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ABSTRACT Among the tenets of Smart Manufacturing (SM) or Industry 4.0 (I4.0), digital twin (DT),

which represents the capabilities of virtual representations of components and systems, has been cited as the

biggest technology trend disrupting engineering and design today. DTs have been in use for years in areas

such as model-based process control and predictive maintenance, however moving forward a framework

is needed that will support the expected pervasiveness of DT technology in the evolution of SM or I4.0.

A set of requirements for a DT framework has been derived from analysis of DT definitions, DTs in use

today, expected DT applications in the near future, and longer-term DT trends and the DT vision in SM.

These requirements include elements of re-usability, interoperability, interchangeability, maintainability,

extensibility, and autonomy across the entire DT lifecycle. A baseline framework for DT technology has been

developed that addresses many aspects of these requirements and enables the addressing of the requirements

more fully through additional specification. The baseline framework includes a definition of a DT and an

object-oriented (O-O) architecture for DTs that defines generalization, aggregation and instantiation of DT

classes. Case studies using and extending the baseline framework illustrate its advantages in supporting DT

solutions and trends in SM.

INDEX TERMS Digital twin, industry 4.0, modeling, prediction, smart manufacturing.

I. INTRODUCTION

The evolution of manufacturing during the new smart manu-

facturing (SM) or Industrie 4.0 era is really part of a contin-

uum that has existed for many decades punctuated by greater

integration, vertically and horizontally, across the manufac-

turing ecosystem; big data trends in the ‘‘5 ‘V’ areas of

volume, velocity, veracity (data quality), variety (data merg-

ing), and value (including better and better use of analytical

techniques); more distributed and coordinated intelligence

especially using internet technology; and improvements in

capabilities and use of virtual representations of components

and systems [1]–[5]. The terms ‘‘smart manufacturing’’ and

‘‘Industrie (Industry) 4.0’’ are often used interchangeably.

In this paper we will refer to these concepts collectively

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

as smart manufacturing. The capabilities provided by SM

solutions are commonly organized as tenets of SM, with one

of many depictions shown in Figure 1 [6]. Among the tenets,

digital twin (DT), which represents the capabilities of virtual

representations of components and systems, has been cited

as the biggest technology trend disrupting engineering and

design in 2020 [7]. DTs are defined in [8] as software repre-

sentations of components, assets, systems, and processes that

are used to understand, predict, and optimize performance in

order to achieve improved business outcomes. Considering

this DT definition it can be argued that solutions in use today

such as model-based process control (MBPC) and predictive

maintenance (PdM) use DT technology [9]–[12], with the

DT clients or users of the DT capability ranging from low

level equipment, components and processes up through high

level manufacturing execution systems (MESs) and enter-

prise resource planning (ERP) systems.
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FIGURE 1. One depiction of the tenets of smart manufacturing [6].

The state-of-the-art of DTs provides insight into definitions

and solutions in the DT space, but also places requirements on

a future DT framework that should incorporate these existing

solutions. Moving forward, the importance of DT technol-

ogy will continue to grow, driven by needs such as tighter

objectives of throughput, yield and cost reduction, mass per-

sonalization in manufacturing, faster and smarter verification

and validation of systems, higher levels of reconfigurabil-

ity, and tighter integration across the entire manufacturing

eco-system including the consumer space [13]–[15]. Over the

longer-term, aspects of the vision for DT have been defined

for specific industries (e.g., microelectronics [1], [16]) and

future greenfield manufacturing environments [4], as part of

an overall SM vision.

It is clear from an analysis of these trends and vision

aspects that DTs will play an increasingly important role

in manufacturing with a flexible DT infrastructure being an

integral part of all manufacturing systems. Unfortunately,

lack of consistent definitions of capability, structure, and form

prevents us from being able to easily re-use, scale, extend,

verify, validate, integrate, interchange, and maintain DT tech-

nology, approaches and solutions. Also, it does not allow us to

develop a clear roadmap for achieving a DT vision. A frame-

work for DT creation through operation and maintenance is

needed that supports re-usability, extensibility, interoperation

and interchangeability today and greater levels of autonomy

in the future.

This paper proposes a baseline framework for DT tech-

nology that leverages the knowledge gained from the devel-

opment of existing DT solutions and incorporates the

requirements placed on DT technology by SM trends and the

ultimate DT vision. The framework includes a definition of an

object-oriented (O-O) architecture for DTs that incorporates

the bottom-up knowledge gained from practical development

and implementation of today’s DT classes, while addressing

requirements such as re-usability, extensibility, interoperabil-

ity, interchangeability and autonomy incurred by SM trends

and the ultimate SM vision. Specifically, following this intro-

duction and a list of acronyms used throughout the paper

(Table 1), background information is provided on DT defi-

nitions, existing DT capabilities in manufacturing, and DT

trends and vision. This is followed by an analysis of the issues

TABLE 1. List of acronyms.

preventing the realization of the DT continuum, from today’s

solutions through the ultimate DT vision. DT framework

requirements are then derived, and a baseline DT framework

is proposed, consisting of a concise DT definition and an

O-O architecture that meets these requirements. A summary

analysis of these requirements and framework attributes is

then provided, and gaps that remain are identified; building

on the baseline specification that fills these gaps would pro-

vide a roadmap for realizing a next generation practically

usable DT framework. Case studies and framework extension

examples are also provided summarizing previous works by

the authors and detailing a case study solution for semicon-

ductor manufacturing and a framework extension for max-

imizing DT benefit. This paper concludes with a summary

of the contributions, an overview of the current state of DT

technology with respect to the baseline framework, and a

discussion of key challenges that must be addressed to realize

a practical DT framework that supports current solutions

through the ultimate DT vision.

II. BACKGROUND

A. DIGITAL TWIN DEFINITIONS

Digital twins were anticipated by David Gelernter’s 1991

book Mirror Worlds [17]. In the manufacturing sector,

the concept of DT was first introduced by Michael Grieves,

then of the University of Michigan, in his presentation about

Product Lifecycle Management (PLM) in 2002 [18]. The

author presented a conceptual model for a virtual, digital

representation equivalent of a physical product that includes

the real space, virtual space, and the data and information

flow between the two spaces.
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Since then, the ‘‘digital twin’’ concept has been defined in

many ways in academia and industry. Qamsane, et al. pro-

vides a literature search of common DT definitions and asso-

ciated efforts [19]. These include contributions from NASA

and the US Air Force Research Laboratory [20], General

Electric (GE) [8], the Industrial Internet Consortium [21], and

a number of academic sources [22]–[25].

To date, no consensus has been reached on a DT definition

in manufacturing. The DT label is often applied to any capa-

bility that replicates some aspect of a system, e.g., simulation

of anything in manufacturing. It is the opinion of the authors

that most DT definitions either implicitly or explicitly state

the following properties of a DT:

• It is some level of replica of a real thing.

• It exists in the cyber world, i.e., it is a software entity.

• It has a purpose of impacting an aspect of the environ-

ment in which its real counterpart exists, in a positive

way, usually by serving one or more DT clients. This

purpose can be broad or very refined and the impact

mechanism can vary widely.

• It uses models to achieve its purpose.

• It incorporates some level of subject-matter-expertise

(SME, which will also be used to refer to ‘‘subject-

matter-expert’’ in this paper) in the solution. This could

be as simple as defining the problem, or as complex

as being an integral part of the model solution. Some

efforts illustrate that the combination of SME and data

provides more effective, robust and usable solutions in

many manufacturing domains, than purely data-driven

solutions [6], [9].

• It uses data to maintain some type of synchronization

with its real counterpart. In most definitions, this data is

collected in an operation environment.

B. DT USES TODAY AND CURRENT TRENDS

DT technology has been implemented in several ways in

industry. Oftentimes the technology is not referred to as ‘‘dig-

ital twin’’, and, in many cases, it has existed long before the

term ‘‘digital twin’’ was coined. For example, Model-Based

Process Control (MBPC), virtual metrology, virtual sensing,

sensor fusion, and model-based PdM are technologies com-

monly used in manufacturing today that align with most of

the DT properties listed above to achieve an objective such

as increase availability and efficiency of equipment, extend

useful life, and reduce life cycle cost [11], [26]–[30]. DTs are

used today in many industrial areas such as product design,

production, and health monitoring [31]–[41]. A summary

review of many of these efforts is provided in [19].

DT development processes and implementations today are

usually not highly coordinated (e.g., as in a group of MBPCs

implemented across a set of similar process chambers in

semiconductor manufacturing [42], [43]); however, aspects

of reusability of DT components are being explored such

as model forms and development and implementation pro-

cedures. Additionally, examples have begun to appear in

the literature exploring the benefits of combining DTs and

developing DT frameworks. For instance, Plattform Indus-

trie 4.0 released a specification report about Asset Admin-

istration Shells (AAS) [13], [14], which are virtual digital

representations of SM components. The report provides the

AAS specifications and structure that ensures interoperability

and exchange of information about SM components in a

meaningful way between partners in the SM value chain.

Additionally, some of the works of the authors have been

focused on extending the baseline framework developed in

this paper to practical implementations; an overview of some

of these efforts is provided in Section VI.A.

A common element of most DT solutions today is the use

of a wide variety of models and analytics. These are chosen

based on the purpose that drives the creation of the DTs, and

the availability of both SME and analytical resources and

tools. The modeling approaches for DTs in and outside of

manufacturing, while wide-ranging, can be thought of as pro-

viding intelligence so that each DT can perform its intended

function in a satisfactory manner in a specified environment

over an acceptable period of time. A review ofDT intelligence

in solutions as it is available and used today provides many

insights. The first is that analytics and SME both provide con-

tributions to the solution, and the complementary use of these

is key to the quality and robustness of the DT solution [6].

While the relative contributions of each vary from DT type

to type and application to application, both are always

required.

The second insight is that a domain of applicability must

be defined for a DT to be effective. This is often specified

with a set of context such as ‘‘equipment ‘X’, process ‘Y’,

for product ‘Z’, under conditions (a1 – an)’’. This context is

usually determined using a combination of SME and analyt-

ics information, and the applicability of the solution is limited

to the domain indicated by the context definition. This has

an impact on both the human and cyber intelligence in that

they may be limited or only applicable in that context-defined

area. As an example, if the cyber intelligence is artificial

intelligence (AI), which we use here to refer in general to

virtual systems that perform tasks using some level of ana-

lytics such as machine learning (ML), the solution would

generally fall into the narrowAI rather than Artificial General

Intelligence (AGI) category [44], [45]. In other words, the

developed solutions provide directed intelligence of a specific

type in a specific context area utilizing specific data and

behavior.

A third insight is that effective DT implementation must

include a mechanism to maintain a level of intelligence

in the solutions so that the desired benefit can continue

to be provided. This usually means that a method of DT

maintenance must be part of the solution, and this method

must support an update of the DT intelligence to under-

stand and adapt to changes in the application environment

[46], [47].

In summary we can thus make the following statements on

the state-of-the-art and trends for DTs in manufacturing:
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• Many manufacturing industries are already successfully

employing DT components, though these components

have not been referred to as DTs until very recently.

• Most of the DTs in use in factory operation are dedi-

cated DTs, each with a specific purpose such as predict-

ing remaining useful life or optimizing product quality.

A specific class or type of DT commonly has a specific

objective (e.g., process optimization), pre-definition of

operation environment (e.g., equipment, process, and

other context), and defined methods or guidelines for

development and deployment.

• DTs such as general equipment and software simula-

tors are also available, with their purpose less directed

(i.e., the capability being improved is not as succinctly

specified, is not directly considered in the design of the

simulator, or the capability is one of many to which the

simulator can be configured to address), and capabil-

ity boundaries usually not as well-defined [48]. These

DTs are generally not used during actual manufactur-

ing (e.g., they might be used for off-line analysis or

planning); however, DTs that are more dedicated to a

specific purpose, as described above, might be built from

specific configurations using the general simulators and

then applied during manufacturing.

• The quality, throughput and cost pressures in some

industries have led to DT advancements and a require-

ment that DTs be an integral part of factory solutions in

many areas.

• There is often little coordination of DT technology

between the DT application areas. As an example,

model-based process control (MBPC) and model-based

PdM literature bases rarely overlap.

• Manufacturing is beginning to explore and benefit from

abstracting and combining DT solutions [49], [50].

A review of the state-of-the-art and trends also points

to clear gaps in technology that, if filled, could lead to

more effective solutions. One important gap is that most

DT approaches today lack mechanisms that convey elements

of prediction quality, such as prediction uncertainty and

model accuracy, with respect to the application environment.

There are exceptions including virtual metrology solutions

that use a prediction accuracy metric such as reliance index

to optimize MBPC gain or metrology sampling rates, and

prediction confidence in maintenance prediction [51], [52],

or PdM solutions that incorporate the cost of false and missed

positives into the optimization of the prediction threshold

at which action is taken [53]; these solutions illustrate the

importance of incorporating prediction uncertainty aspects

into the application environment. Another important gap is

the lack of commonality of structure and behavior among DT

types. Providing this commonality would lead to improved

opportunities for combining DT capabilities and integrating

them into manufacturing systems.

Moving forward we can say that the industry is already

successfully deploying DT components, but there is a need

to leverage this base of important research and develop-

ment through a unified framework that supports DT creation,

extension, exchange, reuse, and integration, while allowing

for maximizing of DT intelligence.

C. THE DT LIFECYCLE

Regardless of the DT type and implementation area, effective

implementation requires good practices for solution design,

development, verification, validation, deployment and main-

tenance. As a consequence, effective DT technologies today

either implicitly or explicitly support a DT lifecycle in order

to provide a level of guaranteed capability over a time period

in a defined environment. A high-level view of a com-

mon DT lifecycle is shown in Figure 2 illustrating steps

in the lifecycle process and key decision points. Additional

description of the steps and transitions in the lifecycle is

provided in the Appendix. Practical examples can be found

in [6], [11], [19], [21], [30], [54]. The lifecycle can usually

be broken down into two main phases: off-line development

and on-line deployment and maintenance.

In the off-line development phase, data, analytics and SME

are usually brought together to envision, design, develop, and

verify and validate (V&V) DT solutions prior to deploying

on-line. The off-line data (often called ‘‘data at rest’’) is usu-

ally historical data, which is used along with SME and ana-

lytics to understand the application environment (e.g., data

quality, ability to merge data, and level of supervision or

the degree to which ‘‘output’’ data is available to relate

to input data of the data set), determine the feasibility of

building a DT that can provide benefit (noting that it can

be determined at this phase that building a usable DT is

not feasible, e.g., due to poor data quality), develop can-

didate solutions, and quantitatively V&V these solutions.

Verification is the process of determining whether a design

meets a set of requirements, specifications, and regulations,

whereas validation is the process of determining whether a

design meets the needs of the user [55]. In the context of DT,

verification could include verifying base capabilities against

standards and specifications, quantifying metrics on domain

of applicability, with validation including validating the qual-

ity of DT output across this domain, determining the expected

benefit such as financial benefit of applying the solution, and

determining the robustness of the solution across methods for

solution maintenance [6].

In the on-line deployment and maintenance phase,

the qualified off-line solution is deployed, used, continuously

evaluated, and maintained (the maintenance phase of the DT

lifecycle is also referred to as ‘‘service’’ in the literature).

The deployment includes the integration of the DT capabil-

ity into the existing system, including DT data, interfaces,

services and behavior, so that the DT capability is effec-

tively used by DT clients. Once deployed, the DT uses select

run-time data from its operation environment (often called

‘‘data in motion’’) to assess the state or condition of aspects

of the environment and make recommendations, thereby ful-

filling its intended purpose. Continued effective use of the

DT requires maintenance of the DT capability. This often
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FIGURE 2. High-level view of DT lifecycle. Additional description of steps and transitions is provided in the Appendix. Note that blue arrows represent
the expected flow through the lifecycle; if issues are encountered at a step, any previous step could be re-visited. See Table 3 for further description of
steps and transitions.

includes continuous evaluation of the DT to determine if and

when the DT should be updated. The updates could be imple-

mented on-line (e.g., with model tuning) or might require the

DT to be taken off-line (e.g., for model rebuilding). DTmodel

maintenance is an often underappreciated and weak area in

the DT lifecycle [21], [30], [46], [56], [57].

D. DTS OF THE FUTURE: NEAR-TERM AND LONGER-TERM

The DT roadmap and vision in manufacturing are often

chronicled as part of the larger SM or I4.0 vision. One

common aspect of the SM vision in which DTs play an

important role is the movement from reactive to predictive

to prescriptive operations in manufacturing application envi-

ronments [4], [58], [59]. DTs will contribute to providing

the indications, predictions, and prescriptions, respectively,

in these environments. Thus, many DTs are expected to

evolve from providing reactive type capabilities, such as

anomaly detection, to providing more predictive capabilities,

such as PdM, and eventually prescriptive contributions, such

as recommendations for downtime avoidance. Note that while

this general trend will be ongoing in SM, there will always

be a need for reactive and predictive DT capabilities. For

example, there will always be a need to detect anomalies that

cannot be (accurately) predicted or avoided, and there will

be a need for reactive systems to reduce false negatives of

predictive systems [50].

Longer term, an aspect of the DT vision in manufacturing

is that DTs exist for all real items, including physical systems,

processes, and parts, as a dynamic representation of those

items with real-time synchronization (see [1] for a depiction

of this vision with respect to systems and processes). This

covers not only the ability of the DT to predict the future state

of the item, but also to extend the current representation of

that item (e.g., user interface visualization) in such a way that

the representation in the past and present can be extended into

the future [16].

Utilizing DTs to provide recommendations for existing

and newly developed manufacturing systems is an aspect

of the vision for DTs. Approaches for designing production

lines utilizing DTs for optimizing system performance are

proposed in the literature [19], [32], [39], [40], [60], [61].

Similarly, the perspective of simulation for current and future

DTs is discussed in [48].

From the DT intelligence perspective, DT technology will

continue to leverage advancements in analytics to maximize

DT intelligence. This will include improving existing analyt-

ics capabilities, but also embracing new capabilities such as

what happened with the emergence of deep learning solutions

in big data environments over the past decade [62], [63]. Even

with these analytics improvements, it is expected that SME

will continue to play an important role in DT solutions, with

improved methods for AI-SME interaction and integration,

and a movement towards a ‘‘no knowledge left behind’’ DT

vision aspect [1], [6].

In summary, DT roadmaps and vision generally point to

an increased proliferation of and reliance on DT technol-

ogy. The DTs will be more integrated (vertically and hor-

izontally), will eventually need to be dynamically created,

configured, and verified and validated, and operate in an

integrated environment that extends beyond the ‘‘four-walls’’

to the entire ecosystem [1], [4], [5]. The DTs will take advan-

tage of advancements in analytics, data, and understanding

to provide higher quality and more expansive capabilities.

They will continue to use but will better integrate SME.

The DTs and their capabilities in future environments will

be much more coordinated with additional benefits arising
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from the integration of DT information and capabilities ver-

tically and horizontally [40], [49], [50], [58], [59], [64]–[66].

These requirements of support for proliferation, integration,

coordination, flexibility and adaptation suggests the need for

a DT framework to support typical roll-out software capa-

bilities such as re-use, interoperability and interchangeabil-

ity, but also more advanced and futuristic software ideas

such as automatic DT creation, validation, maintenance and

learning [59], [67].

III. DIGITAL TWIN FRAMEWORK REQUIREMENTS

DT framework requirements must be derived from and satisfy

the general understanding of the definition of DTs, DTs in

use today, near-term trends in DTs, and DTs of the future

including the ultimate vision of DT frameworks in SM. The

framework requirements from these sources are presented in

the remainder of this section and summarized in Table 2. Note

that in this section the term ‘‘class’’ is used to define a type

of DT, with an ‘‘instance’’ being a single occurrence of that

class. These terms will be more formally defined and used in

Section IV.

A. DT FRAMEWORK REQUIREMENTS DERIVED FROM A

GENERAL DT DEFINITION

The most basic requirement of a DT that can be derived

from its definition in manufacturing is that it must be a

digital replica of something, where that something could be a

physical asset (e.g., machine, component or production part),

process (e.g., a drilling process), or a system (e.g., a produc-

tion system for a part). It is also clear that the DTmust have at

least one purpose in the manufacturing system, developed or

configured in order to provide information that can be used by

one or more DT clients to realize some type of improvement

in the system. Further, in serving its purpose it must detect,

predict or prescribe something. Another key requirement is

that, in order tomaintain its ‘‘twin’’ status it must be dynamic,

responding to changes in its physical counterpart so that it

can continue to represent that physical counterpart with some

degree of accuracy. This is often stated as a requirement that

the DT be synchronized with its physical counterpart, with

the level of synchronization (frequency and accuracy) being

a function of the purpose of the DT in its environment.

B. DT FRAMEWORK REQUIREMENTS DERIVED

FROM DTS IN USE TODAY

As noted in Section II, there are many examples of DTs

operating in manufacturing today. These DT capabilities are

modular with boundaries or the relationship between the DT

and the system with which it interacts clearly defined. The

DTs adhere to a DT lifecycle that includes envision, design,

develop, V&V, deploy, use, evaluate and maintain steps. The

DTs generally use some type of narrow DT intelligence capa-

bility, usually determined by context, to provide a specific

function when provided with a specific type of information.

This process can be purely statistical or data-driven, how-

ever the application of the DT usually requires the marrying

of analytics with SME [6], [30], [54]. As these solutions must

be part of any DT framework, that framework must support

the evolution of these capabilities as opposed to providing a

revolutionary, disruptive approach to DT organization. Also,

while the DT classes in use are quite disparate, one key

requirement is that each provides a quantifiable net value-add

to some aspect of the manufacturing system. In other words,

the benefit of DT correct operation (whether detection, pre-

diction, or prescription) must outweigh the cost of incorrect

operation.

C. DT FRAMEWORK REQUIREMENTS DERIVED FROM DT

APPLICATIONS IN THE NEAR FUTURE AND

CURRENT TRENDS

As noted in Sections I and II, DT proliferation will con-

tinue to increase, and the cost of development, validation,

integration and maintenance of DTs will rapidly become

intractable unless certain requirements are met in a DT

framework. DT classes must become increasingly capable

and accurate, leveraging big data ‘V’ improvements (see

Section I and [1]) such as improved analytical approaches.

Solution spaces will emerge that require the integration of

DTs with other instances, with different DT classes, and with

non-DT capabilities. Further, as the SM concepts proliferate

beyond the ‘‘four-walls’’ of the manufacturing facility to the

entire ecosystem, DT solutions must follow. These trends

of proliferation and integration place requirement attributes

on a DT framework that are common to many manufac-

turing advancements such as field-bus networks and recon-

figurable manufacturing systems [68], [69]. Many of these

‘‘ility’’ requirement attributes (such as modularity, interoper-

ability, interchangeability, flexibility, scalability, re-usability,

and diagnosability) are applied to the DT framework resulting

in the following requirements:

DT re-usability: DT solutions must become more portable

and re-usable so that the ‘‘develop once use many’’ approach

can be better leveraged. This also results in improved scala-

bility of the DT solution. While the re-usability concept can

quickly become quite complex with the degree of re-usability

definable, techniques such as non-threaded MBPC and ana-

lytical clustering can be leveraged to determine if model

development efforts in different context environments can be

leveraged [10], [46], [70], [71].

DT interoperability: DT solutions must be able to inter-

operate with other DT instances, DT classes, and non-DT

capabilities such as DT clients. As an example, DT fleet solu-

tions, which leverage interoperability among DT instances,

have been proposed for a range of applications including

process matching [42], [66], integration across different lev-

els of the manufacturing hierarchy [10], [49], [67], and aug-

mentation of performance monitoring and anomaly detection

methods [9], [11], [72].

DT Interchangeability: The proliferation of DTs requires

that they be modular so that they can be more easily

assessed, updated, or even replaced. This interchangeability

can be realized with standardized definitions of DT structure,
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TABLE 2. DT framework requirements delineated by category. References
cited provide motivation for the requirements.

baseline abilities, quantifiable capabilities metrics, services

provided, interfaces, and behavior exhibited [1], [15], [73].

TABLE 2. (Continued.) DT framework requirements delineated by
category. References cited provide motivation for the requirements.

DT V&V capability: As DTs will increasingly be an inte-

gral part of the critical manufacturing processes, their capa-

bility must be verified and validated prior to accepting them

for use in application environments. Today the V&V process

is largely ad hoc, and heavily dependent on the type of DT.

For example, MBPC and PdM DT instances are often veri-

fied and validated individually on historical data sets. In the

future, more standardized, reusable and quantifiable V&V

processes must be part of the DT technology capability.

DT maintainability: An often-under-estimated require-

ment of DTs is that they be maintainable over a useful

period of time. As an example, robust predictivemeasurement

techniques are usually part of an overall measurement strat-

egy that includes an actual physical measurement capability.
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The physical measurement is done infrequently with the data

used to update or ‘‘tune’’ the predictive measurement model

in an on-line fashion [26]. If the error between prediction and

actual is too large or persistent, maintaining the prediction

model in the DT may require off-line rebuilding of that

model [46], [74]. Identifying when to maintain a DT is an

aspect of diagnosability.

DT capability and accuracy: DTs will have to become

increasingly capable and accurate as part of SM evolution.

This requires that the DTs be able to best use the evolv-

ing analytical capabilities, whether they be improvements in

existing techniques due to big data advancements, or emer-

gence of new techniques, such as the appearance of deep

learning [9], [62], [63]. Note that this analytics evolution does

not imply that the importance of the SME will be lessened,

but rather that the analytics-to-SME integration will become

more structured and automated [6].

DT extensibility: The SM trend towards integration across

the entire ecosystem will require that DTs be extensible

across that ecosystem. This means that DT capabilities oper-

ating within the ‘‘four-walls’’ of the factory today might

in the future incorporate data outside the facility. A good

example here is the extension of MBPC or yield prediction

beyond the four-walls where the control is to field-yield tar-

gets rather than just process targets or even factory-wide yield

targets [6], [75]. Unfortunately, this extensibility require-

ment is associated with many challenges, the most sig-

nificant of which is maintaining data partitioning and IP

security throughout the manufacturing ecosystem [76]. Tech-

niques such as block-chain have been proposed to address

aspects of this challenge; however, the scope of the issue

will require innovative data partitioning, traceability and

translation techniques combined with multi-industry coop-

eration, standardization and best practices [77]–[80]. While

the requirement of ecosystem security is included as a DT

technology requirement, it is not addressed in detail in this

paper.

Sustaining a DT technology community: The increasing

and more stringent requirements on DT technology will only

be realizable if there is more cooperation between the var-

ious DT application areas and the technology community

in general. An effective DT framework thus must provide

a common taxonomy and other mechanisms that allow the

community to collaborate on DT technology, from DT fun-

damental research through applied research, development,

deployment, and maintenance.

D. DT FRAMEWORK REQUIREMENTS DERIVED FROM DT

APPLICATION NEEDS OVER THE LONGER TERM

As noted in Section II, while there are several aspects of the

DT vision being proposed including DT solutions in futuristic

greenfield environments, common themes exist that can be

used to distill DT framework requirements [1], [4]. The first

is that there will be a virtual counterpart to the entire SM

ecosystem, used for detection, prediction, prescription, and

analysis of all aspects of operation. The requirements of a

DT framework to address this theme include those identified

in the previous sub-section, namely re-usability, interoper-

ability, and interchangeability. However, this proliferation

theme also places requirements on the automation of the DT

creation, validation and integration process. More broadly,

themajority of theDT lifecycle process from creation through

maintenance (see Figure 2) must become fully automated,

with manual DT efforts limited to envisioning, innovation,

and responding to unforeseen situations.

Another theme that is postulated is that DTs will trend

away from narrow intelligence (e.g., narrow AI) towards

general intelligence (e.g., AGI [44], [45]) as the analytics’

fields advance. It is the opinion of the authors that this is not a

revolution but rather a general evolution towards less narrow

intelligence solutions, and the framework must support this

evolution.

IV. APPLYING THE REQUIREMENTS TO REALIZE A

DIGITAL TWIN FRAMEWORK

In this section the requirements summarized in Table 2 are

applied to distill baseline minimum required attributes of a

digital twin framework. This baselineDT framework includes

a definition of a DT and a method for the generalization

and combination of DTs under a class structure using O-O

constructs. The baseline framework derivation will be fol-

lowed with a summary of how these framework constructs

address requirements identified in Table 2, and a discussion

of remaining gaps that must be addressed to realize a practical

framework. We will then provide case studies and extensions

in Section VI to illustrate the importance and practical use of

these framework constructs.

While this framework does not address all the requirements

in Table 2, it provides a baseline framework that can be

extended in a manner suitable for individual application envi-

ronments so that all requirements can be achieved through

additional specification. For example, Qamsane, et al. pro-

vides a methodology for realizing a practical framework from

this baseline framework [67]. Additional a recently proposed

framework that leverages the DT concept to ensure interop-

erability and exchange of information about SM components

is the Asset Administration Shell (AAS) [13]. In this frame-

work each AAS is structured to enable communication with

other AASs and to allow for generalization and aggregation

of AASs. While the AAS framework meets some of the

requirements put forth in Table 2, there are still extensions

to AAS components that must be developed to realize all the

requirements proposed herein. A good approach to realizing

a practical DT framework then would be to use the baseline

framework presented in this section and extend that frame-

work to address practical issues of the specific application

environment.

A. DIGITAL TWIN DEFINITION PROPOSAL

We define a DT as a purpose-driven dynamic digital replica

of a physical asset, process, system, or product. A DT is

driven by a need for improvement of the manufacturing
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environment (e.g., reduce unscheduled downtime, generate

a production plan, improve quality, etc.). A DT is a digital

replica of an aspect of a manufacturing system; it is usually

not a complete replica of an entire system or component.

It provides a capability in terms of detection, prediction

and/or prescription so that it can deliver on its intended pur-

pose and provide a value-add capability to a DT information

client in the SM ecosystem. It is limited in scope, applicability

and capability to its intended purpose and defined application

environment. This application environment is usually defined

by context. An example might beMBPCwhere the purpose is

to improve process quality, and the application environment

is the production operation associated with a particular part

at a specific process.

FIGURE 3. A DT representation illustrating the relationship between the
modeling resource and computational engine in a DT.

The DT provides its capability by combining a modeling

resource with a computational engine, as shown in Figure 3.

The modeling resource is used to emulate some aspect or

aspects of the physical ‘‘twin’’. The modeling resource can

consist of one or more models. As noted above, these models

generally use analytics technology to define behavior within

a particular environment defined by context. The model type

can range from completely physical through phenomenologi-

cal to purely statistical (data-driven) with an important goal of

DT modeling and intelligence gathering approach being that

it supports the incorporation of data and SME in solutions to

strive for a ‘‘no knowledge left behind’’ solution [6].

The DT computational engine is used to support the model

in terms of accuracy and alignment with its real counterpart,

and provide the required output (i.e., deliver on the DT pur-

pose) to the DT client. The alignment requires that the com-

putational engine addresses the management of updating the

model with new data from the physical system, and maintain-

ing the model so that it continues to provide information of

necessary quality to support the DT delivering on its intended

purpose. The synchronization level (e.g., rate and quality) of

the DT with its physical counterpart is a function of the DT’s

intended purpose and the application environment. This is

referred to as ‘‘time critical’’ in this paper to indicate that the

timing is a function of the application environment. ‘‘Real-

time’’ is not used here as the term is vague and may be

misleading. Synchronization requirement examples include

‘‘every X<timeperiod>’’, and ‘‘within<timeperiod-1> fol-

lowing the occurrence of an event ‘a’ and <timeperiod-2>

thereafter until the occurrence of event ‘b’’’.

The computational engine provides the necessary compu-

tational resources so that the DT can deliver on its intended

DT capability (as shown in Figure 3). These resources include

coordinating the use of one or more models and ensuring that

the models have the necessary data and context to maintain

synchronization with the physical counterpart, as described

above. The DT capability is delivered by the DT producing

the following information in a manner suitable for the DT

client:

• One or more metrics that quantify the DT output as it

relates to the DT purpose in the application environment

for the DT client. The metrics could vary greatly and

could include a binary indication of an event (e.g., fault),

a continuous parameter related to prediction of a future

event (e.g., RUL), a recommendation for reconfiguration

(e.g, a new product route), or a prescription for future

avoidance of an event (e.g., a change in machine opera-

tional parameter ranges). The metric is usually related to

some aspect of the desired performance such as a key-

performance-indicator (KPI).

• One or more metrics that quantify the quality or believ-

ability of the DT output (detection, prediction or pre-

scription) as it relates to the intended purpose for the

DT client. The DT utilizes data to estimate or pre-

dict some aspects of its real counterpart. The quality

of the output metrics might relate to the quality of

the detection, prediction, or prescription of an event

(e.g., probability that the event has/will/can be pre-

vented from occurred/occur/from occurring), and the

quality of the prediction horizon (e.g., a confidence

interval on the predicted occurrence of a future event

and the profile of the indicator leading up to that pre-

dicted event). Other quality-of-output metrics might

relate aspects of ‘‘how’’, ‘‘where’’, ‘‘when’’, ‘‘why’’

or ‘‘to what extent’’ associated with the output. Some

aspects of the quality of the DT output can be expressed

with a receiver-operating-characteristic (ROC) curve,

which is created by plotting the true positive (detec-

tion/prediction/prescription) rate against the false pos-

itive/alarm rate [84]. Model quality can be ascertained

in-part from the shape of the ROC including the area

under the curve, while confidence intervals can also be

displayed on the plot.

The DT is required to deliver a net value add in its applica-

tion environment (see Table 2, requirement 1h). This means

that the DT output and output quality information must be

utilized effectively to determine the net value add of the

implementation of the capability.

B. BASELINE DIGITAL TWIN OBJECT-ORIENTED

FRAMEWORK

Many of the DT framework requirements summarized

in Table 2, such as re-usability, extensibility, interoperability

and interchangeability, are common to manufacturing disci-

plines (e.g., reconfigurable manufacturing systems [69]) and
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other areas ranging from software to network control sys-

tems (e.g., [68]), equipment representations and even social

sciences. Researchers in these areas generally turn to some

form of ‘‘object-oriented (O-O) technology’’ as an aid to

define structure, behavior, and relationships between types of

‘‘things’’. Booch et al., [85], is often cited as the essential ref-

erence for O-O technology though there is a large volume of

literature covering definitions, taxonomy, languages (such as

Unified Modeling Language-UML), etc. of O-O [86], [87].

While there is some variability in O-O technology and con-

cepts, we will follow a common approach specified in [86].

In the remainder of this sub-section, we will provide an

overview of important constructs that we will use in this

taxonomy, apply the DT requirements to realize a baseline

O-O framework, and provide a brief example to illustrate how

the constructs work together.

1) INTRODUCTION: O-O CONSTRUCTS AND TERMINOLOGY

The following is a summary of the main O-O concepts that

will be used in this section to present the DT O-O framework.

Please refer to [85], [87] for a comprehensive treatment of

these concepts.
• Object: A concept, abstraction or thingwith crisp bound-

aries and meaning for the problem at hand.

• Class: A description of a set of objects that share

the same attributes, operations, relationships, and

semantics.

• Instance: A concrete manifestation of an abstraction; an

entity to which a set of operations can be applied and

that has a state that stores the effects of the operations.

• Inheritance: The mechanism by which more-specific

elements incorporate the structure and behavior of

more-general elements.

• Generalization hierarchy (IS-A): A specialization/

generalization relationship in which objects of the spe-

cialized element (the child) are substitutable for objects

of the generalized element (the parent).

• Aggregation hierarchy (HAS-A): A ‘‘has-a’’ relation-

ship, meaning that an object of the whole has objects of

the part. Aggregation is used to model a ‘‘whole/part’’

relationship, in which one class represents a larger thing

(the ‘‘whole’’), which consists of smaller things (the

‘‘parts’’).

2) INTRODUCTION: TOWARDS A BASELINE

DT O-O FRAMEWORK

As noted earlier, an ultimate DT O-O framework will

incorporate information requirements from many sources

including practical applications, industry-specific needs, and

standards [1], [14], [67], [88], [89]. In this paper only a

baseline of minimum framework specifications is presented,

to address the requirements summarized in Table 2. Complete

and more practically deployable frameworks would be based

on this proposed baseline specification and provide a more

restrictive set of specifications in order to better address

aspects of the DT requirements.

3) DT OBJECT CLASS

A DT class is a type of DT that delivers a specific capability

for the DT client. The scope of this capability is defined by

the DT output purpose metric, thus all DTs belonging to the

same class must share at least one common output metric.

An example is RUL. DTs belonging to the same class might

utilize different numbers and types of modeling approaches

and might report additional output purpose metrics. DTs

belonging to the same class might utilize and report different

quality-of-output metrics.

DTs belonging to the same class must have the same

general defined scope of applicability. This scope might be

very broad as in ‘‘all rotating equipment’’ or might be very

focused as in ‘‘pumps of brand ‘X’, model ‘Y’, operating

in an environment with parameter ranges ‘Z’’’. The scope

might be defined qualitatively or quantitatively. The scope

is usually defined and refined using contextual information

about the equipment, components, process, people, environ-

ment, etc. Some refinement might occur at the instance level.

For example, the scope of the class might be all pumps of

brand ‘X’, model ‘Y’, but the instance might further refine

the application environment to process ‘A’.

DTs belonging to the same class must have common

defined behavior. This behavior should include a method

(e.g., defined service) for reporting the output metric(s),

quality-of-output metric(s), and any other behavior required

for the DT to deliver on its intended purpose. This behavior

also includes specifications and any restrictions on ability to

instantiate off of the class, which will be discussed later in

this section. DTs belonging to a class might have additional

specifications on behavior, but these specifications cannot

conflict with the common defined behavior. An example of

this type of additional specification is a Harel hierarchical

state-chart that defines common behavior in superstates with

additional behavior defined in substates [90]. Common DT

class behavior is highly dependent on the purpose that the DT

has and the capability it is expected to deliver, as described in

the DT definition.

Note that the naming of a class should provide some indica-

tion of purpose and scope of applicability. An example might

be ‘‘RUL for rotating equipment’’. There are no requirements

provided here for class naming as existing implementations,

trends, expertise, analytics, etc. will likely lead to collo-

quial naming of many application classes such as ‘‘PdM’’ or

‘‘MBPC’’.

4) GENERALIZATION HIERARCHY AND INHERITANCE

A DT hierarchy defines how the DT structure, the services it

provides, and the behavior it exhibits, can be re-used, com-

bined, shared, or otherwise aggregated or inherited between

DT classes or instances. As noted above, generalization

allows for the extrapolation of capabilities usually from gen-

eral to specific.

In a DT hierarchy, sub-classes of a DT class must provide

the DT output metric or metrics defined as required in the

super-class. Sub-classes of a DT class must also comply with
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the common behavior in the super-class. The scope of appli-

cability of a sub-class must fall within the scope of the super-

class, but it does not have to be the same as the superclass.

In fact, in many application environments the main purpose

of sub-classing will be to refine or constrict the application

environment, e.g., from ‘‘all rotating equipment’’ to ‘‘rotating

pumps’’.

Note that in many implementations sub-classing can be

used to further define output and quality-of-output metrics or

further define behavior. However, this is not a requirement of

sub-classing.

5) AGGREGATION HIERARCHY

Aggregation is a specification that allows for the combination

of DT object instances. The combination is associated with

some physical relationship between the application environ-

ments of the individual instances and is often associated

with some aspect of common purpose among the DT object

instances. A practical example of aggregation is the combi-

nation of DTs that have the same specific purpose and output

metric (e.g., RUL), where the DTs relate to the individual

components in a larger system (e.g., to express the RUL of

that system). The relationship between the components might

be more tenuous as in ‘‘a count of all DT event indications

on the plant floor’’. Regardless of the relationship between

DT components in an aggregation, a requirement of any DT

aggregation is that membership in the aggregation must be

specified in terms of purpose and scope. Examples include

‘‘must belong to a PdM class providing a RUL output metric

for one or more components or sub-systems of ‘X’’’, or ‘‘must

be a DT instance that delivers a capability for factory ‘Y’’’.

In some aggregations, the existence of the component

DTs is dependent on the existence of the parent aggregate,

or the existence of the parent aggregate requires the existence

of some or all of the child components. A requirement of

the aggregation is the need for existence of the parent and

child DTs in the aggregation be specified. This requirement

could be different for different components in the aggregate,

e.g., ‘‘RUL DT for the fan must exist while RUL DTs for the

heating elements are optional’’.

As the aggregate itself is a DT, it must comply with the

DT and DT class definition. Thus, a DT aggregate must

have a defined common output metric, scope of applicability,

and common behavior. Note that these specifications might

or might not be the same as one or all of the DTs in the

aggregate. As an example, the aggregate DT might report

RUL of a machine by using its computational engine to

analyze the component RUL information reported by the DTs

in the aggregate and determine the RUL of the machine.

A scheduling DT might use an aggregate of these same

PdM-RUL DTs and provide an output metric of optimized

schedule by incorporating downtime horizons in an optimiza-

tion algorithm. Supporting an aggregation of DTs requires

that they communicate in some way to exchange information

ranging from internal parameters (e.g., modeling outputs) to

performance and quality outputs. This is often accomplished

in a formalized way using associations between DTs as

objects or between objects within a DT [86].

6) INSTANTIATION AND IMPLEMENTATION

Using the DT definition and requirements specified above,

a wide variety of DT object hierarchies can be realized incor-

porating both generalization and aggregation. Depending on

how these hierarchies are realized, instantiation of actual DT

implementations could be specified as being allowed to occur

at any place in the hierarchy or restricted to be below a certain

level in the generalization portion of the hierarchy such as

‘‘only in the leaves of the generalization hierarchy’’. For

example an approach to generalization for additive manufac-

turing (AM), i.e., 3-D printing, which includes fused depo-

sition modeling (FDM) and selective laser sintering (SLS)

approaches, is shown in Figure 4. This example illustrates that

a common approach to DT instantiation in a generalization

hierarchy might be instantiation off the sub-class if it is

specified, with instantiation off the super-class if the sub-class

is not specified. A good example of this approach being used

in industry today is the Common and Specific Device Models

(CDM and SDMs respectively) specified in the semiconduc-

tor standard for network devices [68]. The requirements and

restrictions for instantiations within a defined DT hierarchy

must be specified. If instantiation of a superclass is allowed,

then instantiation of all subclasses of that superclass must

also be allowed as this is an aspect of class behavior.

FIGURE 4. Example of a generalization hierarchy of an additive
manufacturing (AM) PdM DT class supporting instantiation at multiple
levels.

C. EXAMPLES

With the baseline of minimum attributes of a DT framework

defined, many examples can be realized that illustrate the

opportunities for re-use, integration and interoperability and

interchangeability. An example that might be representa-

tive of a DT solution for an assembly operation, combining

both generalization and aggregation, is provided in Figure 5.

The aggregation and generalization subclassing paths (e.g.,

frommachine general type (Robot), to specific type (6 degree
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FIGURE 5. Example of a DT implementation hierarchy illustrating generalization and aggregation (‘‘Invtry’’ == ‘‘Inventory’’; ‘‘Cmp’’ ==

‘‘Company’’; ‘‘Mdl’’ == ‘‘Model’’).

of freedom), to producing company, to model number are

examples only; the actual subclassing path would depend on

the application environment, DT class characteristics, and

specification developer choices. The figure is only meant

to represent a portion of the generalization and aggregation

hierarchies (and possibilities). For example, a generalization

hierarchy is only illustrated for a RUL DT class.

Amore detailed treatise of an extendedDTO-O framework

implementation that uses this baseline is provided in [67].

In this implementation, additional DT hierarchy specifica-

tions are provided that support a specific implementation;

these illustrate how the basic specifications presented herein

can be used as a template to realize practical DT imple-

mentations that better meet the requirements summarized in

Table 2.

V. MAPPING OF REQUIREMENTS TO BASELINE DT

FRAMEWORK CAPABILITIES: GAPS

AND OPPORTUNITIES

The DT baseline framework specification presented in

Section IV addresses important aspects ofmost of the require-

ments presented in Table 2. Importantly, the framework

does not invalidate or prevent the attainment of any of the

requirements.

An analysis of the framework specification also reveals

gaps in meeting some of the requirements; these gaps might

be met with additional specifications, standards, implementa-

tion best practices, etc., to realize practical solutions, but are

associated with specification choices that might not be unique

to realizing an effective solution [1], [13], [15], [67].

The gaps that could be filled with additional specifications

or research and development include:

• Improving integrability, interoperability and inter-

changeability of objects within theDT through definition

of the interaction between models and with the com-

putational engine in the DT object. This could include

a framework for DT models [91], 92]. The specifica-

tion would likely have to support a variety of different

modeling and computation approaches, but could prob-

ably be much more refined for specific DT classes and

application environments.

• Improving interoperability, interchangeability, reusabil-

ity, etc. of DTs throughout the entire DT lifecycle

with detailed specifications for support of the DT at

each stage of the lifecycle and its transition between

these stages. The specifications should be divided into

off-line or ‘‘data at rest’’ components to support model

development, V&V, and on-line or ‘‘data in motion’’

components to support model deployment, use and

maintenance [6]. The framework presented herein is

focused on the DT operation and maintenance during

the on-line portion of the lifecycle. Structured meth-

ods for off-line DT development and V&V have been

proposed, which could be added to the framework

[9], [11], [30].

• Improving interoperability between DT and non-DT

components with specifications that define the interac-

tion between the DT service and clients to deliver the

DT capability in an increasingly flexible environment.

These could be defined in terms of the DT data struc-

tures, interfaces, services and behavior that are exposed

to DT clients [1], [73]. The support for interaction could

include definition of a language, data structures, inter-

faces, services and behavior of both DT and non-DT
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components. These specifications could be added at any

part of the DT hierarchy.

• Facilitating and improving DT V&V lifecycle compo-

nent capabilities with specifications that govern V&V

approaches and quantify V&V results. V&V are crit-

ical steps in the DT lifecycle and will become more

important and require automation as DTs proliferate (see

below).

• Improving the maintainability component of the DT life-

cycle with methods and specifications for DT mainte-

nance as part of lifecycle on-line (e.g., model tuning),

as well as off-line (e.g., model rebuilding) activi-

ties [30], [46]. Generally speaking, automation of the

on-line maintenance capability should be supported

today, while automation of the off-line capability is a

longer-term objective (see below).

• Improving consistency, understanding and assessment

of DT benefit through agreed upon metrics for commu-

nicating the DT capabilities as well as the aspects of the

accuracy of the DT [51]. This might be achieved via a

standardization process.

• Improving the DT quantified benefit and the under-

standing of that benefit with extensions to the methods

for calculation and optimization of financial net value-

add, to address items such as sensitivity analysis and

opportunity cost. An example of how this can be done

is provided in the next section.

• Facilitating more structured, automated and optimized

methods for integration of analytics and SME through-

out the DT lifecycle process (Figure 2) [4], [6], [9].

This improvement will leverage advancements in ana-

lytics that allow them to proactively ask for and use

SME information, optimally balance analytics and SME

information, and be able to assimilate SME information

when provided asynchronously. Also, best practices for

DT-to-analytics integration at various stages in the DT

lifecycle could be specified at different points in the DT

generalization hierarchy.

• Addressing security of DT data and intellectual property

with standards as well as technology advancements.

As DTs will often be employed in a very heterogeneous

environment in terms of applications and users through-

out the manufacturing ecosystem, security of DT data,

models, computational approaches and output will all

have an inherent element of propriety that will have to be

managed. As noted earlier, this topic is outside the scope

of this paper, however efforts are underway to address

issues of this type [1], [76], [82], [93].

• Providing a platform for research and technology

advancement by extending the baseline specification to

agree on standard DT terminology, classes, areas, etc.,

that would support collaboration. Standards and other

specifications derived from a combination of technol-

ogy assessment, deployment information and consensus

building could provide a framework for better coordina-

tion and proliferation of technology advancement.

• Extending the DT O-O specification to the entire

SM ecosystem. The boundaries of manufacturing will

become increasingly blurred with new manufacturing

paradigms incorporating optimization throughout the

SM ecosystem from raw material production all the way

through the end customer experience [4], [5]. DT tech-

nology will provide benefits throughout this ecosys-

tem, with many of these arising from the coordination

of DT instances (see Section VI for examples). While

the framework presented herein facilitates this exten-

sion and coordination, much more specification will

be required to realize a practical framework across the

entire ecosystem.

• Automating all aspects of the DT lifecycle. The pro-

liferation of and increased reliance on DTs across the

entire manufacturing ecosystem eventually will require

automation across most stages of the DT lifecycle, from

design through maintenance. Many of the lifecycle steps

such as evaluation and on-line maintenance are already

automated in some applications, however automation

of other stages, such as design, development, V&V

and off-line rebuilding represent ongoing technical chal-

lenges. Additionally, automation of SME-to-analytics

interaction in the various stages of the DT lifecycle will

be required [4], [6].

• Accommodating analytical trends in DT technology.

The analytics frontier is dynamic and unpredictable.

Evolutionary and revolutionary (disruptive) technolo-

gies must be accommodated, or, at minimum, any DT

framework should not prevent the use of these tech-

nologies. Expected directions in this space include the

move towards less narrow context-restricted solutions

(e.g., AGI), and more automation of the role of analytics

throughout the DT lifecycle.

VI. CASE STUDIES AND EXTENSIONS

Using the baseline DT framework to address practical man-

ufacturing problems is explored in this section. A literature

review of previous works of the authors that provide DT

application case studies and framework extensions related to

the baseline framework developed in this paper is presented in

Section VI.A, with references to more in-depth descriptions.

A case study of process-capability aware scheduling and

dispatch is then presented illustrating the combination of DTs

at different levels in themanufacturing hierarchy. This section

concludes with a description of a framework extension that

supports optimization of DT benefits (e.g., financial) in a

defined application environment.

A. DT FRAMEWORK CASE STUDIES AND EXTENSIONS

There have been several other previous works of the authors

that illustrate the utility of a DT baseline framework by

providing extensions and case studies of use. A reconfiguring

scenario utilizing multiple DTs of a manufacturing cell to

optimize cell throughput is presented in [94]. A system-level

reconfiguration scenario utilizing a DT framework within a
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software-defined control (SDC) architecture [81] to under-

stand the current system state and optimize system met-

rics between throughput and quality is presented in [95].

An aggregation and generalization scheme for a system-level

DT in a DT framework is presented in [65]. An SDC

architecture utilizing a DT framework for fleets of addi-

tive manufacturing machines (AM fleet) to perform anomaly

detection and reconfiguration is presented in [66], [96],

and to perform fleet-process matching using MBPC is pre-

sented in [42], [43]. Following this line of work, a refer-

ence architecture for the implementation of DTs for AM

with implementations on off-the-shelf systems is presented

in [97]. Additionally, DT-based run-to-run controllers with a

case study on system-level chamber matching utilizing a DT

framework for semiconductor manufacturing is illustrated

in [66]. In [4] the long-term vision on the role of DTs in a

greenfield manufacturing environment of the future is pre-

sented. This includes a discussion of the use of agent-based

decentralized approaches [83], [98] in conjunction with exist-

ing and new centralized approaches for a futuristic DT frame-

work that would continuously extend and improve itself to

address the manufacturing needs of the factory of the future.

B. CASE STUDY: PROCESS-CAPABILITY AWARE

REAL-TIME SCHEDULING AND DISPATCH

This case study in the manufacturing domain of semicon-

ductor wafer fabrication highlights the need to incorporate

instances of different DT classes to provide benefits above

and beyondwhat is provided by the individual DTs [49]. Each

of the DTs in this case study complies with aspects of the DT

definition, and their collaboration can be facilitated by the DT

O-O framework presented herein. An overview of some of the

major tasks in the lifecycle process for the DTs in this case

study is provided in the Appendix.

In the semiconductor (also referred to as ‘‘microelectron-

ics’’) manufacturing environments, semiconductor ‘‘wafers’’

are processed in a fabrication facility or ‘‘fab’’ using complex

combinations of process steps such as deposition, lithogra-

phy patterning and etch to create precise repeated patterns

called ‘‘die’’ on each wafer [99]. These ‘‘front-end’’ pro-

cesses are often required to produce angstrom-level preci-

sion pattering with yields > 99% while operating at near

100% capacity. Maintaining these stringent operating con-

ditions requires augmenting precise equipment and process

design and configuration with adaptive cyber or software

mechanisms to optimize operation. At the lower levels,

a communication protocol called SEMI Equipment Commu-

nication Standard (SECS) is used to provide standardized data

collection and actuation across production and metrology

equipment in order to understand equipment, process and

product context, state and quality [71], [73], [100]. A form

of MBPC called ‘‘run-to-run (R2R) control’’, which is imple-

mented widely in fabs, uses this communication environment

to tune and maximize process capability or ‘‘Cpk’’ at each

process [101]. Cpk is a commonmetric used in manufacturing

to convey process capability. It is a quantitative indication

of the closeness to process target as well as variability of

the process output [102]. At higher levels a suite of fully

automated systems work together using a combination of

SEMI standardized and proprietary protocols to maximize

the production capability of the fab. ERP systems coordinate

and prioritize production orders, MESs determine production

flows, bill-of-materials, etc. to execute orders, while real-time

scheduling/dispatching (S/D) systems consolidate data from

fab MES and ERP systems to understand production needs

(e.g., orders, priorities, deadlines) and capabilities. This

understanding is then used to dynamically route groups of

wafers called ‘‘lots’’ in order to optimize production accord-

ing to a cost/profit function in the face of ever-changing

production capability information such as queue lengths,

equipment cycle times, and unexpected downtime.

It has been argued that if more information from the

wafer fabs was used in S/D systems, better decisions could

be made in determining production schedules [103]–[105].

For instance, the incorporation of process capability in S/D

would help align high-value, high-precision products with

high-capacity tools to minimize scrap and improve profit.

In this case study, an approach to S/D is deployed that uses

information from multiple sources, including process capa-

bility estimates from process control DTs, to enable a S/DDT

to propose optimal production schedules, updated dynami-

cally in a time-critical fashion, for a lithography bay of twelve

processes from which to select (lithography is often a bot-

tleneck process in semiconductor manufacturing [105]). The

solution is illustrated in Figure 6. It employs a rule-based S/D

DT tomake appropriate S/D plans (production schedules) and

updates these plans in response to events in the fab. In this

case study, a product called RTD R©1 is used to provide this

rule-based configurable ‘‘real-time’’ S/D decision-making

capability for a single process type [104]. A model of the fab

layout defines process flow and opportunities for S/D deci-

sions. The S/D DT then evaluates various production capa-

bilities using a weighted normalized cost function to make

decisions to determine which equipment instance, among a

bank of possibilities, to select for a particular wafer process.

The cost c of equipment j is defined as:

cj (t) =
∑

i

wi∑
i wi

fij (t) (1)

where fij are the factors taken into consideration, gathered

from applications at the MES and ERP levels, andwi are their

respective weights.

The S/D optimization process consists of the following

steps which are executed by the S/D system after every ser-

vice request by wafer lots:

1) Determine set of candidate tools, defined as operational

tools that can perform the required task.

2) Remove candidate tools whose queues exceed a

user-defined limit (e.g., do not consider tools withmore

than ten lots in queue).

1RTD R©is a registered trademark of Applied Materials Corporation.
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FIGURE 6. Solution environment illustrating the information flow and the integration of information from a lithography process
control DT (bottom) into a S/D DT (top). The graphic in the S/D DT is an RTD R©screenshot of the S/D DT. It incorporates the outputs
from the individual DTs (see Figure 7) and executes the S/D optimization process.

3) Compute a score for each candidate tool following

equation (1).

4) Choose tools with the lowest cost for processing by

solving an integer programming problem.

As shown in Figure 7, the factor values fij in (1) can be

determined by individual DTs and then aggregated by the S/D

DT solution to determine a production schedule that provides

an optimal throughput strategy. This figure only shows the

aggregation portion of the O-O hierarchy. The O-O structure

for these DT classes is based on the baseline framework.

Extensions such as specific class definitions and divisions

between DT capabilities would depend on how the solutions

are realized in the DT lifecycle. For example, the tool process

control DT is derived from a baseline process control DT

class, and the bay quality DT,which is derived from a baseline

quality DT class, incorporates an aggregate of process control

DT class outputs. In an alternate extension of the baseline

framework, the bay S/D DT class might incorporate these

outputs directly, circumventing the need for a baseline quality

DT class.

The solution does not usually incorporate process quality

in the S/D DT because that information is not readily avail-

able at the MES and ERP levels. However at lower levels in

the fab, control infrastructure equipment process control DTs

use MBPC models and methods and provide two outputs to

support the DT purpose: (1) process setting recommendations

(called ‘‘recipes’’) prior to each wafer production ‘‘run’’,

and (2) quantitative estimates of process capability reported

the Cpk metric. Note that DT output quality metrics are not

provided in this solution. In this case study, the S/D DT

is augmented to incorporate process capability information

from the process control DTs by including these process

control DTs in the aggregation (see dashed lines in Figure 7)

and adding the Cpk information to the S/D DT cost function

model (1) and Figure 6. The results are shown in Figure 8.

In this experiment, the output of the S/D DT is evaluated in

a simulated fab operation environment. In this environment

it is assumed that there are (1) three products of different

production value being produced, (2) factors of cycle time,

queuing time and Cpk impacting profit from the perspective

of S/D, and (3) Cpk estimates are accurate. Standard six sigma

conversion tables are used to determine wafer die scrap.

Scrap for product 2 is shown in the figure due to its high

value. Scrap calculations assume 600 die per wafer [49].

The results illustrate the impact of different weights of the

Cpk factor on the overall profit of the fab. A typical S/D

DT implementation that does not incorporate the process

control DT information would produce a production sched-

ule recommendation equivalent to a Cpk weight of zero.

As the Cpk factor is increased, the fab profit increases and

then decreases illustrating the tradeoff of throughput and

quality. From this analysis an S/D DT production sched-

ule output can be calculated that is optimized to the fab

profit.
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FIGURE 7. Illustration of one conceptualization of a DT framework for the process-capability aware real-time scheduling and dispatch solution.

FIGURE 8. Illustration of the effect of Cpk weight on profit and scrap.

This solution illustrates the benefit of the DT framework

from the perspectives of consistent DT definition and struc-

ture (e.g., for incorporating information from a bank of sim-

ilar process control DTs into a single S/D DT), collaboration

between DTs, and quantification of DT output. The frame-

work also points to areas for improvement in this case study

solution including the need for quantification of the quality

of the Cpk estimates provided by the process control DTs as

well as the decisions made by the S/D DT.

C. EXTENSION: METHOD FOR OPTIMIZING DT BENEFIT IN

A DEFINED APPLICATION ENVIRONMENT

A DT is required to deliver a net value add in its applica-

tion environment, and the benefit must be ascertainable and

quantifiable (see Table 2, requirements 1h and 1i). This net

value add is often expressed as a financial benefit. A good

example is the case study just presented where optimal

benefit is expressed as a balance between throughput and

yield (Figure 8). In most DT environments, determining and

optimizing this financial benefit also requires understanding

the quality of the DT detection, prediction, or prescription

output, and the corresponding application environment cost

of acting on correct and incorrect detection, prediction or

prescription information provided by the DT. A practical DT

framework thus might use an extension that provides for opti-

mization of the DT benefit in the application environment.

FIGURE 9. Use of a ROC curve to determine the operating point and net
value add of a DT detection, prediction or prescription capability.

An example of such an extension is shown in Figure 9.

Here the ROC for a DT detection, prediction or prevention

capability is used to determine an operating point for acting

on the DT output (e.g., determining a parameter value ‘‘limit’’

at which to act on the prediction of a failure event). The ratio

of the cost of a false positive (alarm) and missed positive in

the application environment is also indicated (as a straight

line). For example, the cost of a false positive might be the

total cost of a scheduled (but unneeded) downtime while the

cost of a missed positive might be the cost of an unscheduled

downtime minus the cost of a scheduled downtime. The point

where the ROC has the same slope as the cost ratio is the ideal
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TABLE 3. DT lifecycle steps, common transitions and example application.

operating point for acting on the DT event indication, with

difference between cost and benefit at that operating point

being the net value add that the DT should be expected to

provide in this application environment [9], [53].
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VII. SUMMARY

Digital twin technology, which is an integral part of the

evolution of smart manufacturing evolution, has actually

been in use for decades in manufacturing. Solutions such

as MBPC, PdM and virtual sensing/metrology all fit the

general DT definition as they utilize virtual representa-

tions of some aspect of a system to provide quantifiable

benefit. As we move forward in DT technology evolu-

tion we must embrace these existing knowledge, technol-

ogy and solution bases while accommodating near-term

DT requirements such as re-usability, interoperability, inter-

changeability, V&V, maintainability, and extensibility, along

with longer-term and visionary requirements such as auto-

matic creation, V&V, integration, and proliferation across the

entire ecosystem. Further we must provide an environment

for a sustainable DT technology community that supports

common definitions, taxonomy and other mechanisms for

collaboration.

While there have been many important efforts focused on

providing DT definitions and frameworks, this paper uses a

requirements-based approach to derive baseline components

of a framework upon which practical frameworks and solu-

tions can be built. This baseline framework includes a DT

definition and O-O specification that addresses important

aspects of requirements of DT solutions in operation today,

in the near future, and over the longer-term including the DT

vision. Key attributes of this framework include (1) a DT def-

inition as a purpose-driven dynamic digital replica of a phys-

ical asset, process, system or product; (2) a DT structure that

includes one or more modeling resources coordinated via a

computational engine; (3) a DT output that includes metric(s)

that quantify theDT output as it relates to theDT purpose, and

metric(s) that quantify the quality or believability of the DT

output; and (4) a DTO-O structure that supports both general-

ization and aggregation subclassing structures to facilitate re-

usability, interoperability, interchangeability, maintainabil-

ity, and extensibility. Extending this baseline framework to

practical solutions requires addressing gaps identified in

fully addressing the derived requirements. Key among these

include (1) providing specifications for interaction between

components within DTs, between DTs, and between DTs and

non-DTs, across the entire DT lifecycle; (2) providing bet-

ter mechanisms for facilitating analytics-to-SME interaction;

and (3) providingmechanisms for automation of all aspects of

the DT lifecycle including DT creation and V&V. Addressing

these gaps will require making (perhaps capability limiting)

choices instituted via standards, best practices and other

specifications.

Moving forward will require a focus on consolidation

of DT research, development and implementation. Bring-

ing these great bodies of DT research and development

together will require advancements in technology, but also

development of standards and other specifications that will

serve to align DT efforts without compromising capabil-

ity or creativity. Specific deficiencies in DT technology

today that will have to be addressed to realize longer-term

solutions include providing more robust and automated solu-

tions for DTmaintenance, automatingDT creation, V&V, and

analytics-to-SME incorporation processes, providing solu-

tions for data sharing that preserve content to support DT

operation while protecting intellectual property, and realizing

DT solutions more collaboratively vertically and horizontally

across the entire manufacturing ecosystem.

APPENDIX

DT LIFECYCLE STEP AND TRANSITION DESCRIPTION

A high-level view of the DT lifecycle is provided in Fig-

ure 2. Additional detail on the lifecycle steps and transitions

is provided in Table 3, columns one through three. Note

that step descriptions can vary widely depending on the DT

purpose and application environment. Column four provides

additional detail on the case study of Section VI.B illustrating

some of the major tasks that might be executed at each step

in the lifecycle.
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