

A Requirements Specification Template of a

Communication Network Based on CAN Protocol

to Automotive Embedded Systems

Dario Almudi Neto

Faculty of Exact and Natural Sciences

Universidade Metodista de Piracicaba (UNIMEP)

Piracicaba – São Paulo – Brazil

e-mail: netoneto@globo.com

and

Luiz Eduardo Galvão Martins

Faculty of Exact and Natural Sciences

Universidade Metodista de Piracicaba (UNIMEP)

Piracicaba – São Paulo – Brazil

e-mail: martinsleg@hotmail.com

ABSTRACT
This paper presents the results of studies that made

possible to propose a particular contribution to improve

the quality on developing automotive embedded systems

through a requirements specification template of a

communication network based on CAN protocol. The

whole template structure is composed by sections that

specify the controlling units, the subnetworks, the data

dictionary and the general aspects of the communication

network. A study case was performed to test the proposed

template and a study of the requirements of an embedded

automotive environment was specified. The conclusions

of this study and the evaluation are presented and further

studies are suggested. This template can be used by

engineers and designers with industrial or scientific

purposes.

Keywords: Communication Requirements, Embedded

Automotive Systems, Template Specifications, CAN Net,

Requirements Engineering

1. INTRODUCTION
The automotive embedded systems have a meaningful role

in the industrial automotive sector and many technological

laboratories around the world work on developing several

resources. The result of these researches innovate the

automotive sector through the application of new

technologies in the design of vehicles.

The current systems of vehicular automation involve

mechanical and electronical devices and computational

systems, and due to their complexity, they stimulate the

introduction of new design methodologies. An important

issue is that the development methodologies require a high

level of abstraction for design, verification and validation

of the proposed system.

Some weaknesses are diagnosed in the context of

automotive embedded systems in the current scenario and

some of these processes can be identified in the context of

automotive embedded systems. Processes that enable the

organization of necessities to develop automotive

embedded systems are scarce, and the specifications of the

design of automotive embedded systems are often

supplied by automakers which keep their planning and

documentation in a confidential basis. Companies, and

some research sectors, attempting the development of their

automotive applications, whatever their commercial

purpose or not, perform their work without a requirement

specification document suitable for embedded systems.

Another important aspect to be considered in the

development of automotive embedded systems scenario is

the wide variety of existing communication protocols,

allowing a wide field for alternatives of communication

network design. The CAN (Controller Area Network)

communication protocol has been used in the development

of embedded automotive design, and consequently has

lead the companies that strongly invest on solutions to be

used on the manufacturing of a vehicle to provide CAN as

a part of their products.

This wide variety of communication protocols available

and their operating criteria and specifications turn the

requirements specification for automotive embedded

systems into a standard commercial challenge.

Based on the presented scenario, the aim of this paper is to

present a template for requirements specification of a

communication network based on CAN protocol for

automotive embedded systems.

The methodology for the development of the template

began with the study of the data communication network

of automotive embedded systems, seeking to understand

its operation and specifically focusing CAN as a

communication protocol. The elicitation processes and the

analysis were performed based on technical documents

and on standards related to the researched context. Volere

[1] and IEEE Std 830-1998 [2] were also studied with the

purpose of acknowledging the specification documents of

existing requirements and they helped clarify how a

template can be structured. A template validation was

performed through its usage in a study case to prove its

applicability. Results and final considerations are

discussed and presented.

This paper is organized as follows: section 2 presents the

aspects of Requirements Engineering that work as a basis

to assess the needs to structure a template. Section 3

presents an explanation on the CAN communication

network, which is the basis for the development of this

template. Finally section 4 presents the template and its

applicability in a study case and also presents a discussion

of the results obtained from the evaluation performed.

2. REQUIREMENTS ENGINEERING
Sommerville [3] defines Requirements Engineering (RE)

as a process created to cover all the activities involved in

discovery (production), documentation and maintenance

of a set of requirements for a computer based system.

JCS&T Vol. 10 No. 3 October 2010

143

The phases during the development of software constitute

its life cycle, which have several proposals and

designations. Pressman’s proposal [5] identifies six

delimited phases according to their typical events during

their different life cycles. Each phase includes a set of

activities or disciplines that must be performed by the

parts involved.

According to Sommerville [3] the requirements of

software systems are often classified as functional, non

functional or as domain requirements.

A proposal presented by Kotonya and Sommerville [6] of

a spiral model of the phases of Requirements Engineering

is shown in Figure 1.

Figure 1 – Spiral Model for the Requirements Engineering

Process [6].

Figure 1 presents a spiral model for the Requirements

Engineering process based on the elicitation, analysis,

specification and validation of the requirements activities.

Kotonya and Sommerville [6] propose a model of iterative

and incremental process just like the approach in the spiral

model for the software development, which includes the

necessary feedback to the characterization of the

requirements dynamic nature.

According to Taurion [7], to develop embedded systems it

is necessary to adopt methodologies starting with a high

level of abstraction as well as the use of tools that

automate the most all the stages of the methodology.

Requirements Elicitation
To Belgamo and Martins [8], despite requirements

elicitation is the first step in Requirements Engineering, it

doesn’t happen only once, for requirements elicitation is

an iterative process where all the other phases may contain

extractions and requirements analysis that may happen

whenever the analyst thinks it is necessary.

The information gathered during the requirements

elicitation must often be interpreted, analyzed, modeled

and validated before the engineer starts feeling confident

that the set of requirements was obtained. Therefore, the

elicitation techniques are closely related to other RE

activities – mostly the elicitation technique used is

motivated by the choice of modeling and vice versa: many

modeling involve the use of certain types of elicitation

techniques [9].

Requirements Analysis
At this phase the clients and users necessities are analyzed

to get the definition of the software requirements. The goal

is to detect imperfection, omissions and redundancies in

order to discover the necessary and desired software

requirements. Inconsistency, duplicity of information,

ambiguity, conflicting requirements are also examples of

problems that can be found out in this phase of the

process. The commitment and participation of the

stakeholders is crucial in this phase.

Requirements Specification
To organize the requirements of the system, the results

obtained from the elicitation and the analysis will be then

documented through texts, diagrams, models or rules of

prototyping. This process has a high level of difficulty and

heavily relies on the engineer writing skills.

Among the benefits obtained by the generated documents,

it is possible to cite [4]:

a) The specification document is the basic

communication vehicle between developers and users

on what has to be built;

b) The specification document register the results of the

analysis of the problem (obtained through elicitation

and requirements analysis);

c) The specification document defines the properties the

system must have along with its restrictions imposed

to the design and implementation;

d) The specification document is the basis for cost and

schedule rates;

e) The specification document is the basis for developing

the system test plan;

f) The specification document provides a behavior

standard definition expected by the professionals

involved in the system maintenance;

g) The specification document is used to register changes

in the system engineering.

Validation
Requirements validation is concerned with showing that

the requirements actually define what system the customer

wants [3].

According to Martins [4] the main problems found during

the requirements validation are:

• Not meeting the standards of quality;

• Requirements poorly described; which lead to

ambiguity;

• Errors in modeling the problem or system;

• Conflicting requirements not identified during the

analysis phase.

This step is also concerned in finding problems in the

requirements. However the processes (analysis and

validation) are different. Validation concerns are related to

the development of a complete draft for the requirements

document, while analysis involves working with

incomplete requirements [3].

3. CAN (CONTROLLER AREA NETWORK)
The data transmission systems in the industry began in a

quite simple way, using connection like serial RS-232 and

RS-485 protocols. However, industries started developing

more complex systems, with their own technologies,

protocols, software and hardware better fitted to their

necessities.

CAN is an internationally standardized serial bus system

providing functionality of data link layers of OSI/ISO

reference model. In 1983, Bosch Company had started its

work of development of a data network automobiles, thus

resulting in CAN protocol. The company has improved the

use of this protocol to other industrial applications such as:

medical systems, navigational instrumentation, elevators

control systems, textile production, general production

control systems [10].

A CAN network is usually characterized as a network that,

despite having been conceived for embedded systems, has

working groups in the automation area that envision the

systems suitability to be used as an industrial local

JCS&T Vol. 10 No. 3 October 2010

144

network and created an organization named CiA (CAN in

automation) with users and manufacturers of products

bases on this protocol. Data communication in a CAN

network protocol is based in messages loaded in bit frames

which, in turn, consist of bit fields with specific functions

in the frame. The CAN bus works on multicast oriented to

the content of the message and not to address of the

message as it is traditionally [11].

CAN is a synchronous serial communication protocol. The

timing among the modules connected to the network is

performed based on the beginning of each message posted

to the bus. All the network nodes continuously monitor all

the messages, discarding or recognizing each of them

according their convenience. As the transmission protocol

does not require a recipient physical address, it holds

multiple reception as well as synchronization of

distributed processes, i.e., the necessary measurement for

the various controllers can be transmitted via network,

making unnecessary that each controller has its own

sensor [11].

4. CAMA TEMPLATE DEFINITION
CAMA Template structure, which acronym is formed by

the words CAN, Martins and Almudi, referring

respectively to the CAN communication protocol and to

the proponents of the template’s surname.

In the construction of embedded systems, the software

starts being developed when the hardware is already in a

very advanced stage of development. The hardware design

tends to be dominant due to having a major cycle of

development, being more stable and requiring logistical

dependence on external partners, such as suppliers and

outsourced developers. There isn’t, so far, an appropriate

methodology to help developers to specify the

requirements to automotive embedded systems, causing a

large gap between designers from hardware and software

areas, especially in the early phases of structuring the

design. One of the possibilities CAMA Template offers is

the integration between developers through a resource that

provides easy communication channels between the

hardware designers and software engineers.

CAMA Template Divisions

The CAMA Template will be used to specify the relevant

and special aspects of the automotive embedded

communication systems network that use CAN protocol in

exchanging information. The template is structured in

Figure 2. Each section of the template is detailed into

several features. These features are organized using

specification cards.

Figure 2 – CAMA Template’s General Structure

a) Embedded Environment Definition

The environment of an automotive embedded system may

have different purposes. It is possible to establish an

environment featuring the control of certain functions, or

define an environment to provide diagnosis of situations

occurring inside the environment or even more common,

to implement these two functionalities inside the

automotive embedded system, developing a simultaneous

controlling and diagnosis structure. The items that detail

the environment definition are (see Figure 3):

Purpose of application: The embedded

environment could be defined as control application,

diagnosis or control and diagnosis.

Type of Architecture: The distributed

architecture is characterized by the presence of several

intelligent modules throughout the application, each one

receiving only part of the data, usually those generated

close to them, and sending them to the modules that

require such information to their own processing.

The choice between distributed or centralized architecture

will be done according to the necessity and size of the

project. The centralized architecture is composed by only

one controlling unit and there is not the necessity of a bus

communication since it is slightly performed with only

sensors and actuators. If the choice is a centralized

architecture, the use of CAMA template is not necessary.

Logical Domains: Performing division into the

vehicle’s logical domains provides an overview on the

interrelated structures that formally describe an integrated

system. Examples of logical domains: Propulsion System,

Vehicle’s Motion, Body and Interior, Electric System,

Multimedia, etc. This item requires the data of all logical

domains specified in the environment.

Environment Protection System: The

protection systems on embedded environment are

performed by fuses in charge of protecting the electric

harness of electronic components attached to it. Two

elements have to be defined in this item: The maximum

current of the circuit (MCC) and the fuse value (FV) to be

used as a protection.

Number of ECUs: The Electronic Control Unit

(ECU), also known as controlling unity or controlling

module is an electronic device that controls one or more

electrical systems in a vehicle. Some modern vehicles

have up to 80 ECUs. This item requires the data of the

number of ECUs independently of the type of established

attachment, even if among ECUs the communication is

performed by a protocol other than CAN. This item has to

specify the total number of ECUs presents in the bus.

Number of Subnetworks: Subnetwork is the

segment that establishes the communication between a set

of ECUs in a different way on the bus. Each subnetwork

must have the detailed specifications of communication on

defined files. This item specifies the amount of

subnetwork presents on the total bus of the automotive

embedded enviroment.

Total Size of the harness: This item specifies

the total size of the data bus harness of the environment,

adding the harness segments of all subnetworks.

JCS&T Vol. 10 No. 3 October 2010

145

Notes: Additional information about automotive

embedded environment. Aspects of the environment that

can assist the understanding or special features of the

design could be approached.

Figure 3 – Card of Environment Definition

b) ECU Definition

Electronic Control Units are the main components of the

automotive embedded system. Through them the points of

input and output of information are set, since they are in

charge of processing it. ECUs may or may not contain a

CAN transceptor attached to its structure and when it

doesn’t happen, this resource must be installed in the ECU

so that the communication with the CAN bus occurs. The

items to be specified about ECUs are presented below (the

specification card is presented in Figure 4).

ECU Identifier: A numeric or mnemonic label

that identifies the ECU in an unique way inside the

automotive embedded system environment.

Type of ECU: It identifies the electronic

module according to its application. Acronyms are used to

identify the electronic modules: BCM – body controlling

module, BAM – back area module, TCM – transmission

controlling module. These are only some examples to

illustrate this feature.

Type of CAN Controller: Relating to

transmission and reception buffers. BasicCAN – low cost

controller with simple capacity of filtering acceptance.

FullCAN – controller that handles the most complex

messages through dual-port RAM, freeing CPU to manage

just a few bits.

Quantity of inputs: Number of input the ECU

has, determining which are digital and which are analog.

Type of Input: These can be digital or analog.

Digital inputs capture information in two states “0” or “1”,

and can be translated by states of voltage (0 and 5 Volts or

0 or 12 Volts). They may or may not be supervised (in

case of being supervised the input must be connected to an

analog gate of the ECU and have a resistor connected in

parallel). Analog inputs are able to capture information

that varies infinitely between two values, 0 or 5 Volts and

0 or 12 Volts. This is the item to specify the voltage of the

input and when they are digital, if they are supervised or

not (WS – with supervision / NS – no supervision).

Quantity of output: the number of outputs the

ECU has, determining which are digital and which are

analog.

Type of Output: Outputs can be digital or

analog. Digital outputs are divided into two groups: Low

Side Driver (LSD) e High Side Driver (HSD). Both may

or may not be protected. It specifies the voltage of the

outputs and if they are protected or not (WP – with

protection / NP – no protection).

ECU Terminal: Defines if this ECU will be

terminal carrier (120 Ohms resistors) inside the bus.

Additional Function. Gateway: resource which

primary purpose is to interconnect distinct networks in a

manageable way with the possibility of separating

colliding domains and interpreting different protocols.

Bridge: used to interconnect networks, allowing free

access between them. Repeater: it is an equipment used to

interconnect identical networks, since they electrically

amplify and regenerate transmitted signals in the physical

environment. Routers: equipment used to create

forwarding routes of data packages in different networks.

See rule SAE J1939 for an understanding on each of the

detailed applications.

 Notes: Specification and additional information

on ECU. Other technical details about the ECU can be

showed. Due to the wide variety of manufacturers in the

market, one suggestion is to specify the source of the

ECU, in order to make easier its identification.

Figure 4 – ECU Card

c) Subnetwork Definition

Subnetworks are formed by part of the bus to which two

or more ECUs are attached. The established characteristics

inside the subnetworks are standardized to allow that the

ECUs linked to this subnetwork bus to communicate.

The information on the subnetworks is transmitted through

fixed format frames with different but limited lengths.

When the bus is idle, any connected node can start

transmitting a new frame. If two or more nodes start

transmitting frames simultaneously, the conflict of

accessing to the bus must be solved by arbitration through

the contention identifier. The arbitration mechanism must

ensure that there are not waste of information neither time.

The transmitter with the highest priority frame will have

access to the bus. The items that detail the subnetwork

definition are (see Figure 5):

Subnetwork Identifier: A numeric or

mnemonic label that identifies the subnetwork in a unique

way inside the automotive embedded system environment.

Type of Subnetwork: Specifications of the

subnetwork that are attached to the ECU. Example: CAN

network, LIN network, SDI network, etc.

Operating voltage: Specifies which operating

voltage will power the bus. The values must be determined

to VCAN_H, VCAN_L, zero dominant logic level (Vdiff)

JCS&T Vol. 10 No. 3 October 2010

146

and the one recessive logic level (LR). There are values to

be specified to the voltage operating on the rules that

standardize the CAN protocol implementation (e. g.: ISO

11898).

Transmission Speed: Data transmission speed

is proportional to the length of the bus. The highest

specified data transmission rate is 1Mbps considering a 40

meters bus.

Type of Bus: Twisted pair (two or four wires) or

single wire. The choice of the bus type is determined by

the features of the application wanted to be developed. It

can be:

• For one wire – CAN Line

• For two wires: CAN_L and CAN_H

• For four wires: CAN_L, CAN_H, VCC (input) e

GND (ref.)

Size of Network Harness: Specifies the size of

the harness of the subnetwork data bus. It is important to

note the distances to be taken when building the bus.

• Maximum bus length for a speed of 1Mbps = 40m;

• Maximum branch length (connection between the

harness and the main ECU) = 30 centimeters;

• Minimum distance to be respected between branches

= 0,10m.

 Notes: Specification and additional information

on the subnetwork.

Figure 5 – Card of Subnetwork

d) Structure for Defining the Field of

Arbitration
Specifications to be presented in the template are:

Message ID: A numeric or mnemonic label that

identifies the message in a unique way inside the

automotive embedded system environment. This ID must

be specified in the file of the message.

Field of Arbitration ID: A numeric or

mnemonic label that identifies the field of arbitration in a

unique way inside the automotive embedded system

environment. This ID has to be the same specified in the

file of the message.

 Message Format: It determines which will be

the standard of the message: 11 bits for the standard

format or 29 bits for the extended format.

 Bits specification: Bits will be specified

according to the option of the message format. It can adopt

the suggestion of the division in classes, categories and

address of the node.

Figure 6 – Field of Arbitration Card

e) Structure for Data Dictionary Definition
Specifications to be presented in the template are:

Message ID: A numeric or mnemonic label that

identifies the message format in an unique way inside the

automotive embedded system environment.

Message name: A label that helps identifying

the purpose of the message.

Field of Arbitration ID: A numeric or

mnemonic label identical to that found in the card of the

Field of Arbitration.

Size of Message: Size in bytes of message

according to what was established in the field of

controlling.

Data Bytes: Data bytes specification that must

be performed in binary or hexadecimal format to compose

the message.

ECU TX ID: A numeric or mnemonic label

identical to that found in the ECU card. It identifies the

ECU that transmits the message.

ECU RX ID: A numeric or mnemonic label

identical to that found in the ECU card. Ii identifies the

ECU that receives the message.

 Notes: Specification and additional information

about the Data Dictionary.

Figure 7 – Card of Data Dictionary

f) Error Checking

CAN has a very reliable error handling. The errors can be

detected, whatever they are global or local. This

possibility sets CAN as a high level security solution to be

implemented in automotive embedded systems.

There are five ways of handling errors that CAN enables:

a) Bit Error: any transmitter continues monitoring the

data bus while transmitting. If the monitored bit has a

different value from the one sent, an error is flagged.

b) Coding Error: it happens when the monitored bit had

the same value six times. In the sixth occurrence the

error is flagged.

JCS&T Vol. 10 No. 3 October 2010

147

c) CRC error: in case the value of the transmitted CRC

field is not equal to the CRC recalculated in the

receiver, this error is flagged.

d) Formatting error: it occurs when a pre-defined field

format (CRC - Cyclic Redundancy Check, ACK -

Acknowledgement, Final of Frame) has one or more

illegal bits.

e) ACK Field error: this error will be flagged in case the

transmitter does not detect a dominant bit while ACK

field transmission.

5. STUDY CASE
An automotive embedded system was chosen for the study

case to have its requirements specified through the

proposed template. The system could not be identified

because of confidential commercial reasons. Issues of

confidentiality are very sensitive in automotive embedded

systems development and there was a commitment by the

authors of this paper, so that the study case would be

possible. It was asked not to reveal or identify parts of the

documentation used to evaluate the template.

The study was based on a finished specification from a

major international car manufacturer with a plant in

Brazil, with a large insertion in automotive Brazilian

market. The part of the documentation provided to use in

the study case did not include the physical layout of the

embedded system’s data communication network and in

order to have a full performance of the study, the author

suggested a physical layout of the automotive embedded

environment, as showed in Figure 8. The manufacturer

requirements specification includes only the aspects

related to de ECU and subnetwork identification,

approaching the message framework in a more substantial

way.

Figure 8 – Physical Layout of the Embedded Environment

Adopted in the Study Case

The aim of this study case was to practice with the

proposed template to specify the automotive embedded

systems’ data communication requirements providing by

this experience, a template’s experimental evaluation.

During the study case three characteristics of the template

were aimed to be analyzed:

Adequacy of coverage: checking if the technical

variables reached in the template covered the main

elements that constitute an automotive embedded systems

environment;

Easiness of use: checking whether the explanations

provided for filling in forms as well as their layout were

easy to understand and use;

Practical use: checking how useful the template showed

itself to the automotive embedded system designer,

assessing whether the requirements specifications of the

environment were well documented through the use of the

template.

• Positive evidence related to the use of the

Template

The template proved to be easy to use. The study case

showed that all models of specification files could be used

without any difficulties.

The scope of the template proved to be sufficient, since

there was not a record of non-relevant item in the template

in the study case.

The structure proposed for the template, dividing it into

their respective specifications files, proved to be adequate

because there was not a register of inconvenience or

misunderstanding about the use of the proposed files.

• Negative evidence related to the use of the

Template

Some aspects regarding to the standardization of

terminology our units of measure interfered with the

interpretation of requirements. It was observed that even if

the automakers follow the rules established by SAE and

ISO, they also create mechanisms to keep their

commercial secret.

The proposed template approached the CAN protocol

more specifically due to its use be more intense in the

embedded system environment. However, new

technologies and commercial decisions can change this

preference.

• Appraisers’ analysis

The CAMA Template was taken to three automotive

embedded system engineers working in multinational

companies with more than ten years of expertise. They

were asked to issue their opinion on the template based on

their daily basis professional activities.

Figure 9 presents the results of the evaluation performed

by the automotive engineers that participated in the

analysis of the CAMA Template. The Likert Scale was

used to check the level of organization, understanding,

approach, documentation and use of the template.

Figure 9 – Results of Evaluation by Engineers

Some aspects discusses by the automotive engineers were:

a) A positive highlight is related to the template’s

organization, which is very important for a better

JCS&T Vol. 10 No. 3 October 2010

148

understanding and documentation of the requirements

specification.

b) It is important to verify that the template can be

considered a relevant element to form the basis of the

development of the design when planning the automotive

embedded design.

c) The requirements to be specified in the template

broadly include the design developers’ necessities with

wide cover.

d) According to the evaluators CAMA template does not

provide a complete basis to assess the project for the

Automotive Embedded Systems’ cost and schedules

(though it partially meets this requirement), because cost

assessments involve some other aspects to be considered.

e) As the template approaches only CAN protocol, it limits

some features when it comes to more sophisticated

designs. It was indicated to amplify the template to

approach other communication protocols for automotive

embedded systems.

f) Overall, the template was well evaluated by the

engineers considering its application and easiness,

especially because it allows an agreement basis between

software and hardware engineers, one of the proposals of

this study.

6. CONCLUSIONS
Although this study provides a special contribution

focused on a specific aspect of the automotive embedded

system, which is the data communication network through

CAN protocol, it is a relevant and innovative contribution,

since any embedded system needs a complete and

organized documentation about the environment

requirements in which the software will be implemented.

The software plays a key role in many products that

incorporated technology. The software is a priority factor

for the automotive industry which can present several

problems, though it is crucial for competitiveness [12].

The template driven documentation produced will turn

easy the automotive embedded software developers’ work

since they will have a requirements specification with easy

access to the understanding of a data communication

network for an automotive environment.

For those interested, CAMA template automotive

embedded system will provide benefits that will enable:

• Establish an agreement basis between stakeholders;

• Include as an item on the basis of the project planning;

• Reduce the effort of development between hardware

and software engineers;

• Provide a starting point for the project;

• Reuse of requirements for future projects;

• Form a basis to enrich the project’s documentation.

The study case provided a first trial on the proposed

template. The initial experience has confirmed a promising

perspective of application of the template, illustrating the

usefulness and relevance of the proposal. It is clear that

more experiments have to be conducted to confirm the

efficiency and benefits of the template, as well as to point

the necessary adjustments and adaptations in this

requirements specification tool.

As future works, it is intended to develop software to

support the use of template and expand it to other

communication protocols adopted by the automotive

industry.

7. REFERENCES
[1] J. Robertson, S. Robertson, Volere – Modelo para

Especificação de Requisitos. 14. ed. Versão em Português.

London: [s.n.], ago. 2009.

[2] IEEE Std 830-1998. Recommended Practice for

Software Requirements Specifications. IEEE - Institute of

Electrical and Eletronic Engineers. Inc., 1998.

[3] I. Sommerville, Engenharia de Software. São Paulo:

Addison Wesley, 2007.

[4] L. E. G. Martins, Uma Metodologia de Elicitação de

Requisitos de Software baseada na Teoria da Atividade.

Tese de Doutorado. Campinas, SP: UNICAMP, 2001.

[5] R. S. Pressman, Engenharia de Software. 6. ed. São

Paulo: McGraw-Hill, 2006.

[6] G. Kotonya, I. Sommerville, Requirements

Engineering: Processes and Techniques. Chichester: John

Wiley & Sons, 1998.

[7] C. Taurion, Software Embarcado. A nova onda da

Informática. Rio de Janeiro: Brasport, 2005.

[8] A. Belgamo, L. E. G Martins, Um Estudo Comparativo

sobre as Técnicas de Elicitação de Requisitos do Software.

In: Congresso Brasileiro da Sociedade Brasileira de

Computação, 20. Concurso de Trabalhos de Iniciação

Científica, 19., 2000. Curitiba: PUCPR, 2000. p. 7-20.

[9] J. Goguen, M. Jirotka, Requirements Engineering:

Social and Technical Issues. Seattle: Academic Press,

1994.

[10] Bosch, CAN Specification Version 2.0. Stuttgart:

Robert Bosch GmbH, 1991.

[11] A. A. GUIMARÃES, Eletrônica Embarcada

Automotiva. São Paulo: Érica, 2007.

[12] M. Broy, Challenges in Automotive Software

Engineering. 28th International Conference on Software

Engineering (ICSE). China: Shanghai, 2006.

JCS&T Vol. 10 No. 3 October 2010

149

