

1 Although, we could have included a simpler (toy) example, we decided to present a

realistic e-commerce system development exercise of moderate complexity [6].

110 Jaelson Castro, Manuel Kolp, and John Mylopoulos

(system) actors, goals and inter-dependencies among them. For this paper, we have
adopted JACK as programming platform to study the generation of an implementation
from a detailed design. JACK is a commercial product based on the BDI (Beliefs-
Desires-Intentions) agent architecture. Early previews of the Tropos methodology
appeared in [2, 13].

Section 2 of the paper describes a case study for a B2C (business to consumer) e-
commerce application. Section 3 introduces the primitive concepts offered by i* and
illustrates their use with an example. Sections 4, 5, and 6 illustrate how the technique
works for late requirements, architectural design and detailed design respectively.
Section 7 sketches the implementation of the case study using the JACK agent
development environment. Finally, Section 8 summarizes the contributions of the
paper, and relates it to the literature.

2 A Case Study

Media Shop is a store selling and shipping different kinds of media items such as
books, newspapers, magazines, audio CDs, videotapes, and the like. Media Shop
customers (on-site or remote) can use a periodically updated catalogue describing
available media items to specify their order. Media Shop is supplied with the latest
releases and in-catalogue items by Media Supplier. To increase market share, Media
Shop has decided to open up a B2C retail sales front on the internet. With the new
setup, a customer can order Media Shop items in person, by phone, or through the
internet. The system has been named Medi@ and is available on the world-wide-web
using communication facilities provided by Telecom Cpy. It also uses financial
services supplied by Bank Cpy, which specializes on on-line transactions.

The basic objective for the new system is to allow an on-line customer to examine
the items in the Medi@ internet catalogue, and place orders.

There are no registration restrictions, or identification procedures for Medi@ users.
Potential customers can search the on-line store by either browsing the catalogue or
querying the item database. The catalogue groups media items of the same type into
(sub)hierarchies and genres (e.g., audio CDs are classified into pop, rock, jazz, opera,
world, classical music, soundtrack, …) so that customers can browse only
(sub)categories of interest.

An on-line search engine allows customers with particular items in mind to search
title, author/artist and description fields through keywords or full-text search. If the
item is not available in the catalogue, the customer has the option of asking Media
Shop to order it, provided the customer has editor/publisher references (e.g., ISBN,
ISSN), and identifies herself (in terms of name and credit card number).

3 Early Requirements with i*

During early requirements analysis, the requirements engineer captures and analyzes
the intentions of stakeholders. These are modeled as goals which, through some form
of a goal-oriented analysis, eventually lead to the functional and non-functional
requirements of the system-to-be [7]. In i* (which stands for “distributed

A Requirements-Driven Development Methodology 111

intentionality’’), early requirements are assumed to involve social actors who depend
on each other for goals to be achieved, tasks to be performed, and resources to be
furnished. The i* framework includes the strategic dependency model for describing
the network of relationships among actors, as well as the strategic rationale model for
describing and supporting the reasoning that each actor goes through concerning its
relationships with other actors. These models have been formalized using intentional
concepts from AI, such as goal, belief, ability, and commitment (e.g., [5]). The
framework has been presented in detail in [18] and has been related to different
application areas, including requirements engineering, software processes and
business process reengineering.

A strategic dependency model is a graph, where each node represents an actor, and
each link between two actors indicates that one actor depends on another for
something in order that the former may attain some goal. We call the depending actor
the depender and the actor who is depended upon the dependee. The object around
which the dependency centers is called the dependum. Figure 1 shows the beginning
of an i* model.

Orders
Customer

Handle

Items
Buy Media

Increase
Market Share

Customers
Happy

Media
ShopCustomer

Fig. 1. “Customers want to buy media items, while the Media Shop wants to increase market
share, handle orders and keep customers happy”

The two main stakeholders for a B2C application are the consumer and the
business actors named respectively in our case Customer and Media Shop. The
customer has one relevant goal Buy Media Items (represented as an oval-shaped icon),
while the media store has goals Handle Customer Orders, Happy Customers, and
Increase Market Share. Since the last two goals are not well-defined, they are
represented as softgoals (shown as cloudy shapes).

Once the relevant stakeholders and their goals have been identified, a strategic
rationale model determines through a means-ends analysis how these goals (including
softgoals) can actually be fulfilled through the contributions of other actors. A
strategic rationale model is a graph with four types of nodes – goal, task, resource,
and softgoal – and two types of links – means-ends links and process decomposition
links. A strategic rationale graph captures the relationship between the goals of each
actor and the dependencies through which the actor expects these dependencies to be
fulfilled.

Figure 2 focuses on one of the (soft)goal identified for Media Shop, namely
Increase Market Share. The analysis postulates a task Run Shop (represented in terms
of a hexagonal icon) through which Increase Market Share can be fulfilled. Tasks are
partially ordered sequences of steps intended to accomplish some (soft)goal. Tasks

112 Jaelson Castro, Manuel Kolp, and John Mylopoulos

can be decomposed into goals and/or subtasks, whose collective fulfillment completes
the task. In the figure, Run Shop is decomposed into goals Handle Billing and Handle
Customer Orders, tasks Manage Staff and Manage Inventory, and softgoal Improve
Service which together accomplish the top-level task. Sub-goals and subtasks can be
specified more precisely through refinement. For instance, the goal Handle Customer
Orders is fulfilled either through tasks OrderByPhone, OrderInPerson or
OrderByInternet while the task Manage Inventory would be collectively
accomplished by tasks Sell Stock and Enhance Catalogue.

Means-ends link

Legend Actor Boundary

Actor

Softgoal

Task

Ressource

Goal

Decomposition link

Dependency
XDepender Dependee

Happy
Customers

Process
InternetBank Cpy

Market Share
Increase

Accounting

Cpy
Telecom Communication

Services Medi@

Supplier
Media

Items
Media

Orders

Customer

Items
Buy Media

Service
Improve

Phone
OrderBy

Be Friendly

Enhance
Catalogue

Run Shop

Select
Items

Consult
Catalogue

OrderBy
Internet

Staff
Training

Billing
Handle

Business
Continuing

Orders
Customer
Handle

Person
OrderIn

Determine
Amount

Sell Stock

Shop
Manage
Staff

Inventory
Manage

Media

Desires
Customer
Satisfy

Fig. 2. Means-ends analysis for the softgoal Increase Market Share

4 Late Requirements Analysis

Late requirements analysis results in a requirements specification which describes all
functional and non-functional requirements for the system-to-be. In Tropos, the
information system is represented as one or more actors which participate in a
strategic dependency model, along with other actors from the system’s operational
environment. In other words, the system comes into the picture as one or more actors
who contribute to the fulfillment of stakeholder goals. For our example, the Medi@
system is introduced as an actor in the strategic dependency model depicted in
Figure 3.

With respect to the actors identified in Figure 2, Customer depends on Media Shop
to buy media items while Media Shop depends on Customer to increase market share
and remain happy (with Media Shop service). Media Supplier is expected to provide

A Requirements-Driven Development Methodology 113

Media Shop with media items while depending on the latter for continuing long-term
business. He can also use Medi@ to determine new needs from customers, such as
media items not available in the catalogue. As indicated earlier, Media Shop depends
on Medi@ for processing internet orders and on Bank Cpy to process business
transactions. Customer, in turn, depends on Medi@ to place orders through the
internet, to search the database for keywords, or simply to browse the on-line
catalogue. With respect to relevant qualities, Customer requires that transaction
services be secure and usable, while Media Shop expects Medi@ to be easily
maintainable (e.g., catalogue enhancing, item database evolution, user interface
update, …). The other dependencies have already been described in Figure 2.

Increase
Market Share

Browse
Catalogue

Buy Media

Usability

Telecom
Cpy

Media
Supplier

Items

Services
Internet

Services
Communication

Customer

Orders
Internet
Process

Place Order

Keyword
Search

Bank Cpy

Find User
Medi@

Business
Continuing

Media Shop

Media Items

New Needs

Security

Maintainability

Transactions
Money

Process
On-line

Accounting

Happy
Customers

Fig. 3. Strategic dependency model for a media shop

As late requirements analysis proceeds, Medi@ is given additional responsibilities,
and ends up as the depender of several dependencies. Moreover, the system is
decomposed into several sub-actors which take on some of these responsibilities. This
decomposition and responsibility assignment is realized using the same kind of
means-ends analysis along with the strategic rationale analysis illustrated in Figure 2.
Hence, the analysis in Figure 4 focuses on the system itself, instead of a external
stakeholder.

The figure postulates a root task Internet Shop Managed providing sufficient
support (++) [3] to the softgoal Increase Market Share. That task is firstly refined into
goals Internet Order Handled and Item Searching Handled, softgoals Attract New
Customer, Secure and Usable and tasks Produce Statistics and Maintenance. To
manage internet orders, Internet Order Handled is achieved through the task
Shopping Cart which is decomposed into subtasks Select Item, Add Item, Check Out,
and Get Identification Detail. These are the main process activities required to design
an operational on-line shopping cart [6]. The latter (goal) is achieved either through

114 Jaelson Castro, Manuel Kolp, and John Mylopoulos

sub-goal Classic Communication Handled dealing with phone and fax orders or
Internet Handled managing secure or standard form orderings. To allow for the
ordering of new items not listed in the catalogue, Select Item is also further refined
into two alternative subtasks, one dedicated to select catalogued items, the other to
preorder unavailable products.

To provide sufficient support (++) to the Maintainable softgoal, Maintenance is
refined into four subtasks dealing with catalogue updates, system evolution, interface
updates and system monitoring.

++

++

Place

Market Share

Items

Cpy

Buy

Keyword

Media

Order

Secure

Usable

-

-
-

Search

Usability

+

Catalogue

Consulting

On-line
Money

Transactions

Process

Media

+

-

+

Cpy
Telecom

-
Catalogue

Order

Supplier

Form

Bank

Media
Shop

Orders
Internet
Process

Browse

Secure

Get

+

Detail

Update
Catalogue

Maintenance

Produce
Statistics

Security

Identification

Customer
Attract New

Customer

Maintainability

IncreaseServices

Internet

Handled

Internet

Internet
Handled

Searching
Item

Managed
Shop

Handled

New Needs

Internet

Orders

Find User

Medi@

Shopping

Database
System

Monitoring

Handled

Cart

Standard

Evolution
System

ClassicPre-Order

Form

Order
FaxPhone

Order

Order

CommunicationAvailable

Check Out
Add Item

Non Available

Querying

Item

Maintainable

Select Item

Pick

Item

Update GUI

Fig. 4. Strategic rationale model for Medi@

The goal Item Searching Handled might alternatively be fulfilled through tasks
Database Querying or Catalogue Consulting with respect to customers’ navigating
desiderata, i.e., searching with particular items in mind by using search functions or
simply browsing the catalogued products.

In addition, as already pointed, Figure 4 introduces softgoal contributions to model
sufficient/partial positive (respectively ++ and +) or negative (respectively - - and -)
support to softgoals Secure, Usable, Maintainable, Attract New Customers and

A Requirements-Driven Development Methodology 115

Increase Market Share. The result of this means-ends analysis is a set of (system and
human) actors who are dependees for some of the dependencies that have been
postulated.

Figure 5 suggests one possible assignment of responsibilities identified for Medi@.
The Medi@ system is decomposed into four sub-actors: Store Front, Billing
Processor, Service Quality Manager and Back Store.

Store Front interacts primarily with Customer and provides her with a usable front-
end web application. Back Store keeps track of all web information about customers,
products, sales, bills and other data of strategic importance to Media Shop. Billing
Processor is in charge of the secure management of orders and bills, and other
financial data; also of interactions to Bank Cpy. Service Quality Manager is
introduced in order to look for security gaps, usability bottlenecks and maintainability
issues.

Telecom
Cpy

Accounting

Buy Media
Items

Bills
Processing

Customer

Medi@

Store
Front

Manager
Quality
Service

Bank Cpy

Store
Back

Process
On-line Money
Transactions

Data Report

Web

Manager
Media

Delivery
Media

Media
Shop

Usability

Catalogue
Browse

Keyword
Search

Maintainability

Place Order

Security

Network
Tracing

Quality
Monitor

Deliver
Order

Billing
Processor

Fig. 5. The web system consists of four inside actors, each with external dependencies

All four sub-actors need to communicate and collaborate. For instance, Store Front
communicates to Billing Processor relevant customer information required to process
bills. For the rest of the section, we focus on Store Front. This actor is in charge of
catalogue browsing and item database searching, also provides on-line customers with
detailed information about media items. We assume that different media shops
working with Medi@ may want to provide their customers with various forms of
information retrieval (Boolean, keyword, thesaurus, lexicon, full text, indexed list,
simple browsing, hypertext browsing, SQL queries, etc.).

Store Front is also responsible for supplying a customer with a web shopping cart
to keep track of selected items. We assume that different media shops using the
Medi@ system may want to provide customers with different kinds of shopping carts
with respect to their internet browser, plug-ins configuration or platform or simply
personal wishes (e.g., Java mode, simple browser, frame-based, CGI shopping
cart,…)

116 Jaelson Castro, Manuel Kolp, and John Mylopoulos

Finally, Store Front initializes the kind of processing that will be done (by Billing
Processor) for a given order (phone/fax, internet standard form or secure encrypted
form). We assume that different media shop managers using Medi@ may be
processing various types of orders differently, and that customers may be selecting the
kind of delivery system they would like to use (UPS, FedEx, …).

Resource, task and softgoal dependencies correspond naturally to functional and
non-functional requirements. Leaving (some) goal dependencies between system
actors and other actors is a novelty. Traditionally, functional goals are
“operationalized” during late requirements [7], while quality softgoals are either
operationalized or “metricized” [8]. For example, Billing Processor may be
operationalized during late requirements analysis into particular business processes
for processing bills and orders. Likewise, a security softgoal might be operationalized
by defining interfaces which minimize input/output between the system and its
environment, or by limiting access to sensitive information. Alternatively, the security
requirement may be metricized into something like “No more than X unauthorized
operations in the system-to-be per year”.

Leaving goal dependencies with system actors as dependees makes sense whenever
there is a foreseeable need for flexibility in the performance of a task on the part of
the system. For example, consider a communication goal “communicate X to Y”.
According to conventional development techniques, such a goal needs to be
operationalized before the end of late requirements analysis, perhaps into some sort of
a user interface through which user Y will receive message X from the system. The
problem with this approach is that the steps through which this goal is to be fulfilled
(along with a host of background assumptions) are frozen into the requirements of the
system-to-be. This early translation of goals into concrete plans for their fulfillment
makes systems fragile and less reusable.

In our example, we have left three goals in the late requirements model. The first
goal is Usability because we propose to implement Store Front and Service Quality
Manager as agents able to automatically decide at run-time which catalogue browser,
shopping cart and order processor architecture fit best customer needs or
navigator/platform specifications. Moreover, we would like to include different search
engines, reflecting different search techniques, and let the system dynamically choose
the most appropriate. The second key softgoal in the late requirements specification is
Security. To fulfil it, we propose to support in the system’s architecture a number of
security strategies and let the system decide at run-time which one is the most
appropriate, taking into account environment configurations, web browser
specifications and network protocols used. The third goal is Maintainability, meaning
that catalogue content, database schema, and architectural model can be dynamically
extended to integrate new and future web-related technologies.

5 Architectural Design

A system architecture constitutes a relatively small, intellectually manageable model
of system structure, which describes how system components work together. For our
case study, the task is to define (or choose) a web-based application architecture. The
canonical web architecture consists of a web server, a network connection,
HTML/XML documents on one or more clients communicating with a Web server

A Requirements-Driven Development Methodology 117

via HTTP, and an application server which enables the system to manage business
logic and state. This architecture is not intended to preclude the use of distributed
objects or Java applets; nor does it imply that the web server and application server
cannot be located on the same machine.

By now, software architects have developed catalogues of web architectural styles
(e.g., [6]). The three most common styles are the Thin Web Client, Thick Web Client
and Web Delivery. Thin Web Client is most appropriate for applications where the
client has minimal computing power, or no control over its configuration. The client
requires only a standard forms-capable web browser. Thick Web Client extends the
Thin Web Client style with the use of client-side scripting and custom objects, such as
ActiveX controls and Java applets. Finally, Web Delivery offers a traditional
client/server system with a web-based delivery mechanism. Here the client
communicates directly with object servers, bypassing HTTP. This style is appropriate
when there is significant control over client and network configuration.

The first task during architectural design is to select among alternative architectural
styles using as criteria the desired qualities identified earlier. The analysis involves
refining these qualities, represented as softgoals, to sub-goals that are more specific
and more precise and then evaluating alternative architectural styles against them, as
shown in Figure 6. The styles are represented as operationalized softgoals (saying,
roughly, “make the architecture of the new system Web Delivery-/Thin Web-/Thick
Web-based”) and are evaluated with respect to the alternative non-functional softgoals
as shown in Figure 6. Design rationale is represented by claim softgoals drawn as
dashed clouds. These can represent contextual information (such as priorities) to be
considered and properly reflected into the decision making process. Exclamation
marks (! and !!) are used to mark priority softgoals while a check-mark “✔” indicates
a fulfilled softgoal, while a cross “✕✕✕✕ ” labels a unfulfillable one.

++

Performance

! !

!!

++

--

+

--

+

+

--

-

!!

!!

!

+ +

!

["Vital Goals"]
Claim

Usability Security

Confidentiality

Integrity Performance

Comprehen-
sibility

Web Delivery Architecture Thick Web ArchitectureThin Web Architecture

Reusability

Availability

--

++

["Restrictions

+
+

+

++

++

Sophisticated
Interface

to browse
the catalogue"]

Claim

Claim
["Anonymous

the system"]
people can use

++

+

--

++ ++

-

-

Dynamicity

++

Maintainability

Portability

Updatibility
+

Time

Fig. 6. Refining softgoals in architectural design

The Usability softgoal has been AND-decomposed into sub-goals Comprehen-
sibility, Portability and Sophisticated Interface. From a customer perspective, it is
important for Medi@ to be intuitive and ergonomic. The look-and-feel of the interface

118 Jaelson Castro, Manuel Kolp, and John Mylopoulos

must naturally guides customer actions with minimal computer knowledge. Equally
strategic is the portability of the application across browser implementations and the
quality of the interface. Note that not all HTML browsers support scripting, applets,
controls and plug-ins. These technologies make the client itself more dynamic, and
capable of animation, fly-over help, and sophisticated input controls. When only
minimal business logic needs to be run on the client, scripting is often an easy and
powerful mechanism to use. When truly sophisticated logic needs to run on the client,
building Java applets, Java beans, or ActiveX controls is probably a better approach.
A comparable analysis is carried out for Security and Maintainability.

As shown in Figure 6, each of the three web architectural styles contributes
positively or negatively to the qualities of interest. For instance, Thin Web Client is
useful for applications where only the most basic client configuration can be
guaranteed. Hence, this architecture does well with respect to Portability. However, it
has a limited capacity to support Sophisticated User Interfaces. Moreover, this
architecture relies on a connectionless protocol such as HTTP, which contributes
positively to system availability.

On the other hand, Thick Web Client is generally not portable across browser
implementations, but can more readily support sophisticated interfaces. As with Thin
Web Client, all communication between client and server is done with HTTP, hence
its positive contribution to Availability. On the negative side, client-side scripting and
custom objects, such as ActiveX controls and Java applets, may pose risks to client
confidentiality. Last but not least, Web Delivery is highly portable, since the browser
has some built-in capabilities to automatically download the needed components from
the server. However, this architecture requires a reliable network.

This phase also involves the introduction of new system actors and dependencies,
as well as the decomposition of existing actors and dependencies into sub-actors and
sub-dependencies which are delegated some of the responsibilities of the key system
actors introduced earlier.

Figure 7 focuses on the latter kind of refinement. To accommodate the
responsibilities of Store Front, we introduce Item Browser to manage catalogue
navigation, Shopping Cart to select and custom items, Customer Profiler to track
customer data and produce client profiles, and On-line Catalogue to deal with digital
library obligations. To cope with the non-functional requirement decomposition
proposed in Figure 6, Service Quality Manager is further refined into four new system
sub-actors Usability Manager, Security Checker, Maintainability Manager and
Performance Monitor, each of them assuming one of the top main softgoals explained
previously. Further refinements are shown on Figure 7.

An interesting decision that comes up during architectural design is whether
fulfillment of an actor’s obligations will be accomplished through assistance from
other actors, through delegation (”outsourcing”), or through decomposition of the
actor into component actors. Going back to our running example, the introduction of
other actors described in the previous paragraph amounts to a form of delegation in
the sense that Store Front retains its obligations, but delegates subtasks, sub-goals etc.
to other actors. An alternative architectural design would have Store Front
outsourcing some of its responsibilities to some other actors, so that Store Front
removes itself from the critical path of obligation fulfilment. Lastly, StoreFront may
be refined into an aggregate of actors which, by design work together to fulfil Store
Front’s obligations. This is analogous to a committee being refined into a collection
of members who collectively fulfil the committee’s mandate. It is not clear, at this

A Requirements-Driven Development Methodology 119

point, how the three alternatives compare, nor what are their respective strengths and
weaknesses.

Manager
ability

Maintain-

Processor
Order

Delivery
Processor

Processor
Statistics

Manager
Usability

Security
Checker

Usable

Secure

Selected
Items

Ratings

Maintainable

Browser
Item

Item
Detail

Shopping
Cart

Profiler
Customer

Customer
Data

Profile
Customer

Information
Billing

Check
Out

Front
Store

Processor
Billing

Back
Store

Service
Quality
Manager

Performance

Performance
Monitor

Catalogue
On-line

Consult
Catalogue

Item
Select

Information
Cart

Processor Invoice
Processor

Accounting

Payment
Request

Process
Invoice

Detail
Delivery

Fig. 7. Strategic Dependency Model for Medi@ actors

6 Detailed Design

The detailed design phase is intended to introduce additional detail for each
architectural component of a system. In our case, this includes actor communication
and actor behavior. To support this phase, we propose to adopt existing agent
communication languages, message transportation mechanisms and other concepts
and tools. One possibility, for example, is to adopt one of the extensions to UML
proposed by the FIPA (Foundation for Intelligent Agents) and the OMG Agent Work
group [14]. The rest of the section concentrates on the Shopping cart actor and the
check out dependency.

To specify the checkout task, for instance, we use AUML - the Agent Unified
Modeling Language [14], which supports templates and packages to represent
checkout as an object, but also in terms of sequence and collaborations diagrams.

Figure 8 focuses on the protocol between Customer and Shopping Cart which
consists of a customization of the FIPA Contract Net protocol [14]. Such a protocol
describes a communication pattern among actors, as well as constraints on the
contents of the messages they exchange.

When a Customer wants to check out, a request-for-proposal message is sent to
Shopping Cart, which must respond before a given timeout (for network security and
integrity reasons). The response may refuse to provide a proposal, submit a proposal,
or express miscomprehension. The diamond symbol with an “✕✕✕✕ ” indicates an
“exclusive or” decision. If a proposal is offered, Customer has a choice of either

120 Jaelson Castro, Manuel Kolp, and John Mylopoulos

accepting or canceling the proposal. The internal processing of Shopping Cart’s
checkout plan is described in Figure 9.

12/19/00
9:31 53

X

X

X

Timeout

Plan Diagram (cf. Figure 9)

checkout-request for proposal

refuse

not-understood Notification

propose

Decision

cancel-proposal

accept-proposal

inform
succeeded

failure

FIPA Contract Net Protocol

accept-proposal, succeeded, failure
propose, cancel-proposal
checkout-rfp, refuse, not-understood,

12/19/00 at 9:31 53

Customer, Shopping Cart

Fig. 8. Agent interaction protocol focusing on a checkout dialogue

At the lowest level, we use plan diagrams [12] (See Figure 9), to specify the
internal processing of atomic actors. The initial transition of the plan diagram is
labeled with an activation event (Press checkout button) and activation condition
([checkout button activated]) which determine when and in what context the plan
should be activated. Transitions from a state automatically occur when exiting the
state and no event is associated (e.g., when exiting Fields Checking) or when the
associated event occurs (e.g., Press cancel button), provided in all cases that the
associated condition is true (e.g., [Mandatory fields filled]). When the transition
occurs any associated action is performed (e.g., verifyCC()).

An important feature of plan diagrams is their notion of failure. Failure can occur
when an action upon a transition fails, when an explicit transition to a fail state
(denoted by a small no entry sign) occurs, or when the activity of an active state
terminates in failure and no outgoing transition is enabled.

Figure 9 depicts the plan diagram for checkout, triggered by pushing the checkout
button. Mandatory fields are first checked. If any mandatory fields are not filled, an
iteration allows the customer to update them. For security reasons, the loop exits after
5 tries ([i<5]) and causes the plan to fail. Credit Card validity is then checked. Again
for security reasons, when not valid, the CC# can only be corrected 3 times.
Otherwise, the plan terminates in failure. The customer is then asked to confirm the
CC# to allow item registration. If the CC# is not confirmed, the plan fails. Otherwise,
the plan continues: each item is iteratively registered, final amounts are calculated,
stock records and customer profiles are updated and a report is displayed. When
finally the whole plan succeeds, the ShoppingCart automatically logs out and asks the
Order Processor to initialize the order. When, for any reason, the plan fails, the
ShoppingCart automatically logs out. At anytime, if the cancel button is pressed, or

A Requirements-Driven Development Methodology 121

the timeout is more than 90 seconds (e.g., due to a network bottleneck), the plan fails
and the Shopping Cart is reinitialized.

Checking

[i=3]

Fields
Checking

Credit Card

[i=5]

Fields Updated

[[Not all mandatory
fields filled] ^ [i<5]]

Updating Correcting
CC#

Updated

Fields

Press checkout button [checkout button activated] / shoppingCart.checkout()

Checkout

fail /shoppingCart.logout()

[Mandatory fields filled]
/verifyCC()

/ cancel()
[Not confirmed]

Updating
Stock Records

[foreach
selected item]

Amounts
calculated

Records updated

[Already registered]

[new customer]

[foreach
registered item]

Displaying
Reportsucceeded [report asked]

/ initializeReport()/ shoppingCart.logout()

succeeded/ shoppingcart.logout()

Calculating
Final Amounts

Item
Registering

Customer Profile
Updating

Items
Registered

pass / orderProcessor.
processOrder(this)

profile
updated

^ [i<3]]
[[CC# not valid]

[CC# valid]
/ confirm()? /confirm()

Press confirm button

any [[Cancel button pressed] OR
[timeout>90 sec]] / shoppingCart.initialize()

Fig. 9. A plan diagram for checkout

7 Generating an Implementation

JACK Intelligent Agents [4] is an agent-oriented development environment designed
to provide agent-oriented extensions to Java.

JACK agents can be considered autonomous software components that have
explicit goals to achieve, or events to cope with (desires). To describe how they
should go about achieving these desires, agents are programmed with a set of plans
(intentions).

Each plan describes how to achieve a goal under different circumstances. Set to
work, the agent pursues its given goals (desires), adopting the appropriate plans
(intentions) according to its current set of data (beliefs) about the state of the world.
To support the programming of BDI agents, JACK offers five principal language
constructs. These are agents, capabilities, database relations, events, and plans.

I* actors, (informational/data) resources, softgoals, goals and tasks will be
respectively mapped into BDI agents, beliefs, desires and intentions. In turn, a BDI
agent will be mapped as a JACK agent, a belief will be asserted (or retracted) as a
database relation, a desire will be posted (sent internally) as a BDIGoalEvent
(representing an objective that an agent wishes to achieve) and handled as a plan, and
an intention will be implemented as a plan. Finally, an i* dependency will be directly
realized as a BDIMessageEvent (received by agents from other agents).

Figure 10 depicts the JACK layout presenting each of the five JACK constructs as
well as the implementation of the first part of the dialogue shown in Figure 8. The
request for proposal checkout-rfp is a MessageEvent (extends MessageEvent) sent by

122 Jaelson Castro, Manuel Kolp, and John Mylopoulos

Customer and handled by the Shopping Cart’s checkout plan (extends Plan) as
detailed in Figure 9. Finally, Timeout (which we consider a belief) is implemented as
a closed world (i.e., true or false) database relation asserting for each Shopping Cart
one or several timeout delays.

Fig. 10. Partial implementation of Figure 8 in JACK

8 Conclusion and Discussion

We have proposed a development methodology founded on intentional concepts, and
inspired by early requirements modeling. We believe that the methodology is
particularly appropriate for generic, componentized systems like e-business
applications that can be downloaded and used in a variety of operating environments
and computing platforms around the world. Preliminary results suggest that the
methodology complements well proposals for agent-oriented programming
environments.

There already exist some proposals for agent-oriented software development, most
notably [10, 11, 14, 16]. Such proposals are mostly extensions to known object-

A Requirements-Driven Development Methodology 123

oriented and/or knowledge engineering methodologies. Moreover, all these proposals
focus on design – as opposed to requirements analysis – for agent-oriented software
and are therefore considerably narrower in scope than Tropos.

Of course, much remains to be done to further refine the proposed methodology
and validate its usefulness with real case studies. We are currently working on the
development of formal analysis techniques for Tropos, also the development of tools
which support different phases of the methodology.

References

[1] Booch, G., Rumbaugh, J. and Jacobson, I., The Unified Modeling Language User Guide,
The Addison-Wesley Object Technology Series, Addison-Wesley, 1999.

[2] Castro, J., Kolp, M. and Mylopoulos, J., Developing Agent-Oriented Information
Systems for the Enterprise, Proceedings of the Second International Conference On
Enterprise Information Systems (ICEIS00), Stafford, UK, July 2000.

[3] Chung, L. K., Nixon, B. A., Yu, E. and Mylopoulos, J., Non-Functional Requirements
in Software Engineering, Kluwer Publishing, 2000.

[4] Coburn, M., Jack Intelligent Agents: User Guide version 2.0, AOS Pty Ltd, 2000.
[5] Cohen, P. and Levesque, H., “Intention is Choice with Commitment”, Artificial

Intelligence, 32(3), 1990, pp. 213-261.
[6] Conallen, J., Building Web Applications with UML, The Addison-Wesley Object

Technology Series, Addison-Wesley, 2000.
[7] Dardenne, A., van Lamsweerde, A. and Fickas, S., “Goal–directed Requirements

Acquisition”, Science of Computer Programming, 20, 1993, pp. 3-50.
[8] Davis, A., Software Requirements: Objects, Functions and States, Prentice Hall, 1993.
[9] DeMarco, T., Structured Analysis and System Specification, Yourdon Press, 1978.
[10] Iglesias, C., Garrijo, M. and Gonzalez, J., “A Survey of Agent-Oriented Methodologies”,

Proceedings of the 5th International Workshop on Intelligent Agents: Agent Theories,
Architectures, and Languages (ATAL-98), Paris, France, July 1998, pp. 317-330.

[11] Jennings, N. R., “On agent-based software engineering”, Artificial lntelligence, 117,
2000, pp. 277-296.

[12] Kinny, D. and Georgeff, M., “Modelling and Design of Multi-Agent System”,
Proceedings of the Third International Workshop on Agent Theories, Architectures, and
Languages (ATAL-96), Budapest, Hungary, August 1996, pp. 1-20.

[13] Mylopoulos, J. and Castro, J., “Tropos: A Framework for Requirements-Driven Software
Development”, Brinkkemper, J. and Solvberg, A. (eds.), Information Systems
Engineering: State of the Art and Research Themes, Springer-Verlag, June 2000, pp.
261-273.

[14] Odell, J., Van Dyke Parunak, H. and Bauer, B., “Extending UML for Agents”,
Proceedings of the Agent-Oriented Information System Workshop at the 17 National
Conference on Artificial Intelligence, pp. 3-17, Austin, USA, July 2000.

[15] Wirfs-Brock, R., Wilkerson, B. and Wiener, L., Designing Object-Oriented Software,
Englewood Cliffs, Prentice-Hall, 1990.

[16] Wooldridge, M., Jennings, N. R. and Kinny D., “The Gaia Methodology for Agent-
Oriented Analysis and Design”, Journal of Autonomous Agents and Multi-Agent Systems,
3(3), to appear, 2000.

[17] Yourdon, E. and Constantine, L., Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design, Prentice-Hall, 1979.

[18] Yu, E., Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada, 1995.

	1 Introduction
	2 A Case Study
	3 Early Requirements with i*
	4 Late Requirements Analysis
	5 Architectural Design
	6 Detailed Design
	7 Generating an Implementation
	8 Conclusion and Discussion
	References

